1 /*
2  * Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 // Android-changed: removed service loader API sentence.
27 
28 /**
29  * This package contains classes and interfaces that support a generic API
30  * for random number generation.
31  *
32  * <p>These classes and interfaces support the definition and use of "random
33  * generators", a term covering what have traditionally been called "random
34  * number generators" as well as generators of other sorts of randomly chosen
35  * values (eg. booleans). These classes and interfaces cover not only
36  * deterministic (pseudorandom) algorithms but also generators of values that
37  * use some "truly random" physical source (stochastic algorithms perhaps making
38  * use of thermal noise, for example, or quantum-mechanical effects).
39  *
40  * <p> The principal interface is {@link RandomGenerator}, which provides
41  * methods for requesting individual values of type {@code int}, {@code long},
42  * {@code float}, {@code double}, or {@code boolean} chosen pseudorandomly
43  * from a uniform distribution; methods for requesting values of type
44  * {@code double} chosen pseudorandomly from a normal distribution or from an
45  * exponential distribution; and methods for creating streams of values of type
46  * {@code int}, {@code long}, or {@code double} chosen pseudorandomly from a
47  * uniform distribution (such streams are spliterator-based, allowing for
48  * parallel processing of their elements). There are also static factory methods
49  * for creating an instance of a specific random number generator algorithm
50  * given its name.
51  *
52  * <p> The principal supporting class is {@link RandomGeneratorFactory}. This
53  * can be used to generate multiple random number generators for a specific
54  * algorithm. {@link RandomGeneratorFactory} also provides methods for
55  * selecting random number generator algorithms.
56  *
57  * <p> An important subsidiary interface is
58  * {@link RandomGenerator.StreamableGenerator}, which provides methods for
59  * creating spliterator-based streams of {@link RandomGenerator} objects,
60  * allowing for parallel processing of these objects using multiple threads.
61  * Unlike {@link java.util.Random}, most implementations of
62  * {@link RandomGenerator} are <i>not</i> thread-safe. The intent is that
63  * instances should not be shared among threads; rather, each thread should have
64  * its own random generator(s) to use. The various pseudorandom algorithms
65  * provided by this package are designed so that multiple instances will (with
66  * very high probability) behave as if statistically independent.
67  *
68  * <p> For many purposes, these are the only two interfaces that a consumer of
69  * pseudorandom values will need. There are also some more specialized
70  * interfaces that describe more specialized categories of random number
71  * generators {@link RandomGenerator.SplittableGenerator SplittableGenerator},
72  * {@link RandomGenerator.JumpableGenerator JumpableGenerator},
73  * {@link RandomGenerator.LeapableGenerator LeapableGenerator}, and
74  * {@link RandomGenerator.ArbitrarilyJumpableGenerator ArbitrarilyJumpableGenerator}
75  * that have specific strategies for creating statistically independent instances.
76  *
77  * <h2>Using the Random Number Generator Interfaces</h2>
78  *
79  * To get started, an application should first create one instance of a
80  * generator class. Assume that the contents of the package
81  * {@link java.util.random} has been imported:
82  *
83  * <blockquote>{@code import java.util.random.*;}</blockquote>
84  *
85  * Then one can choose a specific implementation by giving the name of a generator
86  * algorithm to the static method {@link RandomGenerator#of}, in which case the
87  * no-arguments constructor for that implementation is used:
88  *
89  * <blockquote>{@code RandomGenerator g = RandomGenerator.of("L64X128MixRandom");}</blockquote>
90  *
91  * For a single-threaded application, this is all that is needed. One can then
92  * invoke methods of {@code g} such as
93  * {@link RandomGenerator#nextLong nextLong()},
94  * {@link RandomGenerator#nextInt nextInt()},
95  * {@link RandomGenerator#nextFloat nextFloat()},
96  * {@link RandomGenerator#nextDouble nextDouble()} and
97  * {@link RandomGenerator#nextBoolean nextBoolean()} to generate individual
98  * randomly chosen values. One can also use the methods
99  * {@link RandomGenerator#ints ints()}, {@link RandomGenerator#longs longs()}
100  * and {@link RandomGenerator#doubles doubles()} to create streams of randomly
101  * chosen values. The methods
102  * {@link RandomGenerator#nextGaussian nextGaussian()} and
103  * {@link RandomGenerator#nextExponential nextExponential()} draw floating-point
104  * values from nonuniform distributions.
