1 /* 2 * Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package jdk.internal.math; 27 28 import java.util.Arrays; 29 import java.util.regex.*; 30 31 /** 32 * A class for converting between ASCII and decimal representations of a single 33 * or double precision floating point number. Most conversions are provided via 34 * static convenience methods, although a <code>BinaryToASCIIConverter</code> 35 * instance may be obtained and reused. 36 */ 37 public class FloatingDecimal{ 38 // 39 // Constants of the implementation; 40 // most are IEEE-754 related. 41 // (There are more really boring constants at the end.) 42 // 43 static final int EXP_SHIFT = DoubleConsts.SIGNIFICAND_WIDTH - 1; 44 static final long FRACT_HOB = ( 1L<<EXP_SHIFT ); // assumed High-Order bit 45 static final long EXP_ONE = ((long)DoubleConsts.EXP_BIAS)<<EXP_SHIFT; // exponent of 1.0 46 static final int MAX_SMALL_BIN_EXP = 62; 47 static final int MIN_SMALL_BIN_EXP = -( 63 / 3 ); 48 static final int MAX_DECIMAL_DIGITS = 15; 49 static final int MAX_DECIMAL_EXPONENT = 308; 50 static final int MIN_DECIMAL_EXPONENT = -324; 51 static final int BIG_DECIMAL_EXPONENT = 324; // i.e. abs(MIN_DECIMAL_EXPONENT) 52 static final int MAX_NDIGITS = 1100; 53 54 static final int SINGLE_EXP_SHIFT = FloatConsts.SIGNIFICAND_WIDTH - 1; 55 static final int SINGLE_FRACT_HOB = 1<<SINGLE_EXP_SHIFT; 56 static final int SINGLE_MAX_DECIMAL_DIGITS = 7; 57 static final int SINGLE_MAX_DECIMAL_EXPONENT = 38; 58 static final int SINGLE_MIN_DECIMAL_EXPONENT = -45; 59 static final int SINGLE_MAX_NDIGITS = 200; 60 61 static final int INT_DECIMAL_DIGITS = 9; 62 63 /** 64 * Converts a double precision floating point value to a <code>String</code>. 65 * 66 * @param d The double precision value. 67 * @return The value converted to a <code>String</code>. 68 */ toJavaFormatString(double d)69 public static String toJavaFormatString(double d) { 70 return getBinaryToASCIIConverter(d).toJavaFormatString(); 71 } 72 73 /** 74 * Converts a single precision floating point value to a <code>String</code>. 75 * 76 * @param f The single precision value. 77 * @return The value converted to a <code>String</code>. 78 */ toJavaFormatString(float f)79 public static String toJavaFormatString(float f) { 80 return getBinaryToASCIIConverter(f).toJavaFormatString(); 81 } 82 83 /** 84 * Appends a double precision floating point value to an <code>Appendable</code>. 85 * @param d The double precision value. 86 * @param buf The <code>Appendable</code> with the value appended. 87 */ appendTo(double d, Appendable buf)88 public static void appendTo(double d, Appendable buf) { 89 getBinaryToASCIIConverter(d).appendTo(buf); 90 } 91 92 /** 93 * Appends a single precision floating point value to an <code>Appendable</code>. 94 * @param f The single precision value. 95 * @param buf The <code>Appendable</code> with the value appended. 96 */ appendTo(float f, Appendable buf)97 public static void appendTo(float f, Appendable buf) { 98 getBinaryToASCIIConverter(f).appendTo(buf); 99 } 100 101 /** 102 * Converts a <code>String</code> to a double precision floating point value. 103 * 104 * @param s The <code>String</code> to convert. 105 * @return The double precision value. 106 * @throws NumberFormatException If the <code>String</code> does not 107 * represent a properly formatted double precision value. 108 */ parseDouble(String s)109 public static double parseDouble(String s) throws NumberFormatException { 110 return readJavaFormatString(s).doubleValue(); 111 } 112 113 /** 114 * Converts a <code>String</code> to a single precision floating point value. 115 * 116 * @param s The <code>String</code> to convert. 117 * @return The single precision value. 118 * @throws NumberFormatException If the <code>String</code> does not 119 * represent a properly formatted single precision value. 120 */ parseFloat(String s)121 public static float parseFloat(String s) throws NumberFormatException { 122 return readJavaFormatString(s).floatValue(); 123 } 124 125 /** 126 * A converter which can process single or double precision floating point 127 * values into an ASCII <code>String</code> representation. 128 */ 129 public interface BinaryToASCIIConverter { 130 /** 131 * Converts a floating point value into an ASCII <code>String</code>. 132 * @return The value converted to a <code>String</code>. 133 */ toJavaFormatString()134 public String toJavaFormatString(); 135 136 /** 137 * Appends a floating point value to an <code>Appendable</code>. 138 * @param buf The <code>Appendable</code> to receive the value. 139 */ appendTo(Appendable buf)140 public void appendTo(Appendable buf); 141 142 /** 143 * Retrieves the decimal exponent most closely corresponding to this value. 144 * @return The decimal exponent. 145 */ getDecimalExponent()146 public int getDecimalExponent(); 147 148 /** 149 * Retrieves the value as an array of digits. 150 * @param digits The digit array. 151 * @return The number of valid digits copied into the array. 152 */ getDigits(char[] digits)153 public int getDigits(char[] digits); 154 155 /** 156 * Indicates the sign of the value. 157 * @return {@code value < 0.0}. 158 */ isNegative()159 public boolean isNegative(); 160 161 /** 162 * Indicates whether the value is either infinite or not a number. 163 * 164 * @return <code>true</code> if and only if the value is <code>NaN</code> 165 * or infinite. 166 */ isExceptional()167 public boolean isExceptional(); 168 169 /** 170 * Indicates whether the value was rounded up during the binary to ASCII 171 * conversion. 172 * 173 * @return <code>true</code> if and only if the value was rounded up. 174 */ digitsRoundedUp()175 public boolean digitsRoundedUp(); 176 177 /** 178 * Indicates whether the binary to ASCII conversion was exact. 179 * 180 * @return <code>true</code> if any only if the conversion was exact. 181 */ decimalDigitsExact()182 public boolean decimalDigitsExact(); 183 } 184 185 /** 186 * A <code>BinaryToASCIIConverter</code> which represents <code>NaN</code> 187 * and infinite values. 188 */ 189 private static class ExceptionalBinaryToASCIIBuffer implements BinaryToASCIIConverter { 190 private final String image; 191 private boolean isNegative; 192 ExceptionalBinaryToASCIIBuffer(String image, boolean isNegative)193 public ExceptionalBinaryToASCIIBuffer(String image, boolean isNegative) { 194 this.image = image; 195 this.isNegative = isNegative; 196 } 197 198 @Override toJavaFormatString()199 public String toJavaFormatString() { 200 return image; 201 } 202 203 @Override appendTo(Appendable buf)204 public void appendTo(Appendable buf) { 205 if (buf instanceof StringBuilder) { 206 ((StringBuilder) buf).append(image); 207 } else if (buf instanceof StringBuffer) { 208 ((StringBuffer) buf).append(image); 209 } else { 210 assert false; 211 } 212 } 213 214 @Override getDecimalExponent()215 public int getDecimalExponent() { 216 throw new IllegalArgumentException("Exceptional value does not have an exponent"); 217 } 218 219 @Override getDigits(char[] digits)220 public int getDigits(char[] digits) { 221 throw new IllegalArgumentException("Exceptional value does not have digits"); 222 } 223 224 @Override isNegative()225 public boolean isNegative() { 226 return isNegative; 227 } 228 229 @Override isExceptional()230 public boolean isExceptional() { 231 return true; 232 } 233 234 @Override digitsRoundedUp()235 public boolean digitsRoundedUp() { 236 throw new IllegalArgumentException("Exceptional value is not rounded"); 237 } 238 239 @Override decimalDigitsExact()240 public boolean decimalDigitsExact() { 241 throw new IllegalArgumentException("Exceptional value is not exact"); 242 } 243 } 244 245 private static final String INFINITY_REP = "Infinity"; 246 private static final int INFINITY_LENGTH = INFINITY_REP.length(); 247 private static final String NAN_REP = "NaN"; 248 private static final int NAN_LENGTH = NAN_REP.length(); 249 250 private static final BinaryToASCIIConverter B2AC_POSITIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer(INFINITY_REP, false); 251 private static final BinaryToASCIIConverter B2AC_NEGATIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer("-" + INFINITY_REP, true); 252 private static final BinaryToASCIIConverter B2AC_NOT_A_NUMBER = new ExceptionalBinaryToASCIIBuffer(NAN_REP, false); 253 private static final BinaryToASCIIConverter B2AC_POSITIVE_ZERO = new BinaryToASCIIBuffer(false, new char[]{'0'}); 254 private static final BinaryToASCIIConverter B2AC_NEGATIVE_ZERO = new BinaryToASCIIBuffer(true, new char[]{'0'}); 255 256 /** 257 * A buffered implementation of <code>BinaryToASCIIConverter</code>. 258 */ 259 static class BinaryToASCIIBuffer implements BinaryToASCIIConverter { 260 private boolean isNegative; 261 private int decExponent; 262 private int firstDigitIndex; 263 private int nDigits; 264 private final char[] digits; 265 private final char[] buffer = new char[26]; 266 267 // 268 // The fields below provide additional information about the result of 269 // the binary to decimal digits conversion done in dtoa() and roundup() 270 // methods. They are changed if needed by those two methods. 271 // 272 273 // True if the dtoa() binary to decimal conversion was exact. 274 private boolean exactDecimalConversion = false; 275 276 // True if the result of the binary to decimal conversion was rounded-up 277 // at the end of the conversion process, i.e. roundUp() method was called. 278 private boolean decimalDigitsRoundedUp = false; 279 280 /** 281 * Default constructor; used for non-zero values, 282 * <code>BinaryToASCIIBuffer</code> may be thread-local and reused 283 */ BinaryToASCIIBuffer()284 BinaryToASCIIBuffer(){ 285 this.digits = new char[20]; 286 } 287 288 /** 289 * Creates a specialized value (positive and negative zeros). 290 */ BinaryToASCIIBuffer(boolean isNegative, char[] digits)291 BinaryToASCIIBuffer(boolean isNegative, char[] digits){ 292 this.isNegative = isNegative; 293 this.decExponent = 0; 294 this.digits = digits; 295 this.firstDigitIndex = 0; 296 this.nDigits = digits.length; 297 } 298 299 @Override toJavaFormatString()300 public String toJavaFormatString() { 301 int len = getChars(buffer); 302 return new String(buffer, 0, len); 303 } 304 305 @Override appendTo(Appendable buf)306 public void appendTo(Appendable buf) { 307 int len = getChars(buffer); 308 if (buf instanceof StringBuilder) { 309 ((StringBuilder) buf).append(buffer, 0, len); 310 } else if (buf instanceof StringBuffer) { 311 ((StringBuffer) buf).append(buffer, 0, len); 312 } else { 313 assert false; 314 } 315 } 316 317 @Override getDecimalExponent()318 public int getDecimalExponent() { 319 return decExponent; 320 } 321 322 @Override getDigits(char[] digits)323 public int getDigits(char[] digits) { 324 System.arraycopy(this.digits,firstDigitIndex,digits,0,this.nDigits); 325 return this.nDigits; 326 } 327 328 @Override isNegative()329 public boolean isNegative() { 330 return isNegative; 331 } 332 333 @Override isExceptional()334 public boolean isExceptional() { 335 return false; 336 } 337 338 @Override digitsRoundedUp()339 public boolean digitsRoundedUp() { 340 return decimalDigitsRoundedUp; 341 } 342 343 @Override decimalDigitsExact()344 public boolean decimalDigitsExact() { 345 return exactDecimalConversion; 346 } 347 setSign(boolean isNegative)348 private void setSign(boolean isNegative) { 349 this.isNegative = isNegative; 350 } 351 352 /** 353 * This is the easy subcase -- 354 * all the significant bits, after scaling, are held in lvalue. 