1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License 15 */ 16 17 package com.android.internal.graphics; 18 19 import android.annotation.ColorInt; 20 import android.annotation.FloatRange; 21 import android.annotation.IntRange; 22 import android.annotation.NonNull; 23 import android.graphics.Color; 24 25 import com.android.internal.graphics.cam.Cam; 26 27 /** 28 * Copied from: frameworks/support/core-utils/java/android/support/v4/graphics/ColorUtils.java 29 * 30 * A set of color-related utility methods, building upon those available in {@code Color}. 31 */ 32 public final class ColorUtils { 33 34 private static final double XYZ_WHITE_REFERENCE_X = 95.047; 35 private static final double XYZ_WHITE_REFERENCE_Y = 100; 36 private static final double XYZ_WHITE_REFERENCE_Z = 108.883; 37 private static final double XYZ_EPSILON = 0.008856; 38 private static final double XYZ_KAPPA = 903.3; 39 40 private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10; 41 private static final int MIN_ALPHA_SEARCH_PRECISION = 1; 42 43 private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>(); 44 ColorUtils()45 private ColorUtils() {} 46 47 /** 48 * Composite two potentially translucent colors over each other and returns the result. 49 */ compositeColors(@olorInt int foreground, @ColorInt int background)50 public static int compositeColors(@ColorInt int foreground, @ColorInt int background) { 51 int bgAlpha = Color.alpha(background); 52 int fgAlpha = Color.alpha(foreground); 53 int a = compositeAlpha(fgAlpha, bgAlpha); 54 55 int r = compositeComponent(Color.red(foreground), fgAlpha, 56 Color.red(background), bgAlpha, a); 57 int g = compositeComponent(Color.green(foreground), fgAlpha, 58 Color.green(background), bgAlpha, a); 59 int b = compositeComponent(Color.blue(foreground), fgAlpha, 60 Color.blue(background), bgAlpha, a); 61 62 return Color.argb(a, r, g, b); 63 } 64 65 /** 66 * Returns the composite alpha of the given foreground and background alpha. 67 */ compositeAlpha(int foregroundAlpha, int backgroundAlpha)68 public static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) { 69 return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF); 70 } 71 compositeComponent(int fgC, int fgA, int bgC, int bgA, int a)72 private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) { 73 if (a == 0) return 0; 74 return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF); 75 } 76 77 /** 78 * Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}. 79 * <p>Defined as the Y component in the XYZ representation of {@code color}.</p> 80 */ 81 @FloatRange(from = 0.0, to = 1.0) calculateLuminance(@olorInt int color)82 public static double calculateLuminance(@ColorInt int color) { 83 final double[] result = getTempDouble3Array(); 84 colorToXYZ(color, result); 85 // Luminance is the Y component 86 return result[1] / 100; 87 } 88 89 /** 90 * Returns the contrast ratio between {@code foreground} and {@code background}. 91 * {@code background} must be opaque. 92 * <p> 93 * Formula defined 94 * <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>. 95 */ calculateContrast(@olorInt int foreground, @ColorInt int background)96 public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) { 97 if (Color.alpha(background) != 255) { 98 throw new IllegalArgumentException("background can not be translucent: #" 99 + Integer.toHexString(background)); 100 } 101 if (Color.alpha(foreground) < 255) { 102 // If the foreground is translucent, composite the foreground over the background 103 foreground = compositeColors(foreground, background); 104 } 105 106 final double luminance1 = calculateLuminance(foreground) + 0.05; 107 final double luminance2 = calculateLuminance(background) + 0.05; 108 109 // Now return the lighter luminance divided by the darker luminance 110 return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2); 111 } 112 113 /** 114 * Calculates the minimum alpha value which can be applied to {@code background} so that would 115 * have a contrast value of at least {@code minContrastRatio} when alpha blended to 116 * {@code foreground}. 117 * 118 * @param foreground the foreground color 119 * @param background the background color, opacity will be ignored 120 * @param minContrastRatio the minimum contrast ratio 121 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 122 */ calculateMinimumBackgroundAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)123 public static int calculateMinimumBackgroundAlpha(@ColorInt int foreground, 124 @ColorInt int background, float minContrastRatio) { 125 // Ignore initial alpha that the background might have since this is 126 // what we're trying to calculate. 