1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.lang.invoke.MethodHandles;
39 import java.lang.invoke.VarHandle;
40 import java.util.AbstractQueue;
41 import java.util.Arrays;
42 import java.util.Collection;
43 import java.util.Iterator;
44 import java.util.NoSuchElementException;
45 import java.util.Objects;
46 import java.util.Queue;
47 import java.util.Spliterator;
48 import java.util.Spliterators;
49 import java.util.concurrent.locks.LockSupport;
50 import java.util.function.Consumer;
51 import java.util.function.Predicate;
52 
53 /**
54  * An unbounded {@link TransferQueue} based on linked nodes.
55  * This queue orders elements FIFO (first-in-first-out) with respect
56  * to any given producer.  The <em>head</em> of the queue is that
57  * element that has been on the queue the longest time for some
58  * producer.  The <em>tail</em> of the queue is that element that has
59  * been on the queue the shortest time for some producer.
60  *
61  * <p>Beware that, unlike in most collections, the {@code size} method
62  * is <em>NOT</em> a constant-time operation. Because of the
63  * asynchronous nature of these queues, determining the current number
64  * of elements requires a traversal of the elements, and so may report
65  * inaccurate results if this collection is modified during traversal.
66  *
67  * <p>Bulk operations that add, remove, or examine multiple elements,
68  * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
69  * are <em>not</em> guaranteed to be performed atomically.
70  * For example, a {@code forEach} traversal concurrent with an {@code
71  * addAll} operation might observe only some of the added elements.
72  *
73  * <p>This class and its iterator implement all of the <em>optional</em>
74  * methods of the {@link Collection} and {@link Iterator} interfaces.
75  *
76  * <p>Memory consistency effects: As with other concurrent
77  * collections, actions in a thread prior to placing an object into a
78  * {@code LinkedTransferQueue}
79  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
80  * actions subsequent to the access or removal of that element from
81  * the {@code LinkedTransferQueue} in another thread.
82  *
83  * <p>This class is a member of the
84  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
85  * Java Collections Framework</a>.
86  *
87  * @since 1.7
88  * @author Doug Lea
89  * @param <E> the type of elements held in this queue
90  */
91 public class LinkedTransferQueue<E> extends AbstractQueue<E>
92     implements TransferQueue<E>, java.io.Serializable {
93     private static final long serialVersionUID = -3223113410248163686L;
94 
95     /*
96      * *** Overview of Dual Queues with Slack ***
97      *
98      * Dual Queues, introduced by Scherer and Scott
99      * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
100      * are (linked) queues in which nodes may represent either data or
101      * requests.  When a thread tries to enqueue a data node, but
102      * encounters a request node, it instead "matches" and removes it;
103      * and vice versa for enqueuing requests. Blocking Dual Queues
104      * arrange that threads enqueuing unmatched requests block until
105      * other threads provide the match. Dual Synchronous Queues (see
106      * Scherer, Lea, & Scott
107      * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
108      * additionally arrange that threads enqueuing unmatched data also
109      * block.  Dual Transfer Queues support all of these modes, as
110      * dictated by callers.
111      *
112      * A FIFO dual queue may be implemented using a variation of the
113      * Michael & Scott (M&S) lock-free queue algorithm
114      * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
115      * It maintains two pointer fields, "head", pointing to a
116      * (matched) node that in turn points to the first actual
117      * (unmatched) queue node (or null if empty); and "tail" that
118      * points to the last node on the queue (or again null if
119      * empty). For example, here is a possible queue with four data
120      * elements:
121      *
122      *  head                tail
123      *    |                   |
124      *    v                   v
125      *    M -> U -> U -> U -> U
126      *
127      * The M&S queue algorithm is known to be prone to scalability and
128      * overhead limitations when maintaining (via CAS) these head and
129      * tail pointers. This has led to the development of
130      * contention-reducing variants such as elimination arrays (see
131      * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
132      * optimistic back pointers (see Ladan-Mozes & Shavit
133      * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
134      * However, the nature of dual queues enables a simpler tactic for
135      * improving M&S-style implementations when dual-ness is needed.
136      *
137      * In a dual queue, each node must atomically maintain its match
138      * status. While there are other possible variants, we implement
139      * this here as: for a data-mode node, matching entails CASing an
140      * "item" field from a non-null data value to null upon match, and
141      * vice-versa for request nodes, CASing from null to a data
142      * value. (Note that the linearization properties of this style of
143      * queue are easy to verify -- elements are made available by
144      * linking, and unavailable by matching.) Compared to plain M&S
145      * queues, this property of dual queues requires one additional
146      * successful atomic operation per enq/deq pair. But it also
147      * enables lower cost variants of queue maintenance mechanics. (A
148      * variation of this idea applies even for non-dual queues that
149      * support deletion of interior elements, such as
150      * j.u.c.ConcurrentLinkedQueue.)
151      *
152      * Once a node is matched, its match status can never again
153      * change.  We may thus arrange that the linked list of them
154      * contain a prefix of zero or more matched nodes, followed by a
155      * suffix of zero or more unmatched nodes. (Note that we allow
156      * both the prefix and suffix to be zero length, which in turn
157      * means that we do not use a dummy header.)  If we were not
158      * concerned with either time or space efficiency, we could
159      * correctly perform enqueue and dequeue operations by traversing
160      * from a pointer to the initial node; CASing the item of the
161      * first unmatched node on match and CASing the next field of the
162      * trailing node on appends.  While this would be a terrible idea
163      * in itself, it does have the benefit of not requiring ANY atomic
164      * updates on head/tail fields.
165      *
166      * We introduce here an approach that lies between the extremes of
167      * never versus always updating queue (head and tail) pointers.
168      * This offers a tradeoff between sometimes requiring extra
169      * traversal steps to locate the first and/or last unmatched
170      * nodes, versus the reduced overhead and contention of fewer
171      * updates to queue pointers. For example, a possible snapshot of
172      * a queue is:
173      *
174      *  head           tail
175      *    |              |
176      *    v              v
177      *    M -> M -> U -> U -> U -> U
178      *
179      * The best value for this "slack" (the targeted maximum distance
180      * between the value of "head" and the first unmatched node, and
181      * similarly for "tail") is an empirical matter. We have found
182      * that using very small constants in the range of 1-3 work best
183      * over a range of platforms. Larger values introduce increasing
184      * costs of cache misses and risks of long traversal chains, while
185      * smaller values increase CAS contention and overhead.
186      *
187      * Dual queues with slack differ from plain M&S dual queues by
188      * virtue of only sometimes updating head or tail pointers when
189      * matching, appending, or even traversing nodes; in order to
190      * maintain a targeted slack.  The idea of "sometimes" may be
191      * operationalized in several ways. The simplest is to use a
192      * per-operation counter incremented on each traversal step, and
193      * to try (via CAS) to update the associated queue pointer
194      * whenever the count exceeds a threshold. Another, that requires
195      * more overhead, is to use random number generators to update
196      * with a given probability per traversal step.
197      *
198      * In any strategy along these lines, because CASes updating
199      * fields may fail, the actual slack may exceed targeted slack.
200      * However, they may be retried at any time to maintain targets.
201      * Even when using very small slack values, this approach works
202      * well for dual queues because it allows all operations up to the
203      * point of matching or appending an item (hence potentially
204      * allowing progress by another thread) to be read-only, thus not
205      * introducing any further contention.  As described below, we
206      * implement this by performing slack maintenance retries only
207      * after these points.