105  *
106  * <p> For a multi-threaded application, one can repeat the preceding steps
107  * to create additional {@linkplain RandomGenerator RandomGenerators}, but
108  * often it is preferable to use methods of the one single initially
109  * created generator to create others like it. (One reason is that some
110  * generator algorithms, if asked to create a new set of generators all at
111  * once, can make a special effort to ensure that the new generators are
112  * statistically independent.) If the initial generator implements the
113  * interface {@link RandomGenerator.StreamableGenerator}, then the method
114  * {@link RandomGenerator.StreamableGenerator#rngs rngs()} can be used to
115  * create a stream of generators. If this is a parallel stream, then it is
116  * easy to get parallel execution by using the
117  * {@link java.util.stream.Stream#map map()} method on the stream.
118  * <p> For a multi-threaded application that forks new threads dynamically,
119  * another approach is to use an initial generator that implements the interface
120  * {@link RandomGenerator.SplittableGenerator}, which is then considered to
121  * "belong" to the initial thread for its exclusive use; then whenever any
122  * thread needs to fork a new thread, it first uses the
123  * {@link RandomGenerator.SplittableGenerator#split split()} method of its own
124  * generator to create a new generator, which is then passed to the newly
125  * created thread for exclusive use by that new thread.
126  *
127  *
128  * <h2>Choosing a Random Number Generator Algorithm</h2>
129  *
130  * <p> There are three groups of random number generator algorithm provided
131  * in Java: the Legacy group, the LXM group, and the Xoroshiro/Xoshiro group.
132  *
133  * <p> The legacy group includes random number generators that existed
134  * before JDK 17: Random, ThreadLocalRandom, SplittableRandom, and
135  * SecureRandom. Random (LCG) is the weakest of the available algorithms, and it
136  * is recommended that users migrate to newer algorithms. If an application
137  * requires a random number generator algorithm that is cryptographically
138  * secure, then it should continue to use an instance of the class {@link
139  * java.security.SecureRandom}.
140  *
141  * <p> The algorithms in the LXM group are similar to each other. The parameters
142  * of each algorithm can be found in the algorithm name. The number after "L" indicates the
143  * number of state bits for the LCG subgenerator, and the number after "X" indicates the
144  * number of state bits for the XBG subgenerator. "Mix" indicates that
145  * the algorithm uses an 8-operation bit-mixing function; "StarStar" indicates use
146  * of a 3-operation bit-scrambler.
147  *
148  * <p> The algorithms in the Xoroshiro/Xoshiro group are more traditional algorithms
149  * (see David Blackman and Sebastiano Vigna, "Scrambled Linear Pseudorandom
150  * Number Generators," ACM Transactions on Mathematical Software, 2021);
151  * the number in the name indicates the number of state bits.
152  *
153  * <p> For applications (such as physical simulation, machine learning, and
154  * games) that do not require a cryptographically secure algorithm, this package
155  * provides multiple implementations of interface {@link RandomGenerator} that
156  * provide trade-offs among speed, space, period, accidental correlation, and
157  * equidistribution properties.
158  *
159  * <p> For applications with no special requirements,
160  * {@code L64X128MixRandom} has a good balance among speed, space,
161  * and period, and is suitable for both single-threaded and multi-threaded
162  * applications when used properly (a separate instance for each thread).
163  *
164  * <p> If the application uses only a single thread, then
165  * {@code Xoroshiro128PlusPlus} is even smaller and faster, and
166  * certainly has a sufficiently long period.
167  *
168  * <p> For an application running in a 32-bit hardware environment and using
169  * only one thread or a small number of threads, {@code L32X64MixRandom} may be a good
170  * choice.
171  *
172  * <p> For an application that uses many threads that are allocated in one batch
173  * at the start of the computation, either a "jumpable" generator such as
174  * {@code Xoroshiro128PlusPlus} or
175  * {@code Xoshiro256PlusPlus} may be used, or a "splittable"
176  * generator such as {@code L64X128MixRandom} or
177  * {@code L64X256MixRandom} may be used.
178  *
179  * <p> For an application that creates many threads dynamically, perhaps through
180  * the use of spliterators, a "splittable" generator such as
181  * {@code L64X128MixRandom} or {@code L64X256MixRandom} is
182  * recommended. If the number of generators created dynamically may
183  * be very large (millions or more), then using generators such as
184  * {@code L128X128MixRandom} or {@code L128X256MixRandom},
185  * which use a 128-bit parameter rather than a 64-bit parameter for their LCG
186  * subgenerator, will make it much less likely that two instances use the same
187  * state cycle.