127 background = setAlphaComponent(background, 255); 128 final int leastContrastyColor = setAlphaComponent(foreground, 255); 129 return binaryAlphaSearch(foreground, background, minContrastRatio, (fg, bg, alpha) -> { 130 int testBackground = blendARGB(leastContrastyColor, bg, alpha/255f); 131 // Float rounding might set this alpha to something other that 255, 132 // raising an exception in calculateContrast. 133 testBackground = setAlphaComponent(testBackground, 255); 134 return calculateContrast(fg, testBackground); 135 }); 136 } 137 138 /** 139 * Calculates the minimum alpha value which can be applied to {@code foreground} so that would 140 * have a contrast value of at least {@code minContrastRatio} when compared to 141 * {@code background}. 142 * 143 * @param foreground the foreground color 144 * @param background the opaque background color 145 * @param minContrastRatio the minimum contrast ratio 146 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 147 */ calculateMinimumAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)148 public static int calculateMinimumAlpha(@ColorInt int foreground, @ColorInt int background, 149 float minContrastRatio) { 150 if (Color.alpha(background) != 255) { 151 throw new IllegalArgumentException("background can not be translucent: #" 152 + Integer.toHexString(background)); 153 } 154 155 ContrastCalculator contrastCalculator = (fg, bg, alpha) -> { 156 int testForeground = setAlphaComponent(fg, alpha); 157 return calculateContrast(testForeground, bg); 158 }; 159 160 // First lets check that a fully opaque foreground has sufficient contrast 161 double testRatio = contrastCalculator.calculateContrast(foreground, background, 255); 162 if (testRatio < minContrastRatio) { 163 // Fully opaque foreground does not have sufficient contrast, return error 164 return -1; 165 } 166 foreground = setAlphaComponent(foreground, 255); 167 return binaryAlphaSearch(foreground, background, minContrastRatio, contrastCalculator); 168 } 169 170 /** 171 * Calculates the alpha value using binary search based on a given contrast evaluation function 172 * and target contrast that needs to be satisfied. 173 * 174 * @param foreground the foreground color 175 * @param background the opaque background color 176 * @param minContrastRatio the minimum contrast ratio 177 * @param calculator function that calculates contrast 178 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 179 */ binaryAlphaSearch(@olorInt int foreground, @ColorInt int background, float minContrastRatio, ContrastCalculator calculator)180 private static int binaryAlphaSearch(@ColorInt int foreground, @ColorInt int background, 181 float minContrastRatio, ContrastCalculator calculator) { 182 // Binary search to find a value with the minimum value which provides sufficient contrast 183 int numIterations = 0; 184 int minAlpha = 0; 185 int maxAlpha = 255; 186 187 while (numIterations <= MIN_ALPHA_SEARCH_MAX_ITERATIONS && 188 (maxAlpha - minAlpha) > MIN_ALPHA_SEARCH_PRECISION) { 189 final int testAlpha = (minAlpha + maxAlpha) / 2; 190 191 final double testRatio = calculator.calculateContrast(foreground, background, 192 testAlpha); 193 if (testRatio < minContrastRatio) { 194 minAlpha = testAlpha; 195 } else { 196 maxAlpha = testAlpha; 197 } 198 199 numIterations++; 200 } 201 202 // Conservatively return the max of the range of possible alphas, which is known to pass. 203 return maxAlpha; 204 } 205 206 /** 207 * Convert RGB components to HSL (hue-saturation-lightness). 208 * <ul> 209 * <li>outHsl[0] is Hue [0 .. 360)</li> 210 * <li>outHsl[1] is Saturation [0...1]</li> 211 * <li>outHsl[2] is Lightness [0...1]</li> 212 * </ul> 213 * 214 * @param r red component value [0..255] 215 * @param g green component value [0..255] 216 * @param b blue component value [0..255] 217 * @param outHsl 3-element array which holds the resulting HSL components 218 */ RGBToHSL(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull float[] outHsl)219 public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r, 220 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 221 @NonNull float[] outHsl) { 222 final float rf = r / 255f; 223 final float gf = g / 255f; 224 final float bf = b / 255f; 225 226 