355 * negSign and decExponent tell us what processing and scaling 356 * has already been done. Exceptional cases have already been 357 * stripped out. 358 * In particular: 359 * lvalue is a finite number (not Inf, nor NaN) 360 * lvalue > 0L (not zero, nor negative). 361 * 362 * The only reason that we develop the digits here, rather than 363 * calling on Long.toString() is that we can do it a little faster, 364 * and besides want to treat trailing 0s specially. If Long.toString 365 * changes, we should re-evaluate this strategy! 366 */ developLongDigits( int decExponent, long lvalue, int insignificantDigits )367 private void developLongDigits( int decExponent, long lvalue, int insignificantDigits ){ 368 if ( insignificantDigits != 0 ){ 369 // Discard non-significant low-order bits, while rounding, 370 // up to insignificant value. 371 long pow10 = FDBigInteger.LONG_5_POW[insignificantDigits] << insignificantDigits; // 10^i == 5^i * 2^i; 372 long residue = lvalue % pow10; 373 lvalue /= pow10; 374 decExponent += insignificantDigits; 375 if ( residue >= (pow10>>1) ){ 376 // round up based on the low-order bits we're discarding 377 lvalue++; 378 } 379 } 380 int digitno = digits.length -1; 381 int c; 382 if ( lvalue <= Integer.MAX_VALUE ){ 383 assert lvalue > 0L : lvalue; // lvalue <= 0 384 // even easier subcase! 385 // can do int arithmetic rather than long! 386 int ivalue = (int)lvalue; 387 c = ivalue%10; 388 ivalue /= 10; 389 while ( c == 0 ){ 390 decExponent++; 391 c = ivalue%10; 392 ivalue /= 10; 393 } 394 while ( ivalue != 0){ 395 digits[digitno--] = (char)(c+'0'); 396 decExponent++; 397 c = ivalue%10; 398 ivalue /= 10; 399 } 400 digits[digitno] = (char)(c+'0'); 401 } else { 402 // same algorithm as above (same bugs, too ) 403 // but using long arithmetic. 404 c = (int)(lvalue%10L); 405 lvalue /= 10L; 406 while ( c == 0 ){ 407 decExponent++; 408 c = (int)(lvalue%10L); 409 lvalue /= 10L; 410 } 411 while ( lvalue != 0L ){ 412 digits[digitno--] = (char)(c+'0'); 413 decExponent++; 414 c = (int)(lvalue%10L); 415 lvalue /= 10; 416 } 417 digits[digitno] = (char)(c+'0'); 418 } 419 this.decExponent = decExponent+1; 420 this.firstDigitIndex = digitno; 421 this.nDigits = this.digits.length - digitno; 422 } 423 dtoa( int binExp, long fractBits, int nSignificantBits, boolean isCompatibleFormat)424 private void dtoa( int binExp, long fractBits, int nSignificantBits, boolean isCompatibleFormat) 425 { 426 assert fractBits > 0 ; // fractBits here can't be zero or negative 427 assert (fractBits & FRACT_HOB)!=0 ; // Hi-order bit should be set 428 // Examine number. Determine if it is an easy case, 429 // which we can do pretty trivially using float/long conversion, 430 // or whether we must do real work. 431 final int tailZeros = Long.numberOfTrailingZeros(fractBits); 432 433 // number of significant bits of fractBits; 434 final int nFractBits = EXP_SHIFT+1-tailZeros; 435 436 // reset flags to default values as dtoa() does not always set these 437 // flags and a prior call to dtoa() might have set them to incorrect 438 // values with respect to the current state. 439 decimalDigitsRoundedUp = false; 440 exactDecimalConversion = false; 441 442 // number of significant bits to the right of the point. 443 int nTinyBits = Math.max( 0, nFractBits - binExp - 1 ); 444 if ( binExp <= MAX_SMALL_BIN_EXP && binExp >= MIN_SMALL_BIN_EXP ){ 445 // Look more closely at the number to decide if, 446 // with scaling by 10^nTinyBits, the result will fit in 447 // a long. 448 if ( (nTinyBits < FDBigInteger.LONG_5_POW.length) && ((nFractBits + N_5_BITS[nTinyBits]) < 64 ) ){ 449 // 450 // We can do this: 451 // take the fraction bits, which are normalized. 452 // (a) nTinyBits == 0: Shift left or right appropriately 453 // to align the binary point at the extreme right, i.e. 454 // where a long int point is expected to be. The integer 455 // result is easily converted to a string. 456 // (b) nTinyBits > 0: Shift right by EXP_SHIFT-nFractBits, 457 // which effectively converts to long and scales by 458 // 2^nTinyBits. Then multiply by 5^nTinyBits to 459 // complete the scaling. We know this won't overflow 460 // because we just counted the number of bits necessary 461 // in the result. The integer you get from this can 462 // then be converted to a string pretty easily. 463 // 464 if ( nTinyBits == 0 ) { 465 int insignificant; 466 if ( binExp > nSignificantBits ){ 467 insignificant = insignificantDigitsForPow2(binExp-nSignificantBits-1); 468 } else { 469 insignificant = 0; 470 } 471 if ( binExp >= EXP_SHIFT ){ 472 fractBits <<= (binExp-EXP_SHIFT); 473 } else { 474 fractBits >>>= (EXP_SHIFT-binExp) ; 475 } 476 developLongDigits( 0, fractBits, insignificant ); 477 return; 478 } 479 // 480 // The following causes excess digits to be printed 481 // out in the single-float case. Our manipulation of 482 // halfULP here is apparently not correct. If we 483 // better understand how this works, perhaps we can 484 // use this special case again. But for the time being, 485 // we do not. 486 // else { 487 // fractBits >>>= EXP_SHIFT+1-nFractBits; 488 // fractBits//= long5pow[ nTinyBits ]; 489 // halfULP = long5pow[ nTinyBits ] >> (1+nSignificantBits-nFractBits); 490 // developLongDigits( -nTinyBits, fractBits, insignificantDigits(halfULP) ); 491 // return; 492 // } 493 // 494 } 495 } 496 // 497 // This is the hard case. We are going to compute large positive 498 // integers B and S and integer decExp, s.t. 499 // d = ( B / S )// 10^decExp 500 // 1 <= B / S < 10 501 // Obvious choices are: 502 // decExp = floor( log10(d) ) 503 // B = d// 2^nTinyBits// 10^max( 0, -decExp ) 504 // S = 10^max( 0, decExp)// 2^nTinyBits 505 // (noting that nTinyBits has already been forced to non-negative) 506 // I am also going to compute a large positive integer 507 // M = (1/2^nSignificantBits)// 2^nTinyBits// 10^max( 0, -decExp ) 508 // i.e. M is (1/2) of the ULP of d, scaled like B. 509 // When we iterate through dividing B/S and picking off the 510 // quotient bits, we will know when to stop when the remainder 511 // is <= M. 512 // 513 // We keep track of powers of 2 and powers of 5. 514 // 515 int decExp = estimateDecExp(fractBits,binExp); 516 int B2, B5; // powers of 2 and powers of 5, respectively, in B 517 int S2, S5; // powers of 2 and powers of 5, respectively, in S 518 int M2, M5; // powers of 2 and powers of 5, respectively, in M 519 520 B5 = Math.max( 0, -decExp ); 521 B2 = B5 + nTinyBits + binExp; 522 523 S5 = Math.max( 0, decExp ); 524 S2 = S5 + nTinyBits; 525 526 M5 = B5; 527 M2 = B2 - nSignificantBits; 528 529 // 530 // the long integer fractBits contains the (nFractBits) interesting 531 // bits from the mantissa of d ( hidden 1 added if necessary) followed 532 // by (EXP_SHIFT+1-nFractBits) zeros. In the interest of compactness, 533 // I will shift out those zeros before turning fractBits into a 534 // FDBigInteger. The resulting whole number will be 535 // d * 2^(nFractBits-1-binExp). 536 // 537 fractBits >>>= tailZeros; 538 B2 -= nFractBits-1; 539 int common2factor = Math.min( B2, S2 ); 540 B2 -= common2factor; 541 S2 -= common2factor; 542 M2 -= common2factor; 543 544 // 545 // HACK!! For exact powers of two, the next smallest number 546 // is only half as far away as we think (because the meaning of 547 // ULP changes at power-of-two bounds) for this reason, we 548 // hack M2. Hope this works. 549 // 550 if ( nFractBits == 1 ) { 551 M2 -= 1; 552 } 553 554 if ( M2 < 0 ){ 555 // oops. 556 // since we cannot scale M down far enough, 557 // we must scale the other values up. 558 B2 -= M2; 559 S2 -= M2; 560 M2 = 0; 561 } 562 // 563 // Construct, Scale, iterate. 564 // Some day, we'll write a stopping test that takes 565 // account of the asymmetry of the spacing of floating-point 566 // numbers below perfect powers of 2 567 // 26 Sept 96 is not that day. 568 // So we use a symmetric test. 569 // 570 int ndigit = 0; 571 boolean low, high; 572 long lowDigitDifference; 573 int q; 574 575 // 576 // Detect the special cases where all the numbers we are about 577 // to compute will fit in int or long integers. 578 // In these cases, we will avoid doing FDBigInteger arithmetic. 579 // We use the same algorithms, except that we "normalize" 580 // our FDBigIntegers before iterating. This is to make division easier, 581 // as it makes our fist guess (quotient of high-order words) 582 // more accurate! 583 // 584 // Some day, we'll write a stopping test that takes 585 // account of the asymmetry of the spacing of floating-point 586 // numbers below perfect powers of 2 587 // 26 Sept 96 is not that day. 588 // So we use a symmetric test. 589 // 590 // binary digits needed to represent B, approx. 591 int Bbits = nFractBits + B2 + (( B5 < N_5_BITS.length )? N_5_BITS[B5] : ( B5*3 )); 592 593 // binary digits needed to represent 10*S, approx. 594 int tenSbits = S2+1 + (( (S5+1) < N_5_BITS.length )? N_5_BITS[(S5+1)] : ( (S5+1)*3 )); 595 if ( Bbits < 64 && tenSbits < 64){ 596 if ( Bbits < 32 && tenSbits < 32){ 597 // wa-hoo! They're all ints! 598 int b = ((int)fractBits * FDBigInteger.SMALL_5_POW[B5] ) << B2; 599 int s = FDBigInteger.SMALL_5_POW[S5] << S2; 600 int m = FDBigInteger.SMALL_5_POW[M5] << M2; 601 int tens = s * 10; 602 // 603 // Unroll the first iteration. If our decExp estimate 604 // was too high, our first quotient will be zero. In this 605 // case, we discard it and decrement decExp. 606 // 607 ndigit = 0; 608 q = b / s; 609 b = 10 * ( b % s ); 610 m *= 10; 611 low = (b < m ); 612 high = (b+m > tens ); 613 assert q < 10 : q; // excessively large digit 614 if ( (q == 0) && ! high ){ 615 // oops. Usually ignore leading zero. 616 decExp--; 617 } else { 618 digits[ndigit++] = (char)('0' + q); 619 } 620 // 621 // HACK! Java spec sez that we always have at least 622 // one digit after the . in either F- or E-form output. 