1 /*
2  * Copyright (c) 2012, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package java.util.stream;
26 
27 import java.util.Arrays;
28 import java.util.DoubleSummaryStatistics;
29 import java.util.Objects;
30 import java.util.OptionalDouble;
31 import java.util.PrimitiveIterator;
32 import java.util.Spliterator;
33 import java.util.Spliterators;
34 import java.util.function.BiConsumer;
35 import java.util.function.DoubleBinaryOperator;
36 import java.util.function.DoubleConsumer;
37 import java.util.function.DoubleFunction;
38 import java.util.function.DoublePredicate;
39 import java.util.function.DoubleSupplier;
40 import java.util.function.DoubleToIntFunction;
41 import java.util.function.DoubleToLongFunction;
42 import java.util.function.DoubleUnaryOperator;
43 import java.util.function.Function;
44 import java.util.function.ObjDoubleConsumer;
45 import java.util.function.Supplier;
46 
47 /**
48  * A sequence of primitive double-valued elements supporting sequential and parallel
49  * aggregate operations.  This is the {@code double} primitive specialization of
50  * {@link Stream}.
51  *
52  * <p>The following example illustrates an aggregate operation using
53  * {@link Stream} and {@link DoubleStream}, computing the sum of the weights of the
54  * red widgets:
55  *
56  * <pre>{@code
57  *     double sum = widgets.stream()
58  *                         .filter(w -> w.getColor() == RED)
59  *                         .mapToDouble(w -> w.getWeight())
60  *                         .sum();
61  * }</pre>
62  *
63  * See the class documentation for {@link Stream} and the package documentation
64  * for <a href="package-summary.html">java.util.stream</a> for additional
65  * specification of streams, stream operations, stream pipelines, and
66  * parallelism.
67  *
68  * @since 1.8
69  * @see Stream
70  * @see <a href="package-summary.html">java.util.stream</a>
71  */
72 public interface DoubleStream extends BaseStream<Double, DoubleStream> {
73 
74     /**
75      * Returns a stream consisting of the elements of this stream that match
76      * the given predicate.
77      *
78      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
79      * operation</a>.
80      *
81      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
82      *                  <a href="package-summary.html#Statelessness">stateless</a>
83      *                  predicate to apply to each element to determine if it
84      *                  should be included
85      * @return the new stream
86      */
filter(DoublePredicate predicate)87     DoubleStream filter(DoublePredicate predicate);
88 
89     /**
90      * Returns a stream consisting of the results of applying the given
91      * function to the elements of this stream.
92      *
93      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
94      * operation</a>.
95      *
96      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
97      *               <a href="package-summary.html#Statelessness">stateless</a>
98      *               function to apply to each element
99      * @return the new stream
100      */
map(DoubleUnaryOperator mapper)101     DoubleStream map(DoubleUnaryOperator mapper);
102 
103     /**
104      * Returns an object-valued {@code Stream} consisting of the results of
105      * applying the given function to the elements of this stream.
106      *
107      * <p>This is an <a href="package-summary.html#StreamOps">
108      *     intermediate operation</a>.
109      *
110      * @param <U> the element type of the new stream
111      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
112      *               <a href="package-summary.html#Statelessness">stateless</a>
113      *               function to apply to each element
114      * @return the new stream
115      */
mapToObj(DoubleFunction<? extends U> mapper)116     <U> Stream<U> mapToObj(DoubleFunction<? extends U> mapper);
117 
118     /**
119      * Returns an {@code IntStream} consisting of the results of applying the
120      * given function to the elements of this stream.
121      *
122      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
123      * operation</a>.
124      *
125      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
126      *               <a href="package-summary.html#Statelessness">stateless</a>
127      *               function to apply to each element
128      * @return the new stream
129      */
mapToInt(DoubleToIntFunction mapper)130     IntStream mapToInt(DoubleToIntFunction mapper);
131 
132     /**
133      * Returns a {@code LongStream} consisting of the results of applying the
134      * given function to the elements of this stream.
135      *
136      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
137      * operation</a>.
138      *
139      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
140      *               <a href="package-summary.html#Statelessness">stateless</a>
141      *               function to apply to each element
142      * @return the new stream
143      */
mapToLong(DoubleToLongFunction mapper)144     LongStream mapToLong(DoubleToLongFunction mapper);
145 
146     /**
147      * Returns a stream consisting of the results of replacing each element of
148      * this stream with the contents of a mapped stream produced by applying
149      * the provided mapping function to each element.  Each mapped stream is
150      * {@link java.util.stream.BaseStream#close() closed} after its contents
151      * have been placed into this stream.  (If a mapped stream is {@code null}
152      * an empty stream is used, instead.)
153      *
154      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
155      * operation</a>.
156      *
157      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
158      *               <a href="package-summary.html#Statelessness">stateless</a>
159      *               function to apply to each element which produces a
160      *               {@code DoubleStream} of new values
161      * @return the new stream
162      * @see Stream#flatMap(Function)
163      */
flatMap(DoubleFunction<? extends DoubleStream> mapper)164     DoubleStream flatMap(DoubleFunction<? extends DoubleStream> mapper);
165 
166     /**
167      * Returns a stream consisting of the results of replacing each element of
168      * this stream with multiple elements, specifically zero or more elements.
169      * Replacement is performed by applying the provided mapping function to each
170      * element in conjunction with a {@linkplain DoubleConsumer consumer} argument
171      * that accepts replacement elements. The mapping function calls the consumer
172      * zero or more times to provide the replacement elements.
173      *
174      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
175      * operation</a>.
176      *
177      * <p>If the {@linkplain DoubleConsumer consumer} argument is used outside the scope of
178      * its application to the mapping function, the results are undefined.
179      *
180      * @implSpec
181      * The default implementation invokes {@link #flatMap flatMap} on this stream,
182      * passing a function that behaves as follows. First, it calls the mapper function
183      * with a {@code DoubleConsumer} that accumulates replacement elements into a newly created
184      * internal buffer. When the mapper function returns, it creates a {@code DoubleStream} from the
185      * internal buffer. Finally, it returns this stream to {@code flatMap}.
