1 /* 2 * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import sun.invoke.util.VerifyAccess; 29 import sun.invoke.util.Wrapper; 30 import sun.reflect.Reflection; 31 32 import java.lang.reflect.*; 33 import java.nio.ByteOrder; 34 import java.util.List; 35 import java.util.Arrays; 36 import java.util.ArrayList; 37 import java.util.Iterator; 38 import java.util.NoSuchElementException; 39 import java.util.Objects; 40 import java.util.stream.Collectors; 41 import java.util.stream.Stream; 42 import jdk.internal.vm.annotation.Stable; 43 44 import static java.lang.invoke.MethodHandleStatics.*; 45 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; 46 import static java.lang.invoke.MethodType.methodType; 47 48 /** 49 * This class consists exclusively of static methods that operate on or return 50 * method handles. They fall into several categories: 51 * <ul> 52 * <li>Lookup methods which help create method handles for methods and fields. 53 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones. 54 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. 55 * </ul> 56 * <p> 57 * @author John Rose, JSR 292 EG 58 * @since 1.7 59 */ 60 public class MethodHandles { 61 MethodHandles()62 private MethodHandles() { } // do not instantiate 63 64 // Android-changed: We do not use MemberName / MethodHandleImpl. 65 // 66 // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 67 // static { MethodHandleImpl.initStatics(); } 68 // See IMPL_LOOKUP below. 69 70 //// Method handle creation from ordinary methods. 71 72 /** 73 * Returns a {@link Lookup lookup object} with 74 * full capabilities to emulate all supported bytecode behaviors of the caller. 75 * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller. 76 * Factory methods on the lookup object can create 77 * <a href="MethodHandleInfo.html#directmh">direct method handles</a> 78 * for any member that the caller has access to via bytecodes, 79 * including protected and private fields and methods. 80 * This lookup object is a <em>capability</em> which may be delegated to trusted agents. 81 * Do not store it in place where untrusted code can access it. 82 * <p> 83 * This method is caller sensitive, which means that it may return different 84 * values to different callers. 85 * <p> 86 * For any given caller class {@code C}, the lookup object returned by this call 87 * has equivalent capabilities to any lookup object 88 * supplied by the JVM to the bootstrap method of an 89 * <a href="package-summary.html#indyinsn">invokedynamic instruction</a> 90 * executing in the same caller class {@code C}. 91 * @return a lookup object for the caller of this method, with private access 92 */ 93 // Android-changed: Remove caller sensitive. 94 // @CallerSensitive lookup()95 public static Lookup lookup() { 96 return new Lookup(Reflection.getCallerClass()); 97 } 98 99 /** 100 * Returns a {@link Lookup lookup object} which is trusted minimally. 101 * It can only be used to create method handles to 102 * publicly accessible fields and methods. 103 * <p> 104 * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} 105 * of this lookup object will be {@link java.lang.Object}. 106 * 107 * <p style="font-size:smaller;"> 108 * <em>Discussion:</em> 109 * The lookup class can be changed to any other class {@code C} using an expression of the form 110 * {@link Lookup#in publicLookup().in(C.class)}. 111 * Since all classes have equal access to public names, 112 * such a change would confer no new access rights. 113 * A public lookup object is always subject to 114 * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>. 115 * Also, it cannot access 116 * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>. 117 * @return a lookup object which is trusted minimally 118 */ publicLookup()119 public static Lookup publicLookup() { 120 return Lookup.PUBLIC_LOOKUP; 121 } 122 123 // Android-removed: Documentation related to the security manager and module checks 124 /** 125 * Returns a {@link Lookup lookup object} with full capabilities to emulate all 126 * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> 127 * private access</a>, on a target class. 128 * @param targetClass the target class 129 * @param lookup the caller lookup object 130 * @return a lookup object for the target class, with private access 131 * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class 132 * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} 133 * @throws IllegalAccessException is not thrown on Android 134 * @since 9 135 */ privateLookupIn(Class<?> targetClass, Lookup lookup)136 public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException { 137 // Android-removed: SecurityManager calls 138 // SecurityManager sm = System.getSecurityManager(); 139 // if (sm != null) sm.checkPermission(ACCESS_PERMISSION); 140 if (targetClass.isPrimitive()) 141 throw new IllegalArgumentException(targetClass + " is a primitive class"); 142 if (targetClass.isArray()) 143 throw new IllegalArgumentException(targetClass + " is an array class"); 144 // BEGIN Android-removed: There is no module information on Android 145 /** 146 * Module targetModule = targetClass.getModule(); 147 * Module callerModule = lookup.lookupClass().getModule(); 148 * if (!callerModule.canRead(targetModule)) 149 * throw new IllegalAccessException(callerModule + " does not read " + targetModule); 150 * if (targetModule.isNamed()) { 151 * String pn = targetClass.getPackageName(); 152 * assert pn.length() > 0 : "unnamed package cannot be in named module"; 153 * if (!targetModule.isOpen(pn, callerModule)) 154 * throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); 155 * } 156 * if ((lookup.lookupModes() & Lookup.MODULE) == 0) 157 * throw new IllegalAccessException("lookup does not have MODULE lookup mode"); 158 * if (!callerModule.isNamed() && targetModule.isNamed()) { 159 * IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger(); 160 * if (logger != null) { 161 * logger.logIfOpenedForIllegalAccess(lookup, targetClass); 162 * } 163 * } 164 */ 165 // END Android-removed: There is no module information on Android 166 return new Lookup(targetClass); 167 } 168 169 170 /** 171 * Performs an unchecked "crack" of a 172 * <a href="MethodHandleInfo.html#directmh">direct method handle</a>. 173 * The result is as if the user had obtained a lookup object capable enough 174 * to crack the target method handle, called 175 * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} 176 * on the target to obtain its symbolic reference, and then called 177 * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} 178 * to resolve the symbolic reference to a member. 179 * <p> 180 * If there is a security manager, its {@code checkPermission} method 181 * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. 182 * @param <T> the desired type of the result, either {@link Member} or a subtype 183 * @param target a direct method handle to crack into symbolic reference components 184 * @param expected a class object representing the desired result type {@code T} 185 * @return a reference to the method, constructor, or field object 186 * @exception SecurityException if the caller is not privileged to call {@code setAccessible} 187 * @exception NullPointerException if either argument is {@code null} 188 * @exception IllegalArgumentException if the target is not a direct method handle 189 * @exception ClassCastException if the member is not of the expected type 190 * @since 1.8 191 */ 192 public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target)193 reflectAs(Class<T> expected, MethodHandle target) { 194 MethodHandleImpl directTarget = getMethodHandleImpl(target); 195 // Given that this is specified to be an "unchecked" crack, we can directly allocate 196 // a member from the underlying ArtField / Method and bypass all associated access checks. 197 return expected.cast(directTarget.getMemberInternal()); 198 } 199 200 /** 201 * A <em>lookup object</em> is a factory for creating method handles, 202 * when the creation requires access checking. 203 * Method handles do not perform 204 * access checks when they are called, but rather when they are created. 205 * Therefore, method handle access 206 * restrictions must be enforced when a method handle is created. 207 * The caller class against which those restrictions are enforced 208 * is known as the {@linkplain #lookupClass lookup class}. 209 * <p> 210 * A lookup class which needs to create method handles will call 211 * {@link #lookup MethodHandles.lookup} to create a factory for itself. 212 * When the {@code Lookup} factory object is created, the identity of the lookup class is 213 * determined, and securely stored in the {@code Lookup} object. 214 * The lookup class (or its delegates) may then use factory methods 215 * on the {@code Lookup} object to create method handles for access-checked members. 216 * This includes all methods, constructors, and fields which are allowed to the lookup class, 217 * even private ones. 218 * 219 * <h1><a name="lookups"></a>Lookup Factory Methods</h1> 220 * The factory methods on a {@code Lookup} object correspond to all major 221 * use cases for methods, constructors, and fields. 222 * Each method handle created by a factory method is the functional 223 * equivalent of a particular <em>bytecode behavior</em>. 224 * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) 225 * Here is a summary of the correspondence between these factory methods and 226 * the behavior the resulting method handles: 227 * <table border=1 cellpadding=5 summary="lookup method behaviors"> 228 * <tr> 229 * <th><a name="equiv"></a>lookup expression</th> 230 * <th>member</th> 231 * <th>bytecode behavior</th> 232 * </tr> 233 * <tr> 234 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td> 235 * <td>{@code FT f;}</td><td>{@code (T) this.f;}</td> 236 * </tr> 237 * <tr> 238 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td> 239 * <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td> 240 * </tr> 241 * <tr> 242 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td> 243 * <td>{@code FT f;}</td><td>{@code this.f = x;}</td> 244 * </tr> 245 * <tr> 246 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td> 247 * <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td> 248 * </tr> 249 * <tr> 250 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td> 251 * <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td> 252 * </tr> 253 * <tr> 254 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td> 255 * <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td> 256 * </tr> 257 * <tr> 258 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td> 259 * <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> 260 * </tr> 261 * <tr> 262 * <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td> 263 * <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td> 264 * </tr> 265 * <tr> 266 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td> 267 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td> 268 * </tr> 269 * <tr> 270 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td> 271 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td> 272 * </tr> 273 * <tr> 274 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> 275 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 276 * </tr> 277 * <tr> 278 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td> 279 * <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td> 280 * </tr> 281 * <tr> 282 * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> 283 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 284 * </tr> 285 * </table> 286 * 287 * Here, the type {@code C} is the class or interface being searched for a member, 288 * documented as a parameter named {@code refc} in the lookup methods. 289 * The method type {@code MT} is composed from the return type {@code T} 290 * and the sequence of argument types {@code A*}. 291 * The constructor also has a sequence of argument types {@code A*} and 292 * is deemed to return the newly-created object of type {@code C}. 293 * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. 294 * The formal parameter {@code this} stands for the self-reference of type {@code C}; 295 * if it is present, it is always the leading argument to the method handle invocation. 296 * (In the case of some {@code protected} members, {@code this} may be 297 * restricted in type to the lookup class; see below.) 298 * The name {@code arg} stands for all the other method handle arguments. 299 * In the code examples for the Core Reflection API, the name {@code thisOrNull} 300 * stands for a null reference if the accessed method or field is static, 301 * and {@code this} otherwise. 302 * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand 303 * for reflective objects corresponding to the given members. 304 * <p> 305 * In cases where the given member is of variable arity (i.e., a method or constructor) 306 * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. 307 * In all other cases, the returned method handle will be of fixed arity. 308 * <p style="font-size:smaller;"> 309 * <em>Discussion:</em> 310 * The equivalence between looked-up method handles and underlying 311 * class members and bytecode behaviors 312 * can break down in a few ways: 313 * <ul style="font-size:smaller;"> 314 * <li>If {@code C} is not symbolically accessible from the lookup class's loader, 315 * the lookup can still succeed, even when there is no equivalent 316 * Java expression or bytecoded constant. 317 * <li>Likewise, if {@code T} or {@code MT} 318 * is not symbolically accessible from the lookup class's loader, 319 * the lookup can still succeed. 320 * For example, lookups for {@code MethodHandle.invokeExact} and 321 * {@code MethodHandle.invoke} will always succeed, regardless of requested type. 322 * <li>If there is a security manager installed, it can forbid the lookup 323 * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>). 324 * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} 325 * constant is not subject to security manager checks. 326 * <li>If the looked-up method has a 327 * <a href="MethodHandle.html#maxarity">very large arity</a>, 328 * the method handle creation may fail, due to the method handle 329 * type having too many parameters. 330 * </ul> 331 * 332 * <h1><a name="access"></a>Access checking</h1> 333 * Access checks are applied in the factory methods of {@code Lookup}, 334 * when a method handle is created. 335 * This is a key difference from the Core Reflection API, since 336 * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 337 * performs access checking against every caller, on every call. 338 * <p> 339 * All access checks start from a {@code Lookup} object, which 340 * compares its recorded lookup class against all requests to 341 * create method handles. 342 * A single {@code Lookup} object can be used to create any number 343 * of access-checked method handles, all checked against a single 344 * lookup class. 345 * <p> 346 * A {@code Lookup} object can be shared with other trusted code, 347 * such as a metaobject protocol. 348 * A shared {@code Lookup} object delegates the capability 349 * to create method handles on private members of the lookup class. 350 * Even if privileged code uses the {@code Lookup} object, 351 * the access checking is confined to the privileges of the 352 * original lookup class. 353 * <p> 354 * A lookup can fail, because 355 * the containing class is not accessible to the lookup class, or 356 * because the desired class member is missing, or because the 357 * desired class member is not accessible to the lookup class, or 358 * because the lookup object is not trusted enough to access the member. 359 * In any of these cases, a {@code ReflectiveOperationException} will be 360 * thrown from the attempted lookup. The exact class will be one of 361 * the following: 362 * <ul> 363 * <li>NoSuchMethodException — if a method is requested but does not exist 364 * <li>NoSuchFieldException — if a field is requested but does not exist 365 * <li>IllegalAccessException — if the member exists but an access check fails 366 * </ul> 367 * <p> 368 * In general, the conditions under which a method handle may be 369 * looked up for a method {@code M} are no more restrictive than the conditions 370 * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. 371 * Where the JVM would raise exceptions like {@code NoSuchMethodError}, 372 * a method handle lookup will generally raise a corresponding 373 * checked exception, such as {@code NoSuchMethodException}. 374 * And the effect of invoking the method handle resulting from the lookup 375 * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a> 376 * to executing the compiled, verified, and resolved call to {@code M}. 377 * The same point is true of fields and constructors. 378 * <p style="font-size:smaller;"> 379 * <em>Discussion:</em> 380 * Access checks only apply to named and reflected methods, 381 * constructors, and fields. 382 * Other method handle creation methods, such as 383 * {@link MethodHandle#asType MethodHandle.asType}, 384 * do not require any access checks, and are used 385 * independently of any {@code Lookup} object. 386 * <p> 387 * If the desired member is {@code protected}, the usual JVM rules apply, 388 * including the requirement that the lookup class must be either be in the 389 * same package as the desired member, or must inherit that member. 390 * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) 391 * In addition, if the desired member is a non-static field or method 392 * in a different package, the resulting method handle may only be applied 393 * to objects of the lookup class or one of its subclasses. 394 * This requirement is enforced by narrowing the type of the leading 395 * {@code this} parameter from {@code C} 396 * (which will necessarily be a superclass of the lookup class) 397 * to the lookup class itself. 398 * <p> 399 * The JVM imposes a similar requirement on {@code invokespecial} instruction, 400 * that the receiver argument must match both the resolved method <em>and</em> 401 * the current class. Again, this requirement is enforced by narrowing the 402 * type of the leading parameter to the resulting method handle. 403 * (See the Java Virtual Machine Specification, section 4.10.1.9.) 404 * <p> 405 * The JVM represents constructors and static initializer blocks as internal methods 406 * with special names ({@code "<init>"} and {@code "<clinit>"}). 407 * The internal syntax of invocation instructions allows them to refer to such internal 408 * methods as if they were normal methods, but the JVM bytecode verifier rejects them. 409 * A lookup of such an internal method will produce a {@code NoSuchMethodException}. 410 * <p> 411 * In some cases, access between nested classes is obtained by the Java compiler by creating 412 * an wrapper method to access a private method of another class 413 * in the same top-level declaration. 414 * For example, a nested class {@code C.D} 415 * can access private members within other related classes such as 416 * {@code C}, {@code C.D.E}, or {@code C.B}, 417 * but the Java compiler may need to generate wrapper methods in 418 * those related classes. In such cases, a {@code Lookup} object on 419 * {@code C.E} would be unable to those private members. 420 * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, 421 * which can transform a lookup on {@code C.E} into one on any of those other 422 * classes, without special elevation of privilege. 423 * <p> 424 * The accesses permitted to a given lookup object may be limited, 425 * according to its set of {@link #lookupModes lookupModes}, 426 * to a subset of members normally accessible to the lookup class. 427 * For example, the {@link #publicLookup publicLookup} 428 * method produces a lookup object which is only allowed to access 429 * public members in public classes. 430 * The caller sensitive method {@link #lookup lookup} 431 * produces a lookup object with full capabilities relative to 432 * its caller class, to emulate all supported bytecode behaviors. 433 * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object 434 * with fewer access modes than the original lookup object. 435 * 436 * <p style="font-size:smaller;"> 437 * <a name="privacc"></a> 438 * <em>Discussion of private access:</em> 439 * We say that a lookup has <em>private access</em> 440 * if its {@linkplain #lookupModes lookup modes} 441 * include the possibility of accessing {@code private} members. 442 * As documented in the relevant methods elsewhere, 443 * only lookups with private access possess the following capabilities: 444 * <ul style="font-size:smaller;"> 445 * <li>access private fields, methods, and constructors of the lookup class 446 * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods, 447 * such as {@code Class.forName} 448 * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions 449 * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a> 450 * for classes accessible to the lookup class 451 * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes 452 * within the same package member 453 * </ul> 454 * <p style="font-size:smaller;"> 455 * Each of these permissions is a consequence of the fact that a lookup object 456 * with private access can be securely traced back to an originating class, 457 * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions 458 * can be reliably determined and emulated by method handles. 459 * 460 * <h1><a name="secmgr"></a>Security manager interactions</h1> 461 * Although bytecode instructions can only refer to classes in 462 * a related class loader, this API can search for methods in any 463 * class, as long as a reference to its {@code Class} object is 464 * available. Such cross-loader references are also possible with the 465 * Core Reflection API, and are impossible to bytecode instructions 466 * such as {@code invokestatic} or {@code getfield}. 467 * There is a {@linkplain java.lang.SecurityManager security manager API} 468 * to allow applications to check such cross-loader references. 469 * These checks apply to both the {@code MethodHandles.Lookup} API 470 * and the Core Reflection API 471 * (as found on {@link java.lang.Class Class}). 472 * <p> 473 * If a security manager is present, member lookups are subject to 474 * additional checks. 475 * From one to three calls are made to the security manager. 476 * Any of these calls can refuse access by throwing a 477 * {@link java.lang.SecurityException SecurityException}. 478 * Define {@code smgr} as the security manager, 479 * {@code lookc} as the lookup class of the current lookup object, 480 * {@code refc} as the containing class in which the member 481 * is being sought, and {@code defc} as the class in which the 482 * member is actually defined. 483 * The value {@code lookc} is defined as <em>not present</em> 484 * if the current lookup object does not have 485 * <a href="MethodHandles.Lookup.html#privacc">private access</a>. 486 * The calls are made according to the following rules: 487 * <ul> 488 * <li><b>Step 1:</b> 489 * If {@code lookc} is not present, or if its class loader is not 490 * the same as or an ancestor of the class loader of {@code refc}, 491 * then {@link SecurityManager#checkPackageAccess 492 * smgr.checkPackageAccess(refcPkg)} is called, 493 * where {@code refcPkg} is the package of {@code refc}. 494 * <li><b>Step 2:</b> 495 * If the retrieved member is not public and 496 * {@code lookc} is not present, then 497 * {@link SecurityManager#checkPermission smgr.checkPermission} 498 * with {@code RuntimePermission("accessDeclaredMembers")} is called. 499 * <li><b>Step 3:</b> 500 * If the retrieved member is not public, 501 * and if {@code lookc} is not present, 502 * and if {@code defc} and {@code refc} are different, 503 * then {@link SecurityManager#checkPackageAccess 504 * smgr.checkPackageAccess(defcPkg)} is called, 505 * where {@code defcPkg} is the package of {@code defc}. 506 * </ul> 507 * Security checks are performed after other access checks have passed. 508 * Therefore, the above rules presuppose a member that is public, 509 * or else that is being accessed from a lookup class that has 510 * rights to access the member. 511 * 512 * <h1><a name="callsens"></a>Caller sensitive methods</h1> 513 * A small number of Java methods have a special property called caller sensitivity. 514 * A <em>caller-sensitive</em> method can behave differently depending on the 515 * identity of its immediate caller. 516 * <p> 517 * If a method handle for a caller-sensitive method is requested, 518 * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply, 519 * but they take account of the lookup class in a special way. 520 * The resulting method handle behaves as if it were called 521 * from an instruction contained in the lookup class, 522 * so that the caller-sensitive method detects the lookup class. 523 * (By contrast, the invoker of the method handle is disregarded.) 524 * Thus, in the case of caller-sensitive methods, 525 * different lookup classes may give rise to 526 * differently behaving method handles. 527 * <p> 528 * In cases where the lookup object is 529 * {@link #publicLookup publicLookup()}, 530 * or some other lookup object without 531 * <a href="MethodHandles.Lookup.html#privacc">private access</a>, 532 * the lookup class is disregarded. 533 * In such cases, no caller-sensitive method handle can be created, 534 * access is forbidden, and the lookup fails with an 535 * {@code IllegalAccessException}. 536 * <p style="font-size:smaller;"> 537 * <em>Discussion:</em> 538 * For example, the caller-sensitive method 539 * {@link java.lang.Class#forName(String) Class.forName(x)} 540 * can return varying classes or throw varying exceptions, 541 * depending on the class loader of the class that calls it. 542 * A public lookup of {@code Class.forName} will fail, because 543 * there is no reasonable way to determine its bytecode behavior. 544 * <p style="font-size:smaller;"> 545 * If an application caches method handles for broad sharing, 546 * it should use {@code publicLookup()} to create them. 547 * If there is a lookup of {@code Class.forName}, it will fail, 548 * and the application must take appropriate action in that case. 549 * It may be that a later lookup, perhaps during the invocation of a 550 * bootstrap method, can incorporate the specific identity 551 * of the caller, making the method accessible. 552 * <p style="font-size:smaller;"> 553 * The function {@code MethodHandles.lookup} is caller sensitive 554 * so that there can be a secure foundation for lookups. 555 * Nearly all other methods in the JSR 292 API rely on lookup 556 * objects to check access requests. 557 */ 558 // Android-changed: Change link targets from MethodHandles#[public]Lookup to 559 // #[public]Lookup to work around complaints from javadoc. 560 public static final 561 class Lookup { 562 /** The class on behalf of whom the lookup is being performed. */ 563 /* @NonNull */ private final Class<?> lookupClass; 564 565 /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ 566 private final int allowedModes; 567 568 /** A single-bit mask representing {@code public} access, 569 * which may contribute to the result of {@link #lookupModes lookupModes}. 570 * The value, {@code 0x01}, happens to be the same as the value of the 571 * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. 572 */ 573 public static final int PUBLIC = Modifier.PUBLIC; 574 575 /** A single-bit mask representing {@code private} access, 576 * which may contribute to the result of {@link #lookupModes lookupModes}. 577 * The value, {@code 0x02}, happens to be the same as the value of the 578 * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. 579 */ 580 public static final int PRIVATE = Modifier.PRIVATE; 581 582 /** A single-bit mask representing {@code protected} access, 583 * which may contribute to the result of {@link #lookupModes lookupModes}. 584 * The value, {@code 0x04}, happens to be the same as the value of the 585 * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. 586 */ 587 public static final int PROTECTED = Modifier.PROTECTED; 588 589 /** A single-bit mask representing {@code package} access (default access), 590 * which may contribute to the result of {@link #lookupModes lookupModes}. 591 * The value is {@code 0x08}, which does not correspond meaningfully to 592 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 593 */ 594 public static final int PACKAGE = Modifier.STATIC; 595 596 private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); 597 598 // Android-note: Android has no notion of a trusted lookup. If required, such lookups 599 // are performed by the runtime. As a result, we always use lookupClass, which will always 600 // be non-null in our implementation. 601 // 602 // private static final int TRUSTED = -1; 603 fixmods(int mods)604 private static int fixmods(int mods) { 605 mods &= (ALL_MODES - PACKAGE); 606 return (mods != 0) ? mods : PACKAGE; 607 } 608 609 /** Tells which class is performing the lookup. It is this class against 610 * which checks are performed for visibility and access permissions. 611 * <p> 612 * The class implies a maximum level of access permission, 613 * but the permissions may be additionally limited by the bitmask 614 * {@link #lookupModes lookupModes}, which controls whether non-public members 615 * can be accessed. 616 * @return the lookup class, on behalf of which this lookup object finds members 617 */ lookupClass()618 public Class<?> lookupClass() { 619 return lookupClass; 620 } 621 622 /** Tells which access-protection classes of members this lookup object can produce. 623 * The result is a bit-mask of the bits 624 * {@linkplain #PUBLIC PUBLIC (0x01)}, 625 * {@linkplain #PRIVATE PRIVATE (0x02)}, 626 * {@linkplain #PROTECTED PROTECTED (0x04)}, 627 * and {@linkplain #PACKAGE PACKAGE (0x08)}. 628 * <p> 629 * A freshly-created lookup object 630 * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} 631 * has all possible bits set, since the caller class can access all its own members. 632 * A lookup object on a new lookup class 633 * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} 634 * may have some mode bits set to zero. 635 * The purpose of this is to restrict access via the new lookup object, 636 * so that it can access only names which can be reached by the original 637 * lookup object, and also by the new lookup class. 638 * @return the lookup modes, which limit the kinds of access performed by this lookup object 639 */ lookupModes()640 public int lookupModes() { 641 return allowedModes & ALL_MODES; 642 } 643 644 /** Embody the current class (the lookupClass) as a lookup class 645 * for method handle creation. 646 * Must be called by from a method in this package, 647 * which in turn is called by a method not in this package. 648 */ Lookup(Class<?> lookupClass)649 Lookup(Class<?> lookupClass) { 650 this(lookupClass, ALL_MODES); 651 // make sure we haven't accidentally picked up a privileged class: 652 checkUnprivilegedlookupClass(lookupClass, ALL_MODES); 653 } 654 Lookup(Class<?> lookupClass, int allowedModes)655 private Lookup(Class<?> lookupClass, int allowedModes) { 656 this.lookupClass = lookupClass; 657 this.allowedModes = allowedModes; 658 } 659 660 /** 661 * Creates a lookup on the specified new lookup class. 662 * The resulting object will report the specified 663 * class as its own {@link #lookupClass lookupClass}. 664 * <p> 665 * However, the resulting {@code Lookup} object is guaranteed 666 * to have no more access capabilities than the original. 667 * In particular, access capabilities can be lost as follows:<ul> 668 * <li>If the new lookup class differs from the old one, 669 * protected members will not be accessible by virtue of inheritance. 670 * (Protected members may continue to be accessible because of package sharing.) 671 * <li>If the new lookup class is in a different package 672 * than the old one, protected and default (package) members will not be accessible. 673 * <li>If the new lookup class is not within the same package member 674 * as the old one, private members will not be accessible. 675 * <li>If the new lookup class is not accessible to the old lookup class, 676 * then no members, not even public members, will be accessible. 677 * (In all other cases, public members will continue to be accessible.) 678 * </ul> 679 * 680 * @param requestedLookupClass the desired lookup class for the new lookup object 681 * @return a lookup object which reports the desired lookup class 682 * @throws NullPointerException if the argument is null 683 */ in(Class<?> requestedLookupClass)684 public Lookup in(Class<?> requestedLookupClass) { 685 requestedLookupClass.getClass(); // null check 686 // Android-changed: There's no notion of a trusted lookup. 687 // if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all 688 // return new Lookup(requestedLookupClass, ALL_MODES); 689 690 if (requestedLookupClass == this.lookupClass) 691 return this; // keep same capabilities 692 int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); 693 if ((newModes & PACKAGE) != 0 694 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { 695 newModes &= ~(PACKAGE|PRIVATE); 696 } 697 // Allow nestmate lookups to be created without special privilege: 698 if ((newModes & PRIVATE) != 0 699 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { 700 newModes &= ~PRIVATE; 701 } 702 if ((newModes & PUBLIC) != 0 703 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { 704 // The requested class it not accessible from the lookup class. 705 // No permissions. 706 newModes = 0; 707 } 708 checkUnprivilegedlookupClass(requestedLookupClass, newModes); 709 return new Lookup(requestedLookupClass, newModes); 710 } 711 712 // Make sure outer class is initialized first. 713 // 714 // Android-changed: Removed unnecessary reference to IMPL_NAMES. 715 // static { IMPL_NAMES.getClass(); } 716 717 /** Version of lookup which is trusted minimally. 718 * It can only be used to create method handles to 719 * publicly accessible members. 720 */ 721 static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); 722 723 /** Package-private version of lookup which is trusted. */ 724 static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES); 725 checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes)726 private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) { 727 String name = lookupClass.getName(); 728 if (name.startsWith("java.lang.invoke.")) 