623 // Thus we will need more than one digit if we're using 624 // E-form 625 // 626 if ( !isCompatibleFormat ||decExp < -3 || decExp >= 8 ){ 627 high = low = false; 628 } 629 while( ! low && ! high ){ 630 q = b / s; 631 b = 10 * ( b % s ); 632 m *= 10; 633 assert q < 10 : q; // excessively large digit 634 if ( m > 0L ){ 635 low = (b < m ); 636 high = (b+m > tens ); 637 } else { 638 // hack -- m might overflow! 639 // in this case, it is certainly > b, 640 // which won't 641 // and b+m > tens, too, since that has overflowed 642 // either! 643 low = true; 644 high = true; 645 } 646 digits[ndigit++] = (char)('0' + q); 647 } 648 lowDigitDifference = (b<<1) - tens; 649 exactDecimalConversion = (b == 0); 650 } else { 651 // still good! they're all longs! 652 long b = (fractBits * FDBigInteger.LONG_5_POW[B5] ) << B2; 653 long s = FDBigInteger.LONG_5_POW[S5] << S2; 654 long m = FDBigInteger.LONG_5_POW[M5] << M2; 655 long tens = s * 10L; 656 // 657 // Unroll the first iteration. If our decExp estimate 658 // was too high, our first quotient will be zero. In this 659 // case, we discard it and decrement decExp. 660 // 661 ndigit = 0; 662 q = (int) ( b / s ); 663 b = 10L * ( b % s ); 664 m *= 10L; 665 low = (b < m ); 666 high = (b+m > tens ); 667 assert q < 10 : q; // excessively large digit 668 if ( (q == 0) && ! high ){ 669 // oops. Usually ignore leading zero. 670 decExp--; 671 } else { 672 digits[ndigit++] = (char)('0' + q); 673 } 674 // 675 // HACK! Java spec sez that we always have at least 676 // one digit after the . in either F- or E-form output. 677 // Thus we will need more than one digit if we're using 678 // E-form 679 // 680 if ( !isCompatibleFormat || decExp < -3 || decExp >= 8 ){ 681 high = low = false; 682 } 683 while( ! low && ! high ){ 684 q = (int) ( b / s ); 685 b = 10 * ( b % s ); 686 m *= 10; 687 assert q < 10 : q; // excessively large digit 688 if ( m > 0L ){ 689 low = (b < m ); 690 high = (b+m > tens ); 691 } else { 692 // hack -- m might overflow! 693 // in this case, it is certainly > b, 694 // which won't 695 // and b+m > tens, too, since that has overflowed 696 // either! 697 low = true; 698 high = true; 699 } 700 digits[ndigit++] = (char)('0' + q); 701 } 702 lowDigitDifference = (b<<1) - tens; 703 exactDecimalConversion = (b == 0); 704 } 705 } else { 706 // 707 // We really must do FDBigInteger arithmetic. 708 // Fist, construct our FDBigInteger initial values. 709 // 710 FDBigInteger Sval = FDBigInteger.valueOfPow52(S5, S2); 711 int shiftBias = Sval.getNormalizationBias(); 712 Sval = Sval.leftShift(shiftBias); // normalize so that division works better 713 714 FDBigInteger Bval = FDBigInteger.valueOfMulPow52(fractBits, B5, B2 + shiftBias); 715 FDBigInteger Mval = FDBigInteger.valueOfPow52(M5 + 1, M2 + shiftBias + 1); 716 717 FDBigInteger tenSval = FDBigInteger.valueOfPow52(S5 + 1, S2 + shiftBias + 1); //Sval.mult( 10 ); 718 // 719 // Unroll the first iteration. If our decExp estimate 720 // was too high, our first quotient will be zero. In this 721 // case, we discard it and decrement decExp. 722 // 723 ndigit = 0; 724 q = Bval.quoRemIteration( Sval ); 725 low = (Bval.cmp( Mval ) < 0); 726 high = tenSval.addAndCmp(Bval,Mval)<=0; 727 728 assert q < 10 : q; // excessively large digit 729 if ( (q == 0) && ! high ){ 730 // oops. Usually ignore leading zero. 731 decExp--; 732 } else { 733 digits[ndigit++] = (char)('0' + q); 734 } 735 // 736 // HACK! Java spec sez that we always have at least 737 // one digit after the . in either F- or E-form output. 738 // Thus we will need more than one digit if we're using 739 // E-form 740 // 741 if (!isCompatibleFormat || decExp < -3 || decExp >= 8 ){ 742 high = low = false; 743 } 744 while( ! low && ! high ){ 745 q = Bval.quoRemIteration( Sval ); 746 assert q < 10 : q; // excessively large digit 747 Mval = Mval.multBy10(); //Mval = Mval.mult( 10 ); 748 low = (Bval.cmp( Mval ) < 0); 749 high = tenSval.addAndCmp(Bval,Mval)<=0; 750 digits[ndigit++] = (char)('0' + q); 751 } 752 if ( high && low ){ 753 Bval = Bval.leftShift(1); 754 lowDigitDifference = Bval.cmp(tenSval); 755 } else { 756 lowDigitDifference = 0L; // this here only for flow analysis! 757 } 758 exactDecimalConversion = (Bval.cmp( FDBigInteger.ZERO ) == 0); 759 } 760 this.decExponent = decExp+1; 761 this.firstDigitIndex = 0; 762 this.nDigits = ndigit; 763 // 764 // Last digit gets rounded based on stopping condition. 765 // 766 if ( high ){ 767 if ( low ){ 768 if ( lowDigitDifference == 0L ){ 769 // it's a tie! 770 // choose based on which digits we like. 771 if ( (digits[firstDigitIndex+nDigits-1]&1) != 0 ) { 772 roundup(); 773 } 774 } else if ( lowDigitDifference > 0 ){ 775 roundup(); 776 } 777 } else { 778 roundup(); 779 } 780 } 781 } 782 783 // add one to the least significant digit. 784 // in the unlikely event there is a carry out, deal with it. 785 // assert that this will only happen where there 786 // is only one digit, e.g. (float)1e-44 seems to do it. 787 // 788 private void roundup() { 789 int i = (firstDigitIndex + nDigits - 1); 790 int q = digits[i]; 791 if (q == '9') { 792 while (q == '9' && i > firstDigitIndex) { 793 digits[i] = '0'; 794 q = digits[--i]; 795 } 796 if (q == '9') { 797 // carryout! High-order 1, rest 0s, larger exp. 798 decExponent += 1; 799 digits[firstDigitIndex] = '1'; 800 return; 801 } 802 // else fall through. 803 } 804 digits[i] = (char) (q + 1); 805 decimalDigitsRoundedUp = true; 806 } 807 808 /** 809 * Estimate decimal exponent. (If it is small-ish, 810 * we could double-check.) 811 * 812 * First, scale the mantissa bits such that 1 <= d2 < 2. 813 * We are then going to estimate 814 * log10(d2) ~=~ (d2-1.5)/1.5 + log(1.5) 815 * and so we can estimate 816 * log10(d) ~=~ log10(d2) + binExp * log10(2) 817 * take the floor and call it decExp. 818 */ 819 static int estimateDecExp(long fractBits, int binExp) { 820 double d2 = Double.longBitsToDouble( EXP_ONE | ( fractBits & DoubleConsts.SIGNIF_BIT_MASK ) ); 821 double d = (d2-1.5D)*0.289529654D + 0.176091259 + (double)binExp * 0.301029995663981; 822 long dBits = Double.doubleToRawLongBits(d); //can't be NaN here so use raw 823 int exponent = (int)((dBits & DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT) - DoubleConsts.EXP_BIAS; 824 boolean isNegative = (dBits & DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign 825 if(exponent>=0 && exponent<52) { // hot path 826 long mask = DoubleConsts.SIGNIF_BIT_MASK >> exponent; 827 int r = (int)(( (dBits&DoubleConsts.SIGNIF_BIT_MASK) | FRACT_HOB )>>(EXP_SHIFT-exponent)); 828 return isNegative ? (((mask & dBits) == 0L ) ? -r : -r-1 ) : r; 829 } else if (exponent < 0) { 830 return (((dBits&~DoubleConsts.SIGN_BIT_MASK) == 0) ? 0 : 831 ( (isNegative) ? -1 : 0) ); 832 } else { //if (exponent >= 52) 833 return (int)d; 834 } 835 } 836 837 private static int insignificantDigits(int insignificant) { 838 int i; 839 for ( i = 0; insignificant >= 10L; i++ ) { 840 insignificant /= 10L; 841 } 842 return i; 843 } 844 845 /** 846 * Calculates 847 * <pre> 848 * insignificantDigitsForPow2(v) == insignificantDigits(1L<<v) 849 * </pre> 850 */ 851 private static int insignificantDigitsForPow2(int p2) { 852 if(p2>1 && p2 < insignificantDigitsNumber.length) { 853 return insignificantDigitsNumber[p2]; 854 } 855 return 0; 856 } 857 858 /** 859 * If insignificant==(1L << ixd) 860 * i = insignificantDigitsNumber[idx] is the same as: 861 * int i; 862 * for ( i = 0; insignificant >= 10L; i++ ) 863 * insignificant /= 10L; 864 */ 865 private static int[] insignificantDigitsNumber = { 866 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 867 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 868 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 869 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 870 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 871 18, 18, 18, 19 872 }; 873 874 // approximately ceil( log2( long5pow[i] ) ) 875 private static final int[] N_5_BITS = { 876 0, 877 3, 878 5, 879 7, 880 10, 881 12, 882 14, 883 17, 884 19, 885 21, 886 24, 887 26, 888 28, 889 31, 890 33, 891 35, 892 38, 893 40, 894 42, 895 45, 896 47, 897 49, 898 52, 899 54, 900 56, 901 59, 902 61, 903 }; 904 905 private int getChars(char[] result) { 906 assert nDigits <= 19 : nDigits; // generous bound on size of nDigits 907 int i = 0; 908 if (isNegative) { 909 result[0] = '-'; 910 i = 1; 911 } 912 if (decExponent > 0 && decExponent < 8) { 913 // print digits.digits. 914 int charLength = Math.min(nDigits, decExponent); 915 System.arraycopy(digits, firstDigitIndex, result, i, charLength); 916 i += charLength; 917 if (charLength < decExponent) { 918 charLength = decExponent - charLength; 919 Arrays.fill(result,i,i+charLength,'0'); 920 i += charLength; 921 result[i++] = '.'; 922 result[i++] = '0'; 923 } else { 924 result[i++] = '.'; 925 if (charLength < nDigits) { 926 int t = nDigits - charLength; 927 System.arraycopy(digits, firstDigitIndex+charLength, result, i, t); 928 i += t; 929 } else { 930 result[i++] = '0'; 931 } 932 } 933 } else if (decExponent <= 0 && decExponent > -3) { 934 result[i++] = '0'; 935 result[i++] = '.'; 936 if (decExponent != 0) { 937 Arrays.fill(result, i, i-decExponent, '0'); 938 i -= decExponent; 939 } 940 System.arraycopy(digits, firstDigitIndex, result, i, nDigits); 941 i += nDigits; 942 } else { 943 result[i++] = digits[firstDigitIndex]; 944 result[i++] = '.'; 945 if (nDigits > 1) { 946 System.arraycopy(digits, firstDigitIndex+1, result, i, nDigits - 1); 947 i += nDigits - 1; 948 } else { 949 result[i++] = '0'; 950 } 951 result[i++] = 'E'; 952 int e; 953 if (decExponent <= 0) { 954 result[i++] = '-'; 955 e = -decExponent + 1; 956 } else { 957 e = decExponent - 1; 958 } 959 // decExponent has 1, 2, or 3, digits 960 if (e <= 9) { 961 result[i++] = (char) (e + '0'); 962 } else if (e <= 99) { 963 result[i++] = (char) (e / 10 + '0'); 964 result[i++] = (char) (e % 10 + '0'); 965 } else { 966 result[i++] = (char) (e / 100 + '0'); 967 e %= 100; 968 result[i++] = (char) (e / 10 + '0'); 969 result[i++] = (char) (e % 10 + '0'); 970 } 971 } 972 return i; 973 } 974 975 } 976 977 private static final ThreadLocal<BinaryToASCIIBuffer> threadLocalBinaryToASCIIBuffer = 978 new ThreadLocal<BinaryToASCIIBuffer>() { 979 @Override 980 protected BinaryToASCIIBuffer initialValue() { 981 return new BinaryToASCIIBuffer(); 982 } 983 }; 984 985 private static BinaryToASCIIBuffer getBinaryToASCIIBuffer() { 986 return threadLocalBinaryToASCIIBuffer.get(); 987 } 988 989 /** 990 * A converter which can process an ASCII <code>String</code> representation 991 * of a single or double precision floating point value into a 992 * <code>float</code> or a <code>double</code>. 