186      *
187      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
188      *               <a href="package-summary.html#Statelessness">stateless</a>
189      *               function that generates replacement elements
190      * @return the new stream
191      * @see Stream#mapMulti Stream.mapMulti
192      * @since 16
193      */
mapMulti(DoubleMapMultiConsumer mapper)194     default DoubleStream mapMulti(DoubleMapMultiConsumer mapper) {
195         Objects.requireNonNull(mapper);
196         return flatMap(e -> {
197             SpinedBuffer.OfDouble buffer = new SpinedBuffer.OfDouble();
198             mapper.accept(e, buffer);
199             return StreamSupport.doubleStream(buffer.spliterator(), false);
200         });
201     }
202 
203     /**
204      * Returns a stream consisting of the distinct elements of this stream. The
205      * elements are compared for equality according to
206      * {@link java.lang.Double#compare(double, double)}.
207      *
208      * <p>This is a <a href="package-summary.html#StreamOps">stateful
209      * intermediate operation</a>.
210      *
211      * @return the result stream
212      */
distinct()213     DoubleStream distinct();
214 
215     /**
216      * Returns a stream consisting of the elements of this stream in sorted
217      * order. The elements are compared for equality according to
218      * {@link java.lang.Double#compare(double, double)}.
219      *
220      * <p>This is a <a href="package-summary.html#StreamOps">stateful
221      * intermediate operation</a>.
222      *
223      * @return the result stream
224      */
sorted()225     DoubleStream sorted();
226 
227     /**
228      * Returns a stream consisting of the elements of this stream, additionally
229      * performing the provided action on each element as elements are consumed
230      * from the resulting stream.
231      *
232      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
233      * operation</a>.
234      *
235      * <p>For parallel stream pipelines, the action may be called at
236      * whatever time and in whatever thread the element is made available by the
237      * upstream operation.  If the action modifies shared state,
238      * it is responsible for providing the required synchronization.
239      *
240      * @apiNote This method exists mainly to support debugging, where you want
241      * to see the elements as they flow past a certain point in a pipeline:
242      * <pre>{@code
243      *     DoubleStream.of(1, 2, 3, 4)
244      *         .filter(e -> e > 2)
245      *         .peek(e -> System.out.println("Filtered value: " + e))
246      *         .map(e -> e * e)
247      *         .peek(e -> System.out.println("Mapped value: " + e))
248      *         .sum();
249      * }</pre>
250      *
251      * <p>In cases where the stream implementation is able to optimize away the
252      * production of some or all the elements (such as with short-circuiting
253      * operations like {@code findFirst}, or in the example described in
254      * {@link #count}), the action will not be invoked for those elements.
255      *
256      * @param action a <a href="package-summary.html#NonInterference">
257      *               non-interfering</a> action to perform on the elements as
258      *               they are consumed from the stream
259      * @return the new stream
260      */
peek(DoubleConsumer action)261     DoubleStream peek(DoubleConsumer action);
262 
263     /**
264      * Returns a stream consisting of the elements of this stream, truncated
265      * to be no longer than {@code maxSize} in length.
266      *
267      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
268      * stateful intermediate operation</a>.
269      *
270      * @apiNote
271      * While {@code limit()} is generally a cheap operation on sequential
272      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
273      * especially for large values of {@code maxSize}, since {@code limit(n)}
274      * is constrained to return not just any <em>n</em> elements, but the
275      * <em>first n</em> elements in the encounter order.  Using an unordered
276      * stream source (such as {@link #generate(DoubleSupplier)}) or removing the
277      * ordering constraint with {@link #unordered()} may result in significant
278      * speedups of {@code limit()} in parallel pipelines, if the semantics of
279      * your situation permit.  If consistency with encounter order is required,
280      * and you are experiencing poor performance or memory utilization with
281      * {@code limit()} in parallel pipelines, switching to sequential execution
282      * with {@link #sequential()} may improve performance.
283      *
284      * @param maxSize the number of elements the stream should be limited to
285      * @return the new stream
286      * @throws IllegalArgumentException if {@code maxSize} is negative
287      */
limit(long maxSize)288     DoubleStream limit(long maxSize);
289 
290     /**
291      * Returns a stream consisting of the remaining elements of this stream
292      * after discarding the first {@code n} elements of the stream.
293      * If this stream contains fewer than {@code n} elements then an
294      * empty stream will be returned.
295      *
296      * <p>This is a <a href="package-summary.html#StreamOps">stateful
297      * intermediate operation</a>.
298      *
299      * @apiNote
300      * While {@code skip()} is generally a cheap operation on sequential
301      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
302      * especially for large values of {@code n}, since {@code skip(n)}
303      * is constrained to skip not just any <em>n</em> elements, but the
304      * <em>first n</em> elements in the encounter order.  Using an unordered
305      * stream source (such as {@link #generate(DoubleSupplier)}) or removing the
306      * ordering constraint with {@link #unordered()} may result in significant
307      * speedups of {@code skip()} in parallel pipelines, if the semantics of
308      * your situation permit.  If consistency with encounter order is required,
309      * and you are experiencing poor performance or memory utilization with
310      * {@code skip()} in parallel pipelines, switching to sequential execution
311      * with {@link #sequential()} may improve performance.
312      *
313      * @param n the number of leading elements to skip
314      * @return the new stream
315      * @throws IllegalArgumentException if {@code n} is negative
316      */
skip(long n)317     DoubleStream skip(long n);
318 
319     /**
320      * Returns, if this stream is ordered, a stream consisting of the longest
321      * prefix of elements taken from this stream that match the given predicate.
322      * Otherwise returns, if this stream is unordered, a stream consisting of a
323      * subset of elements taken from this stream that match the given predicate.
324      *
325      * <p>If this stream is ordered then the longest prefix is a contiguous
326      * sequence of elements of this stream that match the given predicate.  The
327      * first element of the sequence is the first element of this stream, and
328      * the element immediately following the last element of the sequence does
329      * not match the given predicate.