729 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); 730 731 // For caller-sensitive MethodHandles.lookup() 732 // disallow lookup more restricted packages 733 // 734 // Android-changed: The bootstrap classloader isn't null. 735 if (allowedModes == ALL_MODES && 736 lookupClass.getClassLoader() == Object.class.getClassLoader()) { 737 if ((name.startsWith("java.") 738 && !name.startsWith("java.io.ObjectStreamClass") 739 && !name.startsWith("java.util.concurrent.") 740 && !name.equals("java.lang.Daemons$FinalizerWatchdogDaemon") 741 && !name.equals("java.lang.runtime.ObjectMethods") 742 && !name.equals("java.lang.Thread") 743 && !name.equals("java.util.HashMap")) || 744 (name.startsWith("sun.") 745 && !name.startsWith("sun.invoke.") 746 && !name.equals("sun.reflect.ReflectionFactory"))) { 747 throw newIllegalArgumentException("illegal lookupClass: " + lookupClass); 748 } 749 } 750 } 751 752 /** 753 * Displays the name of the class from which lookups are to be made. 754 * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) 755 * If there are restrictions on the access permitted to this lookup, 756 * this is indicated by adding a suffix to the class name, consisting 757 * of a slash and a keyword. The keyword represents the strongest 758 * allowed access, and is chosen as follows: 759 * <ul> 760 * <li>If no access is allowed, the suffix is "/noaccess". 761 * <li>If only public access is allowed, the suffix is "/public". 762 * <li>If only public and package access are allowed, the suffix is "/package". 763 * <li>If only public, package, and private access are allowed, the suffix is "/private". 764 * </ul> 765 * If none of the above cases apply, it is the case that full 766 * access (public, package, private, and protected) is allowed. 767 * In this case, no suffix is added. 768 * This is true only of an object obtained originally from 769 * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. 770 * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} 771 * always have restricted access, and will display a suffix. 772 * <p> 773 * (It may seem strange that protected access should be 774 * stronger than private access. Viewed independently from 775 * package access, protected access is the first to be lost, 776 * because it requires a direct subclass relationship between 777 * caller and callee.) 778 * @see #in 779 */ 780 @Override toString()781 public String toString() { 782 String cname = lookupClass.getName(); 783 switch (allowedModes) { 784 case 0: // no privileges 785 return cname + "/noaccess"; 786 case PUBLIC: 787 return cname + "/public"; 788 case PUBLIC|PACKAGE: 789 return cname + "/package"; 790 case ALL_MODES & ~PROTECTED: 791 return cname + "/private"; 792 case ALL_MODES: 793 return cname; 794 // Android-changed: No support for TRUSTED callers. 795 // case TRUSTED: 796 // return "/trusted"; // internal only; not exported 797 default: // Should not happen, but it's a bitfield... 798 cname = cname + "/" + Integer.toHexString(allowedModes); 799 assert(false) : cname; 800 return cname; 801 } 802 } 803 804 /** 805 * Produces a method handle for a static method. 806 * The type of the method handle will be that of the method. 807 * (Since static methods do not take receivers, there is no 808 * additional receiver argument inserted into the method handle type, 809 * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) 810 * The method and all its argument types must be accessible to the lookup object. 811 * <p> 812 * The returned method handle will have 813 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 814 * the method's variable arity modifier bit ({@code 0x0080}) is set. 815 * <p> 816 * If the returned method handle is invoked, the method's class will 817 * be initialized, if it has not already been initialized. 818 * <p><b>Example:</b> 819 * <blockquote><pre>{@code 820 import static java.lang.invoke.MethodHandles.*; 821 import static java.lang.invoke.MethodType.*; 822 ... 823 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class, 824 "asList", methodType(List.class, Object[].class)); 825 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString()); 826 * }</pre></blockquote> 827 * @param refc the class from which the method is accessed 828 * @param name the name of the method 829 * @param type the type of the method 830 * @return the desired method handle 831 * @throws NoSuchMethodException if the method does not exist 832 * @throws IllegalAccessException if access checking fails, 833 * or if the method is not {@code static}, 834 * or if the method's variable arity modifier bit 835 * is set and {@code asVarargsCollector} fails 836 * @exception SecurityException if a security manager is present and it 837 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 838 * @throws NullPointerException if any argument is null 839 */ 840 public findStatic(Class<?> refc, String name, MethodType type)841 MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 842 Method method = refc.getDeclaredMethod(name, type.ptypes()); 843 final int modifiers = method.getModifiers(); 844 if (!Modifier.isStatic(modifiers)) { 845 throw new IllegalAccessException("Method" + method + " is not static"); 846 } 847 checkReturnType(method, type); 848 checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName()); 849 return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type); 850 } 851 findVirtualForMH(String name, MethodType type)852 private MethodHandle findVirtualForMH(String name, MethodType type) { 853 // these names require special lookups because of the implicit MethodType argument 854 if ("invoke".equals(name)) 855 return invoker(type); 856 if ("invokeExact".equals(name)) 857 return exactInvoker(type); 858 return null; 859 } 860 findVirtualForVH(String name, MethodType type)861 private MethodHandle findVirtualForVH(String name, MethodType type) { 862 VarHandle.AccessMode accessMode; 863 try { 864 accessMode = VarHandle.AccessMode.valueFromMethodName(name); 865 } catch (IllegalArgumentException e) { 866 return null; 867 } 868 return varHandleInvoker(accessMode, type); 869 } 870 createMethodHandle(Method method, int handleKind, MethodType methodType)871 private static MethodHandle createMethodHandle(Method method, int handleKind, 872 MethodType methodType) { 873 MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType); 874 if (method.isVarArgs()) { 875 return new Transformers.VarargsCollector(mh); 876 } else { 877 return mh; 878 } 879 } 880 881 /** 882 * Produces a method handle for a virtual method. 883 * The type of the method handle will be that of the method, 884 * with the receiver type (usually {@code refc}) prepended. 885 * The method and all its argument types must be accessible to the lookup object. 886 * <p> 887 * When called, the handle will treat the first argument as a receiver 888 * and dispatch on the receiver's type to determine which method 889 * implementation to enter. 890 * (The dispatching action is identical with that performed by an 891 * {@code invokevirtual} or {@code invokeinterface} instruction.) 892 * <p> 893 * The first argument will be of type {@code refc} if the lookup 894 * class has full privileges to access the member. Otherwise 895 * the member must be {@code protected} and the first argument 896 * will be restricted in type to the lookup class. 897 * <p> 898 * The returned method handle will have 899 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 900 * the method's variable arity modifier bit ({@code 0x0080}) is set. 901 * <p> 902 * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual} 903 * instructions and method handles produced by {@code findVirtual}, 904 * if the class is {@code MethodHandle} and the name string is 905 * {@code invokeExact} or {@code invoke}, the resulting 906 * method handle is equivalent to one produced by 907 * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or 908 * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} 909 * with the same {@code type} argument. 910 * 911 * <b>Example:</b> 912 * <blockquote><pre>{@code 913 import static java.lang.invoke.MethodHandles.*; 914 import static java.lang.invoke.MethodType.*; 915 ... 916 MethodHandle MH_concat = publicLookup().findVirtual(String.class, 917 "concat", methodType(String.class, String.class)); 918 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class, 919 "hashCode", methodType(int.class)); 920 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class, 921 "hashCode", methodType(int.class)); 922 assertEquals("xy", (String) MH_concat.invokeExact("x", "y")); 923 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy")); 924 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy")); 925 // interface method: 926 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class, 927 "subSequence", methodType(CharSequence.class, int.class, int.class)); 928 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString()); 929 // constructor "internal method" must be accessed differently: 930 MethodType MT_newString = methodType(void.class); //()V for new String() 931 try { assertEquals("impossible", lookup() 932 .findVirtual(String.class, "<init>", MT_newString)); 933 } catch (NoSuchMethodException ex) { } // OK 934 MethodHandle MH_newString = publicLookup() 935 .findConstructor(String.class, MT_newString); 936 assertEquals("", (String) MH_newString.invokeExact()); 937 * }</pre></blockquote> 938 * 939 * @param refc the class or interface from which the method is accessed 940 * @param name the name of the method 941 * @param type the type of the method, with the receiver argument omitted 942 * @return the desired method handle 943 * @throws NoSuchMethodException if the method does not exist 944 * @throws IllegalAccessException if access checking fails, 945 * or if the method is {@code static} 946 * or if the method's variable arity modifier bit 947 * is set and {@code asVarargsCollector} fails 948 * @exception SecurityException if a security manager is present and it 949 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 950 * @throws NullPointerException if any argument is null 951 */ findVirtual(Class<?> refc, String name, MethodType type)952 public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 953 // Special case : when we're looking up a virtual method on the MethodHandles class 954 // itself, we can return one of our specialized invokers. 955 if (refc == MethodHandle.class) { 956 MethodHandle mh = findVirtualForMH(name, type); 957 if (mh != null) { 958 return mh; 959 } 960 } else if (refc == VarHandle.class) { 961 // Returns an non-exact invoker. 962 MethodHandle mh = findVirtualForVH(name, type); 963 if (mh != null) { 964 return mh; 965 } 966 } 967 968 Method method = refc.getInstanceMethod(name, type.ptypes()); 969 if (method == null) { 970 // This is pretty ugly and a consequence of the MethodHandles API. We have to throw 971 // an IAE and not an NSME if the method exists but is static (even though the RI's 972 // IAE has a message that says "no such method"). We confine the ugliness and 973 // slowness to the failure case, and allow getInstanceMethod to remain fairly 974 // general. 975 try { 976 Method m = refc.getDeclaredMethod(name, type.ptypes()); 977 if (Modifier.isStatic(m.getModifiers())) { 978 throw new IllegalAccessException("Method" + m + " is static"); 979 } 980 } catch (NoSuchMethodException ignored) { 981 } 982 983 throw new NoSuchMethodException(name + " " + Arrays.toString(type.ptypes())); 984 } 985 checkReturnType(method, type); 986 987 // We have a valid method, perform access checks. 988 checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName()); 989 990 // Insert the leading reference parameter. 991 MethodType handleType = type.insertParameterTypes(0, refc); 992 return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType); 993 } 994 995 /** 996 * Produces a method handle which creates an object and initializes it, using 997 * the constructor of the specified type. 998 * The parameter types of the method handle will be those of the constructor, 999 * while the return type will be a reference to the constructor's class. 1000 * The constructor and all its argument types must be accessible to the lookup object. 1001 * <p> 1002 * The requested type must have a return type of {@code void}. 1003 * (This is consistent with the JVM's treatment of constructor type descriptors.) 1004 * <p> 1005 * The returned method handle will have 1006 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1007 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 1008 * <p> 1009 * If the returned method handle is invoked, the constructor's class will 1010 * be initialized, if it has not already been initialized. 1011 * <p><b>Example:</b> 1012 * <blockquote><pre>{@code 1013 import static java.lang.invoke.MethodHandles.*; 1014 import static java.lang.invoke.MethodType.*; 1015 ... 1016 MethodHandle MH_newArrayList = publicLookup().findConstructor( 1017 ArrayList.class, methodType(void.class, Collection.class)); 1018 Collection orig = Arrays.asList("x", "y"); 1019 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig); 1020 assert(orig != copy); 1021 assertEquals(orig, copy); 1022 // a variable-arity constructor: 1023 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor( 1024 ProcessBuilder.class, methodType(void.class, String[].class)); 1025 ProcessBuilder pb = (ProcessBuilder) 1026 MH_newProcessBuilder.invoke("x", "y", "z"); 1027 assertEquals("[x, y, z]", pb.command().toString()); 1028 * }</pre></blockquote> 1029 * @param refc the class or interface from which the method is accessed 1030 * @param type the type of the method, with the receiver argument omitted, and a void return type 1031 * @return the desired method handle 1032 * @throws NoSuchMethodException if the constructor does not exist 1033 * @throws IllegalAccessException if access checking fails 1034 * or if the method's variable arity modifier bit 1035 * is set and {@code asVarargsCollector} fails 1036 * @exception SecurityException if a security manager is present and it 1037 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1038 * @throws NullPointerException if any argument is null 1039 */ findConstructor(Class<?> refc, MethodType type)1040 public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1041 if (refc.isArray()) { 1042 throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); 1043 } 1044 // The queried |type| is (PT1,PT2,..)V 1045 Constructor constructor = refc.getDeclaredConstructor(type.ptypes()); 1046 if (constructor == null) { 1047 throw new NoSuchMethodException( 1048 "No constructor for " + constructor.getDeclaringClass() + " matching " + type); 1049 } 1050 checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(), 1051 constructor.getName()); 1052 1053 return createMethodHandleForConstructor(constructor); 1054 } 1055 1056 // BEGIN Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670 1057 // TODO: Unhide this method. 1058 /** 1059 * Looks up a class by name from the lookup context defined by this {@code Lookup} object, 1060 * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction. 1061 * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class, 1062 * and then determines whether the class is accessible to this lookup object. 1063 * <p> 1064 * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, 1065 * its class loader, and the {@linkplain #lookupModes() lookup modes}. 1066 * 1067 * @param targetName the fully qualified name of the class to be looked up. 1068 * @return the requested class. 1069 * @throws SecurityException if a security manager is present and it 1070 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1071 * @throws LinkageError if the linkage fails 1072 * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader. 1073 * @throws IllegalAccessException if the class is not accessible, using the allowed access 1074 * modes. 1075 * @throws NullPointerException if {@code targetName} is null 1076 * @since 9 1077 * @jvms 5.4.3.1 Class and Interface Resolution 1078 * @hide 1079 */ findClass(String targetName)1080 public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { 1081 Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); 1082 return accessClass(targetClass); 1083 } 1084 // END Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670 1085 createMethodHandleForConstructor(Constructor constructor)1086 private MethodHandle createMethodHandleForConstructor(Constructor constructor) { 1087 Class<?> refc = constructor.getDeclaringClass(); 1088 MethodType constructorType = 1089 MethodType.methodType(refc, constructor.getParameterTypes()); 1090 MethodHandle mh; 1091 if (refc == String.class) { 1092 // String constructors have optimized StringFactory methods 1093 // that matches returned type. These factory methods combine the 1094 // memory allocation and initialization calls for String objects. 1095 mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, 1096 constructorType); 1097 } else { 1098 // Constructors for all other classes use a Construct transformer to perform 1099 // their memory allocation and call to <init>. 1100 MethodType initType = initMethodType(constructorType); 1101 MethodHandle initHandle = new MethodHandleImpl( 1102 constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType); 1103 mh = new Transformers.Construct(initHandle, constructorType); 1104 } 1105 1106 if (constructor.isVarArgs()) { 1107 mh = new Transformers.VarargsCollector(mh); 1108 } 1109 return mh; 1110 } 1111 initMethodType(MethodType constructorType)1112 private static MethodType initMethodType(MethodType constructorType) { 1113 // Returns a MethodType appropriate for class <init> 1114 // methods. Constructor MethodTypes have the form 1115 // (PT1,PT2,...)C and class <init> MethodTypes have the 1116 // form (C,PT1,PT2,...)V. 1117 assert constructorType.rtype() != void.class; 1118 1119 // Insert constructorType C as the first parameter type in 1120 // the MethodType for <init>. 1121 Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1]; 1122 initPtypes[0] = constructorType.rtype(); 1123 System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1, 1124 constructorType.ptypes().length); 1125 1126 // Set the return type for the <init> MethodType to be void. 1127 return MethodType.methodType(void.class, initPtypes); 1128 } 1129 1130 // BEGIN Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670 1131 /* 1132 * Returns IllegalAccessException due to access violation to the given targetClass. 1133 * 1134 * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized} 1135 * which verifies access to a class rather a member. 1136 */ makeAccessException(Class<?> targetClass)1137 private IllegalAccessException makeAccessException(Class<?> targetClass) { 1138 String message = "access violation: "+ targetClass; 1139 if (this == MethodHandles.publicLookup()) { 1140 message += ", from public Lookup"; 1141 } else { 1142 // Android-changed: Remove unsupported module name. 1143 // Module m = lookupClass().getModule(); 1144 // message += ", from " + lookupClass() + " (" + m + ")"; 1145 message += ", from " + lookupClass(); 1146 // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17. 1147 // if (prevLookupClass != null) { 1148 // message += ", previous lookup " + 1149 // prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")"; 1150 // } 1151 } 1152 return new IllegalAccessException(message); 1153 } 1154 1155 // TODO: Unhide this method. 1156 /** 1157 * Determines if a class can be accessed from the lookup context defined by 1158 * this {@code Lookup} object. The static initializer of the class is not run. 1159 * If {@code targetClass} is an array class, {@code targetClass} is accessible 1160 * if the element type of the array class is accessible. Otherwise, 1161 * {@code targetClass} is determined as accessible as follows. 1162 * 1163 * <p> 1164 * If {@code targetClass} is in the same module as the lookup class, 1165 * the lookup class is {@code LC} in module {@code M1} and 1166 * the previous lookup class is in module {@code M0} or 1167 * {@code null} if not present, 1168 * {@code targetClass} is accessible if and only if one of the following is true: 1169 * <ul> 1170 * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is 1171 * {@code LC} or other class in the same nest of {@code LC}.</li> 1172 * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is 1173 * in the same runtime package of {@code LC}.</li> 1174 * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is 1175 * a public type in {@code M1}.</li> 1176 * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is 1177 * a public type in a package exported by {@code M1} to at least {@code M0} 1178 * if the previous lookup class is present; otherwise, {@code targetClass} 1179 * is a public type in a package exported by {@code M1} unconditionally.</li> 1180 * </ul> 1181 * 1182 * <p> 1183 * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup 1184 * can access public types in all modules when the type is in a package 1185 * that is exported unconditionally. 1186 * <p> 1187 * Otherwise, {@code targetClass} is in a different module from {@code lookupClass}, 1188 * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass} 1189 * is inaccessible. 1190 * <p> 1191 * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class}, 1192 * {@code M1} is the module containing {@code lookupClass} and 1193 * {@code M2} is the module containing {@code targetClass}, 1194 * then {@code targetClass} is accessible if and only if 1195 * <ul> 1196 * <li>{@code M1} reads {@code M2}, and 1197 * <li>{@code targetClass} is public and in a package exported by 1198 * {@code M2} at least to {@code M1}. 1199 * </ul> 1200 * <p> 1201 * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class}, 1202 * {@code M1} and {@code M2} are as before, and {@code M0} is the module 1203 * containing the previous lookup class, then {@code targetClass} is accessible 1204 * if and only if one of the following is true: 1205 * <ul> 1206 * <li>{@code targetClass} is in {@code M0} and {@code M1} 1207 * {@linkplain Module#reads reads} {@code M0} and the type is 1208 * in a package that is exported to at least {@code M1}. 1209 * <li>{@code targetClass} is in {@code M1} and {@code M0} 1210 * {@linkplain Module#reads reads} {@code M1} and the type is 1211 * in a package that is exported to at least {@code M0}. 1212 * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0} 1213 * and {@code M1} reads {@code M2} and the type is in a package 1214 * that is exported to at least both {@code M0} and {@code M2}. 1215 * </ul> 1216 * <p> 1217 * Otherwise, {@code targetClass} is not accessible. 1218 * 1219 * @param targetClass the class to be access-checked 1220 * @return the class that has been access-checked 1221 * @throws IllegalAccessException if the class is not accessible from the lookup class 1222 * and previous lookup class, if present, using the allowed access modes. 1223 * @throws SecurityException if a security manager is present and it 1224 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1225 * @throws NullPointerException if {@code targetClass} is {@code null} 1226 * @since 9 1227 * @see <a href="#cross-module-lookup">Cross-module lookups</a> 1228 * @hide 1229 */ accessClass(Class<?> targetClass)1230 public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException { 1231 if (!isClassAccessible(targetClass)) { 1232 throw makeAccessException(targetClass); 1233 } 1234 // Android-removed: SecurityManager is unnecessary on Android. 1235 // checkSecurityManager(targetClass); 1236 return targetClass; 1237 } 1238 isClassAccessible(Class<?> refc)1239 boolean isClassAccessible(Class<?> refc) { 1240 Objects.requireNonNull(refc); 1241 Class<?> caller = lookupClassOrNull(); 1242 Class<?> type = refc; 1243 while (type.isArray()) { 1244 type = type.getComponentType(); 1245 } 1246 // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17. 1247 // return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes); 1248 return caller == null || VerifyAccess.isClassAccessible(type, caller, allowedModes); 1249 } 1250 1251 // This is just for calling out to MethodHandleImpl. lookupClassOrNull()1252 private Class<?> lookupClassOrNull() { 1253 // Android-changed: Android always returns lookupClass and has no concept of TRUSTED. 1254 // return (allowedModes == TRUSTED) ? null : lookupClass; 1255 return lookupClass; 1256 } 1257 // END Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670 1258 1259 /** 1260 * Produces an early-bound method handle for a virtual method. 1261 * It will bypass checks for overriding methods on the receiver, 1262 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 1263 * instruction from within the explicitly specified {@code specialCaller}. 1264 * The type of the method handle will be that of the method, 1265 * with a suitably restricted receiver type prepended. 1266 * (The receiver type will be {@code specialCaller} or a subtype.) 1267 * The method and all its argument types must be accessible 1268 * to the lookup object. 1269 * <p> 1270 * Before method resolution, 1271 * if the explicitly specified caller class is not identical with the 1272 * lookup class, or if this lookup object does not have 1273 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 1274 * privileges, the access fails. 1275 * <p> 1276 * The returned method handle will have 1277 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1278 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1279 * <p style="font-size:smaller;"> 1280 * <em>(Note: JVM internal methods named {@code "<init>"} are not visible to this API, 1281 * even though the {@code invokespecial} instruction can refer to them 1282 * in special circumstances. Use {@link #findConstructor findConstructor} 1283 * to access instance initialization methods in a safe manner.)</em> 1284 * <p><b>Example:</b> 1285 * <blockquote><pre>{@code 1286 import static java.lang.invoke.MethodHandles.*; 1287 import static java.lang.invoke.MethodType.*; 1288 ... 1289 static class Listie extends ArrayList { 1290 public String toString() { return "[wee Listie]"; } 1291 static Lookup lookup() { return MethodHandles.lookup(); } 1292 } 1293 ... 1294 // no access to constructor via invokeSpecial: 1295 MethodHandle MH_newListie = Listie.lookup() 1296 .findConstructor(Listie.class, methodType(void.class)); 1297 Listie l = (Listie) MH_newListie.invokeExact(); 1298 try { assertEquals("impossible", Listie.lookup().findSpecial( 1299 Listie.class, "<init>", methodType(void.class), Listie.class)); 1300 } catch (NoSuchMethodException ex) { } // OK 1301 // access to super and self methods via invokeSpecial: 1302 MethodHandle MH_super = Listie.lookup().findSpecial( 1303 ArrayList.class, "toString" , methodType(String.class), Listie.class); 1304 MethodHandle MH_this = Listie.lookup().findSpecial( 1305 Listie.class, "toString" , methodType(String.class), Listie.class); 1306 MethodHandle MH_duper = Listie.lookup().findSpecial( 1307 Object.class, "toString" , methodType(String.class), Listie.class); 1308 assertEquals("[]", (String) MH_super.invokeExact(l)); 1309 assertEquals(""+l, (String) MH_this.invokeExact(l)); 1310 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method 1311 try { assertEquals("inaccessible", Listie.lookup().findSpecial( 1312 String.class, "toString", methodType(String.class), Listie.class)); 1313 } catch (IllegalAccessException ex) { } // OK 1314 Listie subl = new Listie() { public String toString() { return "[subclass]"; } }; 1315 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method 1316 * }</pre></blockquote> 1317 * 1318 * @param refc the class or interface from which the method is accessed 1319 * @param name the name of the method (which must not be "<init>") 1320 * @param type the type of the method, with the receiver argument omitted 1321 * @param specialCaller the proposed calling class to perform the {@code invokespecial} 1322 * @return the desired method handle 1323 * @throws NoSuchMethodException if the method does not exist 1324 * @throws IllegalAccessException if access checking fails 1325 * or if the method's variable arity modifier bit 1326 * is set and {@code asVarargsCollector} fails 1327 * @exception SecurityException if a security manager is present and it 1328 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1329 * @throws NullPointerException if any argument is null 1330 */ findSpecial(Class<?> refc, String name, MethodType type, Class<?> specialCaller)1331 public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, 1332 Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { 1333 if (specialCaller == null) { 1334 throw new NullPointerException("specialCaller == null"); 1335 } 1336 1337 if (type == null) { 1338 throw new NullPointerException("type == null"); 1339 } 1340 1341 if (name == null) { 1342 throw new NullPointerException("name == null"); 1343 } 1344 1345 if (refc == null) { 1346 throw new NullPointerException("ref == null"); 1347 } 1348 1349 // Make sure that the special caller is identical to the lookup class or that we have 1350 // private access. 1351 // Android-changed: Also allow access to any interface methods. 1352 checkSpecialCaller(specialCaller, refc); 1353 1354 // Even though constructors are invoked using a "special" invoke, handles to them can't 1355 // be created using findSpecial. Callers must use findConstructor instead. Similarly, 1356 // there is no path for calling static class initializers. 1357 if (name.startsWith("<")) { 1358 throw new NoSuchMethodException(name + " is not a valid method name."); 1359 } 1360 1361 Method method = refc.getDeclaredMethod(name, type.ptypes()); 1362 checkReturnType(method, type); 1363 return findSpecial(method, type, refc, specialCaller); 1364 } 1365 findSpecial(Method method, MethodType type, Class<?> refc, Class<?> specialCaller)1366 private MethodHandle findSpecial(Method method, MethodType type, 1367 Class<?> refc, Class<?> specialCaller) 1368 throws IllegalAccessException { 1369 if (Modifier.isStatic(method.getModifiers())) { 1370 throw new IllegalAccessException("expected a non-static method:" + method); 1371 } 1372 1373 if (Modifier.isPrivate(method.getModifiers())) { 1374 // Since this is a private method, we'll need to also make sure that the 1375 // lookup class is the same as the refering class. We've already checked that 1376 // the specialCaller is the same as the special lookup class, both of these must 1377 // be the same as the declaring class(*) in order to access the private method. 1378 // 1379 // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those 1380 // either. 1381 if (refc != lookupClass()) { 1382 throw new IllegalAccessException("no private access for invokespecial : " 1383 + refc + ", from" + this); 1384 } 1385 1386 // This is a private method, so there's nothing special to do. 1387 MethodType handleType = type.insertParameterTypes(0, refc); 1388 return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType); 1389 } 1390 1391 // This is a public, protected or package-private method, which means we're expecting 1392 // invoke-super semantics. We'll have to restrict the receiver type appropriately on the 1393 // handle once we check that there really is a "super" relationship between them. 1394 if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) { 1395 throw new IllegalAccessException(refc + "is not assignable from " + specialCaller); 1396 } 1397 1398 // Note that we restrict the receiver to "specialCaller" instances. 1399 MethodType handleType = type.insertParameterTypes(0, specialCaller); 1400 return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType); 1401 } 1402 1403 /** 1404 * Produces a method handle giving read access to a non-static field. 1405 * The type of the method handle will have a return type of the field's 1406 * value type. 1407 * The method handle's single argument will be the instance containing 1408 * the field. 1409 * Access checking is performed immediately on behalf of the lookup class. 1410 * @param refc the class or interface from which the method is accessed 1411 * @param name the field's name 1412 * @param type the field's type 1413 * @return a method handle which can load values from the field 1414 * @throws NoSuchFieldException if the field does not exist 1415 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1416 * @exception SecurityException if a security manager is present and it 1417 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1418 * @throws NullPointerException if any argument is null 1419 */ findGetter(Class<?> refc, String name, Class<?> type)1420 public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1421 return findAccessor(refc, name, type, MethodHandle.IGET); 1422 } 1423 findAccessor(Class<?> refc, String name, Class<?> type, int kind)1424 private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind) 1425 throws NoSuchFieldException, IllegalAccessException { 1426 final Field field = findFieldOfType(refc, name, type); 1427 return findAccessor(field, refc, type, kind, true /* performAccessChecks */); 1428 } 1429 findAccessor(Field field, Class<?> refc, Class<?> type, int kind, boolean performAccessChecks)1430 private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> type, int kind, 1431 boolean performAccessChecks) 1432 throws IllegalAccessException { 1433 final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT; 1434 final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT; 1435 commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks); 1436 if (performAccessChecks) { 1437 final int modifiers = field.getModifiers(); 1438 if (isSetterKind && Modifier.isFinal(modifiers)) { 1439 throw new IllegalAccessException("Field " + field + " is final"); 1440 } 1441 } 1442 1443 final MethodType methodType; 1444 switch (kind) { 1445 case MethodHandle.SGET: 1446 methodType = MethodType.methodType(type); 1447 break; 1448 case MethodHandle.SPUT: 1449 methodType = MethodType.methodType(void.class, type); 1450 break; 1451 case MethodHandle.IGET: 1452 methodType = MethodType.methodType(type, refc); 1453 break; 1454 case MethodHandle.IPUT: 1455 methodType = MethodType.methodType(void.class, refc, type); 1456 break; 1457 default: 1458 throw new IllegalArgumentException("Invalid kind " + kind); 1459 } 1460 return new MethodHandleImpl(field.getArtField(), kind, methodType); 1461 } 1462 1463 /** 1464 * Produces a method handle giving write access to a non-static field. 