993 */ 994 interface ASCIIToBinaryConverter { 995 996 double doubleValue(); 997 998 float floatValue(); 999 1000 } 1001 1002 /** 1003 * A <code>ASCIIToBinaryConverter</code> container for a <code>double</code>. 1004 */ 1005 static class PreparedASCIIToBinaryBuffer implements ASCIIToBinaryConverter { 1006 private final double doubleVal; 1007 private final float floatVal; 1008 1009 public PreparedASCIIToBinaryBuffer(double doubleVal, float floatVal) { 1010 this.doubleVal = doubleVal; 1011 this.floatVal = floatVal; 1012 } 1013 1014 @Override 1015 public double doubleValue() { 1016 return doubleVal; 1017 } 1018 1019 @Override 1020 public float floatValue() { 1021 return floatVal; 1022 } 1023 } 1024 1025 static final ASCIIToBinaryConverter A2BC_POSITIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.POSITIVE_INFINITY, Float.POSITIVE_INFINITY); 1026 static final ASCIIToBinaryConverter A2BC_NEGATIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY); 1027 static final ASCIIToBinaryConverter A2BC_NOT_A_NUMBER = new PreparedASCIIToBinaryBuffer(Double.NaN, Float.NaN); 1028 static final ASCIIToBinaryConverter A2BC_POSITIVE_ZERO = new PreparedASCIIToBinaryBuffer(0.0d, 0.0f); 1029 static final ASCIIToBinaryConverter A2BC_NEGATIVE_ZERO = new PreparedASCIIToBinaryBuffer(-0.0d, -0.0f); 1030 1031 /** 1032 * A buffered implementation of <code>ASCIIToBinaryConverter</code>. 1033 */ 1034 static class ASCIIToBinaryBuffer implements ASCIIToBinaryConverter { 1035 boolean isNegative; 1036 int decExponent; 1037 char digits[]; 1038 int nDigits; 1039 1040 ASCIIToBinaryBuffer( boolean negSign, int decExponent, char[] digits, int n) 1041 { 1042 this.isNegative = negSign; 1043 this.decExponent = decExponent; 1044 this.digits = digits; 1045 this.nDigits = n; 1046 } 1047 1048 /** 1049 * Takes a FloatingDecimal, which we presumably just scanned in, 1050 * and finds out what its value is, as a double. 1051 * 1052 * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED 1053 * ROUNDING DIRECTION in case the result is really destined 1054 * for a single-precision float. 1055 */ 1056 @Override 1057 public double doubleValue() { 1058 int kDigits = Math.min(nDigits, MAX_DECIMAL_DIGITS + 1); 1059 // 1060 // convert the lead kDigits to a long integer. 1061 // 1062 // (special performance hack: start to do it using int) 1063 int iValue = (int) digits[0] - (int) '0'; 1064 int iDigits = Math.min(kDigits, INT_DECIMAL_DIGITS); 1065 for (int i = 1; i < iDigits; i++) { 1066 iValue = iValue * 10 + (int) digits[i] - (int) '0'; 1067 } 1068 long lValue = (long) iValue; 1069 for (int i = iDigits; i < kDigits; i++) { 1070 lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); 1071 } 1072 double dValue = (double) lValue; 1073 int exp = decExponent - kDigits; 1074 // 1075 // lValue now contains a long integer with the value of 1076 // the first kDigits digits of the number. 1077 // dValue contains the (double) of the same. 1078 // 1079 1080 if (nDigits <= MAX_DECIMAL_DIGITS) { 1081 // 1082 // possibly an easy case. 1083 // We know that the digits can be represented 1084 // exactly. And if the exponent isn't too outrageous, 1085 // the whole thing can be done with one operation, 1086 // thus one rounding error. 1087 // Note that all our constructors trim all leading and 1088 // trailing zeros, so simple values (including zero) 1089 // will always end up here 1090 // 1091 if (exp == 0 || dValue == 0.0) { 1092 return (isNegative) ? -dValue : dValue; // small floating integer 1093 } 1094 else if (exp >= 0) { 1095 if (exp <= MAX_SMALL_TEN) { 1096 // 1097 // Can get the answer with one operation, 1098 // thus one roundoff. 1099 // 1100 double rValue = dValue * SMALL_10_POW[exp]; 1101 return (isNegative) ? -rValue : rValue; 1102 } 1103 int slop = MAX_DECIMAL_DIGITS - kDigits; 1104 if (exp <= MAX_SMALL_TEN + slop) { 1105 // 1106 // We can multiply dValue by 10^(slop) 1107 // and it is still "small" and exact. 1108 // Then we can multiply by 10^(exp-slop) 1109 // with one rounding. 1110 // 1111 dValue *= SMALL_10_POW[slop]; 1112 double rValue = dValue * SMALL_10_POW[exp - slop]; 1113 return (isNegative) ? -rValue : rValue; 1114 } 1115 // 1116 // Else we have a hard case with a positive exp. 1117 // 1118 } else { 1119 if (exp >= -MAX_SMALL_TEN) { 1120 // 1121 // Can get the answer in one division. 1122 // 1123 double rValue = dValue / SMALL_10_POW[-exp]; 1124 return (isNegative) ? -rValue : rValue; 1125 } 1126 // 1127 // Else we have a hard case with a negative exp. 1128 // 1129 } 1130 } 1131 1132 // 1133 // Harder cases: 1134 // The sum of digits plus exponent is greater than 1135 // what we think we can do with one error. 1136 // 1137 // Start by approximating the right answer by, 1138 // naively, scaling by powers of 10. 1139 // 1140 if (exp > 0) { 1141 if (decExponent > MAX_DECIMAL_EXPONENT + 1) { 1142 // 1143 // Lets face it. This is going to be 1144 // Infinity. Cut to the chase. 1145 // 1146 return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; 1147 } 1148 if ((exp & 15) != 0) { 1149 dValue *= SMALL_10_POW[exp & 15]; 1150 } 1151 if ((exp >>= 4) != 0) { 1152 int j; 1153 for (j = 0; exp > 1; j++, exp >>= 1) { 1154 if ((exp & 1) != 0) { 1155 dValue *= BIG_10_POW[j]; 1156 } 1157 } 1158 // 1159 // The reason for the weird exp > 1 condition 1160 // in the above loop was so that the last multiply 1161 // would get unrolled. We handle it here. 1162 // It could overflow. 1163 // 1164 double t = dValue * BIG_10_POW[j]; 1165 if (Double.isInfinite(t)) { 1166 // 1167 // It did overflow. 1168 // Look more closely at the result. 1169 // If the exponent is just one too large, 1170 // then use the maximum finite as our estimate 1171 // value. Else call the result infinity 1172 // and punt it. 1173 // ( I presume this could happen because 1174 // rounding forces the result here to be 1175 // an ULP or two larger than 1176 // Double.MAX_VALUE ). 1177 // 1178 t = dValue / 2.0; 1179 t *= BIG_10_POW[j]; 1180 if (Double.isInfinite(t)) { 1181 return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; 1182 } 1183 t = Double.MAX_VALUE; 1184 } 1185 dValue = t; 1186 } 1187 } else if (exp < 0) { 1188 exp = -exp; 1189 if (decExponent < MIN_DECIMAL_EXPONENT - 1) { 1190 // 1191 // Lets face it. This is going to be 1192 // zero. Cut to the chase. 1193 // 1194 return (isNegative) ? -0.0 : 0.0; 1195 } 1196 if ((exp & 15) != 0) { 1197 dValue /= SMALL_10_POW[exp & 15]; 1198 } 1199 if ((exp >>= 4) != 0) { 1200 int j; 1201 for (j = 0; exp > 1; j++, exp >>= 1) { 1202 if ((exp & 1) != 0) { 1203 dValue *= TINY_10_POW[j]; 1204 } 1205 } 1206 // 1207 // The reason for the weird exp > 1 condition 1208 // in the above loop was so that the last multiply 1209 // would get unrolled. We handle it here. 1210 // It could underflow. 1211 // 1212 double t = dValue * TINY_10_POW[j]; 1213 if (t == 0.0) { 1214 // 1215 // It did underflow. 1216 // Look more closely at the result. 1217 // If the exponent is just one too small, 1218 // then use the minimum finite as our estimate 1219 // value. Else call the result 0.0 1220 // and punt it. 1221 // ( I presume this could happen because 1222 // rounding forces the result here to be 1223 // an ULP or two less than 1224 // Double.MIN_VALUE ). 1225 // 1226 t = dValue * 2.0; 1227 t *= TINY_10_POW[j]; 1228 if (t == 0.0) { 1229 return (isNegative) ? -0.0 : 0.0; 1230 } 1231 t = Double.MIN_VALUE; 1232 } 1233 dValue = t; 1234 } 1235 } 1236 1237 // 1238 // dValue is now approximately the result. 1239 // The hard part is adjusting it, by comparison 1240 // with FDBigInteger arithmetic. 1241 // Formulate the EXACT big-number result as 1242 // bigD0 * 10^exp 1243 // 1244 if (nDigits > MAX_NDIGITS) { 1245 nDigits = MAX_NDIGITS + 1; 1246 digits[MAX_NDIGITS] = '1'; 1247 } 1248 FDBigInteger bigD0 = new FDBigInteger(lValue, digits, kDigits, nDigits); 1249 exp = decExponent - nDigits; 1250 1251 long ieeeBits = Double.doubleToRawLongBits(dValue); // IEEE-754 bits of double candidate 1252 final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop 1253 final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop 1254 bigD0 = bigD0.multByPow52(D5, 0); 1255 bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop 1256 FDBigInteger bigD = null; 1257 int prevD2 = 0; 1258 1259 correctionLoop: 1260 while (true) { 1261 // here ieeeBits can't be NaN, Infinity or zero 1262 int binexp = (int) (ieeeBits >>> EXP_SHIFT); 1263 long bigBbits = ieeeBits & DoubleConsts.SIGNIF_BIT_MASK; 1264 if (binexp > 0) { 1265 bigBbits |= FRACT_HOB; 1266 } else { // Normalize denormalized numbers. 1267 assert bigBbits != 0L : bigBbits; // doubleToBigInt(0.0) 1268 int leadingZeros = Long.numberOfLeadingZeros(bigBbits); 1269 int shift = leadingZeros - (63 - EXP_SHIFT); 1270 bigBbits <<= shift; 1271 binexp = 1 - shift; 1272 } 1273 binexp -= DoubleConsts.EXP_BIAS; 1274 int lowOrderZeros = Long.numberOfTrailingZeros(bigBbits); 1275 bigBbits >>>= lowOrderZeros; 1276 final int bigIntExp = binexp - EXP_SHIFT + lowOrderZeros; 1277 final int bigIntNBits = EXP_SHIFT + 1 - lowOrderZeros; 1278 1279 // 1280 // Scale bigD, bigB appropriately for 1281 // big-integer operations. 1282 // Naively, we multiply by powers of ten 1283 // and powers of two. What we actually do 1284 // is keep track of the powers of 5 and 1285 // powers of 2 we would use, then factor out 1286 // common divisors before doing the work. 1287 // 1288 int B2 = B5; // powers of 2 in bigB 1289 int D2 = D5; // powers of 2 in bigD 1290 int Ulp2; // powers of 2 in halfUlp. 1291 if (bigIntExp >= 0) { 1292 B2 += bigIntExp; 1293 } else { 1294 D2 -= bigIntExp; 1295 } 1296 Ulp2 = B2; 1297 // shift bigB and bigD left by a number s. t. 1298 // halfUlp is still an integer. 1299 int hulpbias; 1300 if (binexp <= -DoubleConsts.EXP_BIAS) { 1301 // This is going to be a denormalized number 1302 // (if not actually zero). 1303 // half an ULP is at 2^-(DoubleConsts.EXP_BIAS+EXP_SHIFT+1) 1304 hulpbias = binexp + lowOrderZeros + DoubleConsts.EXP_BIAS; 1305 } else { 1306 hulpbias = 1 + lowOrderZeros; 1307 } 1308 B2 += hulpbias; 1309 D2 += hulpbias; 1310 // if there are common factors of 2, we might just as well 1311 // factor them out, as they add nothing useful. 1312 int common2 = Math.min(B2, Math.min(D2, Ulp2)); 1313 B2 -= common2; 1314 D2 -= common2; 1315 Ulp2 -= common2; 1316 // do multiplications by powers of 5 and 2 1317 FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2); 1318 if (bigD == null || prevD2 != D2) { 1319 bigD = bigD0.leftShift(D2); 1320 prevD2 = D2; 1321 } 1322 // 1323 // to recap: 1324 // bigB is the scaled-big-int version of our floating-point 1325 // candidate. 