1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.util; 27 28 /** 29 * <p>Hash table and linked list implementation of the {@code Set} interface, 30 * with well-defined encounter order. This implementation differs from 31 * {@code HashSet} in that it maintains a doubly-linked list running through 32 * all of its entries. This linked list defines the encounter order (iteration 33 * order), which is the order in which elements were inserted into the set 34 * (<i>insertion-order</i>). The least recently inserted element (the eldest) is 35 * first, and the youngest element is last. Note that encounter order is <i>not</i> affected 36 * if an element is <i>re-inserted</i> into the set with the {@code add} method. 37 * (An element {@code e} is reinserted into a set {@code s} if {@code s.add(e)} is 38 * invoked when {@code s.contains(e)} would return {@code true} immediately prior to 39 * the invocation.) The reverse-ordered view of this set is in the opposite order, with 40 * the youngest element appearing first and the eldest element appearing last. The encounter 41 * order of elements already in the set can be changed by using the 42 * {@link #addFirst addFirst} and {@link #addLast addLast} methods. 43 * 44 * <p>This implementation spares its clients from the unspecified, generally 45 * chaotic ordering provided by {@link HashSet}, without incurring the 46 * increased cost associated with {@link TreeSet}. It can be used to 47 * produce a copy of a set that has the same order as the original, regardless 48 * of the original set's implementation: 49 * <pre>{@code 50 * void foo(Set<String> s) { 51 * Set<String> copy = new LinkedHashSet<>(s); 52 * ... 53 * } 54 * }</pre> 55 * This technique is particularly useful if a module takes a set on input, 56 * copies it, and later returns results whose order is determined by that of 57 * the copy. (Clients generally appreciate having things returned in the same 58 * order they were presented.) 59 * 60 * <p>This class provides all of the optional {@link Set} and {@link SequencedSet} 61 * operations, and it permits null elements. Like {@code HashSet}, it provides constant-time 62 * performance for the basic operations ({@code add}, {@code contains} and 63 * {@code remove}), assuming the hash function disperses elements 64 * properly among the buckets. Performance is likely to be just slightly 65 * below that of {@code HashSet}, due to the added expense of maintaining the 66 * linked list, with one exception: Iteration over a {@code LinkedHashSet} 67 * requires time proportional to the <i>size</i> of the set, regardless of 68 * its capacity. Iteration over a {@code HashSet} is likely to be more 69 * expensive, requiring time proportional to its <i>capacity</i>. 70 * 71 * <p>A linked hash set has two parameters that affect its performance: 72 * <i>initial capacity</i> and <i>load factor</i>. They are defined precisely 73 * as for {@code HashSet}. Note, however, that the penalty for choosing an 74 * excessively high value for initial capacity is less severe for this class 75 * than for {@code HashSet}, as iteration times for this class are unaffected 76 * by capacity. 77 * 78 * <p><strong>Note that this implementation is not synchronized.</strong> 79 * If multiple threads access a linked hash set concurrently, and at least 80 * one of the threads modifies the set, it <em>must</em> be synchronized 81 * externally. This is typically accomplished by synchronizing on some 82 * object that naturally encapsulates the set. 83 * 84 * If no such object exists, the set should be "wrapped" using the 85 * {@link Collections#synchronizedSet Collections.synchronizedSet} 86 * method. This is best done at creation time, to prevent accidental 87 * unsynchronized access to the set: <pre> 88 * Set s = Collections.synchronizedSet(new LinkedHashSet(...));</pre> 89 * 90 * <p>The iterators returned by this class's {@code iterator} method are 91 * <em>fail-fast</em>: if the set is modified at any time after the iterator 92 * is created, in any way except through the iterator's own {@code remove} 93 * method, the iterator will throw a {@link ConcurrentModificationException}. 