1465 * The type of the method handle will have a void return type. 1466 * The method handle will take two arguments, the instance containing 1467 * the field, and the value to be stored. 1468 * The second argument will be of the field's value type. 1469 * Access checking is performed immediately on behalf of the lookup class. 1470 * @param refc the class or interface from which the method is accessed 1471 * @param name the field's name 1472 * @param type the field's type 1473 * @return a method handle which can store values into the field 1474 * @throws NoSuchFieldException if the field does not exist 1475 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1476 * @exception SecurityException if a security manager is present and it 1477 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1478 * @throws NullPointerException if any argument is null 1479 */ findSetter(Class<?> refc, String name, Class<?> type)1480 public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1481 return findAccessor(refc, name, type, MethodHandle.IPUT); 1482 } 1483 1484 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. 1485 /** 1486 * Produces a VarHandle giving access to a non-static field {@code name} 1487 * of type {@code type} declared in a class of type {@code recv}. 1488 * The VarHandle's variable type is {@code type} and it has one 1489 * coordinate type, {@code recv}. 1490 * <p> 1491 * Access checking is performed immediately on behalf of the lookup 1492 * class. 1493 * <p> 1494 * Certain access modes of the returned VarHandle are unsupported under 1495 * the following conditions: 1496 * <ul> 1497 * <li>if the field is declared {@code final}, then the write, atomic 1498 * update, numeric atomic update, and bitwise atomic update access 1499 * modes are unsupported. 1500 * <li>if the field type is anything other than {@code byte}, 1501 * {@code short}, {@code char}, {@code int}, {@code long}, 1502 * {@code float}, or {@code double} then numeric atomic update 1503 * access modes are unsupported. 1504 * <li>if the field type is anything other than {@code boolean}, 1505 * {@code byte}, {@code short}, {@code char}, {@code int} or 1506 * {@code long} then bitwise atomic update access modes are 1507 * unsupported. 1508 * </ul> 1509 * <p> 1510 * If the field is declared {@code volatile} then the returned VarHandle 1511 * will override access to the field (effectively ignore the 1512 * {@code volatile} declaration) in accordance to its specified 1513 * access modes. 1514 * <p> 1515 * If the field type is {@code float} or {@code double} then numeric 1516 * and atomic update access modes compare values using their bitwise 1517 * representation (see {@link Float#floatToRawIntBits} and 1518 * {@link Double#doubleToRawLongBits}, respectively). 1519 * @apiNote 1520 * Bitwise comparison of {@code float} values or {@code double} values, 1521 * as performed by the numeric and atomic update access modes, differ 1522 * from the primitive {@code ==} operator and the {@link Float#equals} 1523 * and {@link Double#equals} methods, specifically with respect to 1524 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 1525 * Care should be taken when performing a compare and set or a compare 1526 * and exchange operation with such values since the operation may 1527 * unexpectedly fail. 1528 * There are many possible NaN values that are considered to be 1529 * {@code NaN} in Java, although no IEEE 754 floating-point operation 1530 * provided by Java can distinguish between them. Operation failure can 1531 * occur if the expected or witness value is a NaN value and it is 1532 * transformed (perhaps in a platform specific manner) into another NaN 1533 * value, and thus has a different bitwise representation (see 1534 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 1535 * details). 1536 * The values {@code -0.0} and {@code +0.0} have different bitwise 1537 * representations but are considered equal when using the primitive 1538 * {@code ==} operator. Operation failure can occur if, for example, a 1539 * numeric algorithm computes an expected value to be say {@code -0.0} 1540 * and previously computed the witness value to be say {@code +0.0}. 1541 * @param recv the receiver class, of type {@code R}, that declares the 1542 * non-static field 1543 * @param name the field's name 1544 * @param type the field's type, of type {@code T} 1545 * @return a VarHandle giving access to non-static fields. 1546 * @throws NoSuchFieldException if the field does not exist 1547 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1548 * @exception SecurityException if a security manager is present and it 1549 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1550 * @throws NullPointerException if any argument is null 1551 * @since 9 1552 */ findVarHandle(Class<?> recv, String name, Class<?> type)1553 public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1554 final Field field = findFieldOfType(recv, name, type); 1555 final boolean isStatic = false; 1556 final boolean performAccessChecks = true; 1557 commonFieldChecks(field, recv, type, isStatic, performAccessChecks); 1558 return FieldVarHandle.create(field); 1559 } 1560 // END Android-changed: OpenJDK 9+181 VarHandle API factory method. 1561 1562 // BEGIN Android-added: Common field resolution and access check methods. findFieldOfType(final Class<?> refc, String name, Class<?> type)1563 private Field findFieldOfType(final Class<?> refc, String name, Class<?> type) 1564 throws NoSuchFieldException { 1565 Field field = null; 1566 1567 // Search refc and super classes for the field. 1568 for (Class<?> cls = refc; cls != null; cls = cls.getSuperclass()) { 1569 try { 1570 field = cls.getDeclaredField(name); 1571 break; 1572 } catch (NoSuchFieldException e) { 1573 } 1574 } 1575 1576 if (field == null) { 1577 // Force failure citing refc. 1578 field = refc.getDeclaredField(name); 1579 } 1580 1581 final Class<?> fieldType = field.getType(); 1582 if (fieldType != type) { 1583 throw new NoSuchFieldException(name); 1584 } 1585 return field; 1586 } 1587 commonFieldChecks(Field field, Class<?> refc, Class<?> type, boolean isStatic, boolean performAccessChecks)1588 private void commonFieldChecks(Field field, Class<?> refc, Class<?> type, 1589 boolean isStatic, boolean performAccessChecks) 1590 throws IllegalAccessException { 1591 final int modifiers = field.getModifiers(); 1592 if (performAccessChecks) { 1593 checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName()); 1594 } 1595 if (Modifier.isStatic(modifiers) != isStatic) { 1596 String reason = "Field " + field + " is " + 1597 (isStatic ? "not " : "") + "static"; 1598 throw new IllegalAccessException(reason); 1599 } 1600 } 1601 // END Android-added: Common field resolution and access check methods. 1602 1603 /** 1604 * Produces a method handle giving read access to a static field. 1605 * The type of the method handle will have a return type of the field's 1606 * value type. 1607 * The method handle will take no arguments. 1608 * Access checking is performed immediately on behalf of the lookup class. 1609 * <p> 1610 * If the returned method handle is invoked, the field's class will 1611 * be initialized, if it has not already been initialized. 1612 * @param refc the class or interface from which the method is accessed 1613 * @param name the field's name 1614 * @param type the field's type 1615 * @return a method handle which can load values from the field 1616 * @throws NoSuchFieldException if the field does not exist 1617 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1618 * @exception SecurityException if a security manager is present and it 1619 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1620 * @throws NullPointerException if any argument is null 1621 */ findStaticGetter(Class<?> refc, String name, Class<?> type)1622 public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1623 return findAccessor(refc, name, type, MethodHandle.SGET); 1624 } 1625 1626 /** 1627 * Produces a method handle giving write access to a static field. 1628 * The type of the method handle will have a void return type. 1629 * The method handle will take a single 1630 * argument, of the field's value type, the value to be stored. 1631 * Access checking is performed immediately on behalf of the lookup class. 1632 * <p> 1633 * If the returned method handle is invoked, the field's class will 1634 * be initialized, if it has not already been initialized. 1635 * @param refc the class or interface from which the method is accessed 1636 * @param name the field's name 1637 * @param type the field's type 1638 * @return a method handle which can store values into the field 1639 * @throws NoSuchFieldException if the field does not exist 1640 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1641 * @exception SecurityException if a security manager is present and it 1642 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1643 * @throws NullPointerException if any argument is null 1644 */ findStaticSetter(Class<?> refc, String name, Class<?> type)1645 public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1646 return findAccessor(refc, name, type, MethodHandle.SPUT); 1647 } 1648 1649 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. 1650 /** 1651 * Produces a VarHandle giving access to a static field {@code name} of 1652 * type {@code type} declared in a class of type {@code decl}. 1653 * The VarHandle's variable type is {@code type} and it has no 1654 * coordinate types. 1655 * <p> 1656 * Access checking is performed immediately on behalf of the lookup 1657 * class. 1658 * <p> 1659 * If the returned VarHandle is operated on, the declaring class will be 1660 * initialized, if it has not already been initialized. 1661 * <p> 1662 * Certain access modes of the returned VarHandle are unsupported under 1663 * the following conditions: 1664 * <ul> 1665 * <li>if the field is declared {@code final}, then the write, atomic 1666 * update, numeric atomic update, and bitwise atomic update access 1667 * modes are unsupported. 1668 * <li>if the field type is anything other than {@code byte}, 1669 * {@code short}, {@code char}, {@code int}, {@code long}, 1670 * {@code float}, or {@code double}, then numeric atomic update 1671 * access modes are unsupported. 1672 * <li>if the field type is anything other than {@code boolean}, 1673 * {@code byte}, {@code short}, {@code char}, {@code int} or 1674 * {@code long} then bitwise atomic update access modes are 1675 * unsupported. 1676 * </ul> 1677 * <p> 1678 * If the field is declared {@code volatile} then the returned VarHandle 1679 * will override access to the field (effectively ignore the 1680 * {@code volatile} declaration) in accordance to its specified 1681 * access modes. 1682 * <p> 1683 * If the field type is {@code float} or {@code double} then numeric 1684 * and atomic update access modes compare values using their bitwise 1685 * representation (see {@link Float#floatToRawIntBits} and 1686 * {@link Double#doubleToRawLongBits}, respectively). 1687 * @apiNote 1688 * Bitwise comparison of {@code float} values or {@code double} values, 1689 * as performed by the numeric and atomic update access modes, differ 1690 * from the primitive {@code ==} operator and the {@link Float#equals} 1691 * and {@link Double#equals} methods, specifically with respect to 1692 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 1693 * Care should be taken when performing a compare and set or a compare 1694 * and exchange operation with such values since the operation may 1695 * unexpectedly fail. 1696 * There are many possible NaN values that are considered to be 1697 * {@code NaN} in Java, although no IEEE 754 floating-point operation 1698 * provided by Java can distinguish between them. Operation failure can 1699 * occur if the expected or witness value is a NaN value and it is 1700 * transformed (perhaps in a platform specific manner) into another NaN 1701 * value, and thus has a different bitwise representation (see 1702 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 1703 * details). 1704 * The values {@code -0.0} and {@code +0.0} have different bitwise 1705 * representations but are considered equal when using the primitive 1706 * {@code ==} operator. Operation failure can occur if, for example, a 1707 * numeric algorithm computes an expected value to be say {@code -0.0} 1708 * and previously computed the witness value to be say {@code +0.0}. 1709 * @param decl the class that declares the static field 1710 * @param name the field's name 1711 * @param type the field's type, of type {@code T} 1712 * @return a VarHandle giving access to a static field 1713 * @throws NoSuchFieldException if the field does not exist 1714 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1715 * @exception SecurityException if a security manager is present and it 1716 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1717 * @throws NullPointerException if any argument is null 1718 * @since 9 1719 */ findStaticVarHandle(Class<?> decl, String name, Class<?> type)1720 public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1721 final Field field = findFieldOfType(decl, name, type); 1722 final boolean isStatic = true; 1723 final boolean performAccessChecks = true; 1724 commonFieldChecks(field, decl, type, isStatic, performAccessChecks); 1725 return StaticFieldVarHandle.create(field); 1726 } 1727 // END Android-changed: OpenJDK 9+181 VarHandle API factory method. 1728 1729 /** 1730 * Produces an early-bound method handle for a non-static method. 1731 * The receiver must have a supertype {@code defc} in which a method 1732 * of the given name and type is accessible to the lookup class. 1733 * The method and all its argument types must be accessible to the lookup object. 1734 * The type of the method handle will be that of the method, 1735 * without any insertion of an additional receiver parameter. 1736 * The given receiver will be bound into the method handle, 1737 * so that every call to the method handle will invoke the 1738 * requested method on the given receiver. 1739 * <p> 1740 * The returned method handle will have 1741 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1742 * the method's variable arity modifier bit ({@code 0x0080}) is set 1743 * <em>and</em> the trailing array argument is not the only argument. 1744 * (If the trailing array argument is the only argument, 1745 * the given receiver value will be bound to it.) 1746 * <p> 1747 * This is equivalent to the following code: 1748 * <blockquote><pre>{@code 1749 import static java.lang.invoke.MethodHandles.*; 1750 import static java.lang.invoke.MethodType.*; 1751 ... 1752 MethodHandle mh0 = lookup().findVirtual(defc, name, type); 1753 MethodHandle mh1 = mh0.bindTo(receiver); 1754 MethodType mt1 = mh1.type(); 1755 if (mh0.isVarargsCollector()) 1756 mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1)); 1757 return mh1; 1758 * }</pre></blockquote> 1759 * where {@code defc} is either {@code receiver.getClass()} or a super 1760 * type of that class, in which the requested method is accessible 1761 * to the lookup class. 1762 * (Note that {@code bindTo} does not preserve variable arity.) 1763 * @param receiver the object from which the method is accessed 1764 * @param name the name of the method 1765 * @param type the type of the method, with the receiver argument omitted 1766 * @return the desired method handle 1767 * @throws NoSuchMethodException if the method does not exist 1768 * @throws IllegalAccessException if access checking fails 1769 * or if the method's variable arity modifier bit 1770 * is set and {@code asVarargsCollector} fails 1771 * @exception SecurityException if a security manager is present and it 1772 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1773 * @throws NullPointerException if any argument is null 1774 * @see MethodHandle#bindTo 1775 * @see #findVirtual 1776 */ bind(Object receiver, String name, MethodType type)1777 public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1778 MethodHandle handle = findVirtual(receiver.getClass(), name, type); 1779 MethodHandle adapter = handle.bindTo(receiver); 1780 MethodType adapterType = adapter.type(); 1781 if (handle.isVarargsCollector()) { 1782 adapter = adapter.asVarargsCollector( 1783 adapterType.parameterType(adapterType.parameterCount() - 1)); 1784 } 1785 1786 return adapter; 1787 } 1788 1789 /** 1790 * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 1791 * to <i>m</i>, if the lookup class has permission. 1792 * If <i>m</i> is non-static, the receiver argument is treated as an initial argument. 1793 * If <i>m</i> is virtual, overriding is respected on every call. 1794 * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. 1795 * The type of the method handle will be that of the method, 1796 * with the receiver type prepended (but only if it is non-static). 1797 * If the method's {@code accessible} flag is not set, 1798 * access checking is performed immediately on behalf of the lookup class. 1799 * If <i>m</i> is not public, do not share the resulting handle with untrusted parties. 1800 * <p> 1801 * The returned method handle will have 1802 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1803 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1804 * <p> 1805 * If <i>m</i> is static, and 1806 * if the returned method handle is invoked, the method's class will 1807 * be initialized, if it has not already been initialized. 1808 * @param m the reflected method 1809 * @return a method handle which can invoke the reflected method 1810 * @throws IllegalAccessException if access checking fails 1811 * or if the method's variable arity modifier bit 1812 * is set and {@code asVarargsCollector} fails 1813 * @throws NullPointerException if the argument is null 1814 */ unreflect(Method m)1815 public MethodHandle unreflect(Method m) throws IllegalAccessException { 1816 if (m == null) { 1817 throw new NullPointerException("m == null"); 1818 } 1819 1820 MethodType methodType = MethodType.methodType(m.getReturnType(), 1821 m.getParameterTypes()); 1822 1823 // We should only perform access checks if setAccessible hasn't been called yet. 1824 if (!m.isAccessible()) { 1825 checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(), 1826 m.getName()); 1827 } 1828 1829 if (Modifier.isStatic(m.getModifiers())) { 1830 return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType); 1831 } else { 1832 methodType = methodType.insertParameterTypes(0, m.getDeclaringClass()); 1833 return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType); 1834 } 1835 } 1836 1837 /** 1838 * Produces a method handle for a reflected method. 1839 * It will bypass checks for overriding methods on the receiver, 1840 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 1841 * instruction from within the explicitly specified {@code specialCaller}. 1842 * The type of the method handle will be that of the method, 1843 * with a suitably restricted receiver type prepended. 1844 * (The receiver type will be {@code specialCaller} or a subtype.) 1845 * If the method's {@code accessible} flag is not set, 1846 * access checking is performed immediately on behalf of the lookup class, 1847 * as if {@code invokespecial} instruction were being linked. 1848 * <p> 1849 * Before method resolution, 1850 * if the explicitly specified caller class is not identical with the 1851 * lookup class, or if this lookup object does not have 1852 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 1853 * privileges, the access fails. 1854 * <p> 1855 * The returned method handle will have 1856 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1857 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1858 * @param m the reflected method 1859 * @param specialCaller the class nominally calling the method 1860 * @return a method handle which can invoke the reflected method 1861 * @throws IllegalAccessException if access checking fails 1862 * or if the method's variable arity modifier bit 1863 * is set and {@code asVarargsCollector} fails 1864 * @throws NullPointerException if any argument is null 1865 */ unreflectSpecial(Method m, Class<?> specialCaller)1866 public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { 1867 if (m == null) { 1868 throw new NullPointerException("m == null"); 1869 } 1870 1871 if (specialCaller == null) { 1872 throw new NullPointerException("specialCaller == null"); 1873 } 1874 1875 if (!m.isAccessible()) { 1876 // Android-changed: Match Java language 9 behavior where unreflectSpecial continues 1877 // to require exact caller lookupClass match. 1878 checkSpecialCaller(specialCaller, null); 1879 } 1880 1881 final MethodType methodType = MethodType.methodType(m.getReturnType(), 1882 m.getParameterTypes()); 1883 return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller); 1884 } 1885 1886 /** 1887 * Produces a method handle for a reflected constructor. 1888 * The type of the method handle will be that of the constructor, 1889 * with the return type changed to the declaring class. 1890 * The method handle will perform a {@code newInstance} operation, 1891 * creating a new instance of the constructor's class on the 1892 * arguments passed to the method handle. 1893 * <p> 1894 * If the constructor's {@code accessible} flag is not set, 1895 * access checking is performed immediately on behalf of the lookup class. 1896 * <p> 1897 * The returned method handle will have 1898 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1899 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 1900 * <p> 1901 * If the returned method handle is invoked, the constructor's class will 1902 * be initialized, if it has not already been initialized. 1903 * @param c the reflected constructor 1904 * @return a method handle which can invoke the reflected constructor 1905 * @throws IllegalAccessException if access checking fails 1906 * or if the method's variable arity modifier bit 1907 * is set and {@code asVarargsCollector} fails 1908 * @throws NullPointerException if the argument is null 1909 */ unreflectConstructor(Constructor<?> c)1910 public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException { 1911 if (c == null) { 1912 throw new NullPointerException("c == null"); 1913 } 1914 1915 if (!c.isAccessible()) { 1916 checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(), 1917 c.getName()); 1918 } 1919 1920 return createMethodHandleForConstructor(c); 1921 } 1922 1923 /** 1924 * Produces a method handle giving read access to a reflected field. 1925 * The type of the method handle will have a return type of the field's 1926 * value type. 1927 * If the field is static, the method handle will take no arguments. 1928 * Otherwise, its single argument will be the instance containing 1929 * the field. 1930 * If the field's {@code accessible} flag is not set, 1931 * access checking is performed immediately on behalf of the lookup class. 1932 * <p> 1933 * If the field is static, and 1934 * if the returned method handle is invoked, the field's class will 1935 * be initialized, if it has not already been initialized. 1936 * @param f the reflected field 1937 * @return a method handle which can load values from the reflected field 1938 * @throws IllegalAccessException if access checking fails 1939 * @throws NullPointerException if the argument is null 1940 */ unreflectGetter(Field f)1941 public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { 1942 return findAccessor(f, f.getDeclaringClass(), f.getType(), 1943 Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET, 1944 !f.isAccessible() /* performAccessChecks */); 1945 } 1946 1947 /** 1948 * Produces a method handle giving write access to a reflected field. 1949 * The type of the method handle will have a void return type. 1950 * If the field is static, the method handle will take a single 1951 * argument, of the field's value type, the value to be stored. 1952 * Otherwise, the two arguments will be the instance containing 1953 * the field, and the value to be stored. 1954 * If the field's {@code accessible} flag is not set, 1955 * access checking is performed immediately on behalf of the lookup class. 1956 * <p> 1957 * If the field is static, and 1958 * if the returned method handle is invoked, the field's class will 1959 * be initialized, if it has not already been initialized. 1960 * @param f the reflected field 1961 * @return a method handle which can store values into the reflected field 1962 * @throws IllegalAccessException if access checking fails 1963 * @throws NullPointerException if the argument is null 1964 */ unreflectSetter(Field f)1965 public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { 1966 return findAccessor(f, f.getDeclaringClass(), f.getType(), 1967 Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT, 1968 !f.isAccessible() /* performAccessChecks */); 1969 } 1970 1971 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. 1972 /** 1973 * Produces a VarHandle giving access to a reflected field {@code f} 1974 * of type {@code T} declared in a class of type {@code R}. 1975 * The VarHandle's variable type is {@code T}. 1976 * If the field is non-static the VarHandle has one coordinate type, 1977 * {@code R}. Otherwise, the field is static, and the VarHandle has no 1978 * coordinate types. 1979 * <p> 1980 * Access checking is performed immediately on behalf of the lookup 1981 * class, regardless of the value of the field's {@code accessible} 1982 * flag. 1983 * <p> 1984 * If the field is static, and if the returned VarHandle is operated 1985 * on, the field's declaring class will be initialized, if it has not 1986 * already been initialized. 1987 * <p> 1988 * Certain access modes of the returned VarHandle are unsupported under 1989 * the following conditions: 1990 * <ul> 1991 * <li>if the field is declared {@code final}, then the write, atomic 1992 * update, numeric atomic update, and bitwise atomic update access 1993 * modes are unsupported. 1994 * <li>if the field type is anything other than {@code byte}, 1995 * {@code short}, {@code char}, {@code int}, {@code long}, 1996 * {@code float}, or {@code double} then numeric atomic update 1997 * access modes are unsupported. 1998 * <li>if the field type is anything other than {@code boolean}, 1999 * {@code byte}, {@code short}, {@code char}, {@code int} or 2000 * {@code long} then bitwise atomic update access modes are 2001 * unsupported. 2002 * </ul> 2003 * <p> 2004 * If the field is declared {@code volatile} then the returned VarHandle 2005 * will override access to the field (effectively ignore the 2006 * {@code volatile} declaration) in accordance to its specified 2007 * access modes. 2008 * <p> 2009 * If the field type is {@code float} or {@code double} then numeric 2010 * and atomic update access modes compare values using their bitwise 2011 * representation (see {@link Float#floatToRawIntBits} and 2012 * {@link Double#doubleToRawLongBits}, respectively). 2013 * @apiNote 2014 * Bitwise comparison of {@code float} values or {@code double} values, 2015 * as performed by the numeric and atomic update access modes, differ 2016 * from the primitive {@code ==} operator and the {@link Float#equals} 2017 * and {@link Double#equals} methods, specifically with respect to 2018 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 2019 * Care should be taken when performing a compare and set or a compare 2020 * and exchange operation with such values since the operation may 2021 * unexpectedly fail. 2022 * There are many possible NaN values that are considered to be 2023 * {@code NaN} in Java, although no IEEE 754 floating-point operation 2024 * provided by Java can distinguish between them. Operation failure can 2025 * occur if the expected or witness value is a NaN value and it is 2026 * transformed (perhaps in a platform specific manner) into another NaN 2027 * value, and thus has a different bitwise representation (see 2028 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 2029 * details). 2030 * The values {@code -0.0} and {@code +0.0} have different bitwise 2031 * representations but are considered equal when using the primitive 2032 * {@code ==} operator. Operation failure can occur if, for example, a 2033 * numeric algorithm computes an expected value to be say {@code -0.0} 2034 * and previously computed the witness value to be say {@code +0.0}. 2035 * @param f the reflected field, with a field of type {@code T}, and 2036 * a declaring class of type {@code R} 2037 * @return a VarHandle giving access to non-static fields or a static 2038 * field 2039 * @throws IllegalAccessException if access checking fails 2040 * @throws NullPointerException if the argument is null 2041 * @since 9 2042 */ unreflectVarHandle(Field f)2043 public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { 2044 final boolean isStatic = Modifier.isStatic(f.getModifiers()); 2045 final boolean performAccessChecks = true; 2046 commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks); 2047 return isStatic ? StaticFieldVarHandle.create(f) : FieldVarHandle.create(f); 2048 } 2049 // END Android-changed: OpenJDK 9+181 VarHandle API factory method. 2050 2051 /** 2052 * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 2053 * created by this lookup object or a similar one. 2054 * Security and access checks are performed to ensure that this lookup object 2055 * is capable of reproducing the target method handle. 2056 * This means that the cracking may fail if target is a direct method handle 2057 * but was created by an unrelated lookup object. 2058 * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> 2059 * and was created by a lookup object for a different class. 2060 * @param target a direct method handle to crack into symbolic reference components 2061 * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object 2062 * @exception SecurityException if a security manager is present and it 2063 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2064 * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails 2065 * @exception NullPointerException if the target is {@code null} 2066 * @see MethodHandleInfo 2067 * @since 1.8 2068 */ revealDirect(MethodHandle target)2069 public MethodHandleInfo revealDirect(MethodHandle target) { 2070 MethodHandleImpl directTarget = getMethodHandleImpl(target); 2071 MethodHandleInfo info = directTarget.reveal(); 2072 2073 try { 2074 checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(), 2075 info.getName()); 2076 } catch (IllegalAccessException exception) { 2077 throw new IllegalArgumentException("Unable to access memeber.", exception); 2078 } 2079 2080 return info; 2081 } 2082 hasPrivateAccess()2083 private boolean hasPrivateAccess() { 2084 return (allowedModes & PRIVATE) != 0; 2085 } 2086 2087 /** Check public/protected/private bits on the symbolic reference class and its member. */ checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)2088 void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName) 2089 throws IllegalAccessException { 2090 int allowedModes = this.allowedModes; 2091 2092 if (Modifier.isProtected(mods) && 2093 defc == Object.class && 2094 "clone".equals(methName) && 2095 refc.isArray()) { 2096 // The JVM does this hack also. 2097 // (See ClassVerifier::verify_invoke_instructions 2098 // and LinkResolver::check_method_accessability.) 2099 // Because the JVM does not allow separate methods on array types, 2100 // there is no separate method for int[].clone. 2101 // All arrays simply inherit Object.clone. 2102 // But for access checking logic, we make Object.clone 2103 // (normally protected) appear to be public. 2104 // Later on, when the DirectMethodHandle is created, 2105 // its leading argument will be restricted to the 2106 // requested array type. 2107 // N.B. The return type is not adjusted, because 2108 // that is *not* the bytecode behavior. 2109 mods ^= Modifier.PROTECTED | Modifier.PUBLIC; 2110 } 2111 2112 if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) { 2113 // cannot "new" a protected ctor in a different package 2114 mods ^= Modifier.PROTECTED; 2115 } 2116 2117 if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) 2118 return; // common case 2119 int requestedModes = fixmods(mods); // adjust 0 => PACKAGE 2120 if ((requestedModes & allowedModes) != 0) { 2121 if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes)) 2122 return; 2123 } else { 2124 // Protected members can also be checked as if they were package-private. 2125 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 2126 && VerifyAccess.isSamePackage(defc, lookupClass())) 2127 return; 2128 } 2129 2130 throwMakeAccessException(accessFailedMessage(refc, defc, mods), this); 2131 } 2132 accessFailedMessage(Class<?> refc, Class<?> defc, int mods)2133 String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) { 2134 // check the class first: 2135 boolean classOK = (Modifier.isPublic(defc.getModifiers()) && 2136 (defc == refc || 2137 Modifier.isPublic(refc.getModifiers()))); 2138 if (!classOK && (allowedModes & PACKAGE) != 0) { 2139 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) && 2140 (defc == refc || 2141 VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES))); 2142 } 2143 if (!classOK) 2144 return "class is not public"; 2145 if (Modifier.isPublic(mods)) 2146 return "access to public member failed"; // (how?) 2147 if (Modifier.isPrivate(mods)) 2148 return "member is private"; 2149 if (Modifier.isProtected(mods)) 2150 return "member is protected"; 2151 return "member is private to package"; 2152 } 2153 2154 // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false, 2155 // as in upstream OpenJDK. 2156 // 2157 // private static final boolean ALLOW_NESTMATE_ACCESS = false; 2158 2159 // Android-changed: Match java language 9 behavior allowing special access if the reflected 2160 // class (called 'refc', the class from which the method is being accessed) is an interface 2161 // and is implemented by the caller. checkSpecialCaller(Class<?> specialCaller, Class<?> refc)2162 private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException { 2163 // Android-changed: No support for TRUSTED lookups. Also construct the 2164 // IllegalAccessException by hand because the upstream code implicitly assumes 2165 // that the lookupClass == specialCaller. 