208      *
209      * As an accompaniment to such techniques, traversal overhead can
210      * be further reduced without increasing contention of head
211      * pointer updates: Threads may sometimes shortcut the "next" link
212      * path from the current "head" node to be closer to the currently
213      * known first unmatched node, and similarly for tail. Again, this
214      * may be triggered with using thresholds or randomization.
215      *
216      * These ideas must be further extended to avoid unbounded amounts
217      * of costly-to-reclaim garbage caused by the sequential "next"
218      * links of nodes starting at old forgotten head nodes: As first
219      * described in detail by Boehm
220      * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
221      * delays noticing that any arbitrarily old node has become
222      * garbage, all newer dead nodes will also be unreclaimed.
223      * (Similar issues arise in non-GC environments.)  To cope with
224      * this in our implementation, upon CASing to advance the head
225      * pointer, we set the "next" link of the previous head to point
226      * only to itself; thus limiting the length of chains of dead nodes.
227      * (We also take similar care to wipe out possibly garbage
228      * retaining values held in other Node fields.)  However, doing so
229      * adds some further complexity to traversal: If any "next"
230      * pointer links to itself, it indicates that the current thread
231      * has lagged behind a head-update, and so the traversal must
232      * continue from the "head".  Traversals trying to find the
233      * current tail starting from "tail" may also encounter
234      * self-links, in which case they also continue at "head".
235      *
236      * It is tempting in slack-based scheme to not even use CAS for
237      * updates (similarly to Ladan-Mozes & Shavit). However, this
238      * cannot be done for head updates under the above link-forgetting
239      * mechanics because an update may leave head at a detached node.
240      * And while direct writes are possible for tail updates, they
241      * increase the risk of long retraversals, and hence long garbage
242      * chains, which can be much more costly than is worthwhile
243      * considering that the cost difference of performing a CAS vs
244      * write is smaller when they are not triggered on each operation
245      * (especially considering that writes and CASes equally require
246      * additional GC bookkeeping ("write barriers") that are sometimes
247      * more costly than the writes themselves because of contention).
248      *
249      * *** Overview of implementation ***
250      *
251      * We use a threshold-based approach to updates, with a slack
252      * threshold of two -- that is, we update head/tail when the
253      * current pointer appears to be two or more steps away from the
254      * first/last node. The slack value is hard-wired: a path greater
255      * than one is naturally implemented by checking equality of
256      * traversal pointers except when the list has only one element,
257      * in which case we keep slack threshold at one. Avoiding tracking
258      * explicit counts across method calls slightly simplifies an
259      * already-messy implementation. Using randomization would
260      * probably work better if there were a low-quality dirt-cheap
261      * per-thread one available, but even ThreadLocalRandom is too
262      * heavy for these purposes.
263      *
264      * With such a small slack threshold value, it is not worthwhile
265      * to augment this with path short-circuiting (i.e., unsplicing
266      * interior nodes) except in the case of cancellation/removal (see
267      * below).
268      *
269      * All enqueue/dequeue operations are handled by the single method
270      * "xfer" with parameters indicating whether to act as some form
271      * of offer, put, poll, take, or transfer (each possibly with
272      * timeout). The relative complexity of using one monolithic
273      * method outweighs the code bulk and maintenance problems of
274      * using separate methods for each case.
275      *
276      * Operation consists of up to two phases. The first is implemented
277      * in method xfer, the second in method awaitMatch.
278      *
279      * 1. Traverse until matching or appending (method xfer)
280      *
281      *    Conceptually, we simply traverse all nodes starting from head.
282      *    If we encounter an unmatched node of opposite mode, we match
283      *    it and return, also updating head (by at least 2 hops) to
284      *    one past the matched node (or the node itself if it's the
285      *    pinned trailing node).  Traversals also check for the
286      *    possibility of falling off-list, in which case they restart.
287      *
288      *    If the trailing node of the list is reached, a match is not
289      *    possible.  If this call was untimed poll or tryTransfer
290      *    (argument "how" is NOW), return empty-handed immediately.
291      *    Else a new node is CAS-appended.  On successful append, if
292      *    this call was ASYNC (e.g. offer), an element was
293      *    successfully added to the end of the queue and we return.
294      *
295      *    Of course, this naive traversal is O(n) when no match is
296      *    possible.  We optimize the traversal by maintaining a tail
297      *    pointer, which is expected to be "near" the end of the list.
298      *    It is only safe to fast-forward to tail (in the presence of
299      *    arbitrary concurrent changes) if it is pointing to a node of
300      *    the same mode, even if it is dead (in this case no preceding
301      *    node could still be matchable by this traversal).  If we
302      *    need to restart due to falling off-list, we can again
303      *    fast-forward to tail, but only if it has changed since the
304      *    last traversal (else we might loop forever).  If tail cannot
305      *    be used, traversal starts at head (but in this case we
306      *    expect to be able to match near head).  As with head, we
307      *    CAS-advance the tail pointer by at least two hops.
308      *
309      * 2. Await match or cancellation (method awaitMatch)
310      *
311      *    Wait for another thread to match node; instead cancelling if
312      *    the current thread was interrupted or the wait timed out. To
313      *    improve performance in common single-source / single-sink
314      *    usages when there are more tasks that cores, an initial
315      *    Thread.yield is tried when there is apparently only one
316      *    waiter.  In other cases, waiters may help with some
317      *    bookkeeping, then park/unpark.
318      *
319      * ** Unlinking removed interior nodes **
320      *
321      * In addition to minimizing garbage retention via self-linking
322      * described above, we also unlink removed interior nodes. These
323      * may arise due to timed out or interrupted waits, or calls to
324      * remove(x) or Iterator.remove.  Normally, given a node that was
325      * at one time known to be the predecessor of some node s that is
326      * to be removed, we can unsplice s by CASing the next field of
327      * its predecessor if it still points to s (otherwise s must
328      * already have been removed or is now offlist). But there are two
329      * situations in which we cannot guarantee to make node s
330      * unreachable in this way: (1) If s is the trailing node of list
331      * (i.e., with null next), then it is pinned as the target node
332      * for appends, so can only be removed later after other nodes are
333      * appended. (2) We cannot necessarily unlink s given a
334      * predecessor node that is matched (including the case of being
335      * cancelled): the predecessor may already be unspliced, in which
336      * case some previous reachable node may still point to s.
337      * (For further explanation see Herlihy & Shavit "The Art of
338      * Multiprocessor Programming" chapter 9).  Although, in both
339      * cases, we can rule out the need for further action if either s
340      * or its predecessor are (or can be made to be) at, or fall off
341      * from, the head of list.
342      *
343      * Without taking these into account, it would be possible for an
344      * unbounded number of supposedly removed nodes to remain reachable.
345      * Situations leading to such buildup are uncommon but can occur
346      * in practice; for example when a series of short timed calls to
347      * poll repeatedly time out at the trailing node but otherwise
348      * never fall off the list because of an untimed call to take() at
349      * the front of the queue.
