1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 import java.lang.invoke.MethodHandles; 39 import java.lang.invoke.VarHandle; 40 import java.util.concurrent.locks.LockSupport; 41 42 /** 43 * A cancellable asynchronous computation. This class provides a base 44 * implementation of {@link Future}, with methods to start and cancel 45 * a computation, query to see if the computation is complete, and 46 * retrieve the result of the computation. The result can only be 47 * retrieved when the computation has completed; the {@code get} 48 * methods will block if the computation has not yet completed. Once 49 * the computation has completed, the computation cannot be restarted 50 * or cancelled (unless the computation is invoked using 51 * {@link #runAndReset}). 52 * 53 * <p>A {@code FutureTask} can be used to wrap a {@link Callable} or 54 * {@link Runnable} object. Because {@code FutureTask} implements 55 * {@code Runnable}, a {@code FutureTask} can be submitted to an 56 * {@link Executor} for execution. 57 * 58 * <p>In addition to serving as a standalone class, this class provides 59 * {@code protected} functionality that may be useful when creating 60 * customized task classes. 61 * 62 * @since 1.5 63 * @author Doug Lea 64 * @param <V> The result type returned by this FutureTask's {@code get} methods 65 */ 66 public class FutureTask<V> implements RunnableFuture<V> { 67 /* 68 * Revision notes: This differs from previous versions of this 69 * class that relied on AbstractQueuedSynchronizer, mainly to 70 * avoid surprising users about retaining interrupt status during 71 * cancellation races. Sync control in the current design relies 72 * on a "state" field updated via CAS to track completion, along 73 * with a simple Treiber stack to hold waiting threads. 74 */ 75 76 /** 77 * The run state of this task, initially NEW. The run state 78 * transitions to a terminal state only in methods set, 79 * setException, and cancel. During completion, state may take on 80 * transient values of COMPLETING (while outcome is being set) or 81 * INTERRUPTING (only while interrupting the runner to satisfy a 82 * cancel(true)). Transitions from these intermediate to final 83 * states use cheaper ordered/lazy writes because values are unique 84 * and cannot be further modified. 85 * 86 * Possible state transitions: 87 * NEW -> COMPLETING -> NORMAL 88 * NEW -> COMPLETING -> EXCEPTIONAL 89 * NEW -> CANCELLED 90 * NEW -> INTERRUPTING -> INTERRUPTED 91 */ 92 private volatile int state; 93 private static final int NEW = 0; 94 private static final int COMPLETING = 1; 95 private static final int NORMAL = 2; 96 private static final int EXCEPTIONAL = 3; 97 private static final int CANCELLED = 4; 98 private static final int INTERRUPTING = 5; 99 private static final int INTERRUPTED = 6; 100 101 /** The underlying callable; nulled out after running */ 102 private Callable<V> callable; 103 /** The result to return or exception to throw from get() */ 104 private Object outcome; // non-volatile, protected by state reads/writes 105 /** The thread running the callable; CASed during run() */ 106 private volatile Thread runner; 107 /** Treiber stack of waiting threads */ 108 private volatile WaitNode waiters; 109 110 /** 111 * Returns result or throws exception for completed task. 112 * 113 * @param s completed state value 114 */ 115 @SuppressWarnings("unchecked") report(int s)116 private V report(int s) throws ExecutionException { 117 Object x = outcome; 118 if (s == NORMAL) 119 return (V)x; 120 if (s >= CANCELLED) 121 throw new CancellationException(); 122 throw new ExecutionException((Throwable)x); 123 } 124 125 /** 126 * Creates a {@code FutureTask} that will, upon running, execute the 127 * given {@code Callable}. 128 * 129 * @param callable the callable task 130 * @throws NullPointerException if the callable is null 131 */ FutureTask(Callable<V> callable)132 public FutureTask(Callable<V> callable) { 133 if (callable == null) 134 throw new NullPointerException(); 135 this.callable = callable; 136 this.state = NEW; // ensure visibility of callable 137 } 138 139 /** 140 * Creates a {@code FutureTask} that will, upon running, execute the 141 * given {@code Runnable}, and arrange that {@code get} will return the 142 * given result on successful completion. 