2166 // 2167 // if (allowedModes == TRUSTED) return; 2168 boolean isInterfaceLookup = (refc != null && 2169 refc.isInterface() && 2170 refc.isAssignableFrom(specialCaller)); 2171 if (!hasPrivateAccess() || (specialCaller != lookupClass() && !isInterfaceLookup)) { 2172 throw new IllegalAccessException("no private access for invokespecial : " 2173 + specialCaller + ", from" + this); 2174 } 2175 } 2176 throwMakeAccessException(String message, Object from)2177 private void throwMakeAccessException(String message, Object from) throws 2178 IllegalAccessException{ 2179 message = message + ": "+ toString(); 2180 if (from != null) message += ", from " + from; 2181 throw new IllegalAccessException(message); 2182 } 2183 checkReturnType(Method method, MethodType methodType)2184 private void checkReturnType(Method method, MethodType methodType) 2185 throws NoSuchMethodException { 2186 if (method.getReturnType() != methodType.rtype()) { 2187 throw new NoSuchMethodException(method.getName() + methodType); 2188 } 2189 } 2190 } 2191 2192 /** 2193 * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}. 2194 */ getMethodHandleImpl(MethodHandle target)2195 private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) { 2196 // Special case : We implement handles to constructors as transformers, 2197 // so we must extract the underlying handle from the transformer. 2198 if (target instanceof Transformers.Construct) { 2199 target = ((Transformers.Construct) target).getConstructorHandle(); 2200 } 2201 2202 // Special case: Var-args methods are also implemented as Transformers, 2203 // so we should get the underlying handle in that case as well. 2204 if (target instanceof Transformers.VarargsCollector) { 2205 target = target.asFixedArity(); 2206 } 2207 2208 if (target instanceof MethodHandleImpl) { 2209 return (MethodHandleImpl) target; 2210 } 2211 2212 throw new IllegalArgumentException(target + " is not a direct handle"); 2213 } 2214 2215 // Android-removed: unsupported @jvms tag in doc-comment. 2216 /** 2217 * Produces a method handle constructing arrays of a desired type, 2218 * as if by the {@code anewarray} bytecode. 2219 * The return type of the method handle will be the array type. 2220 * The type of its sole argument will be {@code int}, which specifies the size of the array. 2221 * 2222 * <p> If the returned method handle is invoked with a negative 2223 * array size, a {@code NegativeArraySizeException} will be thrown. 2224 * 2225 * @param arrayClass an array type 2226 * @return a method handle which can create arrays of the given type 2227 * @throws NullPointerException if the argument is {@code null} 2228 * @throws IllegalArgumentException if {@code arrayClass} is not an array type 2229 * @see java.lang.reflect.Array#newInstance(Class, int) 2230 * @since 9 2231 */ 2232 public static arrayConstructor(Class<?> arrayClass)2233 MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException { 2234 if (!arrayClass.isArray()) { 2235 throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); 2236 } 2237 // Android-changed: transformer based implementation. 2238 // MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). 2239 // bindTo(arrayClass.getComponentType()); 2240 // return ani.asType(ani.type().changeReturnType(arrayClass)) 2241 return new Transformers.ArrayConstructor(arrayClass); 2242 } 2243 2244 // Android-removed: unsupported @jvms tag in doc-comment. 2245 /** 2246 * Produces a method handle returning the length of an array, 2247 * as if by the {@code arraylength} bytecode. 2248 * The type of the method handle will have {@code int} as return type, 2249 * and its sole argument will be the array type. 2250 * 2251 * <p> If the returned method handle is invoked with a {@code null} 2252 * array reference, a {@code NullPointerException} will be thrown. 2253 * 2254 * @param arrayClass an array type 2255 * @return a method handle which can retrieve the length of an array of the given array type 2256 * @throws NullPointerException if the argument is {@code null} 2257 * @throws IllegalArgumentException if arrayClass is not an array type 2258 * @since 9 2259 */ 2260 public static arrayLength(Class<?> arrayClass)2261 MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException { 2262 // Android-changed: transformer based implementation. 2263 // return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); 2264 if (!arrayClass.isArray()) { 2265 throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); 2266 } 2267 return new Transformers.ArrayLength(arrayClass); 2268 } 2269 2270 // BEGIN Android-added: method to check if a class is an array. checkClassIsArray(Class<?> c)2271 private static void checkClassIsArray(Class<?> c) { 2272 if (!c.isArray()) { 2273 throw new IllegalArgumentException("Not an array type: " + c); 2274 } 2275 } 2276 checkTypeIsViewable(Class<?> componentType)2277 private static void checkTypeIsViewable(Class<?> componentType) { 2278 if (componentType == short.class || 2279 componentType == char.class || 2280 componentType == int.class || 2281 componentType == long.class || 2282 componentType == float.class || 2283 componentType == double.class) { 2284 return; 2285 } 2286 throw new UnsupportedOperationException("Component type not supported: " + componentType); 2287 } 2288 // END Android-added: method to check if a class is an array. 2289 2290 /** 2291 * Produces a method handle giving read access to elements of an array. 2292 * The type of the method handle will have a return type of the array's 2293 * element type. Its first argument will be the array type, 2294 * and the second will be {@code int}. 2295 * @param arrayClass an array type 2296 * @return a method handle which can load values from the given array type 2297 * @throws NullPointerException if the argument is null 2298 * @throws IllegalArgumentException if arrayClass is not an array type 2299 */ 2300 public static arrayElementGetter(Class<?> arrayClass)2301 MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { 2302 checkClassIsArray(arrayClass); 2303 final Class<?> componentType = arrayClass.getComponentType(); 2304 if (componentType.isPrimitive()) { 2305 try { 2306 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, 2307 "arrayElementGetter", 2308 MethodType.methodType(componentType, arrayClass, int.class)); 2309 } catch (NoSuchMethodException | IllegalAccessException exception) { 2310 throw new AssertionError(exception); 2311 } 2312 } 2313 2314 return new Transformers.ReferenceArrayElementGetter(arrayClass); 2315 } 2316 arrayElementGetter(byte[] array, int i)2317 /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; } arrayElementGetter(boolean[] array, int i)2318 /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; } arrayElementGetter(char[] array, int i)2319 /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; } arrayElementGetter(short[] array, int i)2320 /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; } arrayElementGetter(int[] array, int i)2321 /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; } arrayElementGetter(long[] array, int i)2322 /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; } arrayElementGetter(float[] array, int i)2323 /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; } arrayElementGetter(double[] array, int i)2324 /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; } 2325 2326 /** 2327 * Produces a method handle giving write access to elements of an array. 2328 * The type of the method handle will have a void return type. 2329 * Its last argument will be the array's element type. 2330 * The first and second arguments will be the array type and int. 2331 * @param arrayClass the class of an array 2332 * @return a method handle which can store values into the array type 2333 * @throws NullPointerException if the argument is null 2334 * @throws IllegalArgumentException if arrayClass is not an array type 2335 */ 2336 public static arrayElementSetter(Class<?> arrayClass)2337 MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { 2338 checkClassIsArray(arrayClass); 2339 final Class<?> componentType = arrayClass.getComponentType(); 2340 if (componentType.isPrimitive()) { 2341 try { 2342 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, 2343 "arrayElementSetter", 2344 MethodType.methodType(void.class, arrayClass, int.class, componentType)); 2345 } catch (NoSuchMethodException | IllegalAccessException exception) { 2346 throw new AssertionError(exception); 2347 } 2348 } 2349 2350 return new Transformers.ReferenceArrayElementSetter(arrayClass); 2351 } 2352 2353 /** @hide */ arrayElementSetter(byte[] array, int i, byte val)2354 public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; } 2355 /** @hide */ arrayElementSetter(boolean[] array, int i, boolean val)2356 public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; } 2357 /** @hide */ arrayElementSetter(char[] array, int i, char val)2358 public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; } 2359 /** @hide */ arrayElementSetter(short[] array, int i, short val)2360 public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; } 2361 /** @hide */ arrayElementSetter(int[] array, int i, int val)2362 public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; } 2363 /** @hide */ arrayElementSetter(long[] array, int i, long val)2364 public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; } 2365 /** @hide */ arrayElementSetter(float[] array, int i, float val)2366 public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; } 2367 /** @hide */ arrayElementSetter(double[] array, int i, double val)2368 public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; } 2369 2370 // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods. 2371 /** 2372 * Produces a VarHandle giving access to elements of an array of type 2373 * {@code arrayClass}. The VarHandle's variable type is the component type 2374 * of {@code arrayClass} and the list of coordinate types is 2375 * {@code (arrayClass, int)}, where the {@code int} coordinate type 2376 * corresponds to an argument that is an index into an array. 2377 * <p> 2378 * Certain access modes of the returned VarHandle are unsupported under 2379 * the following conditions: 2380 * <ul> 2381 * <li>if the component type is anything other than {@code byte}, 2382 * {@code short}, {@code char}, {@code int}, {@code long}, 2383 * {@code float}, or {@code double} then numeric atomic update access 2384 * modes are unsupported. 2385 * <li>if the field type is anything other than {@code boolean}, 2386 * {@code byte}, {@code short}, {@code char}, {@code int} or 2387 * {@code long} then bitwise atomic update access modes are 2388 * unsupported. 2389 * </ul> 2390 * <p> 2391 * If the component type is {@code float} or {@code double} then numeric 2392 * and atomic update access modes compare values using their bitwise 2393 * representation (see {@link Float#floatToRawIntBits} and 2394 * {@link Double#doubleToRawLongBits}, respectively). 2395 * @apiNote 2396 * Bitwise comparison of {@code float} values or {@code double} values, 2397 * as performed by the numeric and atomic update access modes, differ 2398 * from the primitive {@code ==} operator and the {@link Float#equals} 2399 * and {@link Double#equals} methods, specifically with respect to 2400 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 2401 * Care should be taken when performing a compare and set or a compare 2402 * and exchange operation with such values since the operation may 2403 * unexpectedly fail. 2404 * There are many possible NaN values that are considered to be 2405 * {@code NaN} in Java, although no IEEE 754 floating-point operation 2406 * provided by Java can distinguish between them. Operation failure can 2407 * occur if the expected or witness value is a NaN value and it is 2408 * transformed (perhaps in a platform specific manner) into another NaN 2409 * value, and thus has a different bitwise representation (see 2410 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 2411 * details). 2412 * The values {@code -0.0} and {@code +0.0} have different bitwise 2413 * representations but are considered equal when using the primitive 2414 * {@code ==} operator. Operation failure can occur if, for example, a 2415 * numeric algorithm computes an expected value to be say {@code -0.0} 2416 * and previously computed the witness value to be say {@code +0.0}. 2417 * @param arrayClass the class of an array, of type {@code T[]} 2418 * @return a VarHandle giving access to elements of an array 2419 * @throws NullPointerException if the arrayClass is null 2420 * @throws IllegalArgumentException if arrayClass is not an array type 2421 * @since 9 2422 */ 2423 public static arrayElementVarHandle(Class<?> arrayClass)2424 VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException { 2425 checkClassIsArray(arrayClass); 2426 return ArrayElementVarHandle.create(arrayClass); 2427 } 2428 2429 /** 2430 * Produces a VarHandle giving access to elements of a {@code byte[]} array 2431 * viewed as if it were a different primitive array type, such as 2432 * {@code int[]} or {@code long[]}. 2433 * The VarHandle's variable type is the component type of 2434 * {@code viewArrayClass} and the list of coordinate types is 2435 * {@code (byte[], int)}, where the {@code int} coordinate type 2436 * corresponds to an argument that is an index into a {@code byte[]} array. 2437 * The returned VarHandle accesses bytes at an index in a {@code byte[]} 2438 * array, composing bytes to or from a value of the component type of 2439 * {@code viewArrayClass} according to the given endianness. 2440 * <p> 2441 * The supported component types (variables types) are {@code short}, 2442 * {@code char}, {@code int}, {@code long}, {@code float} and 2443 * {@code double}. 2444 * <p> 2445 * Access of bytes at a given index will result in an 2446 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 2447 * or greater than the {@code byte[]} array length minus the size (in bytes) 2448 * of {@code T}. 2449 * <p> 2450 * Access of bytes at an index may be aligned or misaligned for {@code T}, 2451 * with respect to the underlying memory address, {@code A} say, associated 2452 * with the array and index. 2453 * If access is misaligned then access for anything other than the 2454 * {@code get} and {@code set} access modes will result in an 2455 * {@code IllegalStateException}. In such cases atomic access is only 2456 * guaranteed with respect to the largest power of two that divides the GCD 2457 * of {@code A} and the size (in bytes) of {@code T}. 2458 * If access is aligned then following access modes are supported and are 2459 * guaranteed to support atomic access: 2460 * <ul> 2461 * <li>read write access modes for all {@code T}, with the exception of 2462 * access modes {@code get} and {@code set} for {@code long} and 2463 * {@code double} on 32-bit platforms. 2464 * <li>atomic update access modes for {@code int}, {@code long}, 2465 * {@code float} or {@code double}. 2466 * (Future major platform releases of the JDK may support additional 2467 * types for certain currently unsupported access modes.) 2468 * <li>numeric atomic update access modes for {@code int} and {@code long}. 2469 * (Future major platform releases of the JDK may support additional 2470 * numeric types for certain currently unsupported access modes.) 2471 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 2472 * (Future major platform releases of the JDK may support additional 2473 * numeric types for certain currently unsupported access modes.) 2474 * </ul> 2475 * <p> 2476 * Misaligned access, and therefore atomicity guarantees, may be determined 2477 * for {@code byte[]} arrays without operating on a specific array. Given 2478 * an {@code index}, {@code T} and it's corresponding boxed type, 2479 * {@code T_BOX}, misalignment may be determined as follows: 2480 * <pre>{@code 2481 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 2482 * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]). 2483 * alignmentOffset(0, sizeOfT); 2484 * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT; 2485 * boolean isMisaligned = misalignedAtIndex != 0; 2486 * }</pre> 2487 * <p> 2488 * If the variable type is {@code float} or {@code double} then atomic 2489 * update access modes compare values using their bitwise representation 2490 * (see {@link Float#floatToRawIntBits} and 2491 * {@link Double#doubleToRawLongBits}, respectively). 2492 * @param viewArrayClass the view array class, with a component type of 2493 * type {@code T} 2494 * @param byteOrder the endianness of the view array elements, as 2495 * stored in the underlying {@code byte} array 2496 * @return a VarHandle giving access to elements of a {@code byte[]} array 2497 * viewed as if elements corresponding to the components type of the view 2498 * array class 2499 * @throws NullPointerException if viewArrayClass or byteOrder is null 2500 * @throws IllegalArgumentException if viewArrayClass is not an array type 2501 * @throws UnsupportedOperationException if the component type of 2502 * viewArrayClass is not supported as a variable type 2503 * @since 9 2504 */ 2505 public static byteArrayViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2506 VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass, 2507 ByteOrder byteOrder) throws IllegalArgumentException { 2508 checkClassIsArray(viewArrayClass); 2509 checkTypeIsViewable(viewArrayClass.getComponentType()); 2510 return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder); 2511 } 2512 2513 /** 2514 * Produces a VarHandle giving access to elements of a {@code ByteBuffer} 2515 * viewed as if it were an array of elements of a different primitive 2516 * component type to that of {@code byte}, such as {@code int[]} or 2517 * {@code long[]}. 2518 * The VarHandle's variable type is the component type of 2519 * {@code viewArrayClass} and the list of coordinate types is 2520 * {@code (ByteBuffer, int)}, where the {@code int} coordinate type 2521 * corresponds to an argument that is an index into a {@code byte[]} array. 2522 * The returned VarHandle accesses bytes at an index in a 2523 * {@code ByteBuffer}, composing bytes to or from a value of the component 2524 * type of {@code viewArrayClass} according to the given endianness. 2525 * <p> 2526 * The supported component types (variables types) are {@code short}, 2527 * {@code char}, {@code int}, {@code long}, {@code float} and 2528 * {@code double}. 2529 * <p> 2530 * Access will result in a {@code ReadOnlyBufferException} for anything 2531 * other than the read access modes if the {@code ByteBuffer} is read-only. 2532 * <p> 2533 * Access of bytes at a given index will result in an 2534 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 2535 * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of 2536 * {@code T}. 2537 * <p> 2538 * Access of bytes at an index may be aligned or misaligned for {@code T}, 2539 * with respect to the underlying memory address, {@code A} say, associated 2540 * with the {@code ByteBuffer} and index. 2541 * If access is misaligned then access for anything other than the 2542 * {@code get} and {@code set} access modes will result in an 2543 * {@code IllegalStateException}. In such cases atomic access is only 2544 * guaranteed with respect to the largest power of two that divides the GCD 2545 * of {@code A} and the size (in bytes) of {@code T}. 2546 * If access is aligned then following access modes are supported and are 2547 * guaranteed to support atomic access: 2548 * <ul> 2549 * <li>read write access modes for all {@code T}, with the exception of 2550 * access modes {@code get} and {@code set} for {@code long} and 2551 * {@code double} on 32-bit platforms. 2552 * <li>atomic update access modes for {@code int}, {@code long}, 2553 * {@code float} or {@code double}. 2554 * (Future major platform releases of the JDK may support additional 2555 * types for certain currently unsupported access modes.) 2556 * <li>numeric atomic update access modes for {@code int} and {@code long}. 2557 * (Future major platform releases of the JDK may support additional 2558 * numeric types for certain currently unsupported access modes.) 2559 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 2560 * (Future major platform releases of the JDK may support additional 2561 * numeric types for certain currently unsupported access modes.) 2562 * </ul> 2563 * <p> 2564 * Misaligned access, and therefore atomicity guarantees, may be determined 2565 * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an 2566 * {@code index}, {@code T} and it's corresponding boxed type, 2567 * {@code T_BOX}, as follows: 2568 * <pre>{@code 2569 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 2570 * ByteBuffer bb = ... 2571 * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT); 2572 * boolean isMisaligned = misalignedAtIndex != 0; 2573 * }</pre> 2574 * <p> 2575 * If the variable type is {@code float} or {@code double} then atomic 2576 * update access modes compare values using their bitwise representation 2577 * (see {@link Float#floatToRawIntBits} and 2578 * {@link Double#doubleToRawLongBits}, respectively). 2579 * @param viewArrayClass the view array class, with a component type of 2580 * type {@code T} 2581 * @param byteOrder the endianness of the view array elements, as 2582 * stored in the underlying {@code ByteBuffer} (Note this overrides the 2583 * endianness of a {@code ByteBuffer}) 2584 * @return a VarHandle giving access to elements of a {@code ByteBuffer} 2585 * viewed as if elements corresponding to the components type of the view 2586 * array class 2587 * @throws NullPointerException if viewArrayClass or byteOrder is null 2588 * @throws IllegalArgumentException if viewArrayClass is not an array type 2589 * @throws UnsupportedOperationException if the component type of 2590 * viewArrayClass is not supported as a variable type 2591 * @since 9 2592 */ 2593 public static byteBufferViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2594 VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass, 2595 ByteOrder byteOrder) throws IllegalArgumentException { 2596 checkClassIsArray(viewArrayClass); 2597 checkTypeIsViewable(viewArrayClass.getComponentType()); 2598 return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder); 2599 } 2600 // END Android-changed: OpenJDK 9+181 VarHandle API factory methods. 2601 2602 /// method handle invocation (reflective style) 2603 2604 /** 2605 * Produces a method handle which will invoke any method handle of the 2606 * given {@code type}, with a given number of trailing arguments replaced by 2607 * a single trailing {@code Object[]} array. 2608 * The resulting invoker will be a method handle with the following 2609 * arguments: 2610 * <ul> 2611 * <li>a single {@code MethodHandle} target 2612 * <li>zero or more leading values (counted by {@code leadingArgCount}) 2613 * <li>an {@code Object[]} array containing trailing arguments 2614 * </ul> 2615 * <p> 2616 * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with 2617 * the indicated {@code type}. 2618 * That is, if the target is exactly of the given {@code type}, it will behave 2619 * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} 2620 * is used to convert the target to the required {@code type}. 2621 * <p> 2622 * The type of the returned invoker will not be the given {@code type}, but rather 2623 * will have all parameters except the first {@code leadingArgCount} 2624 * replaced by a single array of type {@code Object[]}, which will be 2625 * the final parameter. 2626 * <p> 2627 * Before invoking its target, the invoker will spread the final array, apply 2628 * reference casts as necessary, and unbox and widen primitive arguments. 2629 * If, when the invoker is called, the supplied array argument does 2630 * not have the correct number of elements, the invoker will throw 2631 * an {@link IllegalArgumentException} instead of invoking the target. 2632 * <p> 2633 * This method is equivalent to the following code (though it may be more efficient): 2634 * <blockquote><pre>{@code 2635 MethodHandle invoker = MethodHandles.invoker(type); 2636 int spreadArgCount = type.parameterCount() - leadingArgCount; 2637 invoker = invoker.asSpreader(Object[].class, spreadArgCount); 2638 return invoker; 2639 * }</pre></blockquote> 2640 * This method throws no reflective or security exceptions. 2641 * @param type the desired target type 2642 * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target 2643 * @return a method handle suitable for invoking any method handle of the given type 2644 * @throws NullPointerException if {@code type} is null 2645 * @throws IllegalArgumentException if {@code leadingArgCount} is not in 2646 * the range from 0 to {@code type.parameterCount()} inclusive, 2647 * or if the resulting method handle's type would have 2648 * <a href="MethodHandle.html#maxarity">too many parameters</a> 2649 */ 2650 static public spreadInvoker(MethodType type, int leadingArgCount)2651 MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { 2652 if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) 2653 throw newIllegalArgumentException("bad argument count", leadingArgCount); 2654 2655 MethodHandle invoker = MethodHandles.invoker(type); 2656 int spreadArgCount = type.parameterCount() - leadingArgCount; 2657 invoker = invoker.asSpreader(Object[].class, spreadArgCount); 2658 return invoker; 2659 } 2660 2661 /** 2662 * Produces a special <em>invoker method handle</em> which can be used to 2663 * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. 2664 * The resulting invoker will have a type which is 2665 * exactly equal to the desired type, except that it will accept 2666 * an additional leading argument of type {@code MethodHandle}. 2667 * <p> 2668 * This method is equivalent to the following code (though it may be more efficient): 2669 * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} 2670 * 2671 * <p style="font-size:smaller;"> 2672 * <em>Discussion:</em> 2673 * Invoker method handles can be useful when working with variable method handles 2674 * of unknown types. 2675 * For example, to emulate an {@code invokeExact} call to a variable method 2676 * handle {@code M}, extract its type {@code T}, 2677 * look up the invoker method {@code X} for {@code T}, 2678 * and call the invoker method, as {@code X.invoke(T, A...)}. 2679 * (It would not work to call {@code X.invokeExact}, since the type {@code T} 2680 * is unknown.) 2681 * If spreading, collecting, or other argument transformations are required, 2682 * they can be applied once to the invoker {@code X} and reused on many {@code M} 2683 * method handle values, as long as they are compatible with the type of {@code X}. 2684 * <p style="font-size:smaller;"> 2685 * <em>(Note: The invoker method is not available via the Core Reflection API. 2686 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 2687 * on the declared {@code invokeExact} or {@code invoke} method will raise an 2688 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 2689 * <p> 2690 * This method throws no reflective or security exceptions. 2691 * @param type the desired target type 2692 * @return a method handle suitable for invoking any method handle of the given type 2693 * @throws IllegalArgumentException if the resulting method handle's type would have 2694 * <a href="MethodHandle.html#maxarity">too many parameters</a> 2695 */ 2696 static public exactInvoker(MethodType type)2697 MethodHandle exactInvoker(MethodType type) { 2698 return new Transformers.Invoker(type, true /* isExactInvoker */); 2699 } 2700 2701 /** 2702 * Produces a special <em>invoker method handle</em> which can be used to 2703 * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. 2704 * The resulting invoker will have a type which is 2705 * exactly equal to the desired type, except that it will accept 2706 * an additional leading argument of type {@code MethodHandle}. 2707 * <p> 2708 * Before invoking its target, if the target differs from the expected type, 2709 * the invoker will apply reference casts as 2710 * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. 2711 * Similarly, the return value will be converted as necessary. 2712 * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, 2713 * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. 2714 * <p> 2715 * This method is equivalent to the following code (though it may be more efficient): 2716 * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} 2717 * <p style="font-size:smaller;"> 2718 * <em>Discussion:</em> 2719 * A {@linkplain MethodType#genericMethodType general method type} is one which 2720 * mentions only {@code Object} arguments and return values. 2721 * An invoker for such a type is capable of calling any method handle 2722 * of the same arity as the general type. 2723 * <p style="font-size:smaller;"> 2724 * <em>(Note: The invoker method is not available via the Core Reflection API. 2725 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 2726 * on the declared {@code invokeExact} or {@code invoke} method will raise an 2727 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 2728 * <p> 2729 * This method throws no reflective or security exceptions. 2730 * @param type the desired target type 2731 * @return a method handle suitable for invoking any method handle convertible to the given type 2732 * @throws IllegalArgumentException if the resulting method handle's type would have 2733 * <a href="MethodHandle.html#maxarity">too many parameters</a> 2734 */ 2735 static public invoker(MethodType type)2736 MethodHandle invoker(MethodType type) { 2737 return new Transformers.Invoker(type, false /* isExactInvoker */); 2738 } 2739 2740 // BEGIN Android-added: resolver for VarHandle accessor methods. methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, MethodType type, boolean isExactInvoker)2741 static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, 2742 MethodType type, 2743 boolean isExactInvoker) { 2744 Class<?> refc = VarHandle.class; 2745 Method method; 2746 try { 2747 method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class); 2748 } catch (NoSuchMethodException e) { 2749 throw new InternalError("No method for AccessMode " + accessMode, e); 2750 } 2751 MethodType methodType = type.insertParameterTypes(0, VarHandle.class); 2752 int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT 2753 : MethodHandle.INVOKE_VAR_HANDLE; 2754 return new MethodHandleImpl(method.getArtMethod(), kind, methodType); 2755 } 2756 // END Android-added: resolver for VarHandle accessor methods. 2757 2758 /** 2759 * Produces a special <em>invoker method handle</em> which can be used to 2760 * invoke a signature-polymorphic access mode method on any VarHandle whose 2761 * associated access mode type is compatible with the given type. 2762 * The resulting invoker will have a type which is exactly equal to the 2763 * desired given type, except that it will accept an additional leading 2764 * argument of type {@code VarHandle}. 2765 * 2766 * @param accessMode the VarHandle access mode 2767 * @param type the desired target type 2768 * @return a method handle suitable for invoking an access mode method of 2769 * any VarHandle whose access mode type is of the given type. 2770 * @since 9 2771 */ 2772 static public varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type)2773 MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { 2774 return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */); 2775 } 2776 2777 /** 2778 * Produces a special <em>invoker method handle</em> which can be used to 2779 * invoke a signature-polymorphic access mode method on any VarHandle whose 2780 * associated access mode type is compatible with the given type. 2781 * The resulting invoker will have a type which is exactly equal to the 2782 * desired given type, except that it will accept an additional leading 2783 * argument of type {@code VarHandle}. 2784 * <p> 2785 * Before invoking its target, if the access mode type differs from the 2786 * desired given type, the invoker will apply reference casts as necessary 2787 * and box, unbox, or widen primitive values, as if by 2788 * {@link MethodHandle#asType asType}. Similarly, the return value will be 2789 * converted as necessary. 2790 * <p> 2791 * This method is equivalent to the following code (though it may be more 2792 * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} 2793 * 2794 * @param accessMode the VarHandle access mode 2795 * @param type the desired target type 2796 * @return a method handle suitable for invoking an access mode method of 2797 * any VarHandle whose access mode type is convertible to the given 2798 * type. 2799 * @since 9 2800 */ 2801 static public varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type)2802 MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { 2803 return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */); 2804 } 2805 2806 // Android-changed: Basic invokers are not supported. 2807 // 2808 // static /*non-public*/ 2809 // MethodHandle basicInvoker(MethodType type) { 2810 // return type.invokers().basicInvoker(); 2811 // } 2812 2813 /// method handle modification (creation from other method handles) 2814 2815 /** 2816 * Produces a method handle which adapts the type of the 2817 * given method handle to a new type by pairwise argument and return type conversion. 2818 * The original type and new type must have the same number of arguments. 2819 * The resulting method handle is guaranteed to report a type 2820 * which is equal to the desired new type. 2821 * <p> 2822 * If the original type and new type are equal, returns target. 2823 * <p> 2824 * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, 2825 * and some additional conversions are also applied if those conversions fail. 2826 * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied 2827 * if possible, before or instead of any conversions done by {@code asType}: 2828 * <ul> 2829 * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type, 2830 * then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast. 2831 * (This treatment of interfaces follows the usage of the bytecode verifier.) 2832 * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive, 2833 * the boolean is converted to a byte value, 1 for true, 0 for false. 2834 * (This treatment follows the usage of the bytecode verifier.) 2835 * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive, 2836 * <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5), 2837 * and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. 2838 * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean, 2839 * then a Java casting conversion (JLS 5.5) is applied. 2840 * (Specifically, <em>T0</em> will convert to <em>T1</em> by 2841 * widening and/or narrowing.) 