330      *
331      * <p>If this stream is unordered, and some (but not all) elements of this
332      * stream match the given predicate, then the behavior of this operation is
333      * nondeterministic; it is free to take any subset of matching elements
334      * (which includes the empty set).
335      *
336      * <p>Independent of whether this stream is ordered or unordered if all
337      * elements of this stream match the given predicate then this operation
338      * takes all elements (the result is the same as the input), or if no
339      * elements of the stream match the given predicate then no elements are
340      * taken (the result is an empty stream).
341      *
342      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
343      * stateful intermediate operation</a>.
344      *
345      * @implSpec
346      * The default implementation obtains the {@link #spliterator() spliterator}
347      * of this stream, wraps that spliterator so as to support the semantics
348      * of this operation on traversal, and returns a new stream associated with
349      * the wrapped spliterator.  The returned stream preserves the execution
350      * characteristics of this stream (namely parallel or sequential execution
351      * as per {@link #isParallel()}) but the wrapped spliterator may choose to
352      * not support splitting.  When the returned stream is closed, the close
353      * handlers for both the returned and this stream are invoked.
354      *
355      * @apiNote
356      * While {@code takeWhile()} is generally a cheap operation on sequential
357      * stream pipelines, it can be quite expensive on ordered parallel
358      * pipelines, since the operation is constrained to return not just any
359      * valid prefix, but the longest prefix of elements in the encounter order.
360      * Using an unordered stream source (such as
361      * {@link #generate(DoubleSupplier)}) or removing the ordering constraint
362      * with {@link #unordered()} may result in significant speedups of
363      * {@code takeWhile()} in parallel pipelines, if the semantics of your
364      * situation permit.  If consistency with encounter order is required, and
365      * you are experiencing poor performance or memory utilization with
366      * {@code takeWhile()} in parallel pipelines, switching to sequential
367      * execution with {@link #sequential()} may improve performance.
368      *
369      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
370      *                  <a href="package-summary.html#Statelessness">stateless</a>
371      *                  predicate to apply to elements to determine the longest
372      *                  prefix of elements.
373      * @return the new stream
374      * @since 9
375      */
takeWhile(DoublePredicate predicate)376     default DoubleStream takeWhile(DoublePredicate predicate) {
377         Objects.requireNonNull(predicate);
378         // Reuses the unordered spliterator, which, when encounter is present,
379         // is safe to use as long as it configured not to split
380         return StreamSupport.doubleStream(
381                 new WhileOps.UnorderedWhileSpliterator.OfDouble.Taking(spliterator(), true, predicate),
382                 isParallel()).onClose(this::close);
383     }
384 
385     /**
386      * Returns, if this stream is ordered, a stream consisting of the remaining
387      * elements of this stream after dropping the longest prefix of elements
388      * that match the given predicate.  Otherwise returns, if this stream is
389      * unordered, a stream consisting of the remaining elements of this stream
390      * after dropping a subset of elements that match the given predicate.
391      *
392      * <p>If this stream is ordered then the longest prefix is a contiguous
393      * sequence of elements of this stream that match the given predicate.  The
394      * first element of the sequence is the first element of this stream, and
395      * the element immediately following the last element of the sequence does
396      * not match the given predicate.
397      *
398      * <p>If this stream is unordered, and some (but not all) elements of this
399      * stream match the given predicate, then the behavior of this operation is
400      * nondeterministic; it is free to drop any subset of matching elements
401      * (which includes the empty set).
402      *
403      * <p>Independent of whether this stream is ordered or unordered if all
404      * elements of this stream match the given predicate then this operation
405      * drops all elements (the result is an empty stream), or if no elements of
406      * the stream match the given predicate then no elements are dropped (the
407      * result is the same as the input).
408      *
409      * <p>This is a <a href="package-summary.html#StreamOps">stateful
410      * intermediate operation</a>.
411      *
412      * @implSpec
413      * The default implementation obtains the {@link #spliterator() spliterator}
414      * of this stream, wraps that spliterator so as to support the semantics
415      * of this operation on traversal, and returns a new stream associated with
416      * the wrapped spliterator.  The returned stream preserves the execution
417      * characteristics of this stream (namely parallel or sequential execution
418      * as per {@link #isParallel()}) but the wrapped spliterator may choose to
419      * not support splitting.  When the returned stream is closed, the close
420      * handlers for both the returned and this stream are invoked.
421      *
422      * @apiNote
423      * While {@code dropWhile()} is generally a cheap operation on sequential
424      * stream pipelines, it can be quite expensive on ordered parallel
425      * pipelines, since the operation is constrained to return not just any
426      * valid prefix, but the longest prefix of elements in the encounter order.
427      * Using an unordered stream source (such as
428      * {@link #generate(DoubleSupplier)}) or removing the ordering constraint
429      * with {@link #unordered()} may result in significant speedups of
430      * {@code dropWhile()} in parallel pipelines, if the semantics of your
431      * situation permit.  If consistency with encounter order is required, and
432      * you are experiencing poor performance or memory utilization with
433      * {@code dropWhile()} in parallel pipelines, switching to sequential
434      * execution with {@link #sequential()} may improve performance.
435      *
436      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
437      *                  <a href="package-summary.html#Statelessness">stateless</a>
438      *                  predicate to apply to elements to determine the longest
439      *                  prefix of elements.
440      * @return the new stream
441      * @since 9
442      */
dropWhile(DoublePredicate predicate)443     default DoubleStream dropWhile(DoublePredicate predicate) {
444         Objects.requireNonNull(predicate);
445         // Reuses the unordered spliterator, which, when encounter is present,
446         // is safe to use as long as it configured not to split
447         return StreamSupport.doubleStream(
448                 new WhileOps.UnorderedWhileSpliterator.OfDouble.Dropping(spliterator(), true, predicate),
449                 isParallel()).onClose(this::close);
450     }
451 
452     /**
453      * Performs an action for each element of this stream.
454      *
455      * <p>This is a <a href="package-summary.html#StreamOps">terminal
456      * operation</a>.