final float max = Math.max(rf, Math.max(gf, bf)); 227 final float min = Math.min(rf, Math.min(gf, bf)); 228 final float deltaMaxMin = max - min; 229 230 float h, s; 231 float l = (max + min) / 2f; 232 233 if (max == min) { 234 // Monochromatic 235 h = s = 0f; 236 } else { 237 if (max == rf) { 238 h = ((gf - bf) / deltaMaxMin) % 6f; 239 } else if (max == gf) { 240 h = ((bf - rf) / deltaMaxMin) + 2f; 241 } else { 242 h = ((rf - gf) / deltaMaxMin) + 4f; 243 } 244 245 s = deltaMaxMin / (1f - Math.abs(2f * l - 1f)); 246 } 247 248 h = (h * 60f) % 360f; 249 if (h < 0) { 250 h += 360f; 251 } 252 253 outHsl[0] = constrain(h, 0f, 360f); 254 outHsl[1] = constrain(s, 0f, 1f); 255 outHsl[2] = constrain(l, 0f, 1f); 256 } 257 258 /** 259 * Convert the ARGB color to its HSL (hue-saturation-lightness) components. 260 * <ul> 261 * <li>outHsl[0] is Hue [0 .. 360)</li> 262 * <li>outHsl[1] is Saturation [0...1]</li> 263 * <li>outHsl[2] is Lightness [0...1]</li> 264 * </ul> 265 * 266 * @param color the ARGB color to convert. The alpha component is ignored 267 * @param outHsl 3-element array which holds the resulting HSL components 268 */ colorToHSL(@olorInt int color, @NonNull float[] outHsl)269 public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) { 270 RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl); 271 } 272 273 /** 274 * Convert HSL (hue-saturation-lightness) components to a RGB color. 275 * <ul> 276 * <li>hsl[0] is Hue [0 .. 360)</li> 277 * <li>hsl[1] is Saturation [0...1]</li> 278 * <li>hsl[2] is Lightness [0...1]</li> 279 * </ul> 280 * If hsv values are out of range, they are pinned. 281 * 282 * @param hsl 3-element array which holds the input HSL components 283 * @return the resulting RGB color 284 */ 285 @ColorInt HSLToColor(@onNull float[] hsl)286 public static int HSLToColor(@NonNull float[] hsl) { 287 final float h = hsl[0]; 288 final float s = hsl[1]; 289 final float l = hsl[2]; 290 291 final float c = (1f - Math.abs(2 * l - 1f)) * s; 292 final float m = l - 0.5f * c; 293 final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f)); 294 295 final int hueSegment = (int) h / 60; 296 297 int r = 0, g = 0, b = 0; 298 299 switch (hueSegment) { 300 case 0: 301 r = Math.round(255 * (c + m)); 302 g = Math.round(255 * (x + m)); 303 b = Math.round(255 * m); 304 break; 305 case 1: 306 r = Math.round(255 * (x + m)); 307 g = Math.round(255 * (c + m)); 308 b = Math.round(255 * m); 309 break; 310 case 2: 311 r = Math.round(255 * m); 312 g = Math.round(255 * (c + m)); 313 b = Math.round(255 * (x + m)); 314 break; 315 case 3: 316 r = Math.round(255 * m); 317 g = Math.round(255 * (x + m)); 318 b = Math.round(255 * (c + m)); 319 break; 320 case 4: 321 r = Math.round(255 * (x + m)); 322 g = Math.round(255 * m); 323 b = Math.round(255 * (c + m)); 324 break; 325 case 5: 326 case 6: 327 r = Math.round(255 * (c + m)); 328 g = Math.round(255 * m); 329 b = Math.round(255 * (x + m)); 330 break; 331 } 332 333 r = constrain(r, 0, 255); 334 g = constrain(g, 0, 255); 335 b = constrain(b, 0, 255); 336 337 return Color.rgb(r, g, b); 338 } 339 340 /** 341 * Convert the ARGB color to a color appearance model. 342 * 343 * The color appearance model is based on CAM16 hue and chroma, using L*a*b*'s L* as the 344 * third dimension. 345 * 346 * @param color the ARGB color to convert. The alpha component is ignored. 347 */ colorToCAM(@olorInt int color)348 public static Cam colorToCAM(@ColorInt int color) { 349 return Cam.fromInt(color); 350 } 351 352 /** 353 * Convert a color appearance model representation to an ARGB color. 354 * 355 * Note: the returned color may have a lower chroma than requested. Whether a chroma is 356 * available depends on luminance. For example, there's no such thing as a high chroma light 357 * red, due to the limitations of our eyes and/or physics. If the requested chroma is 358 * unavailable, the highest possible chroma at the requested luminance is returned. 359 * 360 * @param hue hue, in degrees, in CAM coordinates 361 * @param chroma chroma in CAM coordinates. 362 * @param lstar perceptual luminance, L* in L*a*b* 363 */ 364 @ColorInt CAMToColor(float hue, float chroma, float lstar)365 public static int CAMToColor(float hue, float chroma, float lstar) { 366 return Cam.getInt(hue, chroma, lstar); 367 } 368 369 /** 370 * Set the alpha component of {@code color} to be {@code alpha}. 