350      *
351      * When these cases arise, rather than always retraversing the
352      * entire list to find an actual predecessor to unlink (which
353      * won't help for case (1) anyway), we record the need to sweep the
354      * next time any thread would otherwise block in awaitMatch. Also,
355      * because traversal operations on the linked list of nodes are a
356      * natural opportunity to sweep dead nodes, we generally do so,
357      * including all the operations that might remove elements as they
358      * traverse, such as removeIf and Iterator.remove.  This largely
359      * eliminates long chains of dead interior nodes, except from
360      * cancelled or timed out blocking operations.
361      *
362      * Note that we cannot self-link unlinked interior nodes during
363      * sweeps. However, the associated garbage chains terminate when
364      * some successor ultimately falls off the head of the list and is
365      * self-linked.
366      */
367 
368     /**
369      * The number of nanoseconds for which it is faster to spin
370      * rather than to use timed park. A rough estimate suffices.
371      * Using a power of two minus one simplifies some comparisons.
372      */
373     static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1023L;
374 
375     /**
376      * The maximum number of estimated removal failures (sweepVotes)
377      * to tolerate before sweeping through the queue unlinking
378      * cancelled nodes that were not unlinked upon initial
379      * removal. See above for explanation. The value must be at least
380      * two to avoid useless sweeps when removing trailing nodes.
381      */
382     static final int SWEEP_THRESHOLD = 32;
383 
384     /**
385      * Queue nodes. Uses Object, not E, for items to allow forgetting
386      * them after use.  Writes that are intrinsically ordered wrt
387      * other accesses or CASes use simple relaxed forms.
388      */
389     static final class Node implements ForkJoinPool.ManagedBlocker {
390         final boolean isData;   // false if this is a request node
391         volatile Object item;   // initially non-null if isData; CASed to match
392         volatile Node next;
393         volatile Thread waiter; // null when not waiting for a match
394 
395         /**
396          * Constructs a data node holding item if item is non-null,
397          * else a request node.  Uses relaxed write because item can
398          * only be seen after piggy-backing publication via CAS.
399          */
Node(Object item)400         Node(Object item) {
401             ITEM.set(this, item);
402             isData = (item != null);
403         }
404 
405         /** Constructs a (matched data) dummy node. */
Node()406         Node() {
407             isData = true;
408         }
409 
casNext(Node cmp, Node val)410         final boolean casNext(Node cmp, Node val) {
411             // assert val != null;
412             return NEXT.compareAndSet(this, cmp, val);
413         }
414 
casItem(Object cmp, Object val)415         final boolean casItem(Object cmp, Object val) {
416             // assert isData == (cmp != null);
417             // assert isData == (val == null);
418             // assert !(cmp instanceof Node);
419             return ITEM.compareAndSet(this, cmp, val);
420         }
421 
422         /**
423          * Links node to itself to avoid garbage retention.  Called
424          * only after CASing head field, so uses relaxed write.
425          */
selfLink()426         final void selfLink() {
427             // assert isMatched();
428             NEXT.setRelease(this, this);
429         }
430 
appendRelaxed(Node next)431         final void appendRelaxed(Node next) {
432             // assert next != null;
433             // assert this.next == null;
434             NEXT.setOpaque(this, next);
435         }
436 
437         /**
438          * Returns true if this node has been matched, including the
439          * case of artificial matches due to cancellation.
440          */
isMatched()441         final boolean isMatched() {
442             return isData == (item == null);
443         }
444 
445         /** Tries to CAS-match this node; if successful, wakes waiter. */
tryMatch(Object cmp, Object val)446         final boolean tryMatch(Object cmp, Object val) {
447             if (casItem(cmp, val)) {
448                 LockSupport.unpark(waiter);
449                 return true;
450             }
451             return false;
452         }
453 
454         /**
455          * Returns true if a node with the given mode cannot be
456          * appended to this node because this node is unmatched and
457          * has opposite data mode.
458          */
cannotPrecede(boolean haveData)459         final boolean cannotPrecede(boolean haveData) {
460             boolean d = isData;
461             return d != haveData && d != (item == null);
462         }
463 
isReleasable()464         public final boolean isReleasable() {
465             return (isData == (item == null)) ||
466                 Thread.currentThread().isInterrupted();
467         }
468 
block()469         public final boolean block() {
470             while (!isReleasable()) LockSupport.park();
471             return true;
472         }
473 
474         private static final long serialVersionUID = -3375979862319811754L;
475     }
476 
477     /**
478      * A node from which the first live (non-matched) node (if any)
479      * can be reached in O(1) time.
480      * Invariants:
481      * - all live nodes are reachable from head via .next
482      * - head != null
483      * - (tmp = head).next != tmp || tmp != head
484      * Non-invariants:
485      * - head may or may not be live
486      * - it is permitted for tail to lag behind head, that is, for tail
487      *   to not be reachable from head!
488      */
489     transient volatile Node head;
490 
491     /**
492      * A node from which the last node on list (that is, the unique
493      * node with node.next == null) can be reached in O(1) time.
494      * Invariants:
495      * - the last node is always reachable from tail via .next
496      * - tail != null
497      * Non-invariants:
498      * - tail may or may not be live
499      * - it is permitted for tail to lag behind head, that is, for tail
500      *   to not be reachable from head!
501      * - tail.next may or may not be self-linked.
502      */
503     private transient volatile Node tail;
504 
505     /** The number of apparent failures to unsplice cancelled nodes */
506     private transient volatile boolean needSweep;
507 
casTail(Node cmp, Node val)508     private boolean casTail(Node cmp, Node val) {
509         // assert cmp != null;
510         // assert val != null;
511         return TAIL.compareAndSet(this, cmp, val);
512     }
513 
casHead(Node cmp, Node val)514     private boolean casHead(Node cmp, Node val) {
515         return HEAD.compareAndSet(this, cmp, val);
516     }
517 
518     /**
519      * Tries to CAS pred.next (or head, if pred is null) from c to p.
520      * Caller must ensure that we're not unlinking the trailing node.
521      */
tryCasSuccessor(Node pred, Node c, Node p)522     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
523         // assert p != null;
524         // assert c.isData != (c.item != null);
525         // assert c != p;
526         if (pred != null)
527             return pred.casNext(c, p);
528         if (casHead(c, p)) {
529             c.selfLink();
530             return true;
531         }
532         return false;
533     }
534 
535     /**
536      * Collapses dead (matched) nodes between pred and q.
537      * @param pred the last known live node, or null if none
538      * @param c the first dead node
539      * @param p the last dead node
540      * @param q p.next: the next live node, or null if at end
541      * @return pred if pred still alive and CAS succeeded; else p
542      */
skipDeadNodes(Node pred, Node c, Node p, Node q)543     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
544         // assert pred != c;
545         // assert p != q;
546         // assert c.isMatched();
547         // assert p.isMatched();
548         if (q == null) {
549             // Never unlink trailing node.
550             if (c == p) return pred;
551             q = p;
552         }
553         return (tryCasSuccessor(pred, c, q)
554                 && (pred == null || !pred.isMatched()))
555             ? pred : p;
556     }
557 
558     /**
559      * Collapses dead (matched) nodes from h (which was once head) to p.
560      * Caller ensures all nodes from h up to and including p are dead.