457      *
458      * <p>For parallel stream pipelines, this operation does <em>not</em>
459      * guarantee to respect the encounter order of the stream, as doing so
460      * would sacrifice the benefit of parallelism.  For any given element, the
461      * action may be performed at whatever time and in whatever thread the
462      * library chooses.  If the action accesses shared state, it is
463      * responsible for providing the required synchronization.
464      *
465      * @param action a <a href="package-summary.html#NonInterference">
466      *               non-interfering</a> action to perform on the elements
467      */
forEach(DoubleConsumer action)468     void forEach(DoubleConsumer action);
469 
470     /**
471      * Performs an action for each element of this stream, guaranteeing that
472      * each element is processed in encounter order for streams that have a
473      * defined encounter order.
474      *
475      * <p>This is a <a href="package-summary.html#StreamOps">terminal
476      * operation</a>.
477      *
478      * @param action a <a href="package-summary.html#NonInterference">
479      *               non-interfering</a> action to perform on the elements
480      * @see #forEach(DoubleConsumer)
481      */
forEachOrdered(DoubleConsumer action)482     void forEachOrdered(DoubleConsumer action);
483 
484     /**
485      * Returns an array containing the elements of this stream.
486      *
487      * <p>This is a <a href="package-summary.html#StreamOps">terminal
488      * operation</a>.
489      *
490      * @return an array containing the elements of this stream
491      */
toArray()492     double[] toArray();
493 
494     /**
495      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
496      * elements of this stream, using the provided identity value and an
497      * <a href="package-summary.html#Associativity">associative</a>
498      * accumulation function, and returns the reduced value.  This is equivalent
499      * to:
500      * <pre>{@code
501      *     double result = identity;
502      *     for (double element : this stream)
503      *         result = accumulator.applyAsDouble(result, element)
504      *     return result;
505      * }</pre>
506      *
507      * but is not constrained to execute sequentially.
508      *
509      * <p>The {@code identity} value must be an identity for the accumulator
510      * function. This means that for all {@code x},
511      * {@code accumulator.apply(identity, x)} is equal to {@code x}.
512      * The {@code accumulator} function must be an
513      * <a href="package-summary.html#Associativity">associative</a> function.
514      *
515      * <p>This is a <a href="package-summary.html#StreamOps">terminal
516      * operation</a>.
517      *
518      * @apiNote Sum, min, max, and average are all special cases of reduction.
519      * Summing a stream of numbers can be expressed as:
520      *
521      * <pre>{@code
522      *     double sum = numbers.reduce(0, (a, b) -> a+b);
523      * }</pre>
524      *
525      * or more compactly:
526      *
527      * <pre>{@code
528      *     double sum = numbers.reduce(0, Double::sum);
529      * }</pre>
530      *
531      * <p>While this may seem a more roundabout way to perform an aggregation
532      * compared to simply mutating a running total in a loop, reduction
533      * operations parallelize more gracefully, without needing additional
534      * synchronization and with greatly reduced risk of data races.
535      *
536      * @param identity the identity value for the accumulating function
537      * @param op an <a href="package-summary.html#Associativity">associative</a>,
538      *           <a href="package-summary.html#NonInterference">non-interfering</a>,
539      *           <a href="package-summary.html#Statelessness">stateless</a>
540      *           function for combining two values
541      * @return the result of the reduction
542      * @see #sum()
543      * @see #min()
544      * @see #max()
545      * @see #average()
546      */
reduce(double identity, DoubleBinaryOperator op)547     double reduce(double identity, DoubleBinaryOperator op);
548 
549     /**
550      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
551      * elements of this stream, using an
552      * <a href="package-summary.html#Associativity">associative</a> accumulation
553      * function, and returns an {@code OptionalDouble} describing the reduced
554      * value, if any. This is equivalent to:
555      * <pre>{@code
556      *     boolean foundAny = false;
557      *     double result = null;
558      *     for (double element : this stream) {
559      *         if (!foundAny) {
560      *             foundAny = true;
561      *             result = element;
562      *         }
563      *         else
564      *             result = accumulator.applyAsDouble(result, element);
565      *     }
566      *     return foundAny ? OptionalDouble.of(result) : OptionalDouble.empty();
567      * }</pre>
568      *
569      * but is not constrained to execute sequentially.
570      *
571      * <p>The {@code accumulator} function must be an
572      * <a href="package-summary.html#Associativity">associative</a> function.
573      *
574      * <p>This is a <a href="package-summary.html#StreamOps">terminal
575      * operation</a>.
576      *
577      * @param op an <a href="package-summary.html#Associativity">associative</a>,
578      *           <a href="package-summary.html#NonInterference">non-interfering</a>,
579      *           <a href="package-summary.html#Statelessness">stateless</a>
580      *           function for combining two values
581      * @return the result of the reduction
582      * @see #reduce(double, DoubleBinaryOperator)
583      */
reduce(DoubleBinaryOperator op)584     OptionalDouble reduce(DoubleBinaryOperator op);
585 
586     /**
587      * Performs a <a href="package-summary.html#MutableReduction">mutable
588      * reduction</a> operation on the elements of this stream.  A mutable
589      * reduction is one in which the reduced value is a mutable result container,
590      * such as an {@code ArrayList}, and elements are incorporated by updating
591      * the state of the result rather than by replacing the result.  This
592      * produces a result equivalent to:
593      * <pre>{@code
594      *     R result = supplier.get();
595      *     for (double element : this stream)
596      *         accumulator.accept(result, element);
597      *     return result;
598      * }</pre>
599      *
600      * <p>Like {@link #reduce(double, DoubleBinaryOperator)}, {@code collect}
601      * operations can be parallelized without requiring additional
602      * synchronization.
603      *
604      * <p>This is a <a href="package-summary.html#StreamOps">terminal
605      * operation</a>.
606      *
607      * @param <R> the type of the mutable result container
608      * @param supplier a function that creates a new mutable result container.
609      *                 For a parallel execution, this function may be called
610      *                 multiple times and must return a fresh value each time.