2842 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing 2843 * conversion will be applied at runtime, possibly followed 2844 * by a Java casting conversion (JLS 5.5) on the primitive value, 2845 * possibly followed by a conversion from byte to boolean by testing 2846 * the low-order bit. 2847 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, 2848 * and if the reference is null at runtime, a zero value is introduced. 2849 * </ul> 2850 * @param target the method handle to invoke after arguments are retyped 2851 * @param newType the expected type of the new method handle 2852 * @return a method handle which delegates to the target after performing 2853 * any necessary argument conversions, and arranges for any 2854 * necessary return value conversions 2855 * @throws NullPointerException if either argument is null 2856 * @throws WrongMethodTypeException if the conversion cannot be made 2857 * @see MethodHandle#asType 2858 */ 2859 public static explicitCastArguments(MethodHandle target, MethodType newType)2860 MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { 2861 explicitCastArgumentsChecks(target, newType); 2862 // use the asTypeCache when possible: 2863 MethodType oldType = target.type(); 2864 if (oldType == newType) return target; 2865 if (oldType.explicitCastEquivalentToAsType(newType)) { 2866 if (Transformers.Transformer.class.isAssignableFrom(target.getClass())) { 2867 // The StackFrameReader and StackFrameWriter used to perform transforms on 2868 // EmulatedStackFrames (in Transformers.java) do not how to perform asType() 2869 // conversions, but we know here that an explicit cast transform is the same as 2870 // having called asType() on the method handle. 2871 return new Transformers.ExplicitCastArguments(target.asFixedArity(), newType); 2872 } else { 2873 // Runtime will perform asType() conversion during invocation. 2874 return target.asFixedArity().asType(newType); 2875 } 2876 } 2877 return new Transformers.ExplicitCastArguments(target, newType); 2878 } 2879 explicitCastArgumentsChecks(MethodHandle target, MethodType newType)2880 private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { 2881 if (target.type().parameterCount() != newType.parameterCount()) { 2882 throw new WrongMethodTypeException("cannot explicitly cast " + target + 2883 " to " + newType); 2884 } 2885 } 2886 2887 /** 2888 * Produces a method handle which adapts the calling sequence of the 2889 * given method handle to a new type, by reordering the arguments. 2890 * The resulting method handle is guaranteed to report a type 2891 * which is equal to the desired new type. 2892 * <p> 2893 * The given array controls the reordering. 2894 * Call {@code #I} the number of incoming parameters (the value 2895 * {@code newType.parameterCount()}, and call {@code #O} the number 2896 * of outgoing parameters (the value {@code target.type().parameterCount()}). 2897 * Then the length of the reordering array must be {@code #O}, 2898 * and each element must be a non-negative number less than {@code #I}. 2899 * For every {@code N} less than {@code #O}, the {@code N}-th 2900 * outgoing argument will be taken from the {@code I}-th incoming 2901 * argument, where {@code I} is {@code reorder[N]}. 2902 * <p> 2903 * No argument or return value conversions are applied. 2904 * The type of each incoming argument, as determined by {@code newType}, 2905 * must be identical to the type of the corresponding outgoing parameter 2906 * or parameters in the target method handle. 2907 * The return type of {@code newType} must be identical to the return 2908 * type of the original target. 2909 * <p> 2910 * The reordering array need not specify an actual permutation. 2911 * An incoming argument will be duplicated if its index appears 2912 * more than once in the array, and an incoming argument will be dropped 2913 * if its index does not appear in the array. 2914 * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, 2915 * incoming arguments which are not mentioned in the reordering array 2916 * are may be any type, as determined only by {@code newType}. 2917 * <blockquote><pre>{@code 2918 import static java.lang.invoke.MethodHandles.*; 2919 import static java.lang.invoke.MethodType.*; 2920 ... 2921 MethodType intfn1 = methodType(int.class, int.class); 2922 MethodType intfn2 = methodType(int.class, int.class, int.class); 2923 MethodHandle sub = ... (int x, int y) -> (x-y) ...; 2924 assert(sub.type().equals(intfn2)); 2925 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); 2926 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); 2927 assert((int)rsub.invokeExact(1, 100) == 99); 2928 MethodHandle add = ... (int x, int y) -> (x+y) ...; 2929 assert(add.type().equals(intfn2)); 2930 MethodHandle twice = permuteArguments(add, intfn1, 0, 0); 2931 assert(twice.type().equals(intfn1)); 2932 assert((int)twice.invokeExact(21) == 42); 2933 * }</pre></blockquote> 2934 * @param target the method handle to invoke after arguments are reordered 2935 * @param newType the expected type of the new method handle 2936 * @param reorder an index array which controls the reordering 2937 * @return a method handle which delegates to the target after it 2938 * drops unused arguments and moves and/or duplicates the other arguments 2939 * @throws NullPointerException if any argument is null 2940 * @throws IllegalArgumentException if the index array length is not equal to 2941 * the arity of the target, or if any index array element 2942 * not a valid index for a parameter of {@code newType}, 2943 * or if two corresponding parameter types in 2944 * {@code target.type()} and {@code newType} are not identical, 2945 */ 2946 public static permuteArguments(MethodHandle target, MethodType newType, int... reorder)2947 MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { 2948 reorder = reorder.clone(); // get a private copy 2949 MethodType oldType = target.type(); 2950 permuteArgumentChecks(reorder, newType, oldType); 2951 2952 return new Transformers.PermuteArguments(newType, target, reorder); 2953 } 2954 2955 // Android-changed: findFirstDupOrDrop is unused and removed. 2956 // private static int findFirstDupOrDrop(int[] reorder, int newArity); 2957 permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType)2958 private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { 2959 if (newType.returnType() != oldType.returnType()) 2960 throw newIllegalArgumentException("return types do not match", 2961 oldType, newType); 2962 if (reorder.length == oldType.parameterCount()) { 2963 int limit = newType.parameterCount(); 2964 boolean bad = false; 2965 for (int j = 0; j < reorder.length; j++) { 2966 int i = reorder[j]; 2967 if (i < 0 || i >= limit) { 2968 bad = true; break; 2969 } 2970 Class<?> src = newType.parameterType(i); 2971 Class<?> dst = oldType.parameterType(j); 2972 if (src != dst) 2973 throw newIllegalArgumentException("parameter types do not match after reorder", 2974 oldType, newType); 2975 } 2976 if (!bad) return true; 2977 } 2978 throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); 2979 } 2980 2981 /** 2982 * Produces a method handle of the requested return type which returns the given 2983 * constant value every time it is invoked. 2984 * <p> 2985 * Before the method handle is returned, the passed-in value is converted to the requested type. 2986 * If the requested type is primitive, widening primitive conversions are attempted, 2987 * else reference conversions are attempted. 2988 * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}. 2989 * @param type the return type of the desired method handle 2990 * @param value the value to return 2991 * @return a method handle of the given return type and no arguments, which always returns the given value 2992 * @throws NullPointerException if the {@code type} argument is null 2993 * @throws ClassCastException if the value cannot be converted to the required return type 2994 * @throws IllegalArgumentException if the given type is {@code void.class} 2995 */ 2996 public static constant(Class<?> type, Object value)2997 MethodHandle constant(Class<?> type, Object value) { 2998 if (type.isPrimitive()) { 2999 if (type == void.class) 3000 throw newIllegalArgumentException("void type"); 3001 Wrapper w = Wrapper.forPrimitiveType(type); 3002 value = w.convert(value, type); 3003 if (w.zero().equals(value)) 3004 return zero(w, type); 3005 return insertArguments(identity(type), 0, value); 3006 } else { 3007 if (value == null) 3008 return zero(Wrapper.OBJECT, type); 3009 return identity(type).bindTo(value); 3010 } 3011 } 3012 3013 /** 3014 * Produces a method handle which returns its sole argument when invoked. 3015 * @param type the type of the sole parameter and return value of the desired method handle 3016 * @return a unary method handle which accepts and returns the given type 3017 * @throws NullPointerException if the argument is null 3018 * @throws IllegalArgumentException if the given type is {@code void.class} 3019 */ 3020 public static identity(Class<?> type)3021 MethodHandle identity(Class<?> type) { 3022 // Android-added: explicit non-null check. 3023 Objects.requireNonNull(type); 3024 Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); 3025 int pos = btw.ordinal(); 3026 MethodHandle ident = IDENTITY_MHS[pos]; 3027 if (ident == null) { 3028 ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); 3029 } 3030 if (ident.type().returnType() == type) 3031 return ident; 3032 // something like identity(Foo.class); do not bother to intern these 3033 assert (btw == Wrapper.OBJECT); 3034 return makeIdentity(type); 3035 } 3036 3037 /** 3038 * Produces a constant method handle of the requested return type which 3039 * returns the default value for that type every time it is invoked. 3040 * The resulting constant method handle will have no side effects. 3041 * <p>The returned method handle is equivalent to {@code empty(methodType(type))}. 3042 * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, 3043 * since {@code explicitCastArguments} converts {@code null} to default values. 3044 * @param type the expected return type of the desired method handle 3045 * @return a constant method handle that takes no arguments 3046 * and returns the default value of the given type (or void, if the type is void) 3047 * @throws NullPointerException if the argument is null 3048 * @see MethodHandles#constant 3049 * @see MethodHandles#empty 3050 * @see MethodHandles#explicitCastArguments 3051 * @since 9 3052 */ zero(Class<?> type)3053 public static MethodHandle zero(Class<?> type) { 3054 Objects.requireNonNull(type); 3055 return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); 3056 } 3057 identityOrVoid(Class<?> type)3058 private static MethodHandle identityOrVoid(Class<?> type) { 3059 return type == void.class ? zero(type) : identity(type); 3060 } 3061 3062 /** 3063 * Produces a method handle of the requested type which ignores any arguments, does nothing, 3064 * and returns a suitable default depending on the return type. 3065 * That is, it returns a zero primitive value, a {@code null}, or {@code void}. 3066 * <p>The returned method handle is equivalent to 3067 * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. 3068 * 3069 * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as 3070 * {@code guardWithTest(pred, target, empty(target.type())}. 3071 * @param type the type of the desired method handle 3072 * @return a constant method handle of the given type, which returns a default value of the given return type 3073 * @throws NullPointerException if the argument is null 3074 * @see MethodHandles#zero 3075 * @see MethodHandles#constant 3076 * @since 9 3077 */ empty(MethodType type)3078 public static MethodHandle empty(MethodType type) { 3079 Objects.requireNonNull(type); 3080 return dropArguments(zero(type.returnType()), 0, type.parameterList()); 3081 } 3082 3083 private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; makeIdentity(Class<?> ptype)3084 private static MethodHandle makeIdentity(Class<?> ptype) { 3085 // Android-changed: Android implementation using identity() functions and transformers. 3086 // MethodType mtype = methodType(ptype, ptype); 3087 // LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); 3088 // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); 3089 if (ptype.isPrimitive()) { 3090 try { 3091 final MethodType mt = methodType(ptype, ptype); 3092 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity", mt); 3093 } catch (NoSuchMethodException | IllegalAccessException e) { 3094 throw new AssertionError(e); 3095 } 3096 } else { 3097 return new Transformers.ReferenceIdentity(ptype); 3098 } 3099 } 3100 3101 // Android-added: helper methods for identity(). identity(byte val)3102 /** @hide */ public static byte identity(byte val) { return val; } identity(boolean val)3103 /** @hide */ public static boolean identity(boolean val) { return val; } identity(char val)3104 /** @hide */ public static char identity(char val) { return val; } identity(short val)3105 /** @hide */ public static short identity(short val) { return val; } identity(int val)3106 /** @hide */ public static int identity(int val) { return val; } identity(long val)3107 /** @hide */ public static long identity(long val) { return val; } identity(float val)3108 /** @hide */ public static float identity(float val) { return val; } identity(double val)3109 /** @hide */ public static double identity(double val) { return val; } 3110 zero(Wrapper btw, Class<?> rtype)3111 private static MethodHandle zero(Wrapper btw, Class<?> rtype) { 3112 int pos = btw.ordinal(); 3113 MethodHandle zero = ZERO_MHS[pos]; 3114 if (zero == null) { 3115 zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); 3116 } 3117 if (zero.type().returnType() == rtype) 3118 return zero; 3119 assert(btw == Wrapper.OBJECT); 3120 return makeZero(rtype); 3121 } 3122 private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; makeZero(Class<?> rtype)3123 private static MethodHandle makeZero(Class<?> rtype) { 3124 // Android-changed: use Android specific implementation. 3125 // MethodType mtype = methodType(rtype); 3126 // LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); 3127 // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); 3128 return new Transformers.ZeroValue(rtype); 3129 } 3130 setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value)3131 private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { 3132 // Simulate a CAS, to avoid racy duplication of results. 3133 MethodHandle prev = cache[pos]; 3134 if (prev != null) return prev; 3135 return cache[pos] = value; 3136 } 3137 3138 /** 3139 * Provides a target method handle with one or more <em>bound arguments</em> 3140 * in advance of the method handle's invocation. 3141 * The formal parameters to the target corresponding to the bound 3142 * arguments are called <em>bound parameters</em>. 3143 * Returns a new method handle which saves away the bound arguments. 3144 * When it is invoked, it receives arguments for any non-bound parameters, 3145 * binds the saved arguments to their corresponding parameters, 3146 * and calls the original target. 3147 * <p> 3148 * The type of the new method handle will drop the types for the bound 3149 * parameters from the original target type, since the new method handle 3150 * will no longer require those arguments to be supplied by its callers. 3151 * <p> 3152 * Each given argument object must match the corresponding bound parameter type. 3153 * If a bound parameter type is a primitive, the argument object 3154 * must be a wrapper, and will be unboxed to produce the primitive value. 3155 * <p> 3156 * The {@code pos} argument selects which parameters are to be bound. 3157 * It may range between zero and <i>N-L</i> (inclusively), 3158 * where <i>N</i> is the arity of the target method handle 3159 * and <i>L</i> is the length of the values array. 3160 * @param target the method handle to invoke after the argument is inserted 3161 * @param pos where to insert the argument (zero for the first) 3162 * @param values the series of arguments to insert 3163 * @return a method handle which inserts an additional argument, 3164 * before calling the original method handle 3165 * @throws NullPointerException if the target or the {@code values} array is null 3166 * @see MethodHandle#bindTo 3167 */ 3168 public static insertArguments(MethodHandle target, int pos, Object... values)3169 MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { 3170 int insCount = values.length; 3171 Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos); 3172 if (insCount == 0) { 3173 return target; 3174 } 3175 3176 // Throw ClassCastExceptions early if we can't cast any of the provided values 3177 // to the required type. 3178 for (int i = 0; i < insCount; i++) { 3179 final Class<?> ptype = ptypes[pos + i]; 3180 if (!ptype.isPrimitive()) { 3181 ptypes[pos + i].cast(values[i]); 3182 } else { 3183 // Will throw a ClassCastException if something terrible happens. 3184 values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype); 3185 } 3186 } 3187 3188 return new Transformers.InsertArguments(target, pos, values); 3189 } 3190 3191 // Android-changed: insertArgumentPrimitive is unused. 3192 // 3193 // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, 3194 // Class<?> ptype, Object value) { 3195 // Wrapper w = Wrapper.forPrimitiveType(ptype); 3196 // // perform unboxing and/or primitive conversion 3197 // value = w.convert(value, ptype); 3198 // switch (w) { 3199 // case INT: return result.bindArgumentI(pos, (int)value); 3200 // case LONG: return result.bindArgumentJ(pos, (long)value); 3201 // case FLOAT: return result.bindArgumentF(pos, (float)value); 3202 // case DOUBLE: return result.bindArgumentD(pos, (double)value); 3203 // default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); 3204 // } 3205 // } 3206 insertArgumentsChecks(MethodHandle target, int insCount, int pos)3207 private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { 3208 MethodType oldType = target.type(); 3209 int outargs = oldType.parameterCount(); 3210 int inargs = outargs - insCount; 3211 if (inargs < 0) 3212 throw newIllegalArgumentException("too many values to insert"); 3213 if (pos < 0 || pos > inargs) 3214 throw newIllegalArgumentException("no argument type to append"); 3215 return oldType.ptypes(); 3216 } 3217 3218 // Android-changed: inclusive language preference for 'placeholder'. 3219 /** 3220 * Produces a method handle which will discard some placeholder arguments 3221 * before calling some other specified <i>target</i> method handle. 3222 * The type of the new method handle will be the same as the target's type, 3223 * except it will also include the placeholder argument types, 3224 * at some given position. 3225 * <p> 3226 * The {@code pos} argument may range between zero and <i>N</i>, 3227 * where <i>N</i> is the arity of the target. 3228 * If {@code pos} is zero, the placeholder arguments will precede 3229 * the target's real arguments; if {@code pos} is <i>N</i> 3230 * they will come after. 3231 * <p> 3232 * <b>Example:</b> 3233 * <blockquote><pre>{@code 3234 import static java.lang.invoke.MethodHandles.*; 3235 import static java.lang.invoke.MethodType.*; 3236 ... 3237 MethodHandle cat = lookup().findVirtual(String.class, 3238 "concat", methodType(String.class, String.class)); 3239 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3240 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); 3241 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); 3242 assertEquals(bigType, d0.type()); 3243 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z")); 3244 * }</pre></blockquote> 3245 * <p> 3246 * This method is also equivalent to the following code: 3247 * <blockquote><pre> 3248 * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))} 3249 * </pre></blockquote> 3250 * @param target the method handle to invoke after the arguments are dropped 3251 * @param valueTypes the type(s) of the argument(s) to drop 3252 * @param pos position of first argument to drop (zero for the leftmost) 3253 * @return a method handle which drops arguments of the given types, 3254 * before calling the original method handle 3255 * @throws NullPointerException if the target is null, 3256 * or if the {@code valueTypes} list or any of its elements is null 3257 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 3258 * or if {@code pos} is negative or greater than the arity of the target, 3259 * or if the new method handle's type would have too many parameters 3260 */ 3261 public static dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)3262 MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { 3263 return dropArguments0(target, pos, copyTypes(valueTypes.toArray())); 3264 } 3265 copyTypes(Object[] array)3266 private static List<Class<?>> copyTypes(Object[] array) { 3267 return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class)); 3268 } 3269 3270 private static dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes)3271 MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) { 3272 MethodType oldType = target.type(); // get NPE 3273 int dropped = dropArgumentChecks(oldType, pos, valueTypes); 3274 MethodType newType = oldType.insertParameterTypes(pos, valueTypes); 3275 if (dropped == 0) return target; 3276 // Android-changed: transformer implementation. 3277 // BoundMethodHandle result = target.rebind(); 3278 // LambdaForm lform = result.form; 3279 // int insertFormArg = 1 + pos; 3280 // for (Class<?> ptype : valueTypes) { 3281 // lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); 3282 // } 3283 // result = result.copyWith(newType, lform); 3284 // return result; 3285 return new Transformers.DropArguments(newType, target, pos, dropped); 3286 } 3287 dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes)3288 private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) { 3289 int dropped = valueTypes.size(); 3290 MethodType.checkSlotCount(dropped); 3291 int outargs = oldType.parameterCount(); 3292 int inargs = outargs + dropped; 3293 if (pos < 0 || pos > outargs) 3294 throw newIllegalArgumentException("no argument type to remove" 3295 + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) 3296 ); 3297 return dropped; 3298 } 3299 3300 // Android-changed: inclusive language preference for 'placeholder'. 3301 /** 3302 * Produces a method handle which will discard some placeholder arguments 3303 * before calling some other specified <i>target</i> method handle. 3304 * The type of the new method handle will be the same as the target's type, 3305 * except it will also include the placeholder argument types, 3306 * at some given position. 3307 * <p> 3308 * The {@code pos} argument may range between zero and <i>N</i>, 3309 * where <i>N</i> is the arity of the target. 3310 * If {@code pos} is zero, the placeholder arguments will precede 3311 * the target's real arguments; if {@code pos} is <i>N</i> 3312 * they will come after. 3313 * @apiNote 3314 * <blockquote><pre>{@code 3315 import static java.lang.invoke.MethodHandles.*; 3316 import static java.lang.invoke.MethodType.*; 3317 ... 3318 MethodHandle cat = lookup().findVirtual(String.class, 3319 "concat", methodType(String.class, String.class)); 3320 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3321 MethodHandle d0 = dropArguments(cat, 0, String.class); 3322 assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); 3323 MethodHandle d1 = dropArguments(cat, 1, String.class); 3324 assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); 3325 MethodHandle d2 = dropArguments(cat, 2, String.class); 3326 assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); 3327 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); 3328 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); 3329 * }</pre></blockquote> 3330 * <p> 3331 * This method is also equivalent to the following code: 3332 * <blockquote><pre> 3333 * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))} 3334 * </pre></blockquote> 3335 * @param target the method handle to invoke after the arguments are dropped 3336 * @param valueTypes the type(s) of the argument(s) to drop 3337 * @param pos position of first argument to drop (zero for the leftmost) 3338 * @return a method handle which drops arguments of the given types, 3339 * before calling the original method handle 3340 * @throws NullPointerException if the target is null, 3341 * or if the {@code valueTypes} array or any of its elements is null 3342 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 3343 * or if {@code pos} is negative or greater than the arity of the target, 3344 * or if the new method handle's type would have 3345 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3346 */ 3347 public static dropArguments(MethodHandle target, int pos, Class<?>... valueTypes)3348 MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { 3349 return dropArguments0(target, pos, copyTypes(valueTypes)); 3350 } 3351 3352 // private version which allows caller some freedom with error handling dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, boolean nullOnFailure)3353 private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, 3354 boolean nullOnFailure) { 3355 newTypes = copyTypes(newTypes.toArray()); 3356 List<Class<?>> oldTypes = target.type().parameterList(); 3357 int match = oldTypes.size(); 3358 if (skip != 0) { 3359 if (skip < 0 || skip > match) { 3360 throw newIllegalArgumentException("illegal skip", skip, target); 3361 } 3362 oldTypes = oldTypes.subList(skip, match); 3363 match -= skip; 3364 } 3365 List<Class<?>> addTypes = newTypes; 3366 int add = addTypes.size(); 3367 if (pos != 0) { 3368 if (pos < 0 || pos > add) { 3369 throw newIllegalArgumentException("illegal pos", pos, newTypes); 3370 } 3371 addTypes = addTypes.subList(pos, add); 3372 add -= pos; 3373 assert(addTypes.size() == add); 3374 } 3375 // Do not add types which already match the existing arguments. 3376 if (match > add || !oldTypes.equals(addTypes.subList(0, match))) { 3377 if (nullOnFailure) { 3378 return null; 3379 } 3380 throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes); 3381 } 3382 addTypes = addTypes.subList(match, add); 3383 add -= match; 3384 assert(addTypes.size() == add); 3385 // newTypes: ( P*[pos], M*[match], A*[add] ) 3386 // target: ( S*[skip], M*[match] ) 3387 MethodHandle adapter = target; 3388 if (add > 0) { 3389 adapter = dropArguments0(adapter, skip+ match, addTypes); 3390 } 3391 // adapter: (S*[skip], M*[match], A*[add] ) 3392 if (pos > 0) { 3393 adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos)); 3394 } 3395 // adapter: (S*[skip], P*[pos], M*[match], A*[add] ) 3396 return adapter; 3397 } 3398 3399 // Android-changed: inclusive language preference for 'placeholder'. 3400 /** 3401 * Adapts a target method handle to match the given parameter type list. If necessary, adds placeholder arguments. Some 3402 * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter 3403 * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The 3404 * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before 3405 * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by 3406 * {@link #dropArguments(MethodHandle, int, Class[])}. 3407 * <p> 3408 * The resulting handle will have the same return type as the target handle. 3409 * <p> 3410 * In more formal terms, assume these two type lists:<ul> 3411 * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as 3412 * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, 3413 * {@code newTypes}. 3414 * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as 3415 * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's 3416 * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching 3417 * sub-list. 3418 * </ul> 3419 * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type 3420 * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by 3421 * {@link #dropArguments(MethodHandle, int, Class[])}. 3422 * 3423 * @apiNote 3424 * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be 3425 * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: 3426 * <blockquote><pre>{@code 3427 import static java.lang.invoke.MethodHandles.*; 3428 import static java.lang.invoke.MethodType.*; 3429 ... 3430 ... 3431 MethodHandle h0 = constant(boolean.class, true); 3432 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); 3433 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); 3434 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); 3435 if (h1.type().parameterCount() < h2.type().parameterCount()) 3436 h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 3437 else 3438 h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 3439 MethodHandle h3 = guardWithTest(h0, h1, h2); 3440 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c")); 3441 * }</pre></blockquote> 3442 * @param target the method handle to adapt 3443 * @param skip number of targets parameters to disregard (they will be unchanged) 3444 * @param newTypes the list of types to match {@code target}'s parameter type list to 3445 * @param pos place in {@code newTypes} where the non-skipped target parameters must occur 3446 * @return a possibly adapted method handle 3447 * @throws NullPointerException if either argument is null 3448 * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, 3449 * or if {@code skip} is negative or greater than the arity of the target, 3450 * or if {@code pos} is negative or greater than the newTypes list size, 3451 * or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position 3452 * {@code pos}. 3453 * @since 9 3454 */ 3455 public static dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos)3456 MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) { 3457 Objects.requireNonNull(target); 3458 Objects.requireNonNull(newTypes); 3459 return dropArgumentsToMatch(target, skip, newTypes, pos, false); 3460 } 3461 3462 /** 3463 * Drop the return value of the target handle (if any). 3464 * The returned method handle will have a {@code void} return type. 3465 * 3466 * @param target the method handle to adapt 3467 * @return a possibly adapted method handle 3468 * @throws NullPointerException if {@code target} is null 3469 * @since 16 3470 */ dropReturn(MethodHandle target)3471 public static MethodHandle dropReturn(MethodHandle target) { 3472 Objects.requireNonNull(target); 3473 MethodType oldType = target.type(); 3474 Class<?> oldReturnType = oldType.returnType(); 3475 if (oldReturnType == void.class) 3476 return target; 3477 3478 MethodType newType = oldType.changeReturnType(void.class); 3479 // Android-changed: no support for BoundMethodHandle or LambdaForm. 3480 // BoundMethodHandle result = target.rebind(); 3481 // LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true); 3482 // result = result.copyWith(newType, lform); 3483 // return result; 3484 return target.asType(newType); 3485 } 3486 3487 /** 3488 * Adapts a target method handle by pre-processing 3489 * one or more of its arguments, each with its own unary filter function, 3490 * and then calling the target with each pre-processed argument 3491 * replaced by the result of its corresponding filter function. 3492 * <p> 3493 * The pre-processing is performed by one or more method handles, 3494 * specified in the elements of the {@code filters} array. 3495 * The first element of the filter array corresponds to the {@code pos} 3496 * argument of the target, and so on in sequence. 3497 * The filter functions are invoked in left to right order. 3498 * <p> 3499 * Null arguments in the array are treated as identity functions, 3500 * and the corresponding arguments left unchanged. 3501 * (If there are no non-null elements in the array, the original target is returned.) 3502 * Each filter is applied to the corresponding argument of the adapter. 3503 * <p> 3504 * If a filter {@code F} applies to the {@code N}th argument of 3505 * the target, then {@code F} must be a method handle which 3506 * takes exactly one argument. The type of {@code F}'s sole argument 3507 * replaces the corresponding argument type of the target 3508 * in the resulting adapted method handle. 3509 * The return type of {@code F} must be identical to the corresponding 3510 * parameter type of the target. 3511 * <p> 3512 * It is an error if there are elements of {@code filters} 3513 * (null or not) 3514 * which do not correspond to argument positions in the target. 3515 * <p><b>Example:</b> 3516 * <blockquote><pre>{@code 3517 import static java.lang.invoke.MethodHandles.*; 3518 import static java.lang.invoke.MethodType.*; 3519 ... 3520 MethodHandle cat = lookup().findVirtual(String.class, 3521 "concat", methodType(String.class, String.class)); 3522 MethodHandle upcase = lookup().findVirtual(String.class, 3523 "toUpperCase", methodType(String.class)); 3524 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3525 MethodHandle f0 = filterArguments(cat, 0, upcase); 3526 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy 3527 MethodHandle f1 = filterArguments(cat, 1, upcase); 3528 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY 3529 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); 3530 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY 3531 * }</pre></blockquote> 3532 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 3533 * denotes the return type of both the {@code target} and resulting adapter. 3534 * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values 3535 * of the parameters and arguments that precede and follow the filter position 3536 * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and 3537 * values of the filtered parameters and arguments; they also represent the 3538 * return types of the {@code filter[i]} handles. The latter accept arguments 3539 * {@code v[i]} of type {@code V[i]}, which also appear in the signature of 3540 * the resulting adapter. 