561      */
skipDeadNodesNearHead(Node h, Node p)562     private void skipDeadNodesNearHead(Node h, Node p) {
563         // assert h != null;
564         // assert h != p;
565         // assert p.isMatched();
566         for (;;) {
567             final Node q;
568             if ((q = p.next) == null) break;
569             else if (!q.isMatched()) { p = q; break; }
570             else if (p == (p = q)) return;
571         }
572         if (casHead(h, p))
573             h.selfLink();
574     }
575 
576     /* Possible values for "how" argument in xfer method. */
577 
578     private static final int NOW   = 0; // for untimed poll, tryTransfer
579     private static final int ASYNC = 1; // for offer, put, add
580     private static final int SYNC  = 2; // for transfer, take
581     private static final int TIMED = 3; // for timed poll, tryTransfer
582 
583     /**
584      * Implements all queuing methods. See above for explanation.
585      *
586      * @param e the item or null for take
587      * @param haveData true if this is a put, else a take
588      * @param how NOW, ASYNC, SYNC, or TIMED
589      * @param nanos timeout in nanosecs, used only if mode is TIMED
590      * @return an item if matched, else e
591      * @throws NullPointerException if haveData mode but e is null
592      */
593     @SuppressWarnings("unchecked")
xfer(E e, boolean haveData, int how, long nanos)594     private E xfer(E e, boolean haveData, int how, long nanos) {
595         if (haveData && (e == null))
596             throw new NullPointerException();
597 
598         restart: for (Node s = null, t = null, h = null;;) {
599             for (Node p = (t != (t = tail) && t.isData == haveData) ? t
600                      : (h = head);; ) {
601                 final Node q; final Object item;
602                 if (p.isData != haveData
603                     && haveData == ((item = p.item) == null)) {
604                     if (h == null) h = head;
605                     if (p.tryMatch(item, e)) {
606                         if (h != p) skipDeadNodesNearHead(h, p);
607                         return (E) item;
608                     }
609                 }
610                 if ((q = p.next) == null) {
611                     if (how == NOW) return e;
612                     if (s == null) s = new Node(e);
613                     if (!p.casNext(null, s)) continue;
614                     if (p != t) casTail(t, s);
615                     if (how == ASYNC) return e;
616                     return awaitMatch(s, p, e, (how == TIMED), nanos);
617                 }
618                 if (p == (p = q)) continue restart;
619             }
620         }
621     }
622 
623     /**
624      * Possibly blocks until node s is matched or caller gives up.
625      *
626      * @param s the waiting node
627      * @param pred the predecessor of s, or null if unknown (the null
628      * case does not occur in any current calls but may in possible
629      * future extensions)
630      * @param e the comparison value for checking match
631      * @param timed if true, wait only until timeout elapses
632      * @param nanos timeout in nanosecs, used only if timed is true
633      * @return matched item, or e if unmatched on interrupt or timeout
634      */
635     @SuppressWarnings("unchecked")
awaitMatch(Node s, Node pred, E e, boolean timed, long nanos)636     private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
637         final boolean isData = s.isData;
638         final long deadline = timed ? System.nanoTime() + nanos : 0L;
639         final Thread w = Thread.currentThread();
640         int stat = -1;                   // -1: may yield, +1: park, else 0
641         Object item;
642         while ((item = s.item) == e) {
643             if (needSweep)               // help clean
644                 sweep();
645             else if ((timed && nanos <= 0L) || w.isInterrupted()) {
646                 if (s.casItem(e, (e == null) ? s : null)) {
647                     unsplice(pred, s);   // cancelled
648                     return e;
649                 }
650             }
651             else if (stat <= 0) {
652                 if (pred != null && pred.next == s) {
653                     if (stat < 0 &&
654                         (pred.isData != isData || pred.isMatched())) {
655                         stat = 0;        // yield once if first
656                         Thread.yield();
657                     }
658                     else {
659                         stat = 1;
660                         s.waiter = w;    // enable unpark
661                     }
662                 }                        // else signal in progress
663             }
664             else if ((item = s.item) != e)
665                 break;                   // recheck
666             else if (!timed) {
667                 LockSupport.setCurrentBlocker(this);
668                 try {
669                     ForkJoinPool.managedBlock(s);
670                 } catch (InterruptedException cannotHappen) { }
671                 LockSupport.setCurrentBlocker(null);
672             }
673             else {
674                 nanos = deadline - System.nanoTime();
675                 if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
676                     LockSupport.parkNanos(this, nanos);
677             }
678         }
679         if (stat == 1)
680             WAITER.set(s, null);
681         if (!isData)
682             ITEM.set(s, s);              // self-link to avoid garbage
683         return (E) item;
684     }
685 
686     /* -------------- Traversal methods -------------- */
687 
688     /**
689      * Returns the first unmatched data node, or null if none.
690      * Callers must recheck if the returned node is unmatched
691      * before using.
692      */
firstDataNode()693     final Node firstDataNode() {
694         Node first = null;
695         restartFromHead: for (;;) {
696             Node h = head, p = h;
697             while (p != null) {
698                 if (p.item != null) {
699                     if (p.isData) {
700                         first = p;
701                         break;
702                     }
703                 }
704                 else if (!p.isData)
705                     break;
706                 final Node q;
707                 if ((q = p.next) == null)
708                     break;
709                 if (p == (p = q))
710                     continue restartFromHead;
711             }
712             if (p != h && casHead(h, p))
713                 h.selfLink();
714             return first;
715         }
716     }
717 
718     /**
719      * Traverses and counts unmatched nodes of the given mode.
720      * Used by methods size and getWaitingConsumerCount.
721      */
countOfMode(boolean data)722     private int countOfMode(boolean data) {
723         restartFromHead: for (;;) {
724             int count = 0;
725             for (Node p = head; p != null;) {
726                 if (!p.isMatched()) {
727                     if (p.isData != data)
728                         return 0;
729                     if (++count == Integer.MAX_VALUE)
730                         break;  // @see Collection.size()
731                 }
732                 if (p == (p = p.next))
733                     continue restartFromHead;
734             }
735             return count;
736         }
737     }
738 
toString()739     public String toString() {
740         String[] a = null;
741         restartFromHead: for (;;) {
742             int charLength = 0;
743             int size = 0;
744             for (Node p = head; p != null;) {
745                 Object item = p.item;
746                 if (p.isData) {
747                     if (item != null) {
748                         if (a == null)
749                             a = new String[4];
750                         else if (size == a.length)
751                             a = Arrays.copyOf(a, 2 * size);
752                         String s = item.toString();
753                         a[size++] = s;
754                         charLength += s.length();
755                     }
756                 } else if (item == null)
757                     break;
758                 if (p == (p = p.next))
759                     continue restartFromHead;
760             }
761 
762             if (size == 0)
763                 return "[]";
764 
765             return Helpers.toString(a, size, charLength);
766         }
767     }
768 
toArrayInternal(Object[] a)769     private Object[] toArrayInternal(Object[] a) {
770         Object[] x = a;
771         restartFromHead: for (;;) {
772             int size = 0;
773             for (Node p = head; p != null;) {
774                 Object item = p.item;
775                 if (p.isData) {
776                     if (item != null) {
777                         if (x == null)
778                             x = new Object[4];
779                         else if (size == x.length)
780                             x = Arrays.copyOf(x, 2 * (size + 4));
781                         x[size++] = item;
782                     }
783                 } else if (item == null)
784                     break;
785                 if (p == (p = p.next))
786                     continue restartFromHead;
787             }
788             if (x == null)
789                 return new Object[0];
790             else if (a != null && size <= a.length) {
791                 if (a != x)
792                     System.arraycopy(x, 0, a, 0, size);
793                 if (size < a.length)
794                     a[size] = null;
795                 return a;
796             }
797             return (size == x.length) ? x : Arrays.copyOf(x, size);
798         }
799     }
800 
801     /**
802      * Returns an array containing all of the elements in this queue, in
803      * proper sequence.