188  *
189  * <p> For an application that uses tuples of consecutively generated values, it
190  * may be desirable to use a generator that is <i>k</i>-equidistributed such
191  * that <i>k</i> is at least as large as the length of the tuples being
192  * generated. The generator {@code L64X256MixRandom} is provably
193  * 4-equidistributed, and {@code L64X1024MixRandom} is provably
194  * 16-equidistributed.
195  *
196  * <p> For applications that generate large permutations, it may be best to use
197  * a generator whose period is much larger than the total number of possible
198  * permutations; otherwise it will be impossible to generate some of the
199  * intended permutations. For example, if the goal is to shuffle a deck of 52
200  * cards, the number of possible permutations is 52! (52 factorial), which is
201  * larger than 2<sup>225</sup> (but smaller than 2<sup>226</sup>), so it may be
202  * best to use a generator whose period at least 2<sup>256</sup>, such as
203  * {@code L64X256MixRandom} or {@code L64X1024MixRandom}
204  * or {@code L128X256MixRandom} or
205  * {@code L128X1024MixRandom}. (It is of course also necessary to
206  * provide sufficiently many seed bits when the generator is initialized, or
207  * else it will still be impossible to generate some of the intended
208  * permutations.)
209  *
210  *
211  * <h2><a id="algorithms">Random Number Generator Algorithms Available</a></h2>
212  *
213  * These algorithms [in the table below] must be found with the current version
214  * of Java SE. A particular JDK implementation may recognize additional
215  * algorithms; check the JDK's documentation for details. The set of algorithms
216  * required by Java SE may be updated by changes to the Java SE specification.
217  * Over time, new algorithms may be added and old algorithms may be removed.
218  * <p>In addition, as another life-cycle phase, an algorithm may be {@linkplain
219  * RandomGeneratorFactory#isDeprecated() deprecated}. A deprecated algorithm is
220  * not recommended for use. If a required algorithm is deprecated, it may be
221  * removed in a future release. Due to advances in random number generator
222  * algorithm development and analysis, an algorithm may be deprecated during the
223  * lifetime of a particular Java SE release. Changing the deprecation status of
224  * an algorithm is <em>not</em> a specification change.
225  *
226  * <table style="padding:0px 20px 0px 0px">
227  *  <caption>Available Algorithms</caption>
228  *  <thead>
229  *  <tr>
230  *      <th style="text-align:left">Algorithm</th>
231  *      <th style="text-align:left">Group</th>
232  *      <th style="text-align:left">Period</th>
233  *      <th style="text-align:right">StateBits</th>
234  *      <th style="text-align:right">Equidistribution</th>
235  *  </tr>
236  *  </thead>
237  *  <tbody>
238  *  <tr>
239  *      <td style="text-align:left">L128X1024MixRandom</td>
240  *      <td style="text-align:left">LXM</td>
241  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(1024).subtract(BigInteger.ONE).shiftLeft(128)</td>
242  *      <td style="text-align:right">1152</td>
243  *      <td style="text-align:right">1</td>
244  *  </tr>
245  *  <tr>
246  *      <td style="text-align:left">L128X128MixRandom</td>
247  *      <td style="text-align:left">LXM</td>
248  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(128)</td>
249  *      <td style="text-align:right">256</td>
250  *      <td style="text-align:right">1</td>
251  *  </tr>
252  *  <tr>
253  *      <td style="text-align:left">L128X256MixRandom</td>
254  *      <td style="text-align:left">LXM</td>
255  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(128)</td>
256  *      <td style="text-align:right">384</td>
257  *      <td style="text-align:right">1</td>
258  *  </tr>
259  *  <tr>
260  *      <td style="text-align:left">L32X64MixRandom</td>
261  *      <td style="text-align:left">LXM</td>
262  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(64).subtract(BigInteger.ONE).shiftLeft(32)</td>
263  *      <td style="text-align:right">96</td>
264  *      <td style="text-align:right">1</td>
265  *  </tr>
266  *  <tr>
267  *      <td style="text-align:left">L64X1024MixRandom</td>
268  *      <td style="text-align:left">LXM</td>
269  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(1024).subtract(BigInteger.ONE).shiftLeft(64)</td>