3541 * <blockquote><pre>{@code 3542 * T target(P... p, A[i]... a[i], B... b); 3543 * A[i] filter[i](V[i]); 3544 * T adapter(P... p, V[i]... v[i], B... b) { 3545 * return target(p..., filter[i](v[i])..., b...); 3546 * } 3547 * }</pre></blockquote> 3548 * <p> 3549 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3550 * variable-arity method handle}, even if the original target method handle was. 3551 * 3552 * @param target the method handle to invoke after arguments are filtered 3553 * @param pos the position of the first argument to filter 3554 * @param filters method handles to call initially on filtered arguments 3555 * @return method handle which incorporates the specified argument filtering logic 3556 * @throws NullPointerException if the target is null 3557 * or if the {@code filters} array is null 3558 * @throws IllegalArgumentException if a non-null element of {@code filters} 3559 * does not match a corresponding argument type of target as described above, 3560 * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, 3561 * or if the resulting method handle's type would have 3562 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3563 */ 3564 public static filterArguments(MethodHandle target, int pos, MethodHandle... filters)3565 MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { 3566 filterArgumentsCheckArity(target, pos, filters); 3567 MethodHandle adapter = target; 3568 // Android-changed: transformer implementation. 3569 // process filters in reverse order so that the invocation of 3570 // the resulting adapter will invoke the filters in left-to-right order 3571 // for (int i = filters.length - 1; i >= 0; --i) { 3572 // MethodHandle filter = filters[i]; 3573 // if (filter == null) continue; // ignore null elements of filters 3574 // adapter = filterArgument(adapter, pos + i, filter); 3575 // } 3576 // return adapter; 3577 boolean hasNonNullFilter = false; 3578 for (int i = 0; i < filters.length; ++i) { 3579 MethodHandle filter = filters[i]; 3580 if (filter != null) { 3581 hasNonNullFilter = true; 3582 filterArgumentChecks(target, i + pos, filter); 3583 } 3584 } 3585 if (!hasNonNullFilter) { 3586 return target; 3587 } 3588 return new Transformers.FilterArguments(target, pos, filters); 3589 } 3590 3591 /*non-public*/ static filterArgument(MethodHandle target, int pos, MethodHandle filter)3592 MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { 3593 filterArgumentChecks(target, pos, filter); 3594 // Android-changed: use Transformer implementation. 3595 // MethodType targetType = target.type(); 3596 // MethodType filterType = filter.type(); 3597 // BoundMethodHandle result = target.rebind(); 3598 // Class<?> newParamType = filterType.parameterType(0); 3599 // LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); 3600 // MethodType newType = targetType.changeParameterType(pos, newParamType); 3601 // result = result.copyWithExtendL(newType, lform, filter); 3602 // return result; 3603 return new Transformers.FilterArguments(target, pos, filter); 3604 } 3605 filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters)3606 private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { 3607 MethodType targetType = target.type(); 3608 int maxPos = targetType.parameterCount(); 3609 if (pos + filters.length > maxPos) 3610 throw newIllegalArgumentException("too many filters"); 3611 } 3612 filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter)3613 private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 3614 MethodType targetType = target.type(); 3615 MethodType filterType = filter.type(); 3616 if (filterType.parameterCount() != 1 3617 || filterType.returnType() != targetType.parameterType(pos)) 3618 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 3619 } 3620 3621 /** 3622 * Adapts a target method handle by pre-processing 3623 * a sub-sequence of its arguments with a filter (another method handle). 3624 * The pre-processed arguments are replaced by the result (if any) of the 3625 * filter function. 3626 * The target is then called on the modified (usually shortened) argument list. 3627 * <p> 3628 * If the filter returns a value, the target must accept that value as 3629 * its argument in position {@code pos}, preceded and/or followed by 3630 * any arguments not passed to the filter. 3631 * If the filter returns void, the target must accept all arguments 3632 * not passed to the filter. 3633 * No arguments are reordered, and a result returned from the filter 3634 * replaces (in order) the whole subsequence of arguments originally 3635 * passed to the adapter. 3636 * <p> 3637 * The argument types (if any) of the filter 3638 * replace zero or one argument types of the target, at position {@code pos}, 3639 * in the resulting adapted method handle. 3640 * The return type of the filter (if any) must be identical to the 3641 * argument type of the target at position {@code pos}, and that target argument 3642 * is supplied by the return value of the filter. 3643 * <p> 3644 * In all cases, {@code pos} must be greater than or equal to zero, and 3645 * {@code pos} must also be less than or equal to the target's arity. 3646 * <p><b>Example:</b> 3647 * <blockquote><pre>{@code 3648 import static java.lang.invoke.MethodHandles.*; 3649 import static java.lang.invoke.MethodType.*; 3650 ... 3651 MethodHandle deepToString = publicLookup() 3652 .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); 3653 3654 MethodHandle ts1 = deepToString.asCollector(String[].class, 1); 3655 assertEquals("[strange]", (String) ts1.invokeExact("strange")); 3656 3657 MethodHandle ts2 = deepToString.asCollector(String[].class, 2); 3658 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); 3659 3660 MethodHandle ts3 = deepToString.asCollector(String[].class, 3); 3661 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); 3662 assertEquals("[top, [up, down], strange]", 3663 (String) ts3_ts2.invokeExact("top", "up", "down", "strange")); 3664 3665 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); 3666 assertEquals("[top, [up, down], [strange]]", 3667 (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); 3668 3669 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); 3670 assertEquals("[top, [[up, down, strange], charm], bottom]", 3671 (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom")); 3672 * }</pre></blockquote> 3673 * <p> Here is pseudocode for the resulting adapter: 3674 * <blockquote><pre>{@code 3675 * T target(A...,V,C...); 3676 * V filter(B...); 3677 * T adapter(A... a,B... b,C... c) { 3678 * V v = filter(b...); 3679 * return target(a...,v,c...); 3680 * } 3681 * // and if the filter has no arguments: 3682 * T target2(A...,V,C...); 3683 * V filter2(); 3684 * T adapter2(A... a,C... c) { 3685 * V v = filter2(); 3686 * return target2(a...,v,c...); 3687 * } 3688 * // and if the filter has a void return: 3689 * T target3(A...,C...); 3690 * void filter3(B...); 3691 * void adapter3(A... a,B... b,C... c) { 3692 * filter3(b...); 3693 * return target3(a...,c...); 3694 * } 3695 * }</pre></blockquote> 3696 * <p> 3697 * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to 3698 * one which first "folds" the affected arguments, and then drops them, in separate 3699 * steps as follows: 3700 * <blockquote><pre>{@code 3701 * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 3702 * mh = MethodHandles.foldArguments(mh, coll); //step 1 3703 * }</pre></blockquote> 3704 * If the target method handle consumes no arguments besides than the result 3705 * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} 3706 * is equivalent to {@code filterReturnValue(coll, mh)}. 3707 * If the filter method handle {@code coll} consumes one argument and produces 3708 * a non-void result, then {@code collectArguments(mh, N, coll)} 3709 * is equivalent to {@code filterArguments(mh, N, coll)}. 3710 * Other equivalences are possible but would require argument permutation. 3711 * 3712 * @param target the method handle to invoke after filtering the subsequence of arguments 3713 * @param pos the position of the first adapter argument to pass to the filter, 3714 * and/or the target argument which receives the result of the filter 3715 * @param filter method handle to call on the subsequence of arguments 3716 * @return method handle which incorporates the specified argument subsequence filtering logic 3717 * @throws NullPointerException if either argument is null 3718 * @throws IllegalArgumentException if the return type of {@code filter} 3719 * is non-void and is not the same as the {@code pos} argument of the target, 3720 * or if {@code pos} is not between 0 and the target's arity, inclusive, 3721 * or if the resulting method handle's type would have 3722 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3723 * @see MethodHandles#foldArguments 3724 * @see MethodHandles#filterArguments 3725 * @see MethodHandles#filterReturnValue 3726 */ 3727 public static collectArguments(MethodHandle target, int pos, MethodHandle filter)3728 MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { 3729 MethodType newType = collectArgumentsChecks(target, pos, filter); 3730 return new Transformers.CollectArguments(target, filter, pos, newType); 3731 } 3732 collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter)3733 private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 3734 MethodType targetType = target.type(); 3735 MethodType filterType = filter.type(); 3736 Class<?> rtype = filterType.returnType(); 3737 List<Class<?>> filterArgs = filterType.parameterList(); 3738 if (rtype == void.class) { 3739 return targetType.insertParameterTypes(pos, filterArgs); 3740 } 3741 if (rtype != targetType.parameterType(pos)) { 3742 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 3743 } 3744 return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); 3745 } 3746 3747 /** 3748 * Adapts a target method handle by post-processing 3749 * its return value (if any) with a filter (another method handle). 3750 * The result of the filter is returned from the adapter. 3751 * <p> 3752 * If the target returns a value, the filter must accept that value as 3753 * its only argument. 3754 * If the target returns void, the filter must accept no arguments. 3755 * <p> 3756 * The return type of the filter 3757 * replaces the return type of the target 3758 * in the resulting adapted method handle. 3759 * The argument type of the filter (if any) must be identical to the 3760 * return type of the target. 3761 * <p><b>Example:</b> 3762 * <blockquote><pre>{@code 3763 import static java.lang.invoke.MethodHandles.*; 3764 import static java.lang.invoke.MethodType.*; 3765 ... 3766 MethodHandle cat = lookup().findVirtual(String.class, 3767 "concat", methodType(String.class, String.class)); 3768 MethodHandle length = lookup().findVirtual(String.class, 3769 "length", methodType(int.class)); 3770 System.out.println((String) cat.invokeExact("x", "y")); // xy 3771 MethodHandle f0 = filterReturnValue(cat, length); 3772 System.out.println((int) f0.invokeExact("x", "y")); // 2 3773 * }</pre></blockquote> 3774 * <p>Here is pseudocode for the resulting adapter. In the code, 3775 * {@code T}/{@code t} represent the result type and value of the 3776 * {@code target}; {@code V}, the result type of the {@code filter}; and 3777 * {@code A}/{@code a}, the types and values of the parameters and arguments 3778 * of the {@code target} as well as the resulting adapter. 3779 * <blockquote><pre>{@code 3780 * T target(A...); 3781 * V filter(T); 3782 * V adapter(A... a) { 3783 * T t = target(a...); 3784 * return filter(t); 3785 * } 3786 * // and if the target has a void return: 3787 * void target2(A...); 3788 * V filter2(); 3789 * V adapter2(A... a) { 3790 * target2(a...); 3791 * return filter2(); 3792 * } 3793 * // and if the filter has a void return: 3794 * T target3(A...); 3795 * void filter3(V); 3796 * void adapter3(A... a) { 3797 * T t = target3(a...); 3798 * filter3(t); 3799 * } 3800 * }</pre></blockquote> 3801 * <p> 3802 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3803 * variable-arity method handle}, even if the original target method handle was. 3804 * @param target the method handle to invoke before filtering the return value 3805 * @param filter method handle to call on the return value 3806 * @return method handle which incorporates the specified return value filtering logic 3807 * @throws NullPointerException if either argument is null 3808 * @throws IllegalArgumentException if the argument list of {@code filter} 3809 * does not match the return type of target as described above 3810 */ 3811 public static filterReturnValue(MethodHandle target, MethodHandle filter)3812 MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { 3813 MethodType targetType = target.type(); 3814 MethodType filterType = filter.type(); 3815 filterReturnValueChecks(targetType, filterType); 3816 // Android-changed: use a transformer. 3817 // BoundMethodHandle result = target.rebind(); 3818 // BasicType rtype = BasicType.basicType(filterType.returnType()); 3819 // LambdaForm lform = result.editor().filterReturnForm(rtype, false); 3820 // MethodType newType = targetType.changeReturnType(filterType.returnType()); 3821 // result = result.copyWithExtendL(newType, lform, filter); 3822 // return result; 3823 return new Transformers.FilterReturnValue(target, filter); 3824 } 3825 filterReturnValueChecks(MethodType targetType, MethodType filterType)3826 private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { 3827 Class<?> rtype = targetType.returnType(); 3828 int filterValues = filterType.parameterCount(); 3829 if (filterValues == 0 3830 ? (rtype != void.class) 3831 : (rtype != filterType.parameterType(0) || filterValues != 1)) 3832 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 3833 } 3834 3835 /** 3836 * Adapts a target method handle by pre-processing 3837 * some of its arguments, and then calling the target with 3838 * the result of the pre-processing, inserted into the original 3839 * sequence of arguments. 3840 * <p> 3841 * The pre-processing is performed by {@code combiner}, a second method handle. 3842 * Of the arguments passed to the adapter, the first {@code N} arguments 3843 * are copied to the combiner, which is then called. 3844 * (Here, {@code N} is defined as the parameter count of the combiner.) 3845 * After this, control passes to the target, with any result 3846 * from the combiner inserted before the original {@code N} incoming 3847 * arguments. 3848 * <p> 3849 * If the combiner returns a value, the first parameter type of the target 3850 * must be identical with the return type of the combiner, and the next 3851 * {@code N} parameter types of the target must exactly match the parameters 3852 * of the combiner. 3853 * <p> 3854 * If the combiner has a void return, no result will be inserted, 3855 * and the first {@code N} parameter types of the target 3856 * must exactly match the parameters of the combiner. 3857 * <p> 3858 * The resulting adapter is the same type as the target, except that the 3859 * first parameter type is dropped, 3860 * if it corresponds to the result of the combiner. 3861 * <p> 3862 * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments 3863 * that either the combiner or the target does not wish to receive. 3864 * If some of the incoming arguments are destined only for the combiner, 3865 * consider using {@link MethodHandle#asCollector asCollector} instead, since those 3866 * arguments will not need to be live on the stack on entry to the 3867 * target.) 3868 * <p><b>Example:</b> 3869 * <blockquote><pre>{@code 3870 import static java.lang.invoke.MethodHandles.*; 3871 import static java.lang.invoke.MethodType.*; 3872 ... 3873 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 3874 "println", methodType(void.class, String.class)) 3875 .bindTo(System.out); 3876 MethodHandle cat = lookup().findVirtual(String.class, 3877 "concat", methodType(String.class, String.class)); 3878 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 3879 MethodHandle catTrace = foldArguments(cat, trace); 3880 // also prints "boo": 3881 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 3882 * }</pre></blockquote> 3883 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 3884 * represents the result type of the {@code target} and resulting adapter. 3885 * {@code V}/{@code v} represent the type and value of the parameter and argument 3886 * of {@code target} that precedes the folding position; {@code V} also is 3887 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 3888 * types and values of the {@code N} parameters and arguments at the folding 3889 * position. {@code B}/{@code b} represent the types and values of the 3890 * {@code target} parameters and arguments that follow the folded parameters 3891 * and arguments. 3892 * <blockquote><pre>{@code 3893 * // there are N arguments in A... 3894 * T target(V, A[N]..., B...); 3895 * V combiner(A...); 3896 * T adapter(A... a, B... b) { 3897 * V v = combiner(a...); 3898 * return target(v, a..., b...); 3899 * } 3900 * // and if the combiner has a void return: 3901 * T target2(A[N]..., B...); 3902 * void combiner2(A...); 3903 * T adapter2(A... a, B... b) { 3904 * combiner2(a...); 3905 * return target2(a..., b...); 3906 * } 3907 * }</pre></blockquote> 3908 * <p> 3909 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3910 * variable-arity method handle}, even if the original target method handle was. 3911 * @param target the method handle to invoke after arguments are combined 3912 * @param combiner method handle to call initially on the incoming arguments 3913 * @return method handle which incorporates the specified argument folding logic 3914 * @throws NullPointerException if either argument is null 3915 * @throws IllegalArgumentException if {@code combiner}'s return type 3916 * is non-void and not the same as the first argument type of 3917 * the target, or if the initial {@code N} argument types 3918 * of the target 3919 * (skipping one matching the {@code combiner}'s return type) 3920 * are not identical with the argument types of {@code combiner} 3921 */ 3922 public static foldArguments(MethodHandle target, MethodHandle combiner)3923 MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { 3924 return foldArguments(target, 0, combiner); 3925 } 3926 3927 /** 3928 * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then 3929 * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just 3930 * before the folded arguments. 3931 * <p> 3932 * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the 3933 * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a 3934 * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position 3935 * 0. 3936 * 3937 * @apiNote Example: 3938 * <blockquote><pre>{@code 3939 import static java.lang.invoke.MethodHandles.*; 3940 import static java.lang.invoke.MethodType.*; 3941 ... 3942 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 3943 "println", methodType(void.class, String.class)) 3944 .bindTo(System.out); 3945 MethodHandle cat = lookup().findVirtual(String.class, 3946 "concat", methodType(String.class, String.class)); 3947 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 3948 MethodHandle catTrace = foldArguments(cat, 1, trace); 3949 // also prints "jum": 3950 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 3951 * }</pre></blockquote> 3952 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 3953 * represents the result type of the {@code target} and resulting adapter. 3954 * {@code V}/{@code v} represent the type and value of the parameter and argument 3955 * of {@code target} that precedes the folding position; {@code V} also is 3956 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 3957 * types and values of the {@code N} parameters and arguments at the folding 3958 * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types 3959 * and values of the {@code target} parameters and arguments that precede and 3960 * follow the folded parameters and arguments starting at {@code pos}, 3961 * respectively. 3962 * <blockquote><pre>{@code 3963 * // there are N arguments in A... 3964 * T target(Z..., V, A[N]..., B...); 3965 * V combiner(A...); 3966 * T adapter(Z... z, A... a, B... b) { 3967 * V v = combiner(a...); 3968 * return target(z..., v, a..., b...); 3969 * } 3970 * // and if the combiner has a void return: 3971 * T target2(Z..., A[N]..., B...); 3972 * void combiner2(A...); 3973 * T adapter2(Z... z, A... a, B... b) { 3974 * combiner2(a...); 3975 * return target2(z..., a..., b...); 3976 * } 3977 * }</pre></blockquote> 3978 * <p> 3979 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3980 * variable-arity method handle}, even if the original target method handle was. 3981 * 3982 * @param target the method handle to invoke after arguments are combined 3983 * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code 3984 * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. 3985 * @param combiner method handle to call initially on the incoming arguments 3986 * @return method handle which incorporates the specified argument folding logic 3987 * @throws NullPointerException if either argument is null 3988 * @throws IllegalArgumentException if either of the following two conditions holds: 3989 * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position 3990 * {@code pos} of the target signature; 3991 * (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching 3992 * the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. 3993 * 3994 * @see #foldArguments(MethodHandle, MethodHandle) 3995 * @since 9 3996 */ 3997 public static foldArguments(MethodHandle target, int pos, MethodHandle combiner)3998 MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { 3999 MethodType targetType = target.type(); 4000 MethodType combinerType = combiner.type(); 4001 Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType); 4002 // Android-changed: // Android-changed: transformer implementation. 4003 // BoundMethodHandle result = target.rebind(); 4004 // boolean dropResult = rtype == void.class; 4005 // LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); 4006 // MethodType newType = targetType; 4007 // if (!dropResult) { 4008 // newType = newType.dropParameterTypes(pos, pos + 1); 4009 // } 4010 // result = result.copyWithExtendL(newType, lform, combiner); 4011 // return result; 4012 4013 return new Transformers.FoldArguments(target, pos, combiner); 4014 } 4015 foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType)4016 private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { 4017 int foldArgs = combinerType.parameterCount(); 4018 Class<?> rtype = combinerType.returnType(); 4019 int foldVals = rtype == void.class ? 0 : 1; 4020 int afterInsertPos = foldPos + foldVals; 4021 boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); 4022 if (ok) { 4023 for (int i = 0; i < foldArgs; i++) { 4024 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { 4025 ok = false; 4026 break; 4027 } 4028 } 4029 } 4030 if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) 4031 ok = false; 4032 if (!ok) 4033 throw misMatchedTypes("target and combiner types", targetType, combinerType); 4034 return rtype; 4035 } 4036 4037 /** 4038 * Makes a method handle which adapts a target method handle, 4039 * by guarding it with a test, a boolean-valued method handle. 4040 * If the guard fails, a fallback handle is called instead. 4041 * All three method handles must have the same corresponding 4042 * argument and return types, except that the return type 4043 * of the test must be boolean, and the test is allowed 4044 * to have fewer arguments than the other two method handles. 4045 * <p> Here is pseudocode for the resulting adapter: 4046 * <blockquote><pre>{@code 4047 * boolean test(A...); 4048 * T target(A...,B...); 4049 * T fallback(A...,B...); 4050 * T adapter(A... a,B... b) { 4051 * if (test(a...)) 4052 * return target(a..., b...); 4053 * else 4054 * return fallback(a..., b...); 4055 * } 4056 * }</pre></blockquote> 4057 * Note that the test arguments ({@code a...} in the pseudocode) cannot 4058 * be modified by execution of the test, and so are passed unchanged 4059 * from the caller to the target or fallback as appropriate. 4060 * @param test method handle used for test, must return boolean 4061 * @param target method handle to call if test passes 4062 * @param fallback method handle to call if test fails 4063 * @return method handle which incorporates the specified if/then/else logic 4064 * @throws NullPointerException if any argument is null 4065 * @throws IllegalArgumentException if {@code test} does not return boolean, 4066 * or if all three method types do not match (with the return 4067 * type of {@code test} changed to match that of the target). 4068 */ 4069 public static guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)4070 MethodHandle guardWithTest(MethodHandle test, 4071 MethodHandle target, 4072 MethodHandle fallback) { 4073 MethodType gtype = test.type(); 4074 MethodType ttype = target.type(); 4075 MethodType ftype = fallback.type(); 4076 if (!ttype.equals(ftype)) 4077 throw misMatchedTypes("target and fallback types", ttype, ftype); 4078 if (gtype.returnType() != boolean.class) 4079 throw newIllegalArgumentException("guard type is not a predicate "+gtype); 4080 List<Class<?>> targs = ttype.parameterList(); 4081 List<Class<?>> gargs = gtype.parameterList(); 4082 if (!targs.equals(gargs)) { 4083 int gpc = gargs.size(), tpc = targs.size(); 4084 if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) 4085 throw misMatchedTypes("target and test types", ttype, gtype); 4086 test = dropArguments(test, gpc, targs.subList(gpc, tpc)); 4087 gtype = test.type(); 4088 } 4089 4090 return new Transformers.GuardWithTest(test, target, fallback); 4091 } 4092 misMatchedTypes(String what, T t1, T t2)4093 static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) { 4094 return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); 4095 } 4096 4097 /** 4098 * Makes a method handle which adapts a target method handle, 4099 * by running it inside an exception handler. 4100 * If the target returns normally, the adapter returns that value. 4101 * If an exception matching the specified type is thrown, the fallback 4102 * handle is called instead on the exception, plus the original arguments. 4103 * <p> 4104 * The target and handler must have the same corresponding 4105 * argument and return types, except that handler may omit trailing arguments 4106 * (similarly to the predicate in {@link #guardWithTest guardWithTest}). 4107 * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. 4108 * <p> 4109 * Here is pseudocode for the resulting adapter. In the code, {@code T} 4110 * represents the return type of the {@code target} and {@code handler}, 4111 * and correspondingly that of the resulting adapter; {@code A}/{@code a}, 4112 * the types and values of arguments to the resulting handle consumed by 4113 * {@code handler}; and {@code B}/{@code b}, those of arguments to the 4114 * resulting handle discarded by {@code handler}. 4115 * <blockquote><pre>{@code 4116 * T target(A..., B...); 4117 * T handler(ExType, A...); 4118 * T adapter(A... a, B... b) { 4119 * try { 4120 * return target(a..., b...); 4121 * } catch (ExType ex) { 4122 * return handler(ex, a...); 4123 * } 4124 * } 4125 * }</pre></blockquote> 4126 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 4127 * be modified by execution of the target, and so are passed unchanged 4128 * from the caller to the handler, if the handler is invoked. 4129 * <p> 4130 * The target and handler must return the same type, even if the handler 4131 * always throws. (This might happen, for instance, because the handler 4132 * is simulating a {@code finally} clause). 4133 * To create such a throwing handler, compose the handler creation logic 4134 * with {@link #throwException throwException}, 4135 * in order to create a method handle of the correct return type. 4136 * @param target method handle to call 4137 * @param exType the type of exception which the handler will catch 4138 * @param handler method handle to call if a matching exception is thrown 4139 * @return method handle which incorporates the specified try/catch logic 4140 * @throws NullPointerException if any argument is null 4141 * @throws IllegalArgumentException if {@code handler} does not accept 4142 * the given exception type, or if the method handle types do 4143 * not match in their return types and their 4144 * corresponding parameters 4145 * @see MethodHandles#tryFinally(MethodHandle, MethodHandle) 4146 */ 4147 public static catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)4148 MethodHandle catchException(MethodHandle target, 4149 Class<? extends Throwable> exType, 4150 MethodHandle handler) { 4151 MethodType ttype = target.type(); 4152 MethodType htype = handler.type(); 4153 if (!Throwable.class.isAssignableFrom(exType)) 4154 throw new ClassCastException(exType.getName()); 4155 if (htype.parameterCount() < 1 || 4156 !htype.parameterType(0).isAssignableFrom(exType)) 4157 throw newIllegalArgumentException("handler does not accept exception type "+exType); 4158 if (htype.returnType() != ttype.returnType()) 4159 throw misMatchedTypes("target and handler return types", ttype, htype); 4160 handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true); 4161 if (handler == null) { 4162 throw misMatchedTypes("target and handler types", ttype, htype); 4163 } 4164 // Android-changed: use Transformer implementation. 4165 // return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); 4166 return new Transformers.CatchException(target, handler, exType); 4167 } 4168 4169 /** 4170 * Produces a method handle which will throw exceptions of the given {@code exType}. 4171 * The method handle will accept a single argument of {@code exType}, 4172 * and immediately throw it as an exception. 4173 * The method type will nominally specify a return of {@code returnType}. 4174 * The return type may be anything convenient: It doesn't matter to the 4175 * method handle's behavior, since it will never return normally. 4176 * @param returnType the return type of the desired method handle 4177 * @param exType the parameter type of the desired method handle 4178 * @return method handle which can throw the given exceptions 4179 * @throws NullPointerException if either argument is null 4180 */ 4181 public static throwException(Class<?> returnType, Class<? extends Throwable> exType)4182 MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { 4183 if (!Throwable.class.isAssignableFrom(exType)) 4184 throw new ClassCastException(exType.getName()); 4185 // Android-changed: use Transformer implementation. 4186 // return MethodHandleImpl.throwException(methodType(returnType, exType)); 4187 return new Transformers.AlwaysThrow(returnType, exType); 4188 } 4189 4190 /** 4191 * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each 4192 * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and 4193 * delivers the loop's result, which is the return value of the resulting handle. 4194 * <p> 4195 * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop 4196 * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration 4197 * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in 4198 * terms of method handles, each clause will specify up to four independent actions:<ul> 4199 * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. 4200 * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}. 4201 * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit. 4202 * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value. 4203 * </ul> 4204 * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. 4205 * The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually 4206 * be referring to types, but in some contexts (describing execution) the lists will be of actual values. 4207 * <p> 4208 * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in 4209 * this case. See below for a detailed description. 4210 * <p> 4211 * <em>Parameters optional everywhere:</em> 4212 * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. 4213 * As an exception, the init functions cannot take any {@code v} parameters, 4214 * because those values are not yet computed when the init functions are executed. 4215 * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. 4216 * In fact, any clause function may take no arguments at all. 4217 * <p> 4218 * <em>Loop parameters:</em> 4219 * A clause function may take all the iteration variable values it is entitled to, in which case 4220 * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>, 4221 * with their types and values notated as {@code (A...)} and {@code (a...)}. 4222 * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. 4223 * (Since init functions do not accept iteration variables {@code v}, any parameter to an 4224 * init function is automatically a loop parameter {@code a}.) 4225 * As with iteration variables, clause functions are allowed but not required to accept loop parameters. 4226 * These loop parameters act as loop-invariant values visible across the whole loop. 4227 * <p> 4228 * <em>Parameters visible everywhere:</em> 4229 * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full 4230 * list {@code (v... a...)} of current iteration variable values and incoming loop parameters. 4231 * The init functions can observe initial pre-loop state, in the form {@code (a...)}. 4232 * Most clause functions will not need all of this information, but they will be formally connected to it 4233 * as if by {@link #dropArguments}. 4234 * <a id="astar"></a> 4235 * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full 4236 * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). 4237 * In that notation, the general form of an init function parameter list 4238 * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. 4239 * <p> 4240 * <em>Checking clause structure:</em> 4241 * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the 4242 * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" 4243 * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not 4244 * met by the inputs to the loop combinator. 4245 * <p> 4246 * <em>Effectively identical sequences:</em> 4247 * <a id="effid"></a> 4248 * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B} 4249 * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. 4250 * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" 4251 * as a whole if the set contains a longest list, and all members of the set are effectively identical to 4252 * that longest list. 4253 * For example, any set of type sequences of the form {@code (V*)} is effectively identical, 4254 * and the same is true if more sequences of the form {@code (V... A*)} are added. 4255 * <p> 4256 * <em>Step 0: Determine clause structure.</em><ol type="a"> 4257 * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. 4258 * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements. 4259 * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length 4260 * four. Padding takes place by appending elements to the array. 4261 * <li>Clauses with all {@code null}s are disregarded. 4262 * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". 