804      *
805      * <p>The returned array will be "safe" in that no references to it are
806      * maintained by this queue.  (In other words, this method must allocate
807      * a new array).  The caller is thus free to modify the returned array.
808      *
809      * <p>This method acts as bridge between array-based and collection-based
810      * APIs.
811      *
812      * @return an array containing all of the elements in this queue
813      */
toArray()814     public Object[] toArray() {
815         return toArrayInternal(null);
816     }
817 
818     /**
819      * Returns an array containing all of the elements in this queue, in
820      * proper sequence; the runtime type of the returned array is that of
821      * the specified array.  If the queue fits in the specified array, it
822      * is returned therein.  Otherwise, a new array is allocated with the
823      * runtime type of the specified array and the size of this queue.
824      *
825      * <p>If this queue fits in the specified array with room to spare
826      * (i.e., the array has more elements than this queue), the element in
827      * the array immediately following the end of the queue is set to
828      * {@code null}.
829      *
830      * <p>Like the {@link #toArray()} method, this method acts as bridge between
831      * array-based and collection-based APIs.  Further, this method allows
832      * precise control over the runtime type of the output array, and may,
833      * under certain circumstances, be used to save allocation costs.
834      *
835      * <p>Suppose {@code x} is a queue known to contain only strings.
836      * The following code can be used to dump the queue into a newly
837      * allocated array of {@code String}:
838      *
839      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
840      *
841      * Note that {@code toArray(new Object[0])} is identical in function to
842      * {@code toArray()}.
843      *
844      * @param a the array into which the elements of the queue are to
845      *          be stored, if it is big enough; otherwise, a new array of the
846      *          same runtime type is allocated for this purpose
847      * @return an array containing all of the elements in this queue
848      * @throws ArrayStoreException if the runtime type of the specified array
849      *         is not a supertype of the runtime type of every element in
850      *         this queue
851      * @throws NullPointerException if the specified array is null
852      */
853     @SuppressWarnings("unchecked")
toArray(T[] a)854     public <T> T[] toArray(T[] a) {
855         Objects.requireNonNull(a);
856         return (T[]) toArrayInternal(a);
857     }
858 
859     /**
860      * Weakly-consistent iterator.
861      *
862      * Lazily updated ancestor is expected to be amortized O(1) remove(),
863      * but O(n) in the worst case, when lastRet is concurrently deleted.
864      */
865     final class Itr implements Iterator<E> {
866         private Node nextNode;   // next node to return item for
867         private E nextItem;      // the corresponding item
868         private Node lastRet;    // last returned node, to support remove
869         private Node ancestor;   // Helps unlink lastRet on remove()
870 
871         /**
872          * Moves to next node after pred, or first node if pred null.
873          */
874         @SuppressWarnings("unchecked")
advance(Node pred)875         private void advance(Node pred) {
876             for (Node p = (pred == null) ? head : pred.next, c = p;
877                  p != null; ) {
878                 final Object item;
879                 if ((item = p.item) != null && p.isData) {
880                     nextNode = p;
881                     nextItem = (E) item;
882                     if (c != p)
883                         tryCasSuccessor(pred, c, p);
884                     return;
885                 }
886                 else if (!p.isData && item == null)
887                     break;
888                 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
889                     pred = p;
890                     c = p = p.next;
891                 }
892                 else if (p == (p = p.next)) {
893                     pred = null;
894                     c = p = head;
895                 }
896             }
897             nextItem = null;
898             nextNode = null;
899         }
900 
Itr()901         Itr() {
902             advance(null);
903         }
904 
hasNext()905         public final boolean hasNext() {
906             return nextNode != null;
907         }
908 
next()909         public final E next() {
910             final Node p;
911             if ((p = nextNode) == null) throw new NoSuchElementException();
912             E e = nextItem;
913             advance(lastRet = p);
914             return e;
915         }
916 
forEachRemaining(Consumer<? super E> action)917         public void forEachRemaining(Consumer<? super E> action) {
918             Objects.requireNonNull(action);
919             Node q = null;
920             for (Node p; (p = nextNode) != null; advance(q = p))
921                 action.accept(nextItem);
922             if (q != null)
923                 lastRet = q;
924         }
925 
remove()926         public final void remove() {
927             final Node lastRet = this.lastRet;
928             if (lastRet == null)
929                 throw new IllegalStateException();
930             this.lastRet = null;
931             if (lastRet.item == null)   // already deleted?
932                 return;
933             // Advance ancestor, collapsing intervening dead nodes
934             Node pred = ancestor;
935             for (Node p = (pred == null) ? head : pred.next, c = p, q;
936                  p != null; ) {
937                 if (p == lastRet) {
938                     final Object item;
939                     if ((item = p.item) != null)
940                         p.tryMatch(item, null);
941                     if ((q = p.next) == null) q = p;
942                     if (c != q) tryCasSuccessor(pred, c, q);
943                     ancestor = pred;
944                     return;
945                 }
946                 final Object item; final boolean pAlive;
947                 if (pAlive = ((item = p.item) != null && p.isData)) {
948                     // exceptionally, nothing to do
949                 }
950                 else if (!p.isData && item == null)
951                     break;
952                 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
953                     pred = p;
954                     c = p = p.next;
955                 }
956                 else if (p == (p = p.next)) {
957                     pred = null;
958                     c = p = head;
959                 }
960             }
961             // traversal failed to find lastRet; must have been deleted;
962             // leave ancestor at original location to avoid overshoot;
963             // better luck next time!
964 
965             // assert lastRet.isMatched();
966         }
967     }
968 
969     /** A customized variant of Spliterators.IteratorSpliterator */
970     final class LTQSpliterator implements Spliterator<E> {
971         static final int MAX_BATCH = 1 << 25;  // max batch array size;
972         Node current;       // current node; null until initialized
973         int batch;          // batch size for splits
974         boolean exhausted;  // true when no more nodes
LTQSpliterator()975         LTQSpliterator() {}
976 
trySplit()977         public Spliterator<E> trySplit() {
978             Node p, q;
979             if ((p = current()) == null || (q = p.next) == null)
980                 return null;
981             int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
982             Object[] a = null;
983             do {
984                 final Object item = p.item;
985                 if (p.isData) {
986                     if (item != null) {
987                         if (a == null)
988                             a = new Object[n];
989                         a[i++] = item;
990                     }
991                 } else if (item == null) {
992                     p = null;
993                     break;
994                 }
995                 if (p == (p = q))
996                     p = firstDataNode();
997             } while (p != null && (q = p.next) != null && i < n);
998             setCurrent(p);
999             return (i == 0) ? null :
1000                 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1001                                                    Spliterator.NONNULL |
1002                                                    Spliterator.CONCURRENT));
1003         }
1004 
forEachRemaining(Consumer<? super E> action)1005         public void forEachRemaining(Consumer<? super E> action) {
1006             Objects.requireNonNull(action);
1007             final Node p;
1008             if ((p = current()) != null) {
1009                 current = null;
1010                 exhausted = true;
1011                 forEachFrom(action, p);
1012             }
1013         }
1014 
1015         @SuppressWarnings("unchecked")
tryAdvance(Consumer<? super E> action)1016         public boolean tryAdvance(Consumer<? super E> action) {
1017             Objects.requireNonNull(action);
1018             Node p;
1019             if ((p = current()) != null) {
1020                 E e = null;
1021                 do {
1022                     final Object item = p.item;
1023                     final boolean isData = p.isData;
1024                     if (p == (p = p.next))
1025                         p = head;
1026                     if (isData) {
1027                         if (item != null) {
1028                             e = (E) item;
1029                             break;
1030                         }
1031                     }
1032                     else if (item == null)
1033                         p = null;
1034                 } while (p != null);
1035                 setCurrent(p);
1036                 if (e != null) {
1037                     action.accept(e);
1038                     return true;
1039                 }
1040             }
1041             return false;
1042         }
1043 
setCurrent(Node p)1044         private void setCurrent(Node p) {
1045             if ((current = p) == null)
1046                 exhausted = true;
1047         }
1048 
current()1049         private Node current() {
1050             Node p;
1051             if ((p = current) == null && !exhausted)
1052                 setCurrent(p = firstDataNode());
1053             return p;
1054         }
1055 
estimateSize()1056         public long estimateSize() { return Long.MAX_VALUE; }
1057 
characteristics()1058         public int characteristics() {
1059             return (Spliterator.ORDERED |
1060                     Spliterator.NONNULL |
1061                     Spliterator.CONCURRENT);
1062         }
1063     }
1064 
1065     /**
1066      * Returns a {@link Spliterator} over the elements in this queue.