611      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
612      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
613      *                    <a href="package-summary.html#Statelessness">stateless</a>
614      *                    function that must fold an element into a result
615      *                    container.
616      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
617      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
618      *                    <a href="package-summary.html#Statelessness">stateless</a>
619      *                    function that accepts two partial result containers
620      *                    and merges them, which must be compatible with the
621      *                    accumulator function.  The combiner function must fold
622      *                    the elements from the second result container into the
623      *                    first result container.
624      * @return the result of the reduction
625      * @see Stream#collect(Supplier, BiConsumer, BiConsumer)
626      */
collect(Supplier<R> supplier, ObjDoubleConsumer<R> accumulator, BiConsumer<R, R> combiner)627     <R> R collect(Supplier<R> supplier,
628                   ObjDoubleConsumer<R> accumulator,
629                   BiConsumer<R, R> combiner);
630 
631     /**
632      * Returns the sum of elements in this stream.
633      *
634      * Summation is a special case of a <a
635      * href="package-summary.html#Reduction">reduction</a>. If
636      * floating-point summation were exact, this method would be
637      * equivalent to:
638      *
639      * <pre>{@code
640      *     return reduce(0, Double::sum);
641      * }</pre>
642      *
643      * However, since floating-point summation is not exact, the above
644      * code is not necessarily equivalent to the summation computation
645      * done by this method.
646      *
647      * <p>The value of a floating-point sum is a function both
648      * of the input values as well as the order of addition
649      * operations. The order of addition operations of this method is
650      * intentionally not defined to allow for implementation
651      * flexibility to improve the speed and accuracy of the computed
652      * result.
653      *
654      * In particular, this method may be implemented using compensated
655      * summation or other technique to reduce the error bound in the
656      * numerical sum compared to a simple summation of {@code double}
657      * values.
658      *
659      * Because of the unspecified order of operations and the
660      * possibility of using differing summation schemes, the output of
661      * this method may vary on the same input elements.
662      *
663      * <p>Various conditions can result in a non-finite sum being
664      * computed. This can occur even if the all the elements
665      * being summed are finite. If any element is non-finite,
666      * the sum will be non-finite:
667      *
668      * <ul>
669      *
670      * <li>If any element is a NaN, then the final sum will be
671      * NaN.
672      *
673      * <li>If the elements contain one or more infinities, the
674      * sum will be infinite or NaN.
675      *
676      * <ul>
677      *
678      * <li>If the elements contain infinities of opposite sign,
679      * the sum will be NaN.
680      *
681      * <li>If the elements contain infinities of one sign and
682      * an intermediate sum overflows to an infinity of the opposite
683      * sign, the sum may be NaN.
684      *
685      * </ul>
686      *
687      * </ul>
688      *
689      * It is possible for intermediate sums of finite values to
690      * overflow into opposite-signed infinities; if that occurs, the
691      * final sum will be NaN even if the elements are all
692      * finite.
693      *
694      * If all the elements are zero, the sign of zero is
695      * <em>not</em> guaranteed to be preserved in the final sum.
696      *
697      * <p>This is a <a href="package-summary.html#StreamOps">terminal
698      * operation</a>.
699      *
700      * @apiNote Elements sorted by increasing absolute magnitude tend
701      * to yield more accurate results.
702      *
703      * @return the sum of elements in this stream
704      */
sum()705     double sum();
706 
707     /**
708      * Returns an {@code OptionalDouble} describing the minimum element of this
709      * stream, or an empty OptionalDouble if this stream is empty.  The minimum
710      * element will be {@code Double.NaN} if any stream element was NaN. Unlike
711      * the numerical comparison operators, this method considers negative zero
712      * to be strictly smaller than positive zero. This is a special case of a
713      * <a href="package-summary.html#Reduction">reduction</a> and is
714      * equivalent to:
715      * <pre>{@code
716      *     return reduce(Double::min);
717      * }</pre>
718      *
719      * <p>This is a <a href="package-summary.html#StreamOps">terminal
720      * operation</a>.
721      *
722      * @return an {@code OptionalDouble} containing the minimum element of this
723      * stream, or an empty optional if the stream is empty
724      */
min()725     OptionalDouble min();
726 
727     /**
728      * Returns an {@code OptionalDouble} describing the maximum element of this
729      * stream, or an empty OptionalDouble if this stream is empty.  The maximum
730      * element will be {@code Double.NaN} if any stream element was NaN. Unlike
731      * the numerical comparison operators, this method considers negative zero
732      * to be strictly smaller than positive zero. This is a
733      * special case of a
734      * <a href="package-summary.html#Reduction">reduction</a> and is
735      * equivalent to:
736      * <pre>{@code
737      *     return reduce(Double::max);
738      * }</pre>
739      *
740      * <p>This is a <a href="package-summary.html#StreamOps">terminal
741      * operation</a>.
742      *
743      * @return an {@code OptionalDouble} containing the maximum element of this
744      * stream, or an empty optional if the stream is empty
745      */
max()746     OptionalDouble max();
747 
748     /**
749      * Returns the count of elements in this stream.  This is a special case of
750      * a <a href="package-summary.html#Reduction">reduction</a> and is
751      * equivalent to:
752      * <pre>{@code
753      *     return mapToLong(e -> 1L).sum();
754      * }</pre>
755      *
756      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
757      *
758      * @apiNote
759      * An implementation may choose to not execute the stream pipeline (either
760      * sequentially or in parallel) if it is capable of computing the count
761      * directly from the stream source.  In such cases no source elements will
762      * be traversed and no intermediate operations will be evaluated.
763      * Behavioral parameters with side-effects, which are strongly discouraged
764      * except for harmless cases such as debugging, may be affected.  For
765      * example, consider the following stream:
766      * <pre>{@code
767      *     DoubleStream s = DoubleStream.of(1, 2, 3, 4);
768      *     long count = s.peek(System.out::println).count();
769      * }</pre>
770      * The number of elements covered by the stream source is known and the
771      * intermediate operation, {@code peek}, does not inject into or remove
772      * elements from the stream (as may be the case for {@code flatMap} or
773      * {@code filter} operations).  Thus the count is 4 and there is no need to
774      * execute the pipeline and, as a side-effect, print out the elements.