270  *      <td style="text-align:right">1088</td>
271  *      <td style="text-align:right">16</td>
272  *  </tr>
273  *  <tr>
274  *      <td style="text-align:left">L64X128MixRandom</td>
275  *      <td style="text-align:left">LXM</td>
276  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
277  *      <td style="text-align:right">192</td>
278  *      <td style="text-align:right">2</td>
279  *  </tr>
280  *  <tr>
281  *      <td style="text-align:left">L64X128StarStarRandom</td>
282  *      <td style="text-align:left">LXM</td>
283  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE).shiftLeft(64)</td>
284  *      <td style="text-align:right">192</td>
285  *      <td style="text-align:right">2</td>
286  *  </tr>
287  *  <tr>
288  *      <td style="text-align:left">L64X256MixRandom</td>
289  *      <td style="text-align:left">LXM</td>
290  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE).shiftLeft(64)</td>
291  *      <td style="text-align:right">320</td>
292  *      <td style="text-align:right">4</td>
293  *  </tr>
294  *  <tr>
295  *      <td style="text-align:left">Random</td>
296  *      <td style="text-align:left">Legacy</td>
297  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(48)</td>
298  *      <td style="text-align:right">48</td>
299  *      <td style="text-align:right">0</td>
300  *  </tr>
301  *  <tr>
302  *      <td style="text-align:left">SplittableRandom</td>
303  *      <td style="text-align:left">Legacy</td>
304  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
305  *      <td style="text-align:right">64</td>
306  *      <td style="text-align:right">1</td>
307  *  </tr>
308  *  <tr>
309  *      <td style="text-align:left">ThreadLocalRandom <sup>*</sup></td>
310  *      <td style="text-align:left">Legacy</td>
311  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(64)</td>
312  *      <td style="text-align:right">64</td>
313  *      <td style="text-align:right">1</td>
314  *  </tr>
315  *  <tr>
316  *      <td style="text-align:left">Xoroshiro128PlusPlus</td>
317  *      <td style="text-align:left">Xoroshiro</td>
318  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(128).subtract(BigInteger.ONE)</td>
319  *      <td style="text-align:right">128</td>
320  *      <td style="text-align:right">1</td>
321  *  </tr>
322  *  <tr>
323  *      <td style="text-align:left">Xoshiro256PlusPlus</td>
324  *      <td style="text-align:left">Xoshiro</td>
325  *      <td style="text-align:left">BigInteger.ONE.shiftLeft(256).subtract(BigInteger.ONE)</td>
326  *      <td style="text-align:right">256</td>
327  *      <td style="text-align:right">3</td>
328  *  </tr>
329  *  </tbody>
330  * </table>
331  *
332  * <p><sup>*</sup> ThreadLocalRandom can only be accessed via
333  * {@link java.util.concurrent.ThreadLocalRandom#current()}.
334  *
335  * <h2>Categories of Random Number Generator Algorithms</h2>
336  *
337  * Historically, most pseudorandom generator algorithms have been based on some
338  * sort of finite-state machine with a single, large cycle of states; when it is
339  * necessary to have multiple threads use the same algorithm simultaneously, the
340  * usual technique is to arrange for each thread to traverse a different region
341  * of the state cycle. These regions may be doled out to threads by starting
342  * with a single initial state and then using a "jump function" that travels a
343  * long distance around the cycle (perhaps 2<sup>64</sup> steps or more); the
344  * jump function is applied repeatedly and sequentially, to identify widely
345  * spaced states that are then doled out, one to each thread, to serve as the
346  * initial state for the generator to be used by that thread. This strategy is
347  * supported by the interface {@link RandomGenerator.JumpableGenerator}.
348  * Sometimes it is desirable to support two levels of jumping (by long distances
349  * and by <i>really</i> long distances); this strategy is supported by the
350  * interface {@link RandomGenerator.LeapableGenerator}. There is also an interface
351  * {@link RandomGenerator.ArbitrarilyJumpableGenerator} for algorithms that allow
352  * jumping along the state cycle by any user-specified distance. In this package,
353  * implementations of these interfaces include
354  * "Xoroshiro128PlusPlus", and
355  * "Xoshiro256PlusPlus".