371 */ 372 @ColorInt setAlphaComponent(@olorInt int color, @IntRange(from = 0x0, to = 0xFF) int alpha)373 public static int setAlphaComponent(@ColorInt int color, 374 @IntRange(from = 0x0, to = 0xFF) int alpha) { 375 if (alpha < 0 || alpha > 255) { 376 throw new IllegalArgumentException("alpha must be between 0 and 255."); 377 } 378 return (color & 0x00ffffff) | (alpha << 24); 379 } 380 381 /** 382 * Convert the ARGB color to its CIE Lab representative components. 383 * 384 * @param color the ARGB color to convert. The alpha component is ignored 385 * @param outLab 3-element array which holds the resulting LAB components 386 */ colorToLAB(@olorInt int color, @NonNull double[] outLab)387 public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) { 388 RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab); 389 } 390 391 /** 392 * Convert RGB components to its CIE Lab representative components. 393 * 394 * <ul> 395 * <li>outLab[0] is L [0 ...100)</li> 396 * <li>outLab[1] is a [-128...127)</li> 397 * <li>outLab[2] is b [-128...127)</li> 398 * </ul> 399 * 400 * @param r red component value [0..255] 401 * @param g green component value [0..255] 402 * @param b blue component value [0..255] 403 * @param outLab 3-element array which holds the resulting LAB components 404 */ RGBToLAB(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outLab)405 public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r, 406 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 407 @NonNull double[] outLab) { 408 // First we convert RGB to XYZ 409 RGBToXYZ(r, g, b, outLab); 410 // outLab now contains XYZ 411 XYZToLAB(outLab[0], outLab[1], outLab[2], outLab); 412 // outLab now contains LAB representation 413 } 414 415 /** 416 * Convert the ARGB color to its CIE XYZ representative components. 417 * 418 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 419 * 2° Standard Observer (1931).</p> 420 * 421 * <ul> 422 * <li>outXyz[0] is X [0 ...95.047)</li> 423 * <li>outXyz[1] is Y [0...100)</li> 424 * <li>outXyz[2] is Z [0...108.883)</li> 425 * </ul> 426 * 427 * @param color the ARGB color to convert. The alpha component is ignored 428 * @param outXyz 3-element array which holds the resulting LAB components 429 */ colorToXYZ(@olorInt int color, @NonNull double[] outXyz)430 public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) { 431 RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz); 432 } 433 434 /** 435 * Convert RGB components to its CIE XYZ representative components. 436 * 437 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 438 * 2° Standard Observer (1931).</p> 439 * 440 * <ul> 441 * <li>outXyz[0] is X [0 ...95.047)</li> 442 * <li>outXyz[1] is Y [0...100)</li> 443 * <li>outXyz[2] is Z [0...108.883)</li> 444 * </ul> 445 * 446 * @param r red component value [0..255] 447 * @param g green component value [0..255] 448 * @param b blue component value [0..255] 449 * @param outXyz 3-element array which holds the resulting XYZ components 450 */ RGBToXYZ(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outXyz)451 public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r, 452 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 453 @NonNull double[] outXyz) { 454 if (outXyz.length != 3) { 455 throw new IllegalArgumentException("outXyz must have a length of 3."); 456 } 457 458 double sr = r / 255.0; 459 sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4); 460 double sg = g / 255.0; 461 sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4); 462 double sb = b / 255.0; 463 sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4); 464 465 outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805); 466 outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722); 467 outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505); 468 } 469 470 /** 471 * Converts a color from CIE XYZ to CIE Lab representation. 472 * 473 * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE 474 * 2° Standard Observer (1931).</p> 475 * 476 * <ul> 477 * <li>outLab[0] is L [0 ...100)</li> 478 * <li>outLab[1] is a [-128...127)</li> 479 * <li>outLab[2] is b [-128...127)</li> 480 * </ul> 481 * 482 * @param x X component value [0...95.047) 483 * @param y Y component value [0...100) 484 * @param z Z component value [0...108.883) 485 * @param outLab 3-element array which holds the resulting Lab components 486 */ 487 public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x, 488 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, 489 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z, 490 @NonNull double[] outLab) { 491 if (outLab.length != 3) { 492 throw new IllegalArgumentException("outLab must have a length of 3."); 493 } 494 x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X); 495 y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y); 496 z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z); 497 outLab[0] = Math.max(0, 116 * y - 16); 498 outLab[1] = 500 * (x - y); 499 outLab[2] = 200 * (y - z); 500 } 501 502 /** 503 * Converts a color from CIE Lab to CIE XYZ representation. 