4263 * </ol> 4264 * <p> 4265 * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a"> 4266 * <li>The iteration variable type for each clause is determined using the clause's init and step return types. 4267 * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is 4268 * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's 4269 * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's 4270 * iteration variable type. 4271 * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}. 4272 * <li>This list of types is called the "iteration variable types" ({@code (V...)}). 4273 * </ol> 4274 * <p> 4275 * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul> 4276 * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}). 4277 * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. 4278 * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) 4279 * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. 4280 * (These types will be checked in step 2, along with all the clause function types.) 4281 * <li>Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) 4282 * <li>All of the collected parameter lists must be effectively identical. 4283 * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). 4284 * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence. 4285 * <li>The combined list consisting of iteration variable types followed by the external parameter types is called 4286 * the "internal parameter list". 4287 * </ul> 4288 * <p> 4289 * <em>Step 1C: Determine loop return type.</em><ol type="a"> 4290 * <li>Examine fini function return types, disregarding omitted fini functions. 4291 * <li>If there are no fini functions, the loop return type is {@code void}. 4292 * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return 4293 * type. 4294 * </ol> 4295 * <p> 4296 * <em>Step 1D: Check other types.</em><ol type="a"> 4297 * <li>There must be at least one non-omitted pred function. 4298 * <li>Every non-omitted pred function must have a {@code boolean} return type. 4299 * </ol> 4300 * <p> 4301 * <em>Step 2: Determine parameter lists.</em><ol type="a"> 4302 * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. 4303 * <li>The parameter list for init functions will be adjusted to the external parameter list. 4304 * (Note that their parameter lists are already effectively identical to this list.) 4305 * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be 4306 * effectively identical to the internal parameter list {@code (V... A...)}. 4307 * </ol> 4308 * <p> 4309 * <em>Step 3: Fill in omitted functions.</em><ol type="a"> 4310 * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable 4311 * type. 4312 * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration 4313 * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} 4314 * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) 4315 * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far 4316 * as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) 4317 * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the 4318 * loop return type. 4319 * </ol> 4320 * <p> 4321 * <em>Step 4: Fill in missing parameter types.</em><ol type="a"> 4322 * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, 4323 * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. 4324 * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter 4325 * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, 4326 * pad out the end of the list. 4327 * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. 4328 * </ol> 4329 * <p> 4330 * <em>Final observations.</em><ol type="a"> 4331 * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments. 4332 * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. 4333 * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have. 4334 * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of 4335 * (non-{@code void}) iteration variables {@code V} followed by loop parameters. 4336 * <li>Each pair of init and step functions agrees in their return type {@code V}. 4337 * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. 4338 * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. 4339 * </ol> 4340 * <p> 4341 * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property: 4342 * <ul> 4343 * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. 4344 * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. 4345 * (Only one {@code Pn} has to be non-{@code null}.) 4346 * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. 4347 * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. 4348 * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. 4349 * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. 4350 * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine 4351 * the resulting loop handle's parameter types {@code (A...)}. 4352 * </ul> 4353 * In this example, the loop handle parameters {@code (A...)} were derived from the step functions, 4354 * which is natural if most of the loop computation happens in the steps. For some loops, 4355 * the burden of computation might be heaviest in the pred functions, and so the pred functions 4356 * might need to accept the loop parameter values. For loops with complex exit logic, the fini 4357 * functions might need to accept loop parameters, and likewise for loops with complex entry logic, 4358 * where the init functions will need the extra parameters. For such reasons, the rules for 4359 * determining these parameters are as symmetric as possible, across all clause parts. 4360 * In general, the loop parameters function as common invariant values across the whole 4361 * loop, while the iteration variables function as common variant values, or (if there is 4362 * no step function) as internal loop invariant temporaries. 4363 * <p> 4364 * <em>Loop execution.</em><ol type="a"> 4365 * <li>When the loop is called, the loop input values are saved in locals, to be passed to 4366 * every clause function. These locals are loop invariant. 4367 * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)}) 4368 * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. 4369 * These locals will be loop varying (unless their steps behave as identity functions, as noted above). 4370 * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of 4371 * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} 4372 * (in argument order). 4373 * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function 4374 * returns {@code false}. 4375 * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the 4376 * sequence {@code (v...)} of loop variables. 4377 * The updated value is immediately visible to all subsequent function calls. 4378 * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value 4379 * (of type {@code R}) is returned from the loop as a whole. 4380 * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit 4381 * except by throwing an exception. 4382 * </ol> 4383 * <p> 4384 * <em>Usage tips.</em> 4385 * <ul> 4386 * <li>Although each step function will receive the current values of <em>all</em> the loop variables, 4387 * sometimes a step function only needs to observe the current value of its own variable. 4388 * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. 4389 * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. 4390 * <li>Loop variables are not required to vary; they can be loop invariant. A clause can create 4391 * a loop invariant by a suitable init function with no step, pred, or fini function. This may be 4392 * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. 4393 * <li>If some of the clause functions are virtual methods on an instance, the instance 4394 * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause 4395 * like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference 4396 * will be the first iteration variable value, and it will be easy to use virtual 4397 * methods as clause parts, since all of them will take a leading instance reference matching that value. 4398 * </ul> 4399 * <p> 4400 * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types 4401 * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; 4402 * and {@code R} is the common result type of all finalizers as well as of the resulting loop. 4403 * <blockquote><pre>{@code 4404 * V... init...(A...); 4405 * boolean pred...(V..., A...); 4406 * V... step...(V..., A...); 4407 * R fini...(V..., A...); 4408 * R loop(A... a) { 4409 * V... v... = init...(a...); 4410 * for (;;) { 4411 * for ((v, p, s, f) in (v..., pred..., step..., fini...)) { 4412 * v = s(v..., a...); 4413 * if (!p(v..., a...)) { 4414 * return f(v..., a...); 4415 * } 4416 * } 4417 * } 4418 * } 4419 * }</pre></blockquote> 4420 * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded 4421 * to their full length, even though individual clause functions may neglect to take them all. 4422 * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. 4423 * 4424 * @apiNote Example: 4425 * <blockquote><pre>{@code 4426 * // iterative implementation of the factorial function as a loop handle 4427 * static int one(int k) { return 1; } 4428 * static int inc(int i, int acc, int k) { return i + 1; } 4429 * static int mult(int i, int acc, int k) { return i * acc; } 4430 * static boolean pred(int i, int acc, int k) { return i < k; } 4431 * static int fin(int i, int acc, int k) { return acc; } 4432 * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 4433 * // null initializer for counter, should initialize to 0 4434 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 4435 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 4436 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 4437 * assertEquals(120, loop.invoke(5)); 4438 * }</pre></blockquote> 4439 * The same example, dropping arguments and using combinators: 4440 * <blockquote><pre>{@code 4441 * // simplified implementation of the factorial function as a loop handle 4442 * static int inc(int i) { return i + 1; } // drop acc, k 4443 * static int mult(int i, int acc) { return i * acc; } //drop k 4444 * static boolean cmp(int i, int k) { return i < k; } 4445 * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods 4446 * // null initializer for counter, should initialize to 0 4447 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 4448 * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc 4449 * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i 4450 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 4451 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 4452 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 4453 * assertEquals(720, loop.invoke(6)); 4454 * }</pre></blockquote> 4455 * A similar example, using a helper object to hold a loop parameter: 4456 * <blockquote><pre>{@code 4457 * // instance-based implementation of the factorial function as a loop handle 4458 * static class FacLoop { 4459 * final int k; 4460 * FacLoop(int k) { this.k = k; } 4461 * int inc(int i) { return i + 1; } 4462 * int mult(int i, int acc) { return i * acc; } 4463 * boolean pred(int i) { return i < k; } 4464 * int fin(int i, int acc) { return acc; } 4465 * } 4466 * // assume MH_FacLoop is a handle to the constructor 4467 * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 4468 * // null initializer for counter, should initialize to 0 4469 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 4470 * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; 4471 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 4472 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 4473 * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); 4474 * assertEquals(5040, loop.invoke(7)); 4475 * }</pre></blockquote> 4476 * 4477 * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. 4478 * 4479 * @return a method handle embodying the looping behavior as defined by the arguments. 4480 * 4481 * @throws IllegalArgumentException in case any of the constraints described above is violated. 4482 * 4483 * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) 4484 * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 4485 * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) 4486 * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) 4487 * @since 9 4488 */ loop(MethodHandle[].... clauses)4489 public static MethodHandle loop(MethodHandle[]... clauses) { 4490 // Step 0: determine clause structure. 4491 loopChecks0(clauses); 4492 4493 List<MethodHandle> init = new ArrayList<>(); 4494 List<MethodHandle> step = new ArrayList<>(); 4495 List<MethodHandle> pred = new ArrayList<>(); 4496 List<MethodHandle> fini = new ArrayList<>(); 4497 4498 Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { 4499 init.add(clause[0]); // all clauses have at least length 1 4500 step.add(clause.length <= 1 ? null : clause[1]); 4501 pred.add(clause.length <= 2 ? null : clause[2]); 4502 fini.add(clause.length <= 3 ? null : clause[3]); 4503 }); 4504 4505 assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; 4506 final int nclauses = init.size(); 4507 4508 // Step 1A: determine iteration variables (V...). 4509 final List<Class<?>> iterationVariableTypes = new ArrayList<>(); 4510 for (int i = 0; i < nclauses; ++i) { 4511 MethodHandle in = init.get(i); 4512 MethodHandle st = step.get(i); 4513 if (in == null && st == null) { 4514 iterationVariableTypes.add(void.class); 4515 } else if (in != null && st != null) { 4516 loopChecks1a(i, in, st); 4517 iterationVariableTypes.add(in.type().returnType()); 4518 } else { 4519 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); 4520 } 4521 } 4522 final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class). 4523 collect(Collectors.toList()); 4524 4525 // Step 1B: determine loop parameters (A...). 4526 final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); 4527 loopChecks1b(init, commonSuffix); 4528 4529 // Step 1C: determine loop return type. 4530 // Step 1D: check other types. 4531 // local variable required here; see JDK-8223553 4532 Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type) 4533 .map(MethodType::returnType); 4534 final Class<?> loopReturnType = cstream.findFirst().orElse(void.class); 4535 loopChecks1cd(pred, fini, loopReturnType); 4536 4537 // Step 2: determine parameter lists. 4538 final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix); 4539 commonParameterSequence.addAll(commonSuffix); 4540 loopChecks2(step, pred, fini, commonParameterSequence); 4541 4542 // Step 3: fill in omitted functions. 4543 for (int i = 0; i < nclauses; ++i) { 4544 Class<?> t = iterationVariableTypes.get(i); 4545 if (init.get(i) == null) { 4546 init.set(i, empty(methodType(t, commonSuffix))); 4547 } 4548 if (step.get(i) == null) { 4549 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); 4550 } 4551 if (pred.get(i) == null) { 4552 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence)); 4553 } 4554 if (fini.get(i) == null) { 4555 fini.set(i, empty(methodType(t, commonParameterSequence))); 4556 } 4557 } 4558 4559 // Step 4: fill in missing parameter types. 4560 // Also convert all handles to fixed-arity handles. 4561 List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix)); 4562 List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); 4563 List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); 4564 List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); 4565 4566 assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). 4567 allMatch(pl -> pl.equals(commonSuffix)); 4568 assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). 4569 allMatch(pl -> pl.equals(commonParameterSequence)); 4570 4571 // Android-changed: transformer implementation. 4572 // return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); 4573 return new Transformers.Loop(loopReturnType, 4574 commonSuffix, 4575 finit.toArray(MethodHandle[]::new), 4576 fstep.toArray(MethodHandle[]::new), 4577 fpred.toArray(MethodHandle[]::new), 4578 ffini.toArray(MethodHandle[]::new)); 4579 } 4580 loopChecks0(MethodHandle[][] clauses)4581 private static void loopChecks0(MethodHandle[][] clauses) { 4582 if (clauses == null || clauses.length == 0) { 4583 throw newIllegalArgumentException("null or no clauses passed"); 4584 } 4585 if (Stream.of(clauses).anyMatch(Objects::isNull)) { 4586 throw newIllegalArgumentException("null clauses are not allowed"); 4587 } 4588 if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { 4589 throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); 4590 } 4591 } 4592 loopChecks1a(int i, MethodHandle in, MethodHandle st)4593 private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { 4594 if (in.type().returnType() != st.type().returnType()) { 4595 throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), 4596 st.type().returnType()); 4597 } 4598 } 4599 longestParameterList(Stream<MethodHandle> mhs, int skipSize)4600 private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) { 4601 final List<Class<?>> empty = List.of(); 4602 final List<Class<?>> longest = mhs.filter(Objects::nonNull). 4603 // take only those that can contribute to a common suffix because they are longer than the prefix 4604 map(MethodHandle::type). 4605 filter(t -> t.parameterCount() > skipSize). 4606 map(MethodType::parameterList). 4607 reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); 4608 return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size()); 4609 } 4610 longestParameterList(List<List<Class<?>>> lists)4611 private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) { 4612 final List<Class<?>> empty = List.of(); 4613 return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); 4614 } 4615 buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize)4616 private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) { 4617 final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); 4618 final List<Class<?>> longest2 = longestParameterList(init.stream(), 0); 4619 return longestParameterList(Arrays.asList(longest1, longest2)); 4620 } 4621 loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix)4622 private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) { 4623 if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). 4624 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { 4625 throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + 4626 " (common suffix: " + commonSuffix + ")"); 4627 } 4628 } 4629 loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType)4630 private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) { 4631 if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 4632 anyMatch(t -> t != loopReturnType)) { 4633 throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + 4634 loopReturnType + ")"); 4635 } 4636 4637 if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) { 4638 throw newIllegalArgumentException("no predicate found", pred); 4639 } 4640 if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 4641 anyMatch(t -> t != boolean.class)) { 4642 throw newIllegalArgumentException("predicates must have boolean return type", pred); 4643 } 4644 } 4645 loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence)4646 private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) { 4647 if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). 4648 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { 4649 throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + 4650 "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); 4651 } 4652 } 4653 fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams)4654 private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) { 4655 return hs.stream().map(h -> { 4656 int pc = h.type().parameterCount(); 4657 int tpsize = targetParams.size(); 4658 return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h; 4659 }).collect(Collectors.toList()); 4660 } 4661 fixArities(List<MethodHandle> hs)4662 private static List<MethodHandle> fixArities(List<MethodHandle> hs) { 4663 return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList()); 4664 } 4665 4666 /** 4667 * Constructs a {@code while} loop from an initializer, a body, and a predicate. 4668 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 4669 * <p> 4670 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 4671 * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate 4672 * evaluates to {@code true}). 4673 * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). 4674 * <p> 4675 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 4676 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 4677 * and updated with the value returned from its invocation. The result of loop execution will be 4678 * the final value of the additional loop-local variable (if present). 4679 * <p> 4680 * The following rules hold for these argument handles:<ul> 4681 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 4682 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 4683 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 4684 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 4685 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 4686 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 4687 * It will constrain the parameter lists of the other loop parts. 4688 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 4689 * list {@code (A...)} is called the <em>external parameter list</em>. 4690 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 4691 * additional state variable of the loop. 4692 * The body must both accept and return a value of this type {@code V}. 4693 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 4694 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 4695 * <a href="MethodHandles.html#effid">effectively identical</a> 4696 * to the external parameter list {@code (A...)}. 4697 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 4698 * {@linkplain #empty default value}. 4699 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 4700 * Its parameter list (either empty or of the form {@code (V A*)}) must be 4701 * effectively identical to the internal parameter list. 4702 * </ul> 4703 * <p> 4704 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 4705 * <li>The loop handle's result type is the result type {@code V} of the body. 4706 * <li>The loop handle's parameter types are the types {@code (A...)}, 4707 * from the external parameter list. 4708 * </ul> 4709 * <p> 4710 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 4711 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 4712 * passed to the loop. 4713 * <blockquote><pre>{@code 4714 * V init(A...); 4715 * boolean pred(V, A...); 4716 * V body(V, A...); 4717 * V whileLoop(A... a...) { 4718 * V v = init(a...); 4719 * while (pred(v, a...)) { 4720 * v = body(v, a...); 4721 * } 4722 * return v; 4723 * } 4724 * }</pre></blockquote> 4725 * 4726 * @apiNote Example: 4727 * <blockquote><pre>{@code 4728 * // implement the zip function for lists as a loop handle 4729 * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } 4730 * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } 4731 * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { 4732 * zip.add(a.next()); 4733 * zip.add(b.next()); 4734 * return zip; 4735 * } 4736 * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods 4737 * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); 4738 * List<String> a = Arrays.asList("a", "b", "c", "d"); 4739 * List<String> b = Arrays.asList("e", "f", "g", "h"); 4740 * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); 4741 * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator())); 4742 * }</pre></blockquote> 4743 * 4744 * 4745 * @apiNote The implementation of this method can be expressed as follows: 4746 * <blockquote><pre>{@code 4747 * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 4748 * MethodHandle fini = (body.type().returnType() == void.class 4749 * ? null : identity(body.type().returnType())); 4750 * MethodHandle[] 4751 * checkExit = { null, null, pred, fini }, 4752 * varBody = { init, body }; 4753 * return loop(checkExit, varBody); 4754 * } 4755 * }</pre></blockquote> 4756 * 4757 * @param init optional initializer, providing the initial value of the loop variable. 4758 * May be {@code null}, implying a default initial value. See above for other constraints. 4759 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 4760 * above for other constraints. 4761 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 4762 * See above for other constraints. 4763 * 4764 * @return a method handle implementing the {@code while} loop as described by the arguments. 4765 * @throws IllegalArgumentException if the rules for the arguments are violated. 4766 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 4767 * 4768 * @see #loop(MethodHandle[][]) 4769 * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 4770 * @since 9 4771 */ whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body)4772 public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 4773 whileLoopChecks(init, pred, body); 4774 MethodHandle fini = identityOrVoid(body.type().returnType()); 4775 MethodHandle[] checkExit = { null, null, pred, fini }; 4776 MethodHandle[] varBody = { init, body }; 4777 return loop(checkExit, varBody); 4778 } 4779 4780 /** 4781 * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. 4782 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 4783 * <p> 4784 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 4785 * method will, in each iteration, first execute its body and then evaluate the predicate. 4786 * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. 4787 * <p> 4788 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 4789 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 4790 * and updated with the value returned from its invocation. The result of loop execution will be 4791 * the final value of the additional loop-local variable (if present). 4792 * <p> 4793 * The following rules hold for these argument handles:<ul> 4794 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 4795 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 4796 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 4797 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 4798 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 4799 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 4800 * It will constrain the parameter lists of the other loop parts. 4801 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 4802 * list {@code (A...)} is called the <em>external parameter list</em>. 4803 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 4804 * additional state variable of the loop. 4805 * The body must both accept and return a value of this type {@code V}. 4806 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 4807 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 4808 * <a href="MethodHandles.html#effid">effectively identical</a> 4809 * to the external parameter list {@code (A...)}. 4810 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 4811 * {@linkplain #empty default value}. 4812 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 4813 * Its parameter list (either empty or of the form {@code (V A*)}) must be 4814 * effectively identical to the internal parameter list. 4815 * </ul> 4816 * <p> 4817 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 4818 * <li>The loop handle's result type is the result type {@code V} of the body. 4819 * <li>The loop handle's parameter types are the types {@code (A...)}, 4820 * from the external parameter list. 4821 * </ul> 4822 * <p> 4823 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 4824 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 4825 * passed to the loop. 4826 * <blockquote><pre>{@code 4827 * V init(A...); 4828 * boolean pred(V, A...); 4829 * V body(V, A...); 4830 * V doWhileLoop(A... a...) { 4831 * V v = init(a...); 4832 * do { 4833 * v = body(v, a...); 4834 * } while (pred(v, a...)); 4835 * return v; 4836 * } 4837 * }</pre></blockquote> 4838 * 4839 * @apiNote Example: 4840 * <blockquote><pre>{@code 4841 * // int i = 0; while (i < limit) { ++i; } return i; => limit 4842 * static int zero(int limit) { return 0; } 4843 * static int step(int i, int limit) { return i + 1; } 4844 * static boolean pred(int i, int limit) { return i < limit; } 4845 * // assume MH_zero, MH_step, and MH_pred are handles to the above methods 4846 * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); 4847 * assertEquals(23, loop.invoke(23)); 4848 * }</pre></blockquote> 4849 * 4850 * 4851 * @apiNote The implementation of this method can be expressed as follows: 4852 * <blockquote><pre>{@code 4853 * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 4854 * MethodHandle fini = (body.type().returnType() == void.class 4855 * ? null : identity(body.type().returnType())); 4856 * MethodHandle[] clause = { init, body, pred, fini }; 4857 * return loop(clause); 4858 * } 4859 * }</pre></blockquote> 4860 * 4861 * @param init optional initializer, providing the initial value of the loop variable. 4862 * May be {@code null}, implying a default initial value. See above for other constraints. 4863 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 4864 * See above for other constraints. 4865 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 4866 * above for other constraints. 4867 * 4868 * @return a method handle implementing the {@code while} loop as described by the arguments. 4869 * @throws IllegalArgumentException if the rules for the arguments are violated. 4870 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 4871 * 4872 * @see #loop(MethodHandle[][]) 4873 * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) 4874 * @since 9 4875 */ doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred)4876 public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 4877 whileLoopChecks(init, pred, body); 4878 MethodHandle fini = identityOrVoid(body.type().returnType()); 4879 MethodHandle[] clause = {init, body, pred, fini }; 4880 return loop(clause); 4881 } 4882 whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body)4883 private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { 4884 Objects.requireNonNull(pred); 4885 Objects.requireNonNull(body); 4886 MethodType bodyType = body.type(); 4887 Class<?> returnType = bodyType.returnType(); 4888 List<Class<?>> innerList = bodyType.parameterList(); 4889 List<Class<?>> outerList = innerList; 4890 if (returnType == void.class) { 4891 // OK 4892 } else if (innerList.size() == 0 || innerList.get(0) != returnType) { 4893 // leading V argument missing => error 4894 MethodType expected = bodyType.insertParameterTypes(0, returnType); 4895 throw misMatchedTypes("body function", bodyType, expected); 4896 } else { 4897 outerList = innerList.subList(1, innerList.size()); 4898 } 4899 MethodType predType = pred.type(); 4900 if (predType.returnType() != boolean.class || 4901 !predType.effectivelyIdenticalParameters(0, innerList)) { 4902 throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); 4903 } 4904 if (init != null) { 4905 MethodType initType = init.type(); 4906 if (initType.returnType() != returnType || 4907 !initType.effectivelyIdenticalParameters(0, outerList)) { 4908 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 4909 } 4910 } 4911 } 4912 4913 /** 4914 * Constructs a loop that runs a given number of iterations. 4915 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 4916 * <p> 4917 * The number of iterations is determined by the {@code iterations} handle evaluation result. 4918 * The loop counter {@code i} is an extra loop iteration variable of type {@code int}. 4919 * It will be initialized to 0 and incremented by 1 in each iteration. 4920 * <p> 4921 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 4922 * of that type is also present. This variable is initialized using the optional {@code init} handle, 4923 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 4924 * <p> 4925 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 4926 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 4927 * iteration variable. 4928 * The result of the loop handle execution will be the final {@code V} value of that variable 4929 * (or {@code void} if there is no {@code V} variable). 4930 * <p> 4931 * The following rules hold for the argument handles:<ul> 4932 * <li>The {@code iterations} handle must not be {@code null}, and must return 4933 * the type {@code int}, referred to here as {@code I} in parameter type lists. 4934 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 4935 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 4936 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 4937 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 4938 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 4939 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 4940 * of types called the <em>internal parameter list</em>. 4941 * It will constrain the parameter lists of the other loop parts. 4942 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 4943 * with no additional {@code A} types, then the internal parameter list is extended by 4944 * the argument types {@code A...} of the {@code iterations} handle. 4945 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 4946 * list {@code (A...)} is called the <em>external parameter list</em>. 4947 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 4948 * additional state variable of the loop. 4949 * The body must both accept a leading parameter and return a value of this type {@code V}. 4950 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 4951 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 4952 * <a href="MethodHandles.html#effid">effectively identical</a> 4953 * to the external parameter list {@code (A...)}. 4954 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 4955 * {@linkplain #empty default value}. 4956 * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be 4957 * effectively identical to the external parameter list {@code (A...)}. 4958 * </ul> 4959 * <p> 4960 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 4961 * <li>The loop handle's result type is the result type {@code V} of the body. 4962 * <li>The loop handle's parameter types are the types {@code (A...)