775      *
776      * @return the count of elements in this stream
777      */
count()778     long count();
779 
780     /**
781      * Returns an {@code OptionalDouble} describing the arithmetic
782      * mean of elements of this stream, or an empty optional if this
783      * stream is empty.
784      *
785      * <p>The computed average can vary numerically and have the
786      * special case behavior as computing the sum; see {@link #sum}
787      * for details.
788      *
789      *  <p>The average is a special case of a <a
790      *  href="package-summary.html#Reduction">reduction</a>.
791      *
792      * <p>This is a <a href="package-summary.html#StreamOps">terminal
793      * operation</a>.
794      *
795      * @apiNote Elements sorted by increasing absolute magnitude tend
796      * to yield more accurate results.
797      *
798      * @return an {@code OptionalDouble} containing the average element of this
799      * stream, or an empty optional if the stream is empty
800      */
average()801     OptionalDouble average();
802 
803     /**
804      * Returns a {@code DoubleSummaryStatistics} describing various summary data
805      * about the elements of this stream.  This is a special
806      * case of a <a href="package-summary.html#Reduction">reduction</a>.
807      *
808      * <p>This is a <a href="package-summary.html#StreamOps">terminal
809      * operation</a>.
810      *
811      * @return a {@code DoubleSummaryStatistics} describing various summary data
812      * about the elements of this stream
813      */
summaryStatistics()814     DoubleSummaryStatistics summaryStatistics();
815 
816     /**
817      * Returns whether any elements of this stream match the provided
818      * predicate.  May not evaluate the predicate on all elements if not
819      * necessary for determining the result.  If the stream is empty then
820      * {@code false} is returned and the predicate is not evaluated.
821      *
822      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
823      * terminal operation</a>.
824      *
825      * @apiNote
826      * This method evaluates the <em>existential quantification</em> of the
827      * predicate over the elements of the stream (for some x P(x)).
828      *
829      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
830      *                  <a href="package-summary.html#Statelessness">stateless</a>
831      *                  predicate to apply to elements of this stream
832      * @return {@code true} if any elements of the stream match the provided
833      * predicate, otherwise {@code false}
834      */
835     boolean anyMatch(DoublePredicate predicate);
836 
837     /**
838      * Returns whether all elements of this stream match the provided predicate.
839      * May not evaluate the predicate on all elements if not necessary for
840      * determining the result.  If the stream is empty then {@code true} is
841      * returned and the predicate is not evaluated.
842      *
843      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
844      * terminal operation</a>.
845      *
846      * @apiNote
847      * This method evaluates the <em>universal quantification</em> of the
848      * predicate over the elements of the stream (for all x P(x)).  If the
849      * stream is empty, the quantification is said to be <em>vacuously
850      * satisfied</em> and is always {@code true} (regardless of P(x)).
851      *
852      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
853      *                  <a href="package-summary.html#Statelessness">stateless</a>
854      *                  predicate to apply to elements of this stream
855      * @return {@code true} if either all elements of the stream match the
856      * provided predicate or the stream is empty, otherwise {@code false}
857      */
858     boolean allMatch(DoublePredicate predicate);
859 
860     /**
861      * Returns whether no elements of this stream match the provided predicate.
862      * May not evaluate the predicate on all elements if not necessary for
863      * determining the result.  If the stream is empty then {@code true} is
864      * returned and the predicate is not evaluated.
865      *
866      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
867      * terminal operation</a>.
868      *
869      * @apiNote
870      * This method evaluates the <em>universal quantification</em> of the
871      * negated predicate over the elements of the stream (for all x ~P(x)).  If
872      * the stream is empty, the quantification is said to be vacuously satisfied
873      * and is always {@code true}, regardless of P(x).
874      *
875      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
876      *                  <a href="package-summary.html#Statelessness">stateless</a>
877      *                  predicate to apply to elements of this stream
878      * @return {@code true} if either no elements of the stream match the
879      * provided predicate or the stream is empty, otherwise {@code false}
880      */
881     boolean noneMatch(DoublePredicate predicate);
882 
883     /**
884      * Returns an {@link OptionalDouble} describing the first element of this
885      * stream, or an empty {@code OptionalDouble} if the stream is empty.  If
886      * the stream has no encounter order, then any element may be returned.
887      *
888      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
889      * terminal operation</a>.
890      *
891      * @return an {@code OptionalDouble} describing the first element of this
892      * stream, or an empty {@code OptionalDouble} if the stream is empty
893      */
findFirst()894     OptionalDouble findFirst();
895 
896     /**
897      * Returns an {@link OptionalDouble} describing some element of the stream,
898      * or an empty {@code OptionalDouble} if the stream is empty.
899      *
900      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
901      * terminal operation</a>.
902      *
903      * <p>The behavior of this operation is explicitly nondeterministic; it is
904      * free to select any element in the stream.  This is to allow for maximal
905      * performance in parallel operations; the cost is that multiple invocations
906      * on the same source may not return the same result.  (If a stable result
907      * is desired, use {@link #findFirst()} instead.)
908      *
909      * @return an {@code OptionalDouble} describing some element of this stream,
910      * or an empty {@code OptionalDouble} if the stream is empty
911      * @see #findFirst()
912      */
findAny()913     OptionalDouble findAny();
914 
915     /**
916      * Returns a {@code Stream} consisting of the elements of this stream,
917      * boxed to {@code Double}.
918      *
919      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
920      * operation</a>.
921      *
922      * @return a {@code Stream} consistent of the elements of this stream,
923      * each boxed to a {@code Double}
924      */
boxed()925     Stream<Double> boxed();
926 
927     @Override
sequential()928     DoubleStream sequential();
929 
930     @Override
parallel()931     DoubleStream parallel();
932 
933     @Override
iterator()934     PrimitiveIterator.OfDouble iterator();
935 
936     @Override
spliterator()937     Spliterator.OfDouble spliterator();
938 
939 
940     // Static factories
941 
942     /**
943      * Returns a builder for a {@code DoubleStream}.