1326 // bigD is the scaled-big-int version of the exact value 1327 // as we understand it. 1328 // halfUlp is 1/2 an ulp of bigB, except for special cases 1329 // of exact powers of 2 1330 // 1331 // the plan is to compare bigB with bigD, and if the difference 1332 // is less than halfUlp, then we're satisfied. Otherwise, 1333 // use the ratio of difference to halfUlp to calculate a fudge 1334 // factor to add to the floating value, then go 'round again. 1335 // 1336 FDBigInteger diff; 1337 int cmpResult; 1338 boolean overvalue; 1339 if ((cmpResult = bigB.cmp(bigD)) > 0) { 1340 overvalue = true; // our candidate is too big. 1341 diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse 1342 if ((bigIntNBits == 1) && (bigIntExp > -DoubleConsts.EXP_BIAS + 1)) { 1343 // candidate is a normalized exact power of 2 and 1344 // is too big (larger than Double.MIN_NORMAL). We will be subtracting. 1345 // For our purposes, ulp is the ulp of the 1346 // next smaller range. 1347 Ulp2 -= 1; 1348 if (Ulp2 < 0) { 1349 // rats. Cannot de-scale ulp this far. 1350 // must scale diff in other direction. 1351 Ulp2 = 0; 1352 diff = diff.leftShift(1); 1353 } 1354 } 1355 } else if (cmpResult < 0) { 1356 overvalue = false; // our candidate is too small. 1357 diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse 1358 } else { 1359 // the candidate is exactly right! 1360 // this happens with surprising frequency 1361 break correctionLoop; 1362 } 1363 cmpResult = diff.cmpPow52(B5, Ulp2); 1364 if ((cmpResult) < 0) { 1365 // difference is small. 1366 // this is close enough 1367 break correctionLoop; 1368 } else if (cmpResult == 0) { 1369 // difference is exactly half an ULP 1370 // round to some other value maybe, then finish 1371 if ((ieeeBits & 1) != 0) { // half ties to even 1372 ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp 1373 } 1374 break correctionLoop; 1375 } else { 1376 // difference is non-trivial. 1377 // could scale addend by ratio of difference to 1378 // halfUlp here, if we bothered to compute that difference. 1379 // Most of the time ( I hope ) it is about 1 anyway. 1380 ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp 1381 if (ieeeBits == 0 || ieeeBits == DoubleConsts.EXP_BIT_MASK) { // 0.0 or Double.POSITIVE_INFINITY 1382 break correctionLoop; // oops. Fell off end of range. 1383 } 1384 continue; // try again. 1385 } 1386 1387 } 1388 if (isNegative) { 1389 ieeeBits |= DoubleConsts.SIGN_BIT_MASK; 1390 } 1391 return Double.longBitsToDouble(ieeeBits); 1392 } 1393 1394 /** 1395 * Takes a FloatingDecimal, which we presumably just scanned in, 1396 * and finds out what its value is, as a float. 1397 * This is distinct from doubleValue() to avoid the extremely 1398 * unlikely case of a double rounding error, wherein the conversion 1399 * to double has one rounding error, and the conversion of that double 1400 * to a float has another rounding error, IN THE WRONG DIRECTION, 1401 * ( because of the preference to a zero low-order bit ). 1402 */ 1403 @Override floatValue()1404 public float floatValue() { 1405 int kDigits = Math.min(nDigits, SINGLE_MAX_DECIMAL_DIGITS + 1); 1406 // 1407 // convert the lead kDigits to an integer. 1408 // 1409 int iValue = (int) digits[0] - (int) '0'; 1410 for (int i = 1; i < kDigits; i++) { 1411 iValue = iValue * 10 + (int) digits[i] - (int) '0'; 1412 } 1413 float fValue = (float) iValue; 1414 int exp = decExponent - kDigits; 1415 // 1416 // iValue now contains an integer with the value of 1417 // the first kDigits digits of the number. 1418 // fValue contains the (float) of the same. 1419 // 1420 1421 if (nDigits <= SINGLE_MAX_DECIMAL_DIGITS) { 1422 // 1423 // possibly an easy case. 1424 // We know that the digits can be represented 1425 // exactly. And if the exponent isn't too outrageous, 1426 // the whole thing can be done with one operation, 1427 // thus one rounding error. 1428 // Note that all our constructors trim all leading and 1429 // trailing zeros, so simple values (including zero) 1430 // will always end up here. 1431 // 1432 if (exp == 0 || fValue == 0.0f) { 1433 return (isNegative) ? -fValue : fValue; // small floating integer 1434 } else if (exp >= 0) { 1435 if (exp <= SINGLE_MAX_SMALL_TEN) { 1436 // 1437 // Can get the answer with one operation, 1438 // thus one roundoff. 1439 // 1440 fValue *= SINGLE_SMALL_10_POW[exp]; 1441 return (isNegative) ? -fValue : fValue; 1442 } 1443 int slop = SINGLE_MAX_DECIMAL_DIGITS - kDigits; 1444 if (exp <= SINGLE_MAX_SMALL_TEN + slop) { 1445 // 1446 // We can multiply fValue by 10^(slop) 1447 // and it is still "small" and exact. 1448 // Then we can multiply by 10^(exp-slop) 1449 // with one rounding. 1450 // 1451 fValue *= SINGLE_SMALL_10_POW[slop]; 1452 fValue *= SINGLE_SMALL_10_POW[exp - slop]; 1453 return (isNegative) ? -fValue : fValue; 1454 } 1455 // 1456 // Else we have a hard case with a positive exp. 1457 // 1458 } else { 1459 if (exp >= -SINGLE_MAX_SMALL_TEN) { 1460 // 1461 // Can get the answer in one division. 1462 // 1463 fValue /= SINGLE_SMALL_10_POW[-exp]; 1464 return (isNegative) ? -fValue : fValue; 1465 } 1466 // 1467 // Else we have a hard case with a negative exp. 1468 // 1469 } 1470 } else if ((decExponent >= nDigits) && (nDigits + decExponent <= MAX_DECIMAL_DIGITS)) { 1471 // 1472 // In double-precision, this is an exact floating integer. 1473 // So we can compute to double, then shorten to float 1474 // with one round, and get the right answer. 1475 // 1476 // First, finish accumulating digits. 1477 // Then convert that integer to a double, multiply 1478 // by the appropriate power of ten, and convert to float. 1479 // 1480 long lValue = (long) iValue; 1481 for (int i = kDigits; i < nDigits; i++) { 1482 lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); 1483 } 1484 double dValue = (double) lValue; 1485 exp = decExponent - nDigits; 1486 dValue *= SMALL_10_POW[exp]; 1487 fValue = (float) dValue; 1488 return (isNegative) ? -fValue : fValue; 1489 1490 } 1491 // 1492 // Harder cases: 1493 // The sum of digits plus exponent is greater than 1494 // what we think we can do with one error. 1495 // 1496 // Start by approximating the right answer by, 1497 // naively, scaling by powers of 10. 1498 // Scaling uses doubles to avoid overflow/underflow. 1499 // 1500 double dValue = fValue; 1501 if (exp > 0) { 1502 if (decExponent > SINGLE_MAX_DECIMAL_EXPONENT + 1) { 1503 // 1504 // Lets face it. This is going to be 1505 // Infinity. Cut to the chase. 1506 // 1507 return (isNegative) ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY; 1508 } 1509 if ((exp & 15) != 0) { 1510 dValue *= SMALL_10_POW[exp & 15]; 1511 } 1512 if ((exp >>= 4) != 0) { 1513 int j; 1514 for (j = 0; exp > 0; j++, exp >>= 1) { 1515 if ((exp & 1) != 0) { 1516 dValue *= BIG_10_POW[j]; 1517 } 1518 } 1519 } 1520 } else if (exp < 0) { 1521 exp = -exp; 1522 if (decExponent < SINGLE_MIN_DECIMAL_EXPONENT - 1) { 1523 // 1524 // Lets face it. This is going to be 1525 // zero. Cut to the chase. 1526 // 1527 return (isNegative) ? -0.0f : 0.0f; 1528 } 1529 if ((exp & 15) != 0) { 1530 dValue /= SMALL_10_POW[exp & 15]; 1531 } 1532 if ((exp >>= 4) != 0) { 1533 int j; 1534 for (j = 0; exp > 0; j++, exp >>= 1) { 1535 if ((exp & 1) != 0) { 1536 dValue *= TINY_10_POW[j]; 1537 } 1538 } 1539 } 1540 } 1541 fValue = Math.max(Float.MIN_VALUE, Math.min(Float.MAX_VALUE, (float) dValue)); 1542 1543 // 1544 // fValue is now approximately the result. 1545 // The hard part is adjusting it, by comparison 1546 // with FDBigInteger arithmetic. 1547 // Formulate the EXACT big-number result as 1548 // bigD0 * 10^exp 1549 // 1550 if (nDigits > SINGLE_MAX_NDIGITS) { 1551 nDigits = SINGLE_MAX_NDIGITS + 1; 1552 digits[SINGLE_MAX_NDIGITS] = '1'; 1553 } 1554 FDBigInteger bigD0 = new FDBigInteger(iValue, digits, kDigits, nDigits); 1555 exp = decExponent - nDigits; 1556 1557 int ieeeBits = Float.floatToRawIntBits(fValue); // IEEE-754 bits of float candidate 1558 final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop 1559 final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop 1560 bigD0 = bigD0.multByPow52(D5, 0); 1561 bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop 1562 FDBigInteger bigD = null; 1563 int prevD2 = 0; 1564 1565 correctionLoop: 1566 while (true) { 1567 // here ieeeBits can't be NaN, Infinity or zero 1568 int binexp = ieeeBits >>> SINGLE_EXP_SHIFT; 1569 int bigBbits = ieeeBits & FloatConsts.SIGNIF_BIT_MASK; 1570 if (binexp > 0) { 1571 bigBbits |= SINGLE_FRACT_HOB; 1572 } else { // Normalize denormalized numbers. 1573 assert bigBbits != 0 : bigBbits; // floatToBigInt(0.0) 1574 int leadingZeros = Integer.numberOfLeadingZeros(bigBbits); 1575 int shift = leadingZeros - (31 - SINGLE_EXP_SHIFT); 1576 bigBbits <<= shift; 1577 binexp = 1 - shift; 1578 } 1579 binexp -= FloatConsts.EXP_BIAS; 1580 int lowOrderZeros = Integer.numberOfTrailingZeros(bigBbits); 1581 bigBbits >>>= lowOrderZeros; 1582 final int bigIntExp = binexp - SINGLE_EXP_SHIFT + lowOrderZeros; 1583 final int bigIntNBits = SINGLE_EXP_SHIFT + 1 - lowOrderZeros; 1584 1585 // 1586 // Scale bigD, bigB appropriately for 1587 // big-integer operations. 1588 // Naively, we multiply by powers of ten 1589 // and powers of two. What we actually do 1590 // is keep track of the powers of 5 and 1591 // powers of 2 we would use, then factor out 1592 // common divisors before doing the work. 1593 // 1594 int B2 = B5; // powers of 2 in bigB 1595 int D2 = D5; // powers of 2 in bigD 1596 int Ulp2; // powers of 2 in halfUlp. 1597 if (bigIntExp >= 0) { 1598 B2 += bigIntExp; 1599 } else { 1600 D2 -= bigIntExp; 1601 } 1602 Ulp2 = B2; 1603 // shift bigB and bigD left by a number s. t. 1604 // halfUlp is still an integer. 1605 int hulpbias; 1606 if (binexp <= -FloatConsts.EXP_BIAS) { 1607 // This is going to be a denormalized number 1608 // (if not actually zero). 1609 // half an ULP is at 2^-(FloatConsts.EXP_BIAS+SINGLE_EXP_SHIFT+1) 1610 hulpbias = binexp + lowOrderZeros + FloatConsts.EXP_BIAS; 1611 } else { 1612 hulpbias = 1 + lowOrderZeros; 1613 } 1614 B2 += hulpbias; 1615 D2 += hulpbias; 1616 // if there are common factors of 2, we might just as well 1617 // factor them out, as they add nothing useful. 1618 int common2 = Math.min(B2, Math.min(D2, Ulp2)); 1619 B2 -= common2; 1620 D2 -= common2; 1621 Ulp2 -= common2; 1622 // do multiplications by powers of 5 and 2 1623 FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2); 1624 if (bigD == null || prevD2 != D2) { 1625 bigD = bigD0.leftShift(D2); 1626 prevD2 = D2; 1627 } 1628 // 1629 // to recap: 1630 // bigB is the scaled-big-int version of our floating-point 1631 // candidate. 