1067      *
1068      * <p>The returned spliterator is
1069      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1070      *
1071      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1072      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1073      *
1074      * @implNote
1075      * The {@code Spliterator} implements {@code trySplit} to permit limited
1076      * parallelism.
1077      *
1078      * @return a {@code Spliterator} over the elements in this queue
1079      * @since 1.8
1080      */
spliterator()1081     public Spliterator<E> spliterator() {
1082         return new LTQSpliterator();
1083     }
1084 
1085     /* -------------- Removal methods -------------- */
1086 
1087     /**
1088      * Unsplices (now or later) the given deleted/cancelled node with
1089      * the given predecessor.
1090      *
1091      * @param pred a node that was at one time known to be the
1092      * predecessor of s
1093      * @param s the node to be unspliced
1094      */
unsplice(Node pred, Node s)1095     final void unsplice(Node pred, Node s) {
1096         // assert pred != null;
1097         // assert pred != s;
1098         // assert s != null;
1099         // assert s.isMatched();
1100         // assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
1101         s.waiter = null; // disable signals
1102         /*
1103          * See above for rationale. Briefly: if pred still points to
1104          * s, try to unlink s.  If s cannot be unlinked, because it is
1105          * trailing node or pred might be unlinked, and neither pred
1106          * nor s are head or offlist, set needSweep;
1107          */
1108         if (pred != null && pred.next == s) {
1109             Node n = s.next;
1110             if (n == null ||
1111                 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1112                 for (;;) {               // check if at, or could be, head
1113                     Node h = head;
1114                     if (h == pred || h == s)
1115                         return;          // at head or list empty
1116                     if (!h.isMatched())
1117                         break;
1118                     Node hn = h.next;
1119                     if (hn == null)
1120                         return;          // now empty
1121                     if (hn != h && casHead(h, hn))
1122                         h.selfLink();  // advance head
1123                 }
1124                 if (pred.next != pred && s.next != s)
1125                     needSweep = true;
1126             }
1127         }
1128     }
1129 
1130     /**
1131      * Unlinks matched (typically cancelled) nodes encountered in a
1132      * traversal from head.
1133      */
sweep()1134     private void sweep() {
1135         needSweep = false;
1136         for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1137             if (!s.isMatched())
1138                 // Unmatched nodes are never self-linked
1139                 p = s;
1140             else if ((n = s.next) == null) // trailing node is pinned
1141                 break;
1142             else if (s == n)    // stale
1143                 // No need to also check for p == s, since that implies s == n
1144                 p = head;
1145             else
1146                 p.casNext(s, n);
1147         }
1148     }
1149 
1150     /**
1151      * Creates an initially empty {@code LinkedTransferQueue}.
1152      */
LinkedTransferQueue()1153     public LinkedTransferQueue() {
1154         head = tail = new Node();
1155     }
1156 
1157     /**
1158      * Creates a {@code LinkedTransferQueue}
1159      * initially containing the elements of the given collection,
1160      * added in traversal order of the collection's iterator.
1161      *
1162      * @param c the collection of elements to initially contain
1163      * @throws NullPointerException if the specified collection or any
1164      *         of its elements are null
1165      */
LinkedTransferQueue(Collection<? extends E> c)1166     public LinkedTransferQueue(Collection<? extends E> c) {
1167         Node h = null, t = null;
1168         for (E e : c) {
1169             Node newNode = new Node(Objects.requireNonNull(e));
1170             if (h == null)
1171                 h = t = newNode;
1172             else
1173                 t.appendRelaxed(t = newNode);
1174         }
1175         if (h == null)
1176             h = t = new Node();
1177         head = h;
1178         tail = t;
1179     }
1180 
1181     /**
1182      * Inserts the specified element at the tail of this queue.
1183      * As the queue is unbounded, this method will never block.
1184      *
1185      * @throws NullPointerException if the specified element is null
1186      */
put(E e)1187     public void put(E e) {
1188         xfer(e, true, ASYNC, 0L);
1189     }
1190 
1191     /**
1192      * Inserts the specified element at the tail of this queue.
1193      * As the queue is unbounded, this method will never block or
1194      * return {@code false}.
1195      *
1196      * @return {@code true} (as specified by
1197      *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1198      * @throws NullPointerException if the specified element is null
1199      */
offer(E e, long timeout, TimeUnit unit)1200     public boolean offer(E e, long timeout, TimeUnit unit) {
1201         xfer(e, true, ASYNC, 0L);
1202         return true;
1203     }
1204 
1205     /**
1206      * Inserts the specified element at the tail of this queue.
1207      * As the queue is unbounded, this method will never return {@code false}.
1208      *
1209      * @return {@code true} (as specified by {@link Queue#offer})
1210      * @throws NullPointerException if the specified element is null
1211      */
offer(E e)1212     public boolean offer(E e) {
1213         xfer(e, true, ASYNC, 0L);
1214         return true;
1215     }
1216 
1217     /**
1218      * Inserts the specified element at the tail of this queue.
1219      * As the queue is unbounded, this method will never throw
1220      * {@link IllegalStateException} or return {@code false}.
1221      *
1222      * @return {@code true} (as specified by {@link Collection#add})
1223      * @throws NullPointerException if the specified element is null
1224      */
add(E e)1225     public boolean add(E e) {
1226         xfer(e, true, ASYNC, 0L);
1227         return true;
1228     }
1229 
1230     /**
1231      * Transfers the element to a waiting consumer immediately, if possible.
1232      *
1233      * <p>More precisely, transfers the specified element immediately
1234      * if there exists a consumer already waiting to receive it (in
1235      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1236      * otherwise returning {@code false} without enqueuing the element.
1237      *
1238      * @throws NullPointerException if the specified element is null
1239      */
tryTransfer(E e)1240     public boolean tryTransfer(E e) {
1241         return xfer(e, true, NOW, 0L) == null;
1242     }
1243 
1244     /**
1245      * Transfers the element to a consumer, waiting if necessary to do so.