944      *
945      * @return a stream builder
946      */
builder()947     public static Builder builder() {
948         return new Streams.DoubleStreamBuilderImpl();
949     }
950 
951     /**
952      * Returns an empty sequential {@code DoubleStream}.
953      *
954      * @return an empty sequential stream
955      */
empty()956     public static DoubleStream empty() {
957         return StreamSupport.doubleStream(Spliterators.emptyDoubleSpliterator(), false);
958     }
959 
960     /**
961      * Returns a sequential {@code DoubleStream} containing a single element.
962      *
963      * @param t the single element
964      * @return a singleton sequential stream
965      */
of(double t)966     public static DoubleStream of(double t) {
967         return StreamSupport.doubleStream(new Streams.DoubleStreamBuilderImpl(t), false);
968     }
969 
970     /**
971      * Returns a sequential ordered stream whose elements are the specified values.
972      *
973      * @param values the elements of the new stream
974      * @return the new stream
975      */
of(double... values)976     public static DoubleStream of(double... values) {
977         return Arrays.stream(values);
978     }
979 
980     /**
981      * Returns an infinite sequential ordered {@code DoubleStream} produced by iterative
982      * application of a function {@code f} to an initial element {@code seed},
983      * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
984      * {@code f(f(seed))}, etc.
985      *
986      * <p>The first element (position {@code 0}) in the {@code DoubleStream}
987      * will be the provided {@code seed}.  For {@code n > 0}, the element at
988      * position {@code n}, will be the result of applying the function {@code f}
989      *  to the element at position {@code n - 1}.
990      *
991      * <p>The action of applying {@code f} for one element
992      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
993      * the action of applying {@code f} for subsequent elements.  For any given
994      * element the action may be performed in whatever thread the library
995      * chooses.
996      *
997      * @param seed the initial element
998      * @param f a function to be applied to the previous element to produce
999      *          a new element
1000      * @return a new sequential {@code DoubleStream}
1001      */
iterate(final double seed, final DoubleUnaryOperator f)1002     public static DoubleStream iterate(final double seed, final DoubleUnaryOperator f) {
1003         Objects.requireNonNull(f);
1004         Spliterator.OfDouble spliterator = new Spliterators.AbstractDoubleSpliterator(Long.MAX_VALUE,
1005                Spliterator.ORDERED | Spliterator.IMMUTABLE | Spliterator.NONNULL) {
1006             double prev;
1007             boolean started;
1008 
1009             @Override
1010             public boolean tryAdvance(DoubleConsumer action) {
1011                 Objects.requireNonNull(action);
1012                 double t;
1013                 if (started)
1014                     t = f.applyAsDouble(prev);
1015                 else {
1016                     t = seed;
1017                     started = true;
1018                 }
1019                 action.accept(prev = t);
1020                 return true;
1021             }
1022         };
1023         return StreamSupport.doubleStream(spliterator, false);
1024     }
1025 
1026     /**
1027      * Returns a sequential ordered {@code DoubleStream} produced by iterative
1028      * application of the given {@code next} function to an initial element,
1029      * conditioned on satisfying the given {@code hasNext} predicate.  The
1030      * stream terminates as soon as the {@code hasNext} predicate returns false.
1031      *
1032      * <p>{@code DoubleStream.iterate} should produce the same sequence of elements as
1033      * produced by the corresponding for-loop:
1034      * <pre>{@code
1035      *     for (double index=seed; hasNext.test(index); index = next.applyAsDouble(index)) {
1036      *         ...
1037      *     }
1038      * }</pre>
1039      *
1040      * <p>The resulting sequence may be empty if the {@code hasNext} predicate
1041      * does not hold on the seed value.  Otherwise the first element will be the
1042      * supplied {@code seed} value, the next element (if present) will be the
1043      * result of applying the {@code next} function to the {@code seed} value,
1044      * and so on iteratively until the {@code hasNext} predicate indicates that
1045      * the stream should terminate.
1046      *
1047      * <p>The action of applying the {@code hasNext} predicate to an element
1048      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
1049      * the action of applying the {@code next} function to that element.  The
1050      * action of applying the {@code next} function for one element
1051      * <i>happens-before</i> the action of applying the {@code hasNext}
1052      * predicate for subsequent elements.  For any given element an action may
1053      * be performed in whatever thread the library chooses.
1054      *
1055      * @param seed the initial element
1056      * @param hasNext a predicate to apply to elements to determine when the
1057      *                stream must terminate.
1058      * @param next a function to be applied to the previous element to produce
1059      *             a new element
1060      * @return a new sequential {@code DoubleStream}
1061      * @since 9
1062      */
iterate(double seed, DoublePredicate hasNext, DoubleUnaryOperator next)1063     public static DoubleStream iterate(double seed, DoublePredicate hasNext, DoubleUnaryOperator next) {
1064         Objects.requireNonNull(next);
1065         Objects.requireNonNull(hasNext);
1066         Spliterator.OfDouble spliterator = new Spliterators.AbstractDoubleSpliterator(Long.MAX_VALUE,
1067                Spliterator.ORDERED | Spliterator.IMMUTABLE | Spliterator.NONNULL) {
1068             double prev;
1069             boolean started, finished;
1070 
1071             @Override
1072             public boolean tryAdvance(DoubleConsumer action) {
1073                 Objects.requireNonNull(action);
1074                 if (finished)
1075                     return false;
1076                 double t;
1077                 if (started)
1078                     t = next.applyAsDouble(prev);
1079                 else {
1080                     t = seed;
1081                     started = true;
1082                 }
1083                 if (!hasNext.test(t)) {
1084                     finished = true;
1085                     return false;
1086                 }
1087                 action.accept(prev = t);
1088                 return true;
1089             }
1090 
1091             @Override
1092             public void forEachRemaining(DoubleConsumer action) {
1093                 Objects.requireNonNull(action);
1094                 if (finished)
1095                     return;
1096                 finished = true;
1097                 double t = started ? next.applyAsDouble(prev) : seed;
1098                 while (hasNext.test(t)) {
1099                     action.accept(t);
1100                     t = next.applyAsDouble(t);
1101                 }
1102             }
1103         };
1104         return StreamSupport.doubleStream(spliterator, false);
1105     }
1106 
1107     /**
1108      * Returns an infinite sequential unordered stream where each element is
1109      * generated by the provided {@code DoubleSupplier}.  This is suitable for
1110      * generating constant streams, streams of random elements, etc.