143 * 144 * @param runnable the runnable task 145 * @param result the result to return on successful completion. If 146 * you don't need a particular result, consider using 147 * constructions of the form: 148 * {@code Future<?> f = new FutureTask<Void>(runnable, null)} 149 * @throws NullPointerException if the runnable is null 150 */ FutureTask(Runnable runnable, V result)151 public FutureTask(Runnable runnable, V result) { 152 this.callable = Executors.callable(runnable, result); 153 this.state = NEW; // ensure visibility of callable 154 } 155 isCancelled()156 public boolean isCancelled() { 157 return state >= CANCELLED; 158 } 159 isDone()160 public boolean isDone() { 161 return state != NEW; 162 } 163 cancel(boolean mayInterruptIfRunning)164 public boolean cancel(boolean mayInterruptIfRunning) { 165 if (!(state == NEW && STATE.compareAndSet 166 (this, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED))) 167 return false; 168 try { // in case call to interrupt throws exception 169 if (mayInterruptIfRunning) { 170 try { 171 Thread t = runner; 172 if (t != null) 173 t.interrupt(); 174 } finally { // final state 175 STATE.setRelease(this, INTERRUPTED); 176 } 177 } 178 } finally { 179 finishCompletion(); 180 } 181 return true; 182 } 183 184 /** 185 * @throws CancellationException {@inheritDoc} 186 */ get()187 public V get() throws InterruptedException, ExecutionException { 188 int s = state; 189 if (s <= COMPLETING) 190 s = awaitDone(false, 0L); 191 return report(s); 192 } 193 194 /** 195 * @throws CancellationException {@inheritDoc} 196 */ get(long timeout, TimeUnit unit)197 public V get(long timeout, TimeUnit unit) 198 throws InterruptedException, ExecutionException, TimeoutException { 199 if (unit == null) 200 throw new NullPointerException(); 201 int s = state; 202 if (s <= COMPLETING && 203 (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) 204 throw new TimeoutException(); 205 return report(s); 206 } 207 208 /** 209 * Protected method invoked when this task transitions to state 210 * {@code isDone} (whether normally or via cancellation). The 211 * default implementation does nothing. Subclasses may override 212 * this method to invoke completion callbacks or perform 213 * bookkeeping. Note that you can query status inside the 214 * implementation of this method to determine whether this task 215 * has been cancelled. 216 */ done()217 protected void done() { } 218 219 /** 220 * Sets the result of this future to the given value unless 221 * this future has already been set or has been cancelled. 222 * 223 * <p>This method is invoked internally by the {@link #run} method 224 * upon successful completion of the computation. 225 * 226 * @param v the value 227 */ set(V v)228 protected void set(V v) { 229 if (STATE.compareAndSet(this, NEW, COMPLETING)) { 230 outcome = v; 231 STATE.setRelease(this, NORMAL); // final state 232 finishCompletion(); 233 } 234 } 235 236 /** 237 * Causes this future to report an {@link ExecutionException} 238 * with the given throwable as its cause, unless this future has 239 * already been set or has been cancelled. 240 * 241 * <p>This method is invoked internally by the {@link #run} method 242 * upon failure of the computation. 243 * 244 * @param t the cause of failure 245 */ setException(Throwable t)246 protected void setException(Throwable t) { 247 if (STATE.compareAndSet(this, NEW, COMPLETING)) { 248 outcome = t; 249 STATE.setRelease(this, EXCEPTIONAL); // final state 250 finishCompletion(); 251 } 252 } 253 run()254 public void run() { 255 if (state != NEW || 256 !RUNNER.compareAndSet(this, null, Thread.currentThread())) 257 return; 258 try { 259 Callable<V> c = callable; 260 if (c != null && state == NEW) { 261 V result; 262 boolean ran; 263 try { 264 result = c.call(); 265 ran = true; 266 } catch (Throwable ex) { 267 result = null; 268 ran = false; 269 setException(ex); 270 } 271 if (ran) 272 set(result); 273 } 274 } finally { 275 // runner must be non-null until state is settled to 276 // prevent concurrent calls to run() 277 runner = null; 278 // state must be re-read after nulling runner to prevent 279 // leaked interrupts 280 int s = state; 281 if (s >= INTERRUPTING) 282 handlePossibleCancellationInterrupt(s); 283 } 284 } 285 286 /** 287 * Executes the computation without setting its result, and then 288 * resets this future to initial state, failing to do so if the 289 * computation encounters an exception or is cancelled. This is 290 * designed for use with tasks that intrinsically execute more 291 * than once. 292 * 293 * @return {@code true} if successfully run and reset 294 */ runAndReset()295 protected boolean runAndReset() { 296 if (state != NEW || 297 !RUNNER.compareAndSet(this, null, Thread.currentThread())) 298 return false; 299 boolean ran = false; 300 int s = state; 301 try { 302 Callable<V> c = callable; 303 if (c != null && s == NEW) { 304 try { 305 c.call(); // don't set result 306 ran = true; 307 } catch (Throwable ex) { 308 setException(ex); 309 } 310 } 311 } finally { 312 // runner must be non-null until state is settled to 313 // prevent concurrent calls to run() 314 runner = null; 315 // state must be re-read after nulling runner to prevent 316 // leaked interrupts 317 s = state; 318 if (s >= INTERRUPTING) 319 handlePossibleCancellationInterrupt(s); 320 } 321 return ran && s == NEW; 322 } 323 324 /** 325 * Ensures that any interrupt from a possible cancel(true) is only 326 * delivered to a task while in run or runAndReset. 327 */ handlePossibleCancellationInterrupt(int s)328 private void handlePossibleCancellationInterrupt(int s) { 329 // It is possible for our interrupter to stall before getting a 330 // chance to interrupt us. Let's spin-wait patiently. 331 if (s == INTERRUPTING) 332 while (state == INTERRUPTING) 333 Thread.yield(); // wait out pending interrupt 334 335 // assert state == INTERRUPTED; 336 337 // We want to clear any interrupt we may have received from 338 // cancel(true). However, it is permissible to use interrupts 339 // as an independent mechanism for a task to communicate with 340 // its caller, and there is no way to clear only the 341 // cancellation interrupt. 342 // 343 // Thread.interrupted(); 344 } 345 346 /** 347 * Simple linked list nodes to record waiting threads in a Treiber 348 * stack. See other classes such as Phaser and SynchronousQueue 349 * for more detailed explanation. 350 */ 351 static final class WaitNode { 352 volatile Thread thread; 353 volatile WaitNode next; WaitNode()354 WaitNode() { thread = Thread.currentThread(); } 355 } 356 357 /** 358 * Removes and signals all waiting threads, invokes done(), and 359 * nulls out callable. 360 */ finishCompletion()361 private void finishCompletion() { 362 // assert state > COMPLETING; 363 for (WaitNode q; (q = waiters) != null;) { 364 if (WAITERS.weakCompareAndSet(this, q, null)) { 365 for (;;) { 366 Thread t = q.thread; 367 if (t != null) { 368 q.thread = null; 369 LockSupport.unpark(t); 370 } 371 WaitNode next = q.next; 372 if (next == null) 373 break; 374 q.next = null; // unlink to help gc 375 q = next; 376 } 377 break; 378 } 379 } 380 381 done(); 382 383 callable = null; // to reduce footprint 384 } 385 386 /** 387 * Awaits completion or aborts on interrupt or timeout. 388 * 389 * @param timed true if use timed waits 390 * @param nanos time to wait, if timed 391 * @return state upon completion or at timeout 392 */ awaitDone(boolean timed, long nanos)393 private int awaitDone(boolean timed, long nanos) 394 throws InterruptedException { 395 // The code below is very delicate, to achieve these goals: 396 // - call nanoTime exactly once for each call to park 397 // - if nanos <= 0L, return promptly without allocation or nanoTime 398 // - if nanos == Long.MIN_VALUE, don't underflow 399 // - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic 400 // and we suffer a spurious wakeup, we will do no worse than 401 // to park-spin for a while 402 long startTime = 0L; // Special value 0L means not yet parked 403 WaitNode q = null; 404 boolean queued = false; 405 for (;;) { 