94 * Thus, in the face of concurrent modification, the iterator fails quickly 95 * and cleanly, rather than risking arbitrary, non-deterministic behavior at 96 * an undetermined time in the future. 97 * 98 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed 99 * as it is, generally speaking, impossible to make any hard guarantees in the 100 * presence of unsynchronized concurrent modification. Fail-fast iterators 101 * throw {@code ConcurrentModificationException} on a best-effort basis. 102 * Therefore, it would be wrong to write a program that depended on this 103 * exception for its correctness: <i>the fail-fast behavior of iterators 104 * should be used only to detect bugs.</i> 105 * 106 * <p>This class is a member of the 107 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> 108 * Java Collections Framework</a>. 109 * 110 * @param <E> the type of elements maintained by this set 111 * 112 * @author Josh Bloch 113 * @see Object#hashCode() 114 * @see Collection 115 * @see Set 116 * @see HashSet 117 * @see TreeSet 118 * @see Hashtable 119 * @since 1.4 120 */ 121 122 public class LinkedHashSet<E> 123 extends HashSet<E> 124 implements SequencedSet<E>, Set<E>, Cloneable, java.io.Serializable { 125 126 @java.io.Serial 127 private static final long serialVersionUID = -2851667679971038690L; 128 129 /** 130 * Constructs a new, empty linked hash set with the specified initial 131 * capacity and load factor. 132 * 133 * @apiNote 134 * To create a {@code LinkedHashSet} with an initial capacity that accommodates 135 * an expected number of elements, use {@link #newLinkedHashSet(int) newLinkedHashSet}. 136 * 137 * @param initialCapacity the initial capacity of the linked hash set 138 * @param loadFactor the load factor of the linked hash set 139 * @throws IllegalArgumentException if the initial capacity is less 140 * than zero, or if the load factor is nonpositive 141 */ LinkedHashSet(int initialCapacity, float loadFactor)142 public LinkedHashSet(int initialCapacity, float loadFactor) { 143 super(initialCapacity, loadFactor, true); 144 } 145 146 /** 147 * Constructs a new, empty linked hash set with the specified initial 148 * capacity and the default load factor (0.75). 149 * 150 * @apiNote 151 * To create a {@code LinkedHashSet} with an initial capacity that accommodates 152 * an expected number of elements, use {@link #newLinkedHashSet(int) newLinkedHashSet}. 153 * 154 * @param initialCapacity the initial capacity of the LinkedHashSet 155 * @throws IllegalArgumentException if the initial capacity is less 156 * than zero 157 */ LinkedHashSet(int initialCapacity)158 public LinkedHashSet(int initialCapacity) { 159 super(initialCapacity, .75f, true); 160 } 161 162 /** 163 * Constructs a new, empty linked hash set with the default initial 164 * capacity (16) and load factor (0.75). 165 */ LinkedHashSet()166 public LinkedHashSet() { 167 super(16, .75f, true); 168 } 169 170 /** 171 * Constructs a new linked hash set with the same elements as the 172 * specified collection. The linked hash set is created with an initial 173 * capacity sufficient to hold the elements in the specified collection 174 * and the default load factor (0.75). 175 * 176 * @param c the collection whose elements are to be placed into 177 * this set 178 * @throws NullPointerException if the specified collection is null 179 */ LinkedHashSet(Collection<? extends E> c)180 public LinkedHashSet(Collection<? extends E> c) { 181 super(HashMap.calculateHashMapCapacity(Math.max(c.size(), 12)), .75f, true); 182 addAll(c); 183 } 184 185 /** 186 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> 187 * and <em>fail-fast</em> {@code Spliterator} over the elements in this set. 188 * 189 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, 190 * {@link Spliterator#DISTINCT}, and {@code ORDERED}. Implementations 191 * should document the reporting of additional characteristic values. 192 * 193 * @implNote 194 * The implementation creates a 195 * <em><a href="Spliterator.html#binding">late-binding</a></em> spliterator 196 * from the set's {@code Iterator}. The spliterator inherits the 197 * <em>fail-fast</em> properties of the set's iterator. 