356  *
357  * <p> A more recent category of "splittable" pseudorandom generator algorithms
358  * uses a large family of state cycles and makes some attempt to ensure that
359  * distinct instances use different state cycles; but even if two instances
360  * "accidentally" use the same state cycle, they are highly likely to traverse
361  * different regions parts of that shared state cycle. This strategy is
362  * supported by the interface {@link RandomGenerator.SplittableGenerator}.
363  * In this package, implementations of this interface include
364  * "L32X64MixRandom",
365  * "L64X128StarStarRandom",
366  * "L64X128MixRandom",
367  * "L64X256MixRandom",
368  * "L64X1024MixRandom",
369  * "L128X128MixRandom",
370  * "L128X256MixRandom", and
371  * "L128X1024MixRandom"; note that the class
372  * {@link java.util.SplittableRandom} also implements this interface.
373  *
374  *
375  * <h2>The LXM Family of Random Number Generator Algorithms</h2>
376  *
377  * The structure of the central nextLong (or nextInt) method of an LXM
378  * algorithm follows a suggestion in December 2017 by Sebastiano Vigna
379  * that using one Linear Congruential Generator (LCG) as a first subgenerator
380  * and one Xor-Based Generator (XBG) as a second subgenerator (rather
381  * than using two LCG subgenerators) would provide a longer period, superior
382  * equidistribution, scalability, and better quality.  Each of the
383  * specific implementations here combines one of the best currently known
384  * XBG algorithms (xoroshiro128 or xoshiro256, described by Blackman and
385  * Vigna in "Scrambled Linear Pseudorandom Number Generators", ACM Transactions
386  * on Mathematical Software, 2021) with an LCG that uses one of the best
387  * currently known multipliers (found by a search for better multipliers
388  * in 2019 by Steele and Vigna), and then applies either a mixing function
389  * identified by Doug Lea or a simple scrambler proposed by Blackman and Vigna.
390  * Testing has confirmed that the LXM algorithm is far superior in quality to
391  * the SplitMix algorithm (2014) used by {@code SplittableRandom}.
392  *
393  * Each class with a name of the form
394  * {@code L}<i>p</i>{@code X}<i>q</i>{@code SomethingRandom}
395  * uses some specific member of the LXM family of random number
396  * algorithms; "LXM" is short for "LCG, XBG, Mixer". Every LXM
397  * generator has two subgenerators; one is an LCG (Linear Congruential
398  * Generator) and the other is an XBG (Xor-Based Generator). Each output of an LXM
399  * generator is the result of combining state from the LCG with state from the
400  * XBG using a Mixing function (and then the state of the LCG
401  * and the state of the XBG are advanced).
402  *
403  * <p> The LCG subgenerator has an update step of the form {@code s = m*s + a},
404  * where {@code s}, {@code m}, and {@code a} are all binary integers of the same
405  * size, each having <i>p</i> bits; {@code s} is the mutable state, the
406  * multiplier {@code m} is fixed (the same for all instances of a class) and the
407  * addend {@code a} is a parameter (a final field of the instance). The
408  * parameter {@code a} is required to be odd (this allows the LCG to have the
409  * maximal period, namely 2<sup><i>p</i></sup>); therefore there are
410  * 2<sup><i>p</i>&minus;1</sup> distinct choices of parameter. (When the size of
411  * {@code s} is 128 bits, then we use the name "{@code sh}" below to refer to
412  * the high half of {@code s}, that is, the high-order 64 bits of {@code s}.)
413  *
414  * <p> The XBG subgenerator can in principle be any one of a wide variety
415  * of XBG algorithms; in this package it is always either
416  * {@code xoroshiro128}, {@code xoshiro256}, or {@code xoroshiro1024}, in each
417  * case without any final scrambler (such as "+" or "**") because LXM uses
418  * a separate Mixer later in the process. The XBG state consists of
419  * some fixed number of {@code int} or {@code long} fields, generally named
420  * {@code x0}, {@code x1}, and so on, which can take on any values provided that
421  * they are not all zero. The collective total size of these fields is <i>q</i>
422  * bits; therefore the period of this subgenerator is
423  * 2<sup><i>q</i></sup>&minus;1.
424  *
425  * <p> Because the periods 2<sup><i>p</i></sup> and 2<sup><i>q</i></sup>&minus;1
426  * of the two subgenerators are relatively prime, the <em>period</em> of any
427  * single instance of an LXM algorithm (the length of the series of generated
428  * values before it repeats) is the product of the periods of the subgenerators,
429  * that is, 2<sup><i>p</i></sup>(2<sup><i>q</i></sup>&minus;1), which is just
430  * slightly smaller than 2<sup>(<i>p</i>+<i>q</i>)</sup>. Moreover, if two
431  * distinct instances of the same LXM algorithm have different {@code a}
432  * parameters, then their cycles of produced values will be different.