406 int s = state; 407 if (s > COMPLETING) { 408 if (q != null) 409 q.thread = null; 410 return s; 411 } 412 else if (s == COMPLETING) 413 // We may have already promised (via isDone) that we are done 414 // so never return empty-handed or throw InterruptedException 415 Thread.yield(); 416 else if (Thread.interrupted()) { 417 removeWaiter(q); 418 throw new InterruptedException(); 419 } 420 else if (q == null) { 421 if (timed && nanos <= 0L) 422 return s; 423 q = new WaitNode(); 424 } 425 else if (!queued) 426 queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q); 427 else if (timed) { 428 final long parkNanos; 429 if (startTime == 0L) { // first time 430 startTime = System.nanoTime(); 431 if (startTime == 0L) 432 startTime = 1L; 433 parkNanos = nanos; 434 } else { 435 long elapsed = System.nanoTime() - startTime; 436 if (elapsed >= nanos) { 437 removeWaiter(q); 438 return state; 439 } 440 parkNanos = nanos - elapsed; 441 } 442 // nanoTime may be slow; recheck before parking 443 if (state < COMPLETING) 444 LockSupport.parkNanos(this, parkNanos); 445 } 446 else 447 LockSupport.park(this); 448 } 449 } 450 451 /** 452 * Tries to unlink a timed-out or interrupted wait node to avoid 453 * accumulating garbage. Internal nodes are simply unspliced 454 * without CAS since it is harmless if they are traversed anyway 455 * by releasers. To avoid effects of unsplicing from already 456 * removed nodes, the list is retraversed in case of an apparent 457 * race. This is slow when there are a lot of nodes, but we don't 458 * expect lists to be long enough to outweigh higher-overhead 459 * schemes. 460 */ removeWaiter(WaitNode node)461 private void removeWaiter(WaitNode node) { 462 if (node != null) { 463 node.thread = null; 464 retry: 465 for (;;) { // restart on removeWaiter race 466 for (WaitNode pred = null, q = waiters, s; q != null; q = s) { 467 s = q.next; 468 if (q.thread != null) 469 pred = q; 470 else if (pred != null) { 471 pred.next = s; 472 if (pred.thread == null) // check for race 473 continue retry; 474 } 475 else if (!WAITERS.compareAndSet(this, q, s)) 476 continue retry; 477 } 478 break; 479 } 480 } 481 } 482 483 /** 484 * Returns a string representation of this FutureTask. 485 * 486 * @implSpec 487 * The default implementation returns a string identifying this 488 * FutureTask, as well as its completion state. The state, in 489 * brackets, contains one of the strings {@code "Completed Normally"}, 490 * {@code "Completed Exceptionally"}, {@code "Cancelled"}, or {@code 491 * "Not completed"}. 492 * 493 * @return a string representation of this FutureTask 494 */ toString()495 public String toString() { 496 final String status; 497 switch (state) { 498 case NORMAL: 499 status = "[Completed normally]"; 500 break; 501 case EXCEPTIONAL: 502 status = "[Completed exceptionally: " + outcome + "]"; 503 break; 504 case CANCELLED: 505 case INTERRUPTING: 506 case INTERRUPTED: 507 status = "[Cancelled]"; 508 break; 509 default: 510 // BEGIN Android-changed: recursion risk building string (b/241297967) 511 /* 512 final Callable<?> callable = this.callable; 513 status = (callable == null) 514 ? "[Not completed]" 515 : "[Not completed, task = " + callable + "]"; 516 */ 517 status = "[Not completed]"; 518 // END Android-changed: recursion risk building string (b/241297967) 519 } 520 return super.toString() + status; 521 } 522 523 // VarHandle mechanics 524 private static final VarHandle STATE; 525 private static final VarHandle RUNNER; 526 private static final VarHandle WAITERS; 527 static { 528 try { 529 MethodHandles.Lookup l = MethodHandles.lookup(); 530 STATE = l.findVarHandle(FutureTask.class, "state", int.class); 531 RUNNER = l.findVarHandle(FutureTask.class, "runner", Thread.class); 532 WAITERS = l.findVarHandle(FutureTask.class, "waiters", WaitNode.class); 533 } catch (ReflectiveOperationException e) { 534 throw new ExceptionInInitializerError(e); 535 } 536 537 // Reduce the risk of rare disastrous classloading in first call to 538 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 539 Class<?> ensureLoaded = LockSupport.class; 540 } 541 542 } 543