1632 // bigD is the scaled-big-int version of the exact value 1633 // as we understand it. 1634 // halfUlp is 1/2 an ulp of bigB, except for special cases 1635 // of exact powers of 2 1636 // 1637 // the plan is to compare bigB with bigD, and if the difference 1638 // is less than halfUlp, then we're satisfied. Otherwise, 1639 // use the ratio of difference to halfUlp to calculate a fudge 1640 // factor to add to the floating value, then go 'round again. 1641 // 1642 FDBigInteger diff; 1643 int cmpResult; 1644 boolean overvalue; 1645 if ((cmpResult = bigB.cmp(bigD)) > 0) { 1646 overvalue = true; // our candidate is too big. 1647 diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse 1648 if ((bigIntNBits == 1) && (bigIntExp > -FloatConsts.EXP_BIAS + 1)) { 1649 // candidate is a normalized exact power of 2 and 1650 // is too big (larger than Float.MIN_NORMAL). We will be subtracting. 1651 // For our purposes, ulp is the ulp of the 1652 // next smaller range. 1653 Ulp2 -= 1; 1654 if (Ulp2 < 0) { 1655 // rats. Cannot de-scale ulp this far. 1656 // must scale diff in other direction. 1657 Ulp2 = 0; 1658 diff = diff.leftShift(1); 1659 } 1660 } 1661 } else if (cmpResult < 0) { 1662 overvalue = false; // our candidate is too small. 1663 diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse 1664 } else { 1665 // the candidate is exactly right! 1666 // this happens with surprising frequency 1667 break correctionLoop; 1668 } 1669 cmpResult = diff.cmpPow52(B5, Ulp2); 1670 if ((cmpResult) < 0) { 1671 // difference is small. 1672 // this is close enough 1673 break correctionLoop; 1674 } else if (cmpResult == 0) { 1675 // difference is exactly half an ULP 1676 // round to some other value maybe, then finish 1677 if ((ieeeBits & 1) != 0) { // half ties to even 1678 ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp 1679 } 1680 break correctionLoop; 1681 } else { 1682 // difference is non-trivial. 1683 // could scale addend by ratio of difference to 1684 // halfUlp here, if we bothered to compute that difference. 1685 // Most of the time ( I hope ) it is about 1 anyway. 1686 ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp 1687 if (ieeeBits == 0 || ieeeBits == FloatConsts.EXP_BIT_MASK) { // 0.0 or Float.POSITIVE_INFINITY 1688 break correctionLoop; // oops. Fell off end of range. 1689 } 1690 continue; // try again. 1691 } 1692 1693 } 1694 if (isNegative) { 1695 ieeeBits |= FloatConsts.SIGN_BIT_MASK; 1696 } 1697 return Float.intBitsToFloat(ieeeBits); 1698 } 1699 1700 1701 /** 1702 * All the positive powers of 10 that can be 1703 * represented exactly in double/float. 1704 */ 1705 private static final double[] SMALL_10_POW = { 1706 1.0e0, 1707 1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5, 1708 1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10, 1709 1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15, 1710 1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20, 1711 1.0e21, 1.0e22 1712 }; 1713 1714 private static final float[] SINGLE_SMALL_10_POW = { 1715 1.0e0f, 1716 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f, 1717 1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f 1718 }; 1719 1720 private static final double[] BIG_10_POW = { 1721 1e16, 1e32, 1e64, 1e128, 1e256 }; 1722 private static final double[] TINY_10_POW = { 1723 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; 1724 1725 private static final int MAX_SMALL_TEN = SMALL_10_POW.length-1; 1726 private static final int SINGLE_MAX_SMALL_TEN = SINGLE_SMALL_10_POW.length-1; 1727 1728 } 1729 1730 /** 1731 * Returns a <code>BinaryToASCIIConverter</code> for a <code>double</code>. 1732 * The returned object is a <code>ThreadLocal</code> variable of this class. 1733 * 1734 * @param d The double precision value to convert. 1735 * @return The converter. 1736 */ getBinaryToASCIIConverter(double d)1737 public static BinaryToASCIIConverter getBinaryToASCIIConverter(double d) { 1738 return getBinaryToASCIIConverter(d, true); 1739 } 1740 1741 /** 1742 * Returns a <code>BinaryToASCIIConverter</code> for a <code>double</code>. 1743 * The returned object is a <code>ThreadLocal</code> variable of this class. 1744 * 1745 * @param d The double precision value to convert. 1746 * @param isCompatibleFormat 1747 * @return The converter. 1748 */ getBinaryToASCIIConverter(double d, boolean isCompatibleFormat)1749 static BinaryToASCIIConverter getBinaryToASCIIConverter(double d, boolean isCompatibleFormat) { 1750 long dBits = Double.doubleToRawLongBits(d); 1751 boolean isNegative = (dBits&DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign 1752 long fractBits = dBits & DoubleConsts.SIGNIF_BIT_MASK; 1753 int binExp = (int)( (dBits&DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT ); 1754 // Discover obvious special cases of NaN and Infinity. 1755 if ( binExp == (int)(DoubleConsts.EXP_BIT_MASK>>EXP_SHIFT) ) { 1756 if ( fractBits == 0L ){ 1757 return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY; 1758 } else { 1759 return B2AC_NOT_A_NUMBER; 1760 } 1761 } 1762 // Finish unpacking 1763 // Normalize denormalized numbers. 1764 // Insert assumed high-order bit for normalized numbers. 1765 // Subtract exponent bias. 1766 int nSignificantBits; 1767 if ( binExp == 0 ){ 1768 if ( fractBits == 0L ){ 1769 // not a denorm, just a 0! 1770 return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO; 1771 } 1772 int leadingZeros = Long.numberOfLeadingZeros(fractBits); 1773 int shift = leadingZeros-(63-EXP_SHIFT); 1774 fractBits <<= shift; 1775 binExp = 1 - shift; 1776 nSignificantBits = 64-leadingZeros; // recall binExp is - shift count. 1777 } else { 1778 fractBits |= FRACT_HOB; 1779 nSignificantBits = EXP_SHIFT+1; 1780 } 1781 binExp -= DoubleConsts.EXP_BIAS; 1782 BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer(); 1783 buf.setSign(isNegative); 1784 // call the routine that actually does all the hard work. 1785 buf.dtoa(binExp, fractBits, nSignificantBits, isCompatibleFormat); 1786 return buf; 1787 } 1788 getBinaryToASCIIConverter(float f)1789 private static BinaryToASCIIConverter getBinaryToASCIIConverter(float f) { 1790 int fBits = Float.floatToRawIntBits( f ); 1791 boolean isNegative = (fBits&FloatConsts.SIGN_BIT_MASK) != 0; 1792 int fractBits = fBits&FloatConsts.SIGNIF_BIT_MASK; 1793 int binExp = (fBits&FloatConsts.EXP_BIT_MASK) >> SINGLE_EXP_SHIFT; 1794 // Discover obvious special cases of NaN and Infinity. 1795 if ( binExp == (FloatConsts.EXP_BIT_MASK>>SINGLE_EXP_SHIFT) ) { 1796 if ( fractBits == 0L ){ 1797 return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY; 1798 } else { 1799 return B2AC_NOT_A_NUMBER; 1800 } 1801 } 1802 // Finish unpacking 1803 // Normalize denormalized numbers. 1804 // Insert assumed high-order bit for normalized numbers. 1805 // Subtract exponent bias. 1806 int nSignificantBits; 1807 if ( binExp == 0 ){ 1808 if ( fractBits == 0 ){ 1809 // not a denorm, just a 0! 1810 return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO; 1811 } 1812 int leadingZeros = Integer.numberOfLeadingZeros(fractBits); 1813 int shift = leadingZeros-(31-SINGLE_EXP_SHIFT); 1814 fractBits <<= shift; 1815 binExp = 1 - shift; 1816 nSignificantBits = 32 - leadingZeros; // recall binExp is - shift count. 1817 } else { 1818 fractBits |= SINGLE_FRACT_HOB; 1819 nSignificantBits = SINGLE_EXP_SHIFT+1; 1820 } 1821 binExp -= FloatConsts.EXP_BIAS; 1822 BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer(); 1823 buf.setSign(isNegative); 1824 // call the routine that actually does all the hard work. 1825 buf.dtoa(binExp, ((long)fractBits)<<(EXP_SHIFT-SINGLE_EXP_SHIFT), nSignificantBits, true); 1826 return buf; 1827 } 1828 1829 @SuppressWarnings("fallthrough") readJavaFormatString( String in )1830 static ASCIIToBinaryConverter readJavaFormatString( String in ) throws NumberFormatException { 1831 boolean isNegative = false; 1832 boolean signSeen = false; 1833 int decExp; 1834 char c; 1835 1836 parseNumber: 1837 try{ 1838 in = in.trim(); // don't fool around with white space. 1839 // throws NullPointerException if null 1840 int len = in.length(); 1841 if ( len == 0 ) { 1842 throw new NumberFormatException("empty String"); 1843 } 1844 int i = 0; 1845 switch (in.charAt(i)){ 1846 case '-': 1847 isNegative = true; 1848 //FALLTHROUGH 1849 case '+': 1850 i++; 1851 signSeen = true; 1852 } 1853 c = in.charAt(i); 1854 if(c == 'N') { // Check for NaN 1855 if((len-i)==NAN_LENGTH && in.indexOf(NAN_REP,i)==i) { 1856 return A2BC_NOT_A_NUMBER; 1857 } 1858 // something went wrong, throw exception 1859 break parseNumber; 1860 } else if(c == 'I') { // Check for Infinity strings 1861 if((len-i)==INFINITY_LENGTH && in.indexOf(INFINITY_REP,i)==i) { 1862 return isNegative? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY; 1863 } 1864 // something went wrong, throw exception 1865 break parseNumber; 1866 } else if (c == '0') { // check for hexadecimal floating-point number 1867 if (len > i+1 ) { 1868 char ch = in.charAt(i+1); 1869 if (ch == 'x' || ch == 'X' ) { // possible hex string 1870 return parseHexString(in); 1871 } 1872 } 1873 } // look for and process decimal floating-point string 1874 1875 char[] digits = new char[ len ]; 1876 int nDigits= 0; 1877 boolean decSeen = false; 1878 int decPt = 0; 1879 int nLeadZero = 0; 1880 int nTrailZero= 0; 1881 1882 skipLeadingZerosLoop: 1883 while (i < len) { 1884 c = in.charAt(i); 1885 if (c == '0') { 1886 nLeadZero++; 1887 } else if (c == '.') { 1888 if (decSeen) { 1889 // already saw one ., this is the 2nd. 1890 throw new NumberFormatException("multiple points"); 1891 } 1892 decPt = i; 1893 if (signSeen) { 1894 decPt -= 1; 1895 } 1896 decSeen = true; 1897 } else { 1898 break skipLeadingZerosLoop; 1899 } 1900 i++; 1901 } 1902 digitLoop: 1903 while (i < len) { 1904 c = in.charAt(i); 1905 if (c >= '1' && c <= '9') { 1906 digits[nDigits++] = c; 1907 nTrailZero = 0; 1908 } else if (c == '0') { 1909 digits[nDigits++] = c; 1910 nTrailZero++; 1911 } else if (c == '.') { 1912 if (decSeen) { 1913 // already saw one ., this is the 2nd. 1914 throw new NumberFormatException("multiple points"); 1915 } 1916 decPt = i; 1917 if (signSeen) { 1918 decPt -= 1; 1919 } 1920 decSeen = true; 1921 } else { 1922 break digitLoop; 1923 } 1924 i++; 1925 } 1926 nDigits -=nTrailZero; 1927 // 1928 // At this point, we've scanned all the digits and decimal 1929 // point we're going to see. Trim off leading and trailing 1930 // zeros, which will just confuse us later, and adjust 1931 // our initial decimal exponent accordingly. 1932 // To review: 1933 // we have seen i total characters. 1934 // nLeadZero of them were zeros before any other digits. 1935 // nTrailZero of them were zeros after any other digits. 