504 * 505 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 506 * 2° Standard Observer (1931).</p> 507 * 508 * <ul> 509 * <li>outXyz[0] is X [0 ...95.047)</li> 510 * <li>outXyz[1] is Y [0...100)</li> 511 * <li>outXyz[2] is Z [0...108.883)</li> 512 * </ul> 513 * 514 * @param l L component value [0...100) 515 * @param a A component value [-128...127) 516 * @param b B component value [-128...127) 517 * @param outXyz 3-element array which holds the resulting XYZ components 518 */ 519 public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l, 520 @FloatRange(from = -128, to = 127) final double a, 521 @FloatRange(from = -128, to = 127) final double b, 522 @NonNull double[] outXyz) { 523 final double fy = (l + 16) / 116; 524 final double fx = a / 500 + fy; 525 final double fz = fy - b / 200; 526 527 double tmp = Math.pow(fx, 3); 528 final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA; 529 final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA; 530 531 tmp = Math.pow(fz, 3); 532 final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA; 533 534 outXyz[0] = xr * XYZ_WHITE_REFERENCE_X; 535 outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y; 536 outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z; 537 } 538 539 /** 540 * Converts a color from CIE XYZ to its RGB representation. 541 * 542 * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE 543 * 2° Standard Observer (1931).</p> 544 * 545 * @param x X component value [0...95.047) 546 * @param y Y component value [0...100) 547 * @param z Z component value [0...108.883) 548 * @return int containing the RGB representation 549 */ 550 @ColorInt XYZToColor(@loatRangefrom = 0f, to = XYZ_WHITE_REFERENCE_X) double x, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z)551 public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x, 552 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, 553 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) { 554 double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100; 555 double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100; 556 double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100; 557 558 r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r; 559 g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g; 560 b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b; 561 562 return Color.rgb( 563 constrain((int) Math.round(r * 255), 0, 255), 564 constrain((int) Math.round(g * 255), 0, 255), 565 constrain((int) Math.round(b * 255), 0, 255)); 566 } 567 568 /** 569 * Converts a color from CIE Lab to its RGB representation. 570 * 571 * @param l L component value [0...100] 572 * @param a A component value [-128...127] 573 * @param b B component value [-128...127] 574 * @return int containing the RGB representation 575 */ 576 @ColorInt LABToColor(@loatRangefrom = 0f, to = 100) final double l, @FloatRange(from = -128, to = 127) final double a, @FloatRange(from = -128, to = 127) final double b)577 public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l, 578 @FloatRange(from = -128, to = 127) final double a, 579 @FloatRange(from = -128, to = 127) final double b) { 580 final double[] result = getTempDouble3Array(); 581 LABToXYZ(l, a, b, result); 582 return XYZToColor(result[0], result[1], result[2]); 583 } 584 585 /** 586 * Returns the euclidean distance between two LAB colors. 587 */ distanceEuclidean(@onNull double[] labX, @NonNull double[] labY)588 public static double distanceEuclidean(@NonNull double[] labX, @NonNull double[] labY) { 589 return Math.sqrt(Math.pow(labX[0] - labY[0], 2) 590 + Math.pow(labX[1] - labY[1], 2) 591 + Math.pow(labX[2] - labY[2], 2)); 592 } 593 constrain(float amount, float low, float high)594 private static float constrain(float amount, float low, float high) { 595 return amount < low ? low : (amount > high ? high : amount); 596 } 597 constrain(int amount, int low, int high)598 private static int constrain(int amount, int low, int high) { 599 return amount < low ? low : (amount > high ? high : amount); 600 } 601 pivotXyzComponent(double component)602 private static double pivotXyzComponent(double component) { 603 return component > XYZ_EPSILON 604 ? Math.pow(component, 1 / 3.0) 605 : (XYZ_KAPPA * component + 16) / 116; 606 } 607 608 /** 609 * Blend between two ARGB colors using the given ratio. 