1246      *
1247      * <p>More precisely, transfers the specified element immediately
1248      * if there exists a consumer already waiting to receive it (in
1249      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1250      * else inserts the specified element at the tail of this queue
1251      * and waits until the element is received by a consumer.
1252      *
1253      * @throws NullPointerException if the specified element is null
1254      */
transfer(E e)1255     public void transfer(E e) throws InterruptedException {
1256         if (xfer(e, true, SYNC, 0L) != null) {
1257             Thread.interrupted(); // failure possible only due to interrupt
1258             throw new InterruptedException();
1259         }
1260     }
1261 
1262     /**
1263      * Transfers the element to a consumer if it is possible to do so
1264      * before the timeout elapses.
1265      *
1266      * <p>More precisely, transfers the specified element immediately
1267      * if there exists a consumer already waiting to receive it (in
1268      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1269      * else inserts the specified element at the tail of this queue
1270      * and waits until the element is received by a consumer,
1271      * returning {@code false} if the specified wait time elapses
1272      * before the element can be transferred.
1273      *
1274      * @throws NullPointerException if the specified element is null
1275      */
tryTransfer(E e, long timeout, TimeUnit unit)1276     public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1277         throws InterruptedException {
1278         if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1279             return true;
1280         if (!Thread.interrupted())
1281             return false;
1282         throw new InterruptedException();
1283     }
1284 
take()1285     public E take() throws InterruptedException {
1286         E e = xfer(null, false, SYNC, 0L);
1287         if (e != null)
1288             return e;
1289         Thread.interrupted();
1290         throw new InterruptedException();
1291     }
1292 
poll(long timeout, TimeUnit unit)1293     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1294         E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1295         if (e != null || !Thread.interrupted())
1296             return e;
1297         throw new InterruptedException();
1298     }
1299 
poll()1300     public E poll() {
1301         return xfer(null, false, NOW, 0L);
1302     }
1303 
1304     /**
1305      * @throws NullPointerException     {@inheritDoc}
1306      * @throws IllegalArgumentException {@inheritDoc}
1307      */
drainTo(Collection<? super E> c)1308     public int drainTo(Collection<? super E> c) {
1309         Objects.requireNonNull(c);
1310         if (c == this)
1311             throw new IllegalArgumentException();
1312         int n = 0;
1313         for (E e; (e = poll()) != null; n++)
1314             c.add(e);
1315         return n;
1316     }
1317 
1318     /**
1319      * @throws NullPointerException     {@inheritDoc}
1320      * @throws IllegalArgumentException {@inheritDoc}
1321      */
drainTo(Collection<? super E> c, int maxElements)1322     public int drainTo(Collection<? super E> c, int maxElements) {
1323         Objects.requireNonNull(c);
1324         if (c == this)
1325             throw new IllegalArgumentException();
1326         int n = 0;
1327         for (E e; n < maxElements && (e = poll()) != null; n++)
1328             c.add(e);
1329         return n;
1330     }
1331 
1332     /**
1333      * Returns an iterator over the elements in this queue in proper sequence.
1334      * The elements will be returned in order from first (head) to last (tail).
1335      *
1336      * <p>The returned iterator is
1337      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1338      *
1339      * @return an iterator over the elements in this queue in proper sequence
1340      */
iterator()1341     public Iterator<E> iterator() {
1342         return new Itr();
1343     }
1344 
peek()1345     public E peek() {
1346         restartFromHead: for (;;) {
1347             for (Node p = head; p != null;) {
1348                 Object item = p.item;
1349                 if (p.isData) {
1350                     if (item != null) {
1351                         @SuppressWarnings("unchecked") E e = (E) item;
1352                         return e;
1353                     }
1354                 }
1355                 else if (item == null)
1356                     break;
1357                 if (p == (p = p.next))
1358                     continue restartFromHead;
1359             }
1360             return null;
1361         }
1362     }
1363 
1364     /**
1365      * Returns {@code true} if this queue contains no elements.
1366      *
1367      * @return {@code true} if this queue contains no elements
1368      */
isEmpty()1369     public boolean isEmpty() {
1370         return firstDataNode() == null;
1371     }
1372 
hasWaitingConsumer()1373     public boolean hasWaitingConsumer() {
1374         restartFromHead: for (;;) {
1375             for (Node p = head; p != null;) {
1376                 Object item = p.item;
1377                 if (p.isData) {
1378                     if (item != null)
1379                         break;
1380                 }
1381                 else if (item == null)
1382                     return true;
1383                 if (p == (p = p.next))
1384                     continue restartFromHead;
1385             }
1386             return false;
1387         }
1388     }
1389 
1390     /**
1391      * Returns the number of elements in this queue.  If this queue
1392      * contains more than {@code Integer.MAX_VALUE} elements, returns
1393      * {@code Integer.MAX_VALUE}.
1394      *
1395      * <p>Beware that, unlike in most collections, this method is
1396      * <em>NOT</em> a constant-time operation. Because of the
1397      * asynchronous nature of these queues, determining the current
1398      * number of elements requires an O(n) traversal.
1399      *
1400      * @return the number of elements in this queue
1401      */
size()1402     public int size() {
1403         return countOfMode(true);
1404     }
1405 
getWaitingConsumerCount()1406     public int getWaitingConsumerCount() {
1407         return countOfMode(false);
1408     }
1409 
1410     /**
1411      * Removes a single instance of the specified element from this queue,
1412      * if it is present.  More formally, removes an element {@code e} such
1413      * that {@code o.equals(e)}, if this queue contains one or more such
1414      * elements.
1415      * Returns {@code true} if this queue contained the specified element
1416      * (or equivalently, if this queue changed as a result of the call).
1417      *
1418      * @param o element to be removed from this queue, if present
1419      * @return {@code true} if this queue changed as a result of the call
1420      */
remove(Object o)1421     public boolean remove(Object o) {
1422         if (o == null) return false;
1423         restartFromHead: for (;;) {
1424             for (Node p = head, pred = null; p != null; ) {
1425                 Node q = p.next;
1426                 final Object item;
1427                 if ((item = p.item) != null) {
1428                     if (p.isData) {
1429                         if (o.equals(item) && p.tryMatch(item, null)) {
1430                             skipDeadNodes(pred, p, p, q);
1431                             return true;
1432                         }
1433                         pred = p; p = q; continue;
1434                     }
1435                 }
1436                 else if (!p.isData)
1437                     break;
1438                 for (Node c = p;; q = p.next) {
1439                     if (q == null || !q.isMatched()) {
1440                         pred = skipDeadNodes(pred, c, p, q); p = q; break;
1441                     }
1442                     if (p == (p = q)) continue restartFromHead;
1443                 }
1444             }
1445             return false;
1446         }
1447     }
1448 
1449     /**
1450      * Returns {@code true} if this queue contains the specified element.
1451      * More formally, returns {@code true} if and only if this queue contains
1452      * at least one element {@code e} such that {@code o.equals(e)}.