1936 // if ( decSeen ), then a . was seen after decPt characters 1937 // ( including leading zeros which have been discarded ) 1938 // nDigits characters were neither lead nor trailing 1939 // zeros, nor point 1940 // 1941 // 1942 // special hack: if we saw no non-zero digits, then the 1943 // answer is zero! 1944 // Unfortunately, we feel honor-bound to keep parsing! 1945 // 1946 boolean isZero = (nDigits == 0); 1947 if ( isZero && nLeadZero == 0 ){ 1948 // we saw NO DIGITS AT ALL, 1949 // not even a crummy 0! 1950 // this is not allowed. 1951 break parseNumber; // go throw exception 1952 } 1953 // 1954 // Our initial exponent is decPt, adjusted by the number of 1955 // discarded zeros. Or, if there was no decPt, 1956 // then its just nDigits adjusted by discarded trailing zeros. 1957 // 1958 if ( decSeen ){ 1959 decExp = decPt - nLeadZero; 1960 } else { 1961 decExp = nDigits + nTrailZero; 1962 } 1963 1964 // 1965 // Look for 'e' or 'E' and an optionally signed integer. 1966 // 1967 if ( (i < len) && (((c = in.charAt(i) )=='e') || (c == 'E') ) ){ 1968 int expSign = 1; 1969 int expVal = 0; 1970 int reallyBig = Integer.MAX_VALUE / 10; 1971 boolean expOverflow = false; 1972 switch( in.charAt(++i) ){ 1973 case '-': 1974 expSign = -1; 1975 //FALLTHROUGH 1976 case '+': 1977 i++; 1978 } 1979 int expAt = i; 1980 expLoop: 1981 while ( i < len ){ 1982 if ( expVal >= reallyBig ){ 1983 // the next character will cause integer 1984 // overflow. 1985 expOverflow = true; 1986 } 1987 c = in.charAt(i++); 1988 if(c>='0' && c<='9') { 1989 expVal = expVal*10 + ( (int)c - (int)'0' ); 1990 } else { 1991 i--; // back up. 1992 break expLoop; // stop parsing exponent. 1993 } 1994 } 1995 int expLimit = BIG_DECIMAL_EXPONENT + nDigits + nTrailZero; 1996 if (expOverflow || (expVal > expLimit)) { 1997 // There is still a chance that the exponent will be safe to 1998 // use: if it would eventually decrease due to a negative 1999 // decExp, and that number is below the limit. We check for 2000 // that here. 2001 if (!expOverflow && (expSign == 1 && decExp < 0) 2002 && (expVal + decExp) < expLimit) { 2003 // Cannot overflow: adding a positive and negative number. 2004 decExp += expVal; 2005 } else { 2006 // 2007 // The intent here is to end up with 2008 // infinity or zero, as appropriate. 2009 // The reason for yielding such a small decExponent, 2010 // rather than something intuitive such as 2011 // expSign*Integer.MAX_VALUE, is that this value 2012 // is subject to further manipulation in 2013 // doubleValue() and floatValue(), and I don't want 2014 // it to be able to cause overflow there! 2015 // (The only way we can get into trouble here is for 2016 // really outrageous nDigits+nTrailZero, such as 2 2017 // billion.) 2018 // 2019 decExp = expSign * expLimit; 2020 } 2021 } else { 2022 // this should not overflow, since we tested 2023 // for expVal > (MAX+N), where N >= abs(decExp) 2024 decExp = decExp + expSign*expVal; 2025 } 2026 2027 // if we saw something not a digit ( or end of string ) 2028 // after the [Ee][+-], without seeing any digits at all 2029 // this is certainly an error. If we saw some digits, 2030 // but then some trailing garbage, that might be ok. 2031 // so we just fall through in that case. 2032 // HUMBUG 2033 if ( i == expAt ) { 2034 break parseNumber; // certainly bad 2035 } 2036 } 2037 // 2038 // We parsed everything we could. 2039 // If there are leftovers, then this is not good input! 2040 // 2041 if ( i < len && 2042 ((i != len - 1) || 2043 (in.charAt(i) != 'f' && 2044 in.charAt(i) != 'F' && 2045 in.charAt(i) != 'd' && 2046 in.charAt(i) != 'D'))) { 2047 break parseNumber; // go throw exception 2048 } 2049 if(isZero) { 2050 return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; 2051 } 2052 return new ASCIIToBinaryBuffer(isNegative, decExp, digits, nDigits); 2053 } catch ( StringIndexOutOfBoundsException e ){ } 2054 throw new NumberFormatException("For input string: \"" + in + "\""); 2055 } 2056 2057 private static class HexFloatPattern { 2058 /** 2059 * Grammar is compatible with hexadecimal floating-point constants 2060 * described in section 6.4.4.2 of the C99 specification. 2061 */ 2062 private static final Pattern VALUE = Pattern.compile( 2063 //1 234 56 7 8 9 2064 "([-+])?0[xX](((\\p{XDigit}+)\\.?)|((\\p{XDigit}*)\\.(\\p{XDigit}+)))[pP]([-+])?(\\p{Digit}+)[fFdD]?" 2065 ); 2066 } 2067 2068 /** 2069 * Converts string s to a suitable floating decimal; uses the 2070 * double constructor and sets the roundDir variable appropriately 2071 * in case the value is later converted to a float. 2072 * 2073 * @param s The <code>String</code> to parse. 2074 */ parseHexString(String s)2075 static ASCIIToBinaryConverter parseHexString(String s) { 2076 // Verify string is a member of the hexadecimal floating-point 2077 // string language. 2078 Matcher m = HexFloatPattern.VALUE.matcher(s); 2079 boolean validInput = m.matches(); 2080 if (!validInput) { 2081 // Input does not match pattern 2082 throw new NumberFormatException("For input string: \"" + s + "\""); 2083 } else { // validInput 2084 // 2085 // We must isolate the sign, significand, and exponent 2086 // fields. The sign value is straightforward. Since 2087 // floating-point numbers are stored with a normalized 2088 // representation, the significand and exponent are 2089 // interrelated. 2090 // 2091 // After extracting the sign, we normalized the 2092 // significand as a hexadecimal value, calculating an 2093 // exponent adjust for any shifts made during 2094 // normalization. If the significand is zero, the 2095 // exponent doesn't need to be examined since the output 2096 // will be zero. 2097 // 2098 // Next the exponent in the input string is extracted. 2099 // Afterwards, the significand is normalized as a *binary* 2100 // value and the input value's normalized exponent can be 2101 // computed. The significand bits are copied into a 2102 // double significand; if the string has more logical bits 2103 // than can fit in a double, the extra bits affect the 2104 // round and sticky bits which are used to round the final 2105 // value. 2106 // 2107 // Extract significand sign 2108 String group1 = m.group(1); 2109 boolean isNegative = ((group1 != null) && group1.equals("-")); 2110 2111 // Extract Significand magnitude 2112 // 2113 // Based on the form of the significand, calculate how the 2114 // binary exponent needs to be adjusted to create a 2115 // normalized//hexadecimal* floating-point number; that 2116 // is, a number where there is one nonzero hex digit to 2117 // the left of the (hexa)decimal point. Since we are 2118 // adjusting a binary, not hexadecimal exponent, the 2119 // exponent is adjusted by a multiple of 4. 2120 // 2121 // There are a number of significand scenarios to consider; 2122 // letters are used in indicate nonzero digits: 2123 // 2124 // 1. 000xxxx => x.xxx normalized 2125 // increase exponent by (number of x's - 1)*4 2126 // 2127 // 2. 000xxx.yyyy => x.xxyyyy normalized 2128 // increase exponent by (number of x's - 1)*4 2129 // 2130 // 3. .000yyy => y.yy normalized 2131 // decrease exponent by (number of zeros + 1)*4 2132 // 2133 // 4. 000.00000yyy => y.yy normalized 2134 // decrease exponent by (number of zeros to right of point + 1)*4 2135 // 2136 // If the significand is exactly zero, return a properly 2137 // signed zero. 2138 // 2139 2140 String significandString = null; 2141 int signifLength = 0; 2142 int exponentAdjust = 0; 2143 { 2144 int leftDigits = 0; // number of meaningful digits to 2145 // left of "decimal" point 2146 // (leading zeros stripped) 2147 int rightDigits = 0; // number of digits to right of 2148 // "decimal" point; leading zeros 2149 // must always be accounted for 2150 // 2151 // The significand is made up of either 2152 // 2153 // 1. group 4 entirely (integer portion only) 2154 // 2155 // OR 2156 // 2157 // 2. the fractional portion from group 7 plus any 2158 // (optional) integer portions from group 6. 2159 // 2160 String group4; 2161 if ((group4 = m.group(4)) != null) { // Integer-only significand 2162 // Leading zeros never matter on the integer portion 2163 significandString = stripLeadingZeros(group4); 2164 leftDigits = significandString.length(); 2165 } else { 2166 // Group 6 is the optional integer; leading zeros 2167 // never matter on the integer portion 2168 String group6 = stripLeadingZeros(m.group(6)); 2169 leftDigits = group6.length(); 2170 2171 // fraction 2172 String group7 = m.group(7); 2173 rightDigits = group7.length(); 2174 2175 // Turn "integer.fraction" into "integer"+"fraction" 2176 significandString = 2177 ((group6 == null) ? "" : group6) + // is the null 2178 // check necessary? 2179 group7; 2180 } 2181 2182 significandString = stripLeadingZeros(significandString); 2183 signifLength = significandString.length(); 2184 2185 // 2186 // Adjust exponent as described above 2187 // 2188 if (leftDigits >= 1) { // Cases 1 and 2 2189 exponentAdjust = 4 * (leftDigits - 1); 2190 } else { // Cases 3 and 4 2191 exponentAdjust = -4 * (rightDigits - signifLength + 1); 2192 } 2193 2194 // If the significand is zero, the exponent doesn't 2195 // matter; return a properly signed zero. 2196 2197 if (signifLength == 0) { // Only zeros in input 2198 return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; 2199 } 2200 } 2201 2202 // Extract Exponent 2203 // 2204 // Use an int to read in the exponent value; this should 2205 // provide more than sufficient range for non-contrived 2206 // inputs. If reading the exponent in as an int does 2207 // overflow, examine the sign of the exponent and 2208 // significand to determine what to do. 2209 // 2210 String group8 = m.group(8); 2211 boolean positiveExponent = (group8 == null) || group8.equals("+"); 2212 long unsignedRawExponent; 2213 try { 2214 unsignedRawExponent = Integer.parseInt(m.group(9)); 2215 } 2216 catch (NumberFormatException e) { 2217 // At this point, we know the exponent is 2218 // syntactically well-formed as a sequence of 2219 // digits. Therefore, if an NumberFormatException 2220 // is thrown, it must be due to overflowing int's 2221 // range. Also, at this point, we have already 2222 // checked for a zero significand. Thus the signs 2223 // of the exponent and significand determine the 2224 // final result: 2225 // 2226 // significand 2227 // + - 2228 // exponent + +infinity -infinity 2229 // - +0.0 -0.0 2230 return isNegative ? 2231 (positiveExponent ? A2BC_NEGATIVE_INFINITY : A2BC_NEGATIVE_ZERO) 2232 : (positiveExponent ? A2BC_POSITIVE_INFINITY : A2BC_POSITIVE_ZERO); 2233 2234 } 2235 2236 long rawExponent = 2237 (positiveExponent ? 1L : -1L) * // exponent sign 2238 unsignedRawExponent; // exponent magnitude 2239 2240 // Calculate partially adjusted exponent 2241 long exponent = rawExponent + exponentAdjust; 2242 2243 // Starting copying non-zero bits into proper position in 2244 // a long; copy explicit bit too; this will be masked 2245 // later for normal values. 