1111      *
1112      * @param s the {@code DoubleSupplier} for generated elements
1113      * @return a new infinite sequential unordered {@code DoubleStream}
1114      */
generate(DoubleSupplier s)1115     public static DoubleStream generate(DoubleSupplier s) {
1116         Objects.requireNonNull(s);
1117         return StreamSupport.doubleStream(
1118                 new StreamSpliterators.InfiniteSupplyingSpliterator.OfDouble(Long.MAX_VALUE, s), false);
1119     }
1120 
1121     /**
1122      * Creates a lazily concatenated stream whose elements are all the
1123      * elements of the first stream followed by all the elements of the
1124      * second stream.  The resulting stream is ordered if both
1125      * of the input streams are ordered, and parallel if either of the input
1126      * streams is parallel.  When the resulting stream is closed, the close
1127      * handlers for both input streams are invoked.
1128      *
1129      * <p>This method operates on the two input streams and binds each stream
1130      * to its source.  As a result subsequent modifications to an input stream
1131      * source may not be reflected in the concatenated stream result.
1132      *
1133      * @implNote
1134      * Use caution when constructing streams from repeated concatenation.
1135      * Accessing an element of a deeply concatenated stream can result in deep
1136      * call chains, or even {@code StackOverflowError}.
1137      *
1138      * @apiNote
1139      * To preserve optimization opportunities this method binds each stream to
1140      * its source and accepts only two streams as parameters.  For example, the
1141      * exact size of the concatenated stream source can be computed if the exact
1142      * size of each input stream source is known.
1143      * To concatenate more streams without binding, or without nested calls to
1144      * this method, try creating a stream of streams and flat-mapping with the
1145      * identity function, for example:
1146      * <pre>{@code
1147      *     DoubleStream concat = Stream.of(s1, s2, s3, s4).flatMapToDouble(s -> s);
1148      * }</pre>
1149      *
1150      * @param a the first stream
1151      * @param b the second stream
1152      * @return the concatenation of the two input streams
1153      */
concat(DoubleStream a, DoubleStream b)1154     public static DoubleStream concat(DoubleStream a, DoubleStream b) {
1155         Objects.requireNonNull(a);
1156         Objects.requireNonNull(b);
1157 
1158         Spliterator.OfDouble split = new Streams.ConcatSpliterator.OfDouble(
1159                 a.spliterator(), b.spliterator());
1160         DoubleStream stream = StreamSupport.doubleStream(split, a.isParallel() || b.isParallel());
1161         return stream.onClose(Streams.composedClose(a, b));
1162     }
1163 
1164     /**
1165      * A mutable builder for a {@code DoubleStream}.
1166      *
1167      * <p>A stream builder has a lifecycle, which starts in a building
1168      * phase, during which elements can be added, and then transitions to a built
1169      * phase, after which elements may not be added.  The built phase
1170      * begins when the {@link #build()} method is called, which creates an
1171      * ordered stream whose elements are the elements that were added to the
1172      * stream builder, in the order they were added.
1173      *
1174      * @see DoubleStream#builder()
1175      * @since 1.8
1176      */
1177     public interface Builder extends DoubleConsumer {
1178 
1179         /**
1180          * Adds an element to the stream being built.
1181          *
1182          * @throws IllegalStateException if the builder has already transitioned
1183          * to the built state
1184          */
1185         @Override
accept(double t)1186         void accept(double t);
1187 
1188         /**
1189          * Adds an element to the stream being built.
1190          *
1191          * @implSpec
1192          * The default implementation behaves as if:
1193          * <pre>{@code
1194          *     accept(t)
1195          *     return this;
1196          * }</pre>
1197          *
1198          * @param t the element to add
1199          * @return {@code this} builder
1200          * @throws IllegalStateException if the builder has already transitioned
1201          * to the built state
1202          */
add(double t)1203         default Builder add(double t) {
1204             accept(t);
1205             return this;
1206         }
1207 
1208         /**
1209          * Builds the stream, transitioning this builder to the built state.
1210          * An {@code IllegalStateException} is thrown if there are further
1211          * attempts to operate on the builder after it has entered the built
1212          * state.
1213          *
1214          * @return the built stream
1215          * @throws IllegalStateException if the builder has already transitioned
1216          * to the built state
1217          */
build()1218         DoubleStream build();
1219     }
1220 
1221     /**
1222      * Represents an operation that accepts a {@code double}-valued argument
1223      * and a DoubleConsumer, and returns no result. This functional interface is
1224      * used by {@link DoubleStream#mapMulti(DoubleMapMultiConsumer) DoubleStream.mapMulti}
1225      * to replace a double value with zero or more double values.
1226      *
1227      * <p>This is a <a href="../function/package-summary.html">functional interface</a>
1228      * whose functional method is {@link #accept(double, DoubleConsumer)}.
1229      *
1230      * @see DoubleStream#mapMulti(DoubleMapMultiConsumer)
1231      *
1232      * @since 16
1233      */
1234     @FunctionalInterface
1235     interface DoubleMapMultiConsumer {
1236 
1237         /**
1238          * Replaces the given {@code value} with zero or more values by feeding the mapped
1239          * values to the {@code dc} consumer.
1240          *
1241          * @param value the double value coming from upstream
1242          * @param dc a {@code DoubleConsumer} accepting the mapped values
1243          */
accept(double value, DoubleConsumer dc)1244         void accept(double value, DoubleConsumer dc);
1245     }
1246 }
1247