1453      *
1454      * @param o object to be checked for containment in this queue
1455      * @return {@code true} if this queue contains the specified element
1456      */
contains(Object o)1457     public boolean contains(Object o) {
1458         if (o == null) return false;
1459         restartFromHead: for (;;) {
1460             for (Node p = head, pred = null; p != null; ) {
1461                 Node q = p.next;
1462                 final Object item;
1463                 if ((item = p.item) != null) {
1464                     if (p.isData) {
1465                         if (o.equals(item))
1466                             return true;
1467                         pred = p; p = q; continue;
1468                     }
1469                 }
1470                 else if (!p.isData)
1471                     break;
1472                 for (Node c = p;; q = p.next) {
1473                     if (q == null || !q.isMatched()) {
1474                         pred = skipDeadNodes(pred, c, p, q); p = q; break;
1475                     }
1476                     if (p == (p = q)) continue restartFromHead;
1477                 }
1478             }
1479             return false;
1480         }
1481     }
1482 
1483     /**
1484      * Always returns {@code Integer.MAX_VALUE} because a
1485      * {@code LinkedTransferQueue} is not capacity constrained.
1486      *
1487      * @return {@code Integer.MAX_VALUE} (as specified by
1488      *         {@link BlockingQueue#remainingCapacity()})
1489      */
remainingCapacity()1490     public int remainingCapacity() {
1491         return Integer.MAX_VALUE;
1492     }
1493 
1494     /**
1495      * Saves this queue to a stream (that is, serializes it).
1496      *
1497      * @param s the stream
1498      * @throws java.io.IOException if an I/O error occurs
1499      * @serialData All of the elements (each an {@code E}) in
1500      * the proper order, followed by a null
1501      */
writeObject(java.io.ObjectOutputStream s)1502     private void writeObject(java.io.ObjectOutputStream s)
1503         throws java.io.IOException {
1504         s.defaultWriteObject();
1505         for (E e : this)
1506             s.writeObject(e);
1507         // Use trailing null as sentinel
1508         s.writeObject(null);
1509     }
1510 
1511     /**
1512      * Reconstitutes this queue from a stream (that is, deserializes it).
1513      * @param s the stream
1514      * @throws ClassNotFoundException if the class of a serialized object
1515      *         could not be found
1516      * @throws java.io.IOException if an I/O error occurs
1517      */
readObject(java.io.ObjectInputStream s)1518     private void readObject(java.io.ObjectInputStream s)
1519         throws java.io.IOException, ClassNotFoundException {
1520 
1521         // Read in elements until trailing null sentinel found
1522         Node h = null, t = null;
1523         for (Object item; (item = s.readObject()) != null; ) {
1524             Node newNode = new Node(item);
1525             if (h == null)
1526                 h = t = newNode;
1527             else
1528                 t.appendRelaxed(t = newNode);
1529         }
1530         if (h == null)
1531             h = t = new Node();
1532         head = h;
1533         tail = t;
1534     }
1535 
1536     /**
1537      * @throws NullPointerException {@inheritDoc}
1538      */
removeIf(Predicate<? super E> filter)1539     public boolean removeIf(Predicate<? super E> filter) {
1540         Objects.requireNonNull(filter);
1541         return bulkRemove(filter);
1542     }
1543 
1544     /**
1545      * @throws NullPointerException {@inheritDoc}
1546      */
removeAll(Collection<?> c)1547     public boolean removeAll(Collection<?> c) {
1548         Objects.requireNonNull(c);
1549         return bulkRemove(e -> c.contains(e));
1550     }
1551 
1552     /**
1553      * @throws NullPointerException {@inheritDoc}
1554      */
retainAll(Collection<?> c)1555     public boolean retainAll(Collection<?> c) {
1556         Objects.requireNonNull(c);
1557         return bulkRemove(e -> !c.contains(e));
1558     }
1559 
clear()1560     public void clear() {
1561         bulkRemove(e -> true);
1562     }
1563 
1564     /**
1565      * Tolerate this many consecutive dead nodes before CAS-collapsing.
1566      * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1567      */
1568     private static final int MAX_HOPS = 8;
1569 
1570     /** Implementation of bulk remove methods. */
1571     @SuppressWarnings("unchecked")
bulkRemove(Predicate<? super E> filter)1572     private boolean bulkRemove(Predicate<? super E> filter) {
1573         boolean removed = false;
1574         restartFromHead: for (;;) {
1575             int hops = MAX_HOPS;
1576             // c will be CASed to collapse intervening dead nodes between
1577             // pred (or head if null) and p.
1578             for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1579                 q = p.next;
1580                 final Object item; boolean pAlive;
1581                 if (pAlive = ((item = p.item) != null && p.isData)) {
1582                     if (filter.test((E) item)) {
1583                         if (p.tryMatch(item, null))
1584                             removed = true;
1585                         pAlive = false;
1586                     }
1587                 }
1588                 else if (!p.isData && item == null)
1589                     break;
1590                 if (pAlive || q == null || --hops == 0) {
1591                     // p might already be self-linked here, but if so:
1592                     // - CASing head will surely fail
1593                     // - CASing pred's next will be useless but harmless.
1594                     if ((c != p && !tryCasSuccessor(pred, c, c = p))
1595                         || pAlive) {
1596                         // if CAS failed or alive, abandon old pred
1597                         hops = MAX_HOPS;
1598                         pred = p;
1599                         c = q;
1600                     }
1601                 } else if (p == q)
1602                     continue restartFromHead;
1603             }
1604             return removed;
1605         }
1606     }
1607 
1608     /**
1609      * Runs action on each element found during a traversal starting at p.
1610      * If p is null, the action is not run.
1611      */
1612     @SuppressWarnings("unchecked")
forEachFrom(Consumer<? super E> action, Node p)1613     void forEachFrom(Consumer<? super E> action, Node p) {
1614         for (Node pred = null; p != null; ) {
1615             Node q = p.next;
1616             final Object item;
1617             if ((item = p.item) != null) {
1618                 if (p.isData) {
1619                     action.accept((E) item);
1620                     pred = p; p = q; continue;
1621                 }
1622             }
1623             else if (!p.isData)
1624                 break;
1625             for (Node c = p;; q = p.next) {
1626                 if (q == null || !q.isMatched()) {
1627                     pred = skipDeadNodes(pred, c, p, q); p = q; break;
1628                 }
1629                 if (p == (p = q)) { pred = null; p = head; break; }
1630             }
1631         }
1632     }
1633 
1634     /**
1635      * @throws NullPointerException {@inheritDoc}
1636      */
forEach(Consumer<? super E> action)1637     public void forEach(Consumer<? super E> action) {
1638         Objects.requireNonNull(action);
1639         forEachFrom(action, head);
1640     }
1641 
1642     // VarHandle mechanics
1643     private static final VarHandle HEAD;
1644     private static final VarHandle TAIL;
1645     static final VarHandle ITEM;
1646     static final VarHandle NEXT;
1647     static final VarHandle WAITER;
1648     static {
1649         try {
1650             MethodHandles.Lookup l = MethodHandles.lookup();
1651             HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1652                                    Node.class);
1653             TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1654                                    Node.class);
1655             ITEM = l.findVarHandle(Node.class, "item", Object.class);
1656             NEXT = l.findVarHandle(Node.class, "next", Node.class);
1657             WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1658         } catch (ReflectiveOperationException e) {
1659             throw new ExceptionInInitializerError(e);
1660         }
1661 
1662         // Reduce the risk of rare disastrous classloading in first call to
1663         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1664         Class<?> ensureLoaded = LockSupport.class;
1665     }
1666 }
1667