2246 2247 boolean round = false; 2248 boolean sticky = false; 2249 int nextShift = 0; 2250 long significand = 0L; 2251 // First iteration is different, since we only copy 2252 // from the leading significand bit; one more exponent 2253 // adjust will be needed... 2254 2255 // IMPORTANT: make leadingDigit a long to avoid 2256 // surprising shift semantics! 2257 long leadingDigit = getHexDigit(significandString, 0); 2258 2259 // 2260 // Left shift the leading digit (53 - (bit position of 2261 // leading 1 in digit)); this sets the top bit of the 2262 // significand to 1. The nextShift value is adjusted 2263 // to take into account the number of bit positions of 2264 // the leadingDigit actually used. Finally, the 2265 // exponent is adjusted to normalize the significand 2266 // as a binary value, not just a hex value. 2267 // 2268 if (leadingDigit == 1) { 2269 significand |= leadingDigit << 52; 2270 nextShift = 52 - 4; 2271 // exponent += 0 2272 } else if (leadingDigit <= 3) { // [2, 3] 2273 significand |= leadingDigit << 51; 2274 nextShift = 52 - 5; 2275 exponent += 1; 2276 } else if (leadingDigit <= 7) { // [4, 7] 2277 significand |= leadingDigit << 50; 2278 nextShift = 52 - 6; 2279 exponent += 2; 2280 } else if (leadingDigit <= 15) { // [8, f] 2281 significand |= leadingDigit << 49; 2282 nextShift = 52 - 7; 2283 exponent += 3; 2284 } else { 2285 throw new AssertionError("Result from digit conversion too large!"); 2286 } 2287 // The preceding if-else could be replaced by a single 2288 // code block based on the high-order bit set in 2289 // leadingDigit. Given leadingOnePosition, 2290 2291 // significand |= leadingDigit << (SIGNIFICAND_WIDTH - leadingOnePosition); 2292 // nextShift = 52 - (3 + leadingOnePosition); 2293 // exponent += (leadingOnePosition-1); 2294 2295 // 2296 // Now the exponent variable is equal to the normalized 2297 // binary exponent. Code below will make representation 2298 // adjustments if the exponent is incremented after 2299 // rounding (includes overflows to infinity) or if the 2300 // result is subnormal. 2301 // 2302 2303 // Copy digit into significand until the significand can't 2304 // hold another full hex digit or there are no more input 2305 // hex digits. 2306 int i = 0; 2307 for (i = 1; 2308 i < signifLength && nextShift >= 0; 2309 i++) { 2310 long currentDigit = getHexDigit(significandString, i); 2311 significand |= (currentDigit << nextShift); 2312 nextShift -= 4; 2313 } 2314 2315 // After the above loop, the bulk of the string is copied. 2316 // Now, we must copy any partial hex digits into the 2317 // significand AND compute the round bit and start computing 2318 // sticky bit. 2319 2320 if (i < signifLength) { // at least one hex input digit exists 2321 long currentDigit = getHexDigit(significandString, i); 2322 2323 // from nextShift, figure out how many bits need 2324 // to be copied, if any 2325 switch (nextShift) { // must be negative 2326 case -1: 2327 // three bits need to be copied in; can 2328 // set round bit 2329 significand |= ((currentDigit & 0xEL) >> 1); 2330 round = (currentDigit & 0x1L) != 0L; 2331 break; 2332 2333 case -2: 2334 // two bits need to be copied in; can 2335 // set round and start sticky 2336 significand |= ((currentDigit & 0xCL) >> 2); 2337 round = (currentDigit & 0x2L) != 0L; 2338 sticky = (currentDigit & 0x1L) != 0; 2339 break; 2340 2341 case -3: 2342 // one bit needs to be copied in 2343 significand |= ((currentDigit & 0x8L) >> 3); 2344 // Now set round and start sticky, if possible 2345 round = (currentDigit & 0x4L) != 0L; 2346 sticky = (currentDigit & 0x3L) != 0; 2347 break; 2348 2349 case -4: 2350 // all bits copied into significand; set 2351 // round and start sticky 2352 round = ((currentDigit & 0x8L) != 0); // is top bit set? 2353 // nonzeros in three low order bits? 2354 sticky = (currentDigit & 0x7L) != 0; 2355 break; 2356 2357 default: 2358 throw new AssertionError("Unexpected shift distance remainder."); 2359 // break; 2360 } 2361 2362 // Round is set; sticky might be set. 2363 2364 // For the sticky bit, it suffices to check the 2365 // current digit and test for any nonzero digits in 2366 // the remaining unprocessed input. 2367 i++; 2368 while (i < signifLength && !sticky) { 2369 currentDigit = getHexDigit(significandString, i); 2370 sticky = sticky || (currentDigit != 0); 2371 i++; 2372 } 2373 2374 } 2375 // else all of string was seen, round and sticky are 2376 // correct as false. 2377 2378 // Float calculations 2379 int floatBits = isNegative ? FloatConsts.SIGN_BIT_MASK : 0; 2380 if (exponent >= Float.MIN_EXPONENT) { 2381 if (exponent > Float.MAX_EXPONENT) { 2382 // Float.POSITIVE_INFINITY 2383 floatBits |= FloatConsts.EXP_BIT_MASK; 2384 } else { 2385 int threshShift = DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH - 1; 2386 boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky; 2387 int iValue = (int) (significand >>> threshShift); 2388 if ((iValue & 3) != 1 || floatSticky) { 2389 iValue++; 2390 } 2391 floatBits |= (((((int) exponent) + (FloatConsts.EXP_BIAS - 1))) << SINGLE_EXP_SHIFT) + (iValue >> 1); 2392 } 2393 } else { 2394 if (exponent < FloatConsts.MIN_SUB_EXPONENT - 1) { 2395 // 0 2396 } else { 2397 // exponent == -127 ==> threshShift = 53 - 2 + (-149) - (-127) = 53 - 24 2398 int threshShift = (int) ((DoubleConsts.SIGNIFICAND_WIDTH - 2 + FloatConsts.MIN_SUB_EXPONENT) - exponent); 2399 assert threshShift >= DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH; 2400 assert threshShift < DoubleConsts.SIGNIFICAND_WIDTH; 2401 boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky; 2402 int iValue = (int) (significand >>> threshShift); 2403 if ((iValue & 3) != 1 || floatSticky) { 2404 iValue++; 2405 } 2406 floatBits |= iValue >> 1; 2407 } 2408 } 2409 float fValue = Float.intBitsToFloat(floatBits); 2410 2411 // Check for overflow and update exponent accordingly. 2412 if (exponent > Double.MAX_EXPONENT) { // Infinite result 2413 // overflow to properly signed infinity 2414 return isNegative ? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY; 2415 } else { // Finite return value 2416 if (exponent <= Double.MAX_EXPONENT && // (Usually) normal result 2417 exponent >= Double.MIN_EXPONENT) { 2418 2419 // The result returned in this block cannot be a 2420 // zero or subnormal; however after the 2421 // significand is adjusted from rounding, we could 2422 // still overflow in infinity. 2423 2424 // AND exponent bits into significand; if the 2425 // significand is incremented and overflows from 2426 // rounding, this combination will update the 2427 // exponent correctly, even in the case of 2428 // Double.MAX_VALUE overflowing to infinity. 2429 2430 significand = ((( exponent + 2431 (long) DoubleConsts.EXP_BIAS) << 2432 (DoubleConsts.SIGNIFICAND_WIDTH - 1)) 2433 & DoubleConsts.EXP_BIT_MASK) | 2434 (DoubleConsts.SIGNIF_BIT_MASK & significand); 2435 2436 } else { // Subnormal or zero 2437 // (exponent < Double.MIN_EXPONENT) 2438 2439 if (exponent < (DoubleConsts.MIN_SUB_EXPONENT - 1)) { 2440 // No way to round back to nonzero value 2441 // regardless of significand if the exponent is 2442 // less than -1075. 2443 return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; 2444 } else { // -1075 <= exponent <= MIN_EXPONENT -1 = -1023 2445 // 2446 // Find bit position to round to; recompute 2447 // round and sticky bits, and shift 2448 // significand right appropriately. 2449 // 2450 2451 sticky = sticky || round; 2452 round = false; 2453 2454 // Number of bits of significand to preserve is 2455 // exponent - abs_min_exp +1 2456 // check: 2457 // -1075 +1074 + 1 = 0 2458 // -1023 +1074 + 1 = 52 2459 2460 int bitsDiscarded = 53 - 2461 ((int) exponent - DoubleConsts.MIN_SUB_EXPONENT + 1); 2462 assert bitsDiscarded >= 1 && bitsDiscarded <= 53; 2463 2464 // What to do here: 2465 // First, isolate the new round bit 2466 round = (significand & (1L << (bitsDiscarded - 1))) != 0L; 2467 if (bitsDiscarded > 1) { 2468 // create mask to update sticky bits; low 2469 // order bitsDiscarded bits should be 1 2470 long mask = ~((~0L) << (bitsDiscarded - 1)); 2471 sticky = sticky || ((significand & mask) != 0L); 2472 } 2473 2474 // Now, discard the bits 2475 significand = significand >> bitsDiscarded; 2476 2477 significand = ((((long) (Double.MIN_EXPONENT - 1) + // subnorm exp. 2478 (long) DoubleConsts.EXP_BIAS) << 2479 (DoubleConsts.SIGNIFICAND_WIDTH - 1)) 2480 & DoubleConsts.EXP_BIT_MASK) | 2481 (DoubleConsts.SIGNIF_BIT_MASK & significand); 2482 } 2483 } 2484 2485 // The significand variable now contains the currently 2486 // appropriate exponent bits too. 2487 2488 // 2489 // Determine if significand should be incremented; 2490 // making this determination depends on the least 2491 // significant bit and the round and sticky bits. 2492 // 2493 // Round to nearest even rounding table, adapted from 2494 // table 4.7 in "Computer Arithmetic" by IsraelKoren. 2495 // The digit to the left of the "decimal" point is the 2496 // least significant bit, the digits to the right of 2497 // the point are the round and sticky bits 2498 // 2499 // Number Round(x) 2500 // x0.00 x0. 2501 // x0.01 x0. 2502 // x0.10 x0. 2503 // x0.11 x1. = x0. +1 2504 // x1.00 x1. 2505 // x1.01 x1. 2506 // x1.10 x1. + 1 2507 // x1.11 x1. + 1 2508 // 2509 boolean leastZero = ((significand & 1L) == 0L); 2510 if ((leastZero && round && sticky) || 2511 ((!leastZero) && round)) { 2512 significand++; 2513 } 2514 2515 double value = isNegative ? 2516 Double.longBitsToDouble(significand | DoubleConsts.SIGN_BIT_MASK) : 2517 Double.longBitsToDouble(significand ); 2518 2519 return new PreparedASCIIToBinaryBuffer(value, fValue); 2520 } 2521 } 2522 } 2523 2524 /** 2525 * Returns <code>s</code> with any leading zeros removed. 2526 */ stripLeadingZeros(String s)2527 static String stripLeadingZeros(String s) { 2528 // return s.replaceFirst("^0+", ""); 2529 if(!s.isEmpty() && s.charAt(0)=='0') { 2530 for(int i=1; i<s.length(); i++) { 2531 if(s.charAt(i)!='0') { 2532 return s.substring(i); 2533 } 2534 } 2535 return ""; 2536 } 2537 return s; 2538 } 2539 2540 /** 2541 * Extracts a hexadecimal digit from position <code>position</code> 2542 * of string <code>s</code>. 2543 */ getHexDigit(String s, int position)2544 static int getHexDigit(String s, int position) { 2545 int value = Character.digit(s.charAt(position), 16); 2546 if (value <= -1 || value >= 16) { 2547 throw new AssertionError("Unexpected failure of digit conversion of " + 2548 s.charAt(position)); 2549 } 2550 return value; 2551 } 2552 } 2553