610 * 611 * <p>A blend ratio of 0.0 will result in {@code color1}, 0.5 will give an even blend, 612 * 1.0 will result in {@code color2}.</p> 613 * 614 * @param color1 the first ARGB color 615 * @param color2 the second ARGB color 616 * @param ratio the blend ratio of {@code color1} to {@code color2} 617 */ 618 @ColorInt blendARGB(@olorInt int color1, @ColorInt int color2, @FloatRange(from = 0.0, to = 1.0) float ratio)619 public static int blendARGB(@ColorInt int color1, @ColorInt int color2, 620 @FloatRange(from = 0.0, to = 1.0) float ratio) { 621 final float inverseRatio = 1 - ratio; 622 float a = Color.alpha(color1) * inverseRatio + Color.alpha(color2) * ratio; 623 float r = Color.red(color1) * inverseRatio + Color.red(color2) * ratio; 624 float g = Color.green(color1) * inverseRatio + Color.green(color2) * ratio; 625 float b = Color.blue(color1) * inverseRatio + Color.blue(color2) * ratio; 626 return Color.argb((int) a, (int) r, (int) g, (int) b); 627 } 628 629 /** 630 * Blend between {@code hsl1} and {@code hsl2} using the given ratio. This will interpolate 631 * the hue using the shortest angle. 632 * 633 * <p>A blend ratio of 0.0 will result in {@code hsl1}, 0.5 will give an even blend, 634 * 1.0 will result in {@code hsl2}.</p> 635 * 636 * @param hsl1 3-element array which holds the first HSL color 637 * @param hsl2 3-element array which holds the second HSL color 638 * @param ratio the blend ratio of {@code hsl1} to {@code hsl2} 639 * @param outResult 3-element array which holds the resulting HSL components 640 */ blendHSL(@onNull float[] hsl1, @NonNull float[] hsl2, @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult)641 public static void blendHSL(@NonNull float[] hsl1, @NonNull float[] hsl2, 642 @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult) { 643 if (outResult.length != 3) { 644 throw new IllegalArgumentException("result must have a length of 3."); 645 } 646 final float inverseRatio = 1 - ratio; 647 // Since hue is circular we will need to interpolate carefully 648 outResult[0] = circularInterpolate(hsl1[0], hsl2[0], ratio); 649 outResult[1] = hsl1[1] * inverseRatio + hsl2[1] * ratio; 650 outResult[2] = hsl1[2] * inverseRatio + hsl2[2] * ratio; 651 } 652 653 /** 654 * Blend between two CIE-LAB colors using the given ratio. 655 * 656 * <p>A blend ratio of 0.0 will result in {@code lab1}, 0.5 will give an even blend, 657 * 1.0 will result in {@code lab2}.</p> 658 * 659 * @param lab1 3-element array which holds the first LAB color 660 * @param lab2 3-element array which holds the second LAB color 661 * @param ratio the blend ratio of {@code lab1} to {@code lab2} 662 * @param outResult 3-element array which holds the resulting LAB components 663 */ blendLAB(@onNull double[] lab1, @NonNull double[] lab2, @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult)664 public static void blendLAB(@NonNull double[] lab1, @NonNull double[] lab2, 665 @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult) { 666 if (outResult.length != 3) { 667 throw new IllegalArgumentException("outResult must have a length of 3."); 668 } 669 final double inverseRatio = 1 - ratio; 670 outResult[0] = lab1[0] * inverseRatio + lab2[0] * ratio; 671 outResult[1] = lab1[1] * inverseRatio + lab2[1] * ratio; 672 outResult[2] = lab1[2] * inverseRatio + lab2[2] * ratio; 673 } 674 circularInterpolate(float a, float b, float f)675 static float circularInterpolate(float a, float b, float f) { 676 if (Math.abs(b - a) > 180) { 677 if (b > a) { 678 a += 360; 679 } else { 680 b += 360; 681 } 682 } 683 return (a + ((b - a) * f)) % 360; 684 } 685 getTempDouble3Array()686 private static double[] getTempDouble3Array() { 687 double[] result = TEMP_ARRAY.get(); 688 if (result == null) { 689 result = new double[3]; 690 TEMP_ARRAY.set(result); 691 } 692 return result; 693 } 694 695 private interface ContrastCalculator { calculateContrast(int foreground, int background, int alpha)696 double calculateContrast(int foreground, int background, int alpha); 697 } 698 699 }