198 * The created {@code Spliterator} additionally reports 199 * {@link Spliterator#SUBSIZED}. 200 * 201 * @return a {@code Spliterator} over the elements in this set 202 * @since 1.8 203 */ 204 @Override spliterator()205 public Spliterator<E> spliterator() { 206 return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED); 207 } 208 209 /** 210 * Creates a new, empty LinkedHashSet suitable for the expected number of elements. 211 * The returned set uses the default load factor of 0.75, and its initial capacity is 212 * generally large enough so that the expected number of elements can be added 213 * without resizing the set. 214 * 215 * @param numElements the expected number of elements 216 * @param <T> the type of elements maintained by the new set 217 * @return the newly created set 218 * @throws IllegalArgumentException if numElements is negative 219 * @since 19 220 */ newLinkedHashSet(int numElements)221 public static <T> LinkedHashSet<T> newLinkedHashSet(int numElements) { 222 if (numElements < 0) { 223 throw new IllegalArgumentException("Negative number of elements: " + numElements); 224 } 225 return new LinkedHashSet<>(HashMap.calculateHashMapCapacity(numElements)); 226 } 227 228 @SuppressWarnings("unchecked") map()229 LinkedHashMap<E, Object> map() { 230 return (LinkedHashMap<E, Object>) map; 231 } 232 233 /** 234 * {@inheritDoc} 235 * <p> 236 * If this set already contains the element, it is relocated if necessary so that it is 237 * first in encounter order. 238 * 239 * @since 21 240 */ addFirst(E e)241 public void addFirst(E e) { 242 map().putFirst(e, PRESENT); 243 } 244 245 /** 246 * {@inheritDoc} 247 * <p> 248 * If this set already contains the element, it is relocated if necessary so that it is 249 * last in encounter order. 250 * 251 * @since 21 252 */ addLast(E e)253 public void addLast(E e) { 254 map().putLast(e, PRESENT); 255 } 256 257 /** 258 * {@inheritDoc} 259 * 260 * @throws NoSuchElementException {@inheritDoc} 261 * @since 21 262 */ getFirst()263 public E getFirst() { 264 return map().sequencedKeySet().getFirst(); 265 } 266 267 /** 268 * {@inheritDoc} 269 * 270 * @throws NoSuchElementException {@inheritDoc} 271 * @since 21 272 */ getLast()273 public E getLast() { 274 return map().sequencedKeySet().getLast(); 275 } 276 277 /** 278 * {@inheritDoc} 279 * 280 * @throws NoSuchElementException {@inheritDoc} 281 * @since 21 282 */ removeFirst()283 public E removeFirst() { 284 return map().sequencedKeySet().removeFirst(); 285 } 286 287 /** 288 * {@inheritDoc} 289 * 290 * @throws NoSuchElementException {@inheritDoc} 291 * @since 21 292 */ removeLast()293 public E removeLast() { 294 return map().sequencedKeySet().removeLast(); 295 } 296 297 /** 298 * {@inheritDoc} 299 * <p> 300 * Modifications to the reversed view are permitted and will be propagated to this set. 301 * In addition, modifications to this set will be visible in the reversed view. 302 * 303 * @return {@inheritDoc} 304 * @since 21 305 */ reversed()306 public SequencedSet<E> reversed() { 307 class ReverseLinkedHashSetView extends AbstractSet<E> implements SequencedSet<E> { 308 public int size() { return LinkedHashSet.this.size(); } 309 public Iterator<E> iterator() { return map().sequencedKeySet().reversed().iterator(); } 310 public boolean add(E e) { return LinkedHashSet.this.add(e); } 311 public void addFirst(E e) { LinkedHashSet.this.addLast(e); } 312 public void addLast(E e) { LinkedHashSet.this.addFirst(e); } 313 public E getFirst() { return LinkedHashSet.this.getLast(); } 314 public E getLast() { return LinkedHashSet.this.getFirst(); } 315 public E removeFirst() { return LinkedHashSet.this.removeLast(); } 316 public E removeLast() { return LinkedHashSet.this.removeFirst(); } 317 public SequencedSet<E> reversed() { return LinkedHashSet.this; } 318 public Object[] toArray() { return map().keysToArray(new Object[map.size()], true); } 319 public <T> T[] toArray(T[] a) { return map().keysToArray(map.prepareArray(a), true); } 320 } 321 322 return new ReverseLinkedHashSetView(); 323 } 324 } 325