433  *
434  * <p> Generally speaking, among the "{@code L}<i>p</i>{@code X}<i>q</i>"
435  * generators, the memory required for an instance is 2<i>p</i>+<i>q</i> bits.
436  * (If <i>q</i> is 1024 or larger, the XBG state is represented as an
437  * array, so additional bits are needed for the array object header, and another
438  * 32 bits are used for an array index.)
439  *
440  * <p> Larger values of <i>p</i> imply a lower probability that two distinct
441  * instances will traverse the same state cycle, and larger values of <i>q</i>
442  * imply that the generator is equidistributed in a larger number of dimensions
443  * (this is provably true when <i>p</i> is 64, and conjectured to be
444  * approximately true when <i>p</i> is 128). A class with "{@code Mix}" in its
445  * name uses a fairly strong mixing function with excellent avalanche
446  * characteristics; a class with "{@code StarStar}" in its name uses a weaker
447  * but faster mixing function.
448  *
449  * <p> The specific LXM algorithms used in this package are all chosen so that
450  * the 64-bit values produced by the {@link RandomGenerator#nextLong nextLong()}
451  * method are exactly equidistributed (for example, for any specific instance of
452  * "L64X128MixRandom", over the course of its cycle each of the
453  * 2<sup>64</sup> possible {@code long} values will be produced
454  * 2<sup>128</sup>&minus;1 times). The values produced by the
455  * {@link RandomGenerator#nextInt nextInt()},
456  * {@link RandomGenerator#nextFloat nextFloat()}, and
457  * {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
458  * equidistributed. Some algorithms provide a further guarantee of
459  * <i>k</i>-equidistribution for some <i>k</i> greater than 1, meaning that successive
460  * non-overlapping <i>k</i>-tuples of 64-bit values produced by the
461  * {@link RandomGenerator#nextLong nextLong()} method are exactly
462  * equidistributed (equally likely to occur).
463  *
464  * <p> The following table gives the period, state size (in bits), parameter
465  * size (in bits, including the low-order bit that is required always to be a
466  * 1-bit), and equidistribution property for each of the specific LXM algorithms
467  * used in this package.
468  *
469  * <table style="padding:0px 20px 0px 0px">
470  * <caption>Algorithm Properties</caption>
471  * <thead>
472  *   <tr><th style="text-align:left">Implementation</th>
473  *       <th style="text-align:right">Period</th>
474  *       <th style="text-align:right">State size</th>
475  *       <th style="text-align:right">Parameter size</th>
476  *       <th style="text-align:left">{@link RandomGenerator#nextLong nextLong()} values are</th></tr>
477  * </thead>
478  * <tbody>
479  *   <tr><td style="text-align:left">"L32X64MixRandom"</td>
480  *       <td style="text-align:right">2<sup>32</sup>(2<sup>64</sup>&minus;1)</td>
481  *       <td style="text-align:right">96 bits</td>
482  *       <td style="text-align:right">32 bits</td>
483  *       <td style="text-align:left"></td></tr>
484  *   <tr><td style="text-align:left">"L64X128StarStarRandom"</td>
485  *       <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>&minus;1)</td>
486  *       <td style="text-align:right">192 bits</td>
487  *       <td style="text-align:right">64 bits</td>
488  *       <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
489  *   <tr><td style="text-align:left">"L64X128MixRandom"</td>
490  *       <td style="text-align:right">2<sup>64</sup>(2<sup>128</sup>&minus;1)</td>
491  *       <td style="text-align:right">192 bits</td>
492  *       <td style="text-align:right">64 bits</td>
493  *       <td style="text-align:left">2-equidistributed and exactly equidistributed</td></tr>
494  *   <tr><td style="text-align:left">"L64X256MixRandom"</td>
495  *       <td style="text-align:right">2<sup>64</sup>(2<sup>256</sup>&minus;1)</td>
496  *       <td style="text-align:right">320 bits</td>
497  *       <td style="text-align:right">64 bits</td>
498  *       <td style="text-align:left">4-equidistributed and exactly equidistributed</td></tr>
499  *   <tr><td style="text-align:left">"L64X1024MixRandom"</td>
500  *       <td style="text-align:right">2<sup>64</sup>(2<sup>1024</sup>&minus;1)</td>
