Home
last modified time | relevance | path

Searched refs:black_levels (Results 1 – 4 of 4) sorted by relevance

/cts/apps/CameraITS/tests/scene1_2/
Dtest_raw_exposure.py104 def assert_increasing_means(means, exps, sens, black_levels, white_level): argument
116 lower_thresh = np.array(black_levels) * (1 + _BLK_LVL_RTOL)
124 if max(mean) > min(black_levels) * _IMG_INCREASING_ATOL:
194 black_levels = image_processing_utils.get_black_levels(props)
215 means.append(black_levels)
227 assert_increasing_means(means, e_test_ms, s, black_levels, white_level)
Dtest_raw_sensitivity.py88 black_levels = image_processing_utils.get_black_levels(props)
117 if math.isclose(mean, max(black_levels), rel_tol=_BLACK_LEVEL_RTOL):
/cts/apps/CameraITS/utils/
Dimage_processing_utils.py260 black_levels = get_black_levels(props, cap_raw)
274 r[:, :, 0], black_levels[0], white_level, lsc_map_fs_r
277 gr[:, :, 0], black_levels[1], white_level, lsc_map_fs_gr
280 gb[:, :, 0], black_levels[2], white_level, lsc_map_fs_gb
283 b[:, :, 0], black_levels[3], white_level, lsc_map_fs_b
806 black_levels = get_black_levels(props, cap_res, is_quad_bayer=False)
807 logging.debug('dynamic black levels: %s', black_levels)
815 scale = white_level / (white_level - max(black_levels))
818 black_levels = numpy.array(
819 [b / white_level for b in [black_levels[i] for i in [0, 1, 3]]])
[all …]
Dnoise_model_utils.py241 black_levels: List[float],
275 black_level = black_levels[pidx]
541 black_levels = image_processing_utils.get_black_levels(
550 black_levels,