501  *       <td style="text-align:right">1088 bits</td>
502  *       <td style="text-align:right">64 bits</td>
503  *       <td style="text-align:left">16-equidistributed and exactly equidistributed</td></tr>
504  *   <tr><td style="text-align:left">"L128X128MixRandom"</td>
505  *       <td style="text-align:right">2<sup>128</sup>(2<sup>128</sup>&minus;1)</td>
506  *       <td style="text-align:right">256 bits</td>
507  *       <td style="text-align:right">128 bits</td>
508  *       <td style="text-align:left">exactly equidistributed</td></tr>
509  *   <tr><td style="text-align:left">"L128X256MixRandom"</td>
510  *       <td style="text-align:right">2<sup>128</sup>(2<sup>256</sup>&minus;1)</td>
511  *       <td style="text-align:right">384 bits</td>
512  *       <td style="text-align:right">128 bits</td>
513  *       <td style="text-align:left">exactly equidistributed</td></tr>
514  *   <tr><td style="text-align:left">"L128X1024MixRandom"</td>
515  *       <td style="text-align:right">2<sup>128</sup>(2<sup>1024</sup>&minus;1)</td>
516  *       <td style="text-align:right">1152 bits</td>
517  *       <td style="text-align:right">128 bits</td>
518  *       <td style="text-align:left">exactly equidistributed</td></tr>
519  * </tbody>
520  * </table>
521  *
522  * For the algorithms listed above whose names begin with {@code L32}, the
523  * 32-bit values produced by the {@link RandomGenerator#nextInt nextInt()}
524  * method are exactly equidistributed, but the 64-bit values produced by the
525  * {@link RandomGenerator#nextLong nextLong()} method are not exactly
526  * equidistributed.
527  *
528  * <p> For the algorithms listed above whose names begin with {@code L64} or
529  * {@code L128}, the 64-bit values produced by the
530  * {@link RandomGenerator#nextLong nextLong()} method are <i>exactly
531  * equidistributed</i>: every instance, over the course of its cycle, will
532  * produce each of the 2<sup>64</sup> possible {@code long} values exactly the
533  * same number of times. For example, any specific instance of
534  * "L64X256MixRandom", over the course of its cycle each of the
535  * 2<sup>64</sup> possible {@code long} values will be produced
536  * 2<sup>256</sup>&minus;1 times. The values produced by the
537  * {@link RandomGenerator#nextInt nextInt()},
538  * {@link RandomGenerator#nextFloat nextFloat()}, and
539  * {@link RandomGenerator#nextDouble nextDouble()} methods are likewise exactly
540  * equidistributed.
541  *
542  * <p> In addition, for the algorithms listed above whose names begin with
543  * {@code L64}, the 64-bit values produced by the
544  * {@link RandomGenerator#nextLong nextLong()} method are
545  * <i>k</i>-equidistributed (but not exactly <i>k</i>-equidistributed). To be
546  * precise, and taking "L64X256MixRandom" as an example: for
547  * any specific instance of "L64X256MixRandom", consider the
548  * (overlapping) length-4 subsequences of the cycle of 64-bit values produced by
549  * {@link RandomGenerator#nextLong nextLong()} (assuming no other methods are
550  * called that would affect the state). There are
551  * 2<sup>64</sup>(2<sup>256</sup>&minus;1) such subsequences, and each
552  * subsequence, which consists of 4 64-bit values, can have one of
553  * 2<sup>256</sup> values. Of those 2<sup>256</sup> subsequence values, nearly
554  * all of them (2<sup>256</sup>&minus;2<sup>64</sup>) occur 2<sup>64</sup> times
555  * over the course of the entire cycle, and the other 2<sup>64</sup> subsequence
556  * values occur only 2<sup>64</sup>&minus;1 times. So the ratio of the
557  * probability of getting any specific one of the less common subsequence values
558  * and the probability of getting any specific one of the more common
559  * subsequence values is 1&minus;2<sup>-64</sup>. (Note that the set of
560  * 2<sup>64</sup> less-common subsequence values will differ from one instance
561  * of "L64X256MixRandom" to another, as a function of the
562  * additive parameter of the LCG.) The values produced by the
563  * {@link RandomGenerator#nextInt nextInt()},
564  * {@link RandomGenerator#nextFloat nextFloat()}, and
565  * {@link RandomGenerator#nextDouble nextDouble()} methods are likewise
566  * 4-equidistributed (but not exactly 4-equidistributed).
567  *
568  * <p> The next table gives the LCG multiplier value, the name of the specific
569  * XBG algorithm used, the specific numeric parameters for that XBG
570  * algorithm, and the mixing function for each of the specific LXM algorithms
571  * used in this package. (Note that the multiplier used for the 128-bit LCG
572  * cases is 65 bits wide, so the constant {@code 0x1d605bbb58c8abbfdL} shown in
573  * the table cannot actually be used in code; instead, only the 64 low-order
574  * bits {@code 0xd605bbb58c8abbfdL} are represented in the source code, and the
575  * missing 1-bit is handled through special coding of the multiply-add algorithm
576  * used in the LCG.)
577  *
578  * <table style="padding:0px 20px 0px 0px">
579  * <caption>LXM Multipliers</caption>
580  * <thead>
581  *   <tr><th style="text-align:left">Implementation</th>
582  *       <th style="text-align:right">LCG multiplier {@code m}</th>
583  *       <th style="text-align:left">XBG algorithm</th>
584  *       <th style="text-align:left">XBG parameters</th>
585  *       <th style="text-align:left">Mixing function</th></tr>
586  * </thead>
587  * <tbody>
588  *   <tr><td style="text-align:left">"L32X64MixRandom"</td>
589  *       <td style="text-align:right">{@code 0xadb4a92d}</td>
590  *       <td style="text-align:left">{@code xoroshiro64}, version 1.0</td>
591  *       <td style="text-align:left">{@code (26, 9, 13)}</td>
592  *       <td style="text-align:left">mixLea32{@code (s+x0)}</td></tr>
593  *   <tr><td style="text-align:left">"L64X128StarStarRandom" </td>
594  *       <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
595  *       <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
596  *       <td style="text-align:left">{@code (24, 16, 37)}</td>
597  *       <td style="text-align:left">{@code Long.rotateLeft((s+x0)* 5, 7) * 9}</td></tr>
598  *   <tr><td style="text-align:left">"L64X128MixRandom"</td>
599  *       <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
600  *       <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
601  *       <td style="text-align:left">{@code (24, 16, 37)}</td>
602  *       <td style="text-align:left">mixLea64{@code (s+x0)}</td></tr>
603  *   <tr><td style="text-align:left">"L64X256MixRandom"</td>
604  *       <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
605  *       <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
606  *       <td style="text-align:left">{@code (17, 45)}</td>
607  *       <td style="text-align:left">mixLea64{@code (s+x0)}</td></tr>
608  *   <tr><td style="text-align:left">"L64X1024MixRandom"</td>
609  *       <td style="text-align:right">{@code 0xd1342543de82ef95L}</td>
610  *       <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
611  *       <td style="text-align:left">{@code (25, 27, 36)}</td>
612  *       <td style="text-align:left">mixLea64{@code (s+x0)}</td></tr>
613  *   <tr><td style="text-align:left">"L128X128MixRandom"</td>
614  *       <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
615  *       <td style="text-align:left">{@code xoroshiro128}, version 1.0</td>
616  *       <td style="text-align:left">{@code (24, 16, 37)}</td>
617  *       <td style="text-align:left">mixLea64{@code (sh+x0)}</td></tr>
618  *   <tr><td style="text-align:left">"L128X256MixRandom"</td>
619  *       <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
620  *       <td style="text-align:left">{@code xoshiro256}, version 1.0</td>
621  *       <td style="text-align:left">{@code (17, 45)}</td>
622  *       <td style="text-align:left">mixLea64{@code (sh+x0)}</td></tr>
623  *   <tr><td style="text-align:left">"L128X1024MixRandom"</td>
624  *       <td style="text-align:right">{@code 0x1d605bbb58c8abbfdL}</td>
625  *       <td style="text-align:left">{@code xoroshiro1024}, version 1.0</td>
626  *       <td style="text-align:left">{@code (25, 27, 36)}</td>
627  *       <td style="text-align:left">mixLea64{@code (sh+x0)}</td></tr>
628  * </tbody>
629  * </table>
630  *
631  * @since   17
632  */
633 package java.util.random;
634 
635