}, 4963 * from the external parameter list. 4964 * </ul> 4965 * <p> 4966 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 4967 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 4968 * arguments passed to the loop. 4969 * <blockquote><pre>{@code 4970 * int iterations(A...); 4971 * V init(A...); 4972 * V body(V, int, A...); 4973 * V countedLoop(A... a...) { 4974 * int end = iterations(a...); 4975 * V v = init(a...); 4976 * for (int i = 0; i < end; ++i) { 4977 * v = body(v, i, a...); 4978 * } 4979 * return v; 4980 * } 4981 * }</pre></blockquote> 4982 * 4983 * @apiNote Example with a fully conformant body method: 4984 * <blockquote><pre>{@code 4985 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 4986 * // => a variation on a well known theme 4987 * static String step(String v, int counter, String init) { return "na " + v; } 4988 * // assume MH_step is a handle to the method above 4989 * MethodHandle fit13 = MethodHandles.constant(int.class, 13); 4990 * MethodHandle start = MethodHandles.identity(String.class); 4991 * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); 4992 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!")); 4993 * }</pre></blockquote> 4994 * 4995 * @apiNote Example with the simplest possible body method type, 4996 * and passing the number of iterations to the loop invocation: 4997 * <blockquote><pre>{@code 4998 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 4999 * // => a variation on a well known theme 5000 * static String step(String v, int counter ) { return "na " + v; } 5001 * // assume MH_step is a handle to the method above 5002 * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); 5003 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); 5004 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v 5005 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!")); 5006 * }</pre></blockquote> 5007 * 5008 * @apiNote Example that treats the number of iterations, string to append to, and string to append 5009 * as loop parameters: 5010 * <blockquote><pre>{@code 5011 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 5012 * // => a variation on a well known theme 5013 * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } 5014 * // assume MH_step is a handle to the method above 5015 * MethodHandle count = MethodHandles.identity(int.class); 5016 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); 5017 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v 5018 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!")); 5019 * }</pre></blockquote> 5020 * 5021 * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} 5022 * to enforce a loop type: 5023 * <blockquote><pre>{@code 5024 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 5025 * // => a variation on a well known theme 5026 * static String step(String v, int counter, String pre) { return pre + " " + v; } 5027 * // assume MH_step is a handle to the method above 5028 * MethodType loopType = methodType(String.class, String.class, int.class, String.class); 5029 * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); 5030 * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); 5031 * MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); 5032 * MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v 5033 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!")); 5034 * }</pre></blockquote> 5035 * 5036 * @apiNote The implementation of this method can be expressed as follows: 5037 * <blockquote><pre>{@code 5038 * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 5039 * return countedLoop(empty(iterations.type()), iterations, init, body); 5040 * } 5041 * }</pre></blockquote> 5042 * 5043 * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's 5044 * result type must be {@code int}. See above for other constraints. 5045 * @param init optional initializer, providing the initial value of the loop variable. 5046 * May be {@code null}, implying a default initial value. See above for other constraints. 5047 * @param body body of the loop, which may not be {@code null}. 5048 * It controls the loop parameters and result type in the standard case (see above for details). 5049 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 5050 * and may accept any number of additional types. 5051 * See above for other constraints. 5052 * 5053 * @return a method handle representing the loop. 5054 * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. 5055 * @throws IllegalArgumentException if any argument violates the rules formulated above. 5056 * 5057 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) 5058 * @since 9 5059 */ countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body)5060 public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 5061 return countedLoop(empty(iterations.type()), iterations, init, body); 5062 } 5063 5064 /** 5065 * Constructs a loop that counts over a range of numbers. 5066 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5067 * <p> 5068 * The loop counter {@code i} is a loop iteration variable of type {@code int}. 5069 * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) 5070 * values of the loop counter. 5071 * The loop counter will be initialized to the {@code int} value returned from the evaluation of the 5072 * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. 5073 * <p> 5074 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5075 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5076 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5077 * <p> 5078 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5079 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5080 * iteration variable. 5081 * The result of the loop handle execution will be the final {@code V} value of that variable 5082 * (or {@code void} if there is no {@code V} variable). 5083 * <p> 5084 * The following rules hold for the argument handles:<ul> 5085 * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return 5086 * the common type {@code int}, referred to here as {@code I} in parameter type lists. 5087 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5088 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 5089 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5090 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 5091 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 5092 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 5093 * of types called the <em>internal parameter list</em>. 5094 * It will constrain the parameter lists of the other loop parts. 5095 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 5096 * with no additional {@code A} types, then the internal parameter list is extended by 5097 * the argument types {@code A...} of the {@code end} handle. 5098 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 5099 * list {@code (A...)} is called the <em>external parameter list</em>. 5100 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5101 * additional state variable of the loop. 5102 * The body must both accept a leading parameter and return a value of this type {@code V}. 5103 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5104 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5105 * <a href="MethodHandles.html#effid">effectively identical</a> 5106 * to the external parameter list {@code (A...)}. 5107 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5108 * {@linkplain #empty default value}. 5109 * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be 5110 * effectively identical to the external parameter list {@code (A...)}. 5111 * <li>Likewise, the parameter list of {@code end} must be effectively identical 5112 * to the external parameter list. 5113 * </ul> 5114 * <p> 5115 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5116 * <li>The loop handle's result type is the result type {@code V} of the body. 5117 * <li>The loop handle's parameter types are the types {@code (A...)}, 5118 * from the external parameter list. 5119 * </ul> 5120 * <p> 5121 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5122 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 5123 * arguments passed to the loop. 5124 * <blockquote><pre>{@code 5125 * int start(A...); 5126 * int end(A...); 5127 * V init(A...); 5128 * V body(V, int, A...); 5129 * V countedLoop(A... a...) { 5130 * int e = end(a...); 5131 * int s = start(a...); 5132 * V v = init(a...); 5133 * for (int i = s; i < e; ++i) { 5134 * v = body(v, i, a...); 5135 * } 5136 * return v; 5137 * } 5138 * }</pre></blockquote> 5139 * 5140 * @apiNote The implementation of this method can be expressed as follows: 5141 * <blockquote><pre>{@code 5142 * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5143 * MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); 5144 * // assume MH_increment and MH_predicate are handles to implementation-internal methods with 5145 * // the following semantics: 5146 * // MH_increment: (int limit, int counter) -> counter + 1 5147 * // MH_predicate: (int limit, int counter) -> counter < limit 5148 * Class<?> counterType = start.type().returnType(); // int 5149 * Class<?> returnType = body.type().returnType(); 5150 * MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; 5151 * if (returnType != void.class) { // ignore the V variable 5152 * incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 5153 * pred = dropArguments(pred, 1, returnType); // ditto 5154 * retv = dropArguments(identity(returnType), 0, counterType); // ignore limit 5155 * } 5156 * body = dropArguments(body, 0, counterType); // ignore the limit variable 5157 * MethodHandle[] 5158 * loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 5159 * bodyClause = { init, body }, // v = init(); v = body(v, i) 5160 * indexVar = { start, incr }; // i = start(); i = i + 1 5161 * return loop(loopLimit, bodyClause, indexVar); 5162 * } 5163 * }</pre></blockquote> 5164 * 5165 * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. 5166 * See above for other constraints. 5167 * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to 5168 * {@code end-1}). The result type must be {@code int}. See above for other constraints. 5169 * @param init optional initializer, providing the initial value of the loop variable. 5170 * May be {@code null}, implying a default initial value. See above for other constraints. 5171 * @param body body of the loop, which may not be {@code null}. 5172 * It controls the loop parameters and result type in the standard case (see above for details). 5173 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 5174 * and may accept any number of additional types. 5175 * See above for other constraints. 5176 * 5177 * @return a method handle representing the loop. 5178 * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. 5179 * @throws IllegalArgumentException if any argument violates the rules formulated above. 5180 * 5181 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) 5182 * @since 9 5183 */ countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5184 public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5185 countedLoopChecks(start, end, init, body); 5186 Class<?> counterType = start.type().returnType(); // int, but who's counting? 5187 Class<?> limitType = end.type().returnType(); // yes, int again 5188 Class<?> returnType = body.type().returnType(); 5189 // Android-changed: getConstantHandle is in MethodHandles. 5190 // MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); 5191 // MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); 5192 MethodHandle incr = getConstantHandle(MH_countedLoopStep); 5193 MethodHandle pred = getConstantHandle(MH_countedLoopPred); 5194 MethodHandle retv = null; 5195 if (returnType != void.class) { 5196 incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 5197 pred = dropArguments(pred, 1, returnType); // ditto 5198 retv = dropArguments(identity(returnType), 0, counterType); 5199 } 5200 body = dropArguments(body, 0, counterType); // ignore the limit variable 5201 MethodHandle[] 5202 loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 5203 bodyClause = { init, body }, // v = init(); v = body(v, i) 5204 indexVar = { start, incr }; // i = start(); i = i + 1 5205 return loop(loopLimit, bodyClause, indexVar); 5206 } 5207 countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5208 private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5209 Objects.requireNonNull(start); 5210 Objects.requireNonNull(end); 5211 Objects.requireNonNull(body); 5212 Class<?> counterType = start.type().returnType(); 5213 if (counterType != int.class) { 5214 MethodType expected = start.type().changeReturnType(int.class); 5215 throw misMatchedTypes("start function", start.type(), expected); 5216 } else if (end.type().returnType() != counterType) { 5217 MethodType expected = end.type().changeReturnType(counterType); 5218 throw misMatchedTypes("end function", end.type(), expected); 5219 } 5220 MethodType bodyType = body.type(); 5221 Class<?> returnType = bodyType.returnType(); 5222 List<Class<?>> innerList = bodyType.parameterList(); 5223 // strip leading V value if present 5224 int vsize = (returnType == void.class ? 0 : 1); 5225 if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) { 5226 // argument list has no "V" => error 5227 MethodType expected = bodyType.insertParameterTypes(0, returnType); 5228 throw misMatchedTypes("body function", bodyType, expected); 5229 } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { 5230 // missing I type => error 5231 MethodType expected = bodyType.insertParameterTypes(vsize, counterType); 5232 throw misMatchedTypes("body function", bodyType, expected); 5233 } 5234 List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size()); 5235 if (outerList.isEmpty()) { 5236 // special case; take lists from end handle 5237 outerList = end.type().parameterList(); 5238 innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); 5239 } 5240 MethodType expected = methodType(counterType, outerList); 5241 if (!start.type().effectivelyIdenticalParameters(0, outerList)) { 5242 throw misMatchedTypes("start parameter types", start.type(), expected); 5243 } 5244 if (end.type() != start.type() && 5245 !end.type().effectivelyIdenticalParameters(0, outerList)) { 5246 throw misMatchedTypes("end parameter types", end.type(), expected); 5247 } 5248 if (init != null) { 5249 MethodType initType = init.type(); 5250 if (initType.returnType() != returnType || 5251 !initType.effectivelyIdenticalParameters(0, outerList)) { 5252 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 5253 } 5254 } 5255 } 5256 5257 /** 5258 * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}. 5259 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5260 * <p> 5261 * The iterator itself will be determined by the evaluation of the {@code iterator} handle. 5262 * Each value it produces will be stored in a loop iteration variable of type {@code T}. 5263 * <p> 5264 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5265 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5266 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5267 * <p> 5268 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5269 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5270 * iteration variable. 5271 * The result of the loop handle execution will be the final {@code V} value of that variable 5272 * (or {@code void} if there is no {@code V} variable). 5273 * <p> 5274 * The following rules hold for the argument handles:<ul> 5275 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5276 * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. 5277 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5278 * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} 5279 * is quietly dropped from the parameter list, leaving {@code (T A...)V}.) 5280 * <li>The parameter list {@code (V T A...)} of the body contributes to a list 5281 * of types called the <em>internal parameter list</em>. 5282 * It will constrain the parameter lists of the other loop parts. 5283 * <li>As a special case, if the body contributes only {@code V} and {@code T} types, 5284 * with no additional {@code A} types, then the internal parameter list is extended by 5285 * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the 5286 * single type {@code Iterable} is added and constitutes the {@code A...} list. 5287 * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter 5288 * list {@code (A...)} is called the <em>external parameter list</em>. 5289 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5290 * additional state variable of the loop. 5291 * The body must both accept a leading parameter and return a value of this type {@code V}. 5292 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5293 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5294 * <a href="MethodHandles.html#effid">effectively identical</a> 5295 * to the external parameter list {@code (A...)}. 5296 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5297 * {@linkplain #empty default value}. 5298 * <li>If the {@code iterator} handle is non-{@code null}, it must have the return 5299 * type {@code java.util.Iterator} or a subtype thereof. 5300 * The iterator it produces when the loop is executed will be assumed 5301 * to yield values which can be converted to type {@code T}. 5302 * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be 5303 * effectively identical to the external parameter list {@code (A...)}. 5304 * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves 5305 * like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list 5306 * {@code (V T A...)} must have at least one {@code A} type, and the default iterator 5307 * handle parameter is adjusted to accept the leading {@code A} type, as if by 5308 * the {@link MethodHandle#asType asType} conversion method. 5309 * The leading {@code A} type must be {@code Iterable} or a subtype thereof. 5310 * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. 5311 * </ul> 5312 * <p> 5313 * The type {@code T} may be either a primitive or reference. 5314 * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator}, 5315 * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} 5316 * as if by the {@link MethodHandle#asType asType} conversion method. 5317 * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur 5318 * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. 5319 * <p> 5320 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5321 * <li>The loop handle's result type is the result type {@code V} of the body. 5322 * <li>The loop handle's parameter types are the types {@code (A...)}, 5323 * from the external parameter list. 5324 * </ul> 5325 * <p> 5326 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5327 * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the 5328 * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. 5329 * <blockquote><pre>{@code 5330 * Iterator<T> iterator(A...); // defaults to Iterable::iterator 5331 * V init(A...); 5332 * V body(V,T,A...); 5333 * V iteratedLoop(A... a...) { 5334 * Iterator<T> it = iterator(a...); 5335 * V v = init(a...); 5336 * while (it.hasNext()) { 5337 * T t = it.next(); 5338 * v = body(v, t, a...); 5339 * } 5340 * return v; 5341 * } 5342 * }</pre></blockquote> 5343 * 5344 * @apiNote Example: 5345 * <blockquote><pre>{@code 5346 * // get an iterator from a list 5347 * static List<String> reverseStep(List<String> r, String e) { 5348 * r.add(0, e); 5349 * return r; 5350 * } 5351 * static List<String> newArrayList() { return new ArrayList<>(); } 5352 * // assume MH_reverseStep and MH_newArrayList are handles to the above methods 5353 * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); 5354 * List<String> list = Arrays.asList("a", "b", "c", "d", "e"); 5355 * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); 5356 * assertEquals(reversedList, (List<String>) loop.invoke(list)); 5357 * }</pre></blockquote> 5358 * 5359 * @apiNote The implementation of this method can be expressed approximately as follows: 5360 * <blockquote><pre>{@code 5361 * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 5362 * // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable 5363 * Class<?> returnType = body.type().returnType(); 5364 * Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 5365 * MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); 5366 * MethodHandle retv = null, step = body, startIter = iterator; 5367 * if (returnType != void.class) { 5368 * // the simple thing first: in (I V A...), drop the I to get V 5369 * retv = dropArguments(identity(returnType), 0, Iterator.class); 5370 * // body type signature (V T A...), internal loop types (I V A...) 5371 * step = swapArguments(body, 0, 1); // swap V <-> T 5372 * } 5373 * if (startIter == null) startIter = MH_getIter; 5374 * MethodHandle[] 5375 * iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) 5376 * bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) 5377 * return loop(iterVar, bodyClause); 5378 * } 5379 * }</pre></blockquote> 5380 * 5381 * @param iterator an optional handle to return the iterator to start the loop. 5382 * If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. 5383 * See above for other constraints. 5384 * @param init optional initializer, providing the initial value of the loop variable. 5385 * May be {@code null}, implying a default initial value. See above for other constraints. 5386 * @param body body of the loop, which may not be {@code null}. 5387 * It controls the loop parameters and result type in the standard case (see above for details). 5388 * It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), 5389 * and may accept any number of additional types. 5390 * See above for other constraints. 5391 * 5392 * @return a method handle embodying the iteration loop functionality. 5393 * @throws NullPointerException if the {@code body} handle is {@code null}. 5394 * @throws IllegalArgumentException if any argument violates the above requirements. 5395 * 5396 * @since 9 5397 */ iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body)5398 public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 5399 Class<?> iterableType = iteratedLoopChecks(iterator, init, body); 5400 Class<?> returnType = body.type().returnType(); 5401 // Android-changed: getConstantHandle is in MethodHandles. 5402 // MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); 5403 // MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); 5404 MethodHandle hasNext = getConstantHandle(MH_iteratePred); 5405 MethodHandle nextRaw = getConstantHandle(MH_iterateNext); 5406 MethodHandle startIter; 5407 MethodHandle nextVal; 5408 { 5409 MethodType iteratorType; 5410 if (iterator == null) { 5411 // derive argument type from body, if available, else use Iterable 5412 // Android-changed: getConstantHandle is in MethodHandles. 5413 // startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); 5414 startIter = getConstantHandle(MH_initIterator); 5415 iteratorType = startIter.type().changeParameterType(0, iterableType); 5416 } else { 5417 // force return type to the internal iterator class 5418 iteratorType = iterator.type().changeReturnType(Iterator.class); 5419 startIter = iterator; 5420 } 5421 Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 5422 MethodType nextValType = nextRaw.type().changeReturnType(ttype); 5423 5424 // perform the asType transforms under an exception transformer, as per spec.: 5425 try { 5426 startIter = startIter.asType(iteratorType); 5427 nextVal = nextRaw.asType(nextValType); 5428 } catch (WrongMethodTypeException ex) { 5429 throw new IllegalArgumentException(ex); 5430 } 5431 } 5432 5433 MethodHandle retv = null, step = body; 5434 if (returnType != void.class) { 5435 // the simple thing first: in (I V A...), drop the I to get V 5436 retv = dropArguments(identity(returnType), 0, Iterator.class); 5437 // body type signature (V T A...), internal loop types (I V A...) 5438 step = swapArguments(body, 0, 1); // swap V <-> T 5439 } 5440 5441 MethodHandle[] 5442 iterVar = { startIter, null, hasNext, retv }, 5443 bodyClause = { init, filterArgument(step, 0, nextVal) }; 5444 return loop(iterVar, bodyClause); 5445 } 5446 iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body)5447 private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { 5448 Objects.requireNonNull(body); 5449 MethodType bodyType = body.type(); 5450 Class<?> returnType = bodyType.returnType(); 5451 List<Class<?>> internalParamList = bodyType.parameterList(); 5452 // strip leading V value if present 5453 int vsize = (returnType == void.class ? 0 : 1); 5454 if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) { 5455 // argument list has no "V" => error 5456 MethodType expected = bodyType.insertParameterTypes(0, returnType); 5457 throw misMatchedTypes("body function", bodyType, expected); 5458 } else if (internalParamList.size() <= vsize) { 5459 // missing T type => error 5460 MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); 5461 throw misMatchedTypes("body function", bodyType, expected); 5462 } 5463 List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); 5464 Class<?> iterableType = null; 5465 if (iterator != null) { 5466 // special case; if the body handle only declares V and T then 5467 // the external parameter list is obtained from iterator handle 5468 if (externalParamList.isEmpty()) { 5469 externalParamList = iterator.type().parameterList(); 5470 } 5471 MethodType itype = iterator.type(); 5472 if (!Iterator.class.isAssignableFrom(itype.returnType())) { 5473 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); 5474 } 5475 if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { 5476 MethodType expected = methodType(itype.returnType(), externalParamList); 5477 throw misMatchedTypes("iterator parameters", itype, expected); 5478 } 5479 } else { 5480 if (externalParamList.isEmpty()) { 5481 // special case; if the iterator handle is null and the body handle 5482 // only declares V and T then the external parameter list consists 5483 // of Iterable 5484 externalParamList = Arrays.asList(Iterable.class); 5485 iterableType = Iterable.class; 5486 } else { 5487 // special case; if the iterator handle is null and the external 5488 // parameter list is not empty then the first parameter must be 5489 // assignable to Iterable 5490 iterableType = externalParamList.get(0); 5491 if (!Iterable.class.isAssignableFrom(iterableType)) { 5492 throw newIllegalArgumentException( 5493 "inferred first loop argument must inherit from Iterable: " + iterableType); 5494 } 5495 } 5496 } 5497 if (init != null) { 5498 MethodType initType = init.type(); 5499 if (initType.returnType() != returnType || 5500 !initType.effectivelyIdenticalParameters(0, externalParamList)) { 5501 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); 5502 } 5503 } 5504 return iterableType; // help the caller a bit 5505 } 5506 swapArguments(MethodHandle mh, int i, int j)5507 /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) { 5508 // there should be a better way to uncross my wires 5509 int arity = mh.type().parameterCount(); 5510 int[] order = new int[arity]; 5511 for (int k = 0; k < arity; k++) order[k] = k; 5512 order[i] = j; order[j] = i; 5513 Class<?>[] types = mh.type().parameterArray(); 5514 Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti; 5515 MethodType swapType = methodType(mh.type().returnType(), types); 5516 return permuteArguments(mh, swapType, order); 5517 } 5518 5519 /** 5520 * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. 5521 * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception 5522 * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The 5523 * exception will be rethrown, unless {@code cleanup} handle throws an exception first. The 5524 * value returned from the {@code cleanup} handle's execution will be the result of the execution of the 5525 * {@code try-finally} handle. 5526 * <p> 5527 * The {@code cleanup} handle will be passed one or two additional leading arguments. 5528 * The first is the exception thrown during the 5529 * execution of the {@code target} handle, or {@code null} if no exception was thrown. 5530 * The second is the result of the execution of the {@code target} handle, or, if it throws an exception, 5531 * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. 5532 * The second argument is not present if the {@code target} handle has a {@code void} return type. 5533 * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists 5534 * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) 5535 * <p> 5536 * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except 5537 * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or 5538 * two extra leading parameters:<ul> 5539 * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and 5540 * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry 5541 * the result from the execution of the {@code target} handle. 5542 * This parameter is not present if the {@code target} returns {@code void}. 5543 * </ul> 5544 * <p> 5545 * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of 5546 * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting 5547 * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by 5548 * the cleanup. 5549 * <blockquote><pre>{@code 5550 * V target(A..., B...); 5551 * V cleanup(Throwable, V, A...); 5552 * V adapter(A... a, B... b) { 5553 * V result = (zero value for V); 5554 * Throwable throwable = null; 5555 * try { 5556 * result = target(a..., b...); 5557 * } catch (Throwable t) { 5558 * throwable = t; 5559 * throw t; 5560 * } finally { 5561 * result = cleanup(throwable, result, a...); 5562 * } 5563 * return result; 5564 * } 5565 * }</pre></blockquote> 5566 * <p> 5567 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 5568 * be modified by execution of the target, and so are passed unchanged 5569 * from the caller to the cleanup, if it is invoked. 5570 * <p> 5571 * The target and cleanup must return the same type, even if the cleanup 5572 * always throws. 5573 * To create such a throwing cleanup, compose the cleanup logic 5574 * with {@link #throwException throwException}, 5575 * in order to create a method handle of the correct return type. 5576 * <p> 5577 * Note that {@code tryFinally} never converts exceptions into normal returns. 5578 * In rare cases where exceptions must be converted in that way, first wrap 5579 * the target with {@link #catchException(MethodHandle, Class, MethodHandle)} 5580 * to capture an outgoing exception, and then wrap with {@code tryFinally}. 5581 * <p> 5582 * It is recommended that the first parameter type of {@code cleanup} be 5583 * declared {@code Throwable} rather than a narrower subtype. This ensures 5584 * {@code cleanup} will always be invoked with whatever exception that 5585 * {@code target} throws. Declaring a narrower type may result in a 5586 * {@code ClassCastException} being thrown by the {@code try-finally} 5587 * handle if the type of the exception thrown by {@code target} is not 5588 * assignable to the first parameter type of {@code cleanup}. Note that 5589 * various exception types of {@code VirtualMachineError}, 5590 * {@code LinkageError}, and {@code RuntimeException} can in principle be 5591 * thrown by almost any kind of Java code, and a finally clause that 5592 * catches (say) only {@code IOException} would mask any of the others 5593 * behind a {@code ClassCastException}. 5594 * 5595 * @param target the handle whose execution is to be wrapped in a {@code try} block. 5596 * @param cleanup the handle that is invoked in the finally block. 5597 * 5598 * @return a method handle embodying the {@code try-finally} block composed of the two arguments. 5599 * @throws NullPointerException if any argument is null 5600 * @throws IllegalArgumentException if {@code cleanup} does not accept 5601 * the required leading arguments, or if the method handle types do 5602 * not match in their return types and their 5603 * corresponding trailing parameters 5604 * 5605 * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) 5606 * @since 9 5607 */ tryFinally(MethodHandle target, MethodHandle cleanup)5608 public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { 5609 List<Class<?>> targetParamTypes = target.type().parameterList(); 5610 Class<?> rtype = target.type().returnType(); 5611 5612 tryFinallyChecks(target, cleanup); 5613 5614 // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. 5615 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 5616 // target parameter list. 5617 cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0); 5618 5619 // Ensure that the intrinsic type checks the instance thrown by the 5620 // target against the first parameter of cleanup 5621 cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class)); 5622 5623 // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. 5624 // Android-changed: use Transformer implementation. 5625 // return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); 5626 return new Transformers.TryFinally(target.asFixedArity(), cleanup.asFixedArity()); 5627 } 5628 tryFinallyChecks(MethodHandle target, MethodHandle cleanup)5629 private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { 5630 Class<?> rtype = target.type().returnType(); 5631 if (rtype != cleanup.type().returnType()) { 5632 throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); 5633 } 5634 MethodType cleanupType = cleanup.type(); 5635 if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { 5636 throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); 5637 } 5638 if (rtype != void.class && cleanupType.parameterType(1) != rtype) { 5639 throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); 5640 } 5641 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 5642 // target parameter list. 5643 int cleanupArgIndex = rtype == void.class ? 1 : 2; 5644 if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { 5645 throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", 5646 cleanup.type(), target.type()); 5647 } 5648 } 5649 5650 /** 5651 * Creates a table switch method handle, which can be used to switch over a set of target 5652 * method handles, based on a given target index, called selector. 5653 * <p> 5654 * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)}, 5655 * and where {@code N} is the number of target method handles, the table switch method 5656 * handle will invoke the n-th target method handle from the list of target method handles. 5657 * <p> 5658 * For a selector value that does not fall in the range {@code [0, N)}, the table switch 5659 * method handle will invoke the given fallback method handle. 5660 * <p> 5661 * All method handles passed to this method must have the same type, with the additional 5662 * requirement that the leading parameter be of type {@code int}. The leading parameter 5663 * represents the selector. 5664 * <p> 5665 * Any trailing parameters present in the type will appear on the returned table switch 5666 * method handle as well. Any arguments assigned to these parameters will be forwarded, 5667 * together with the selector value, to the selected method handle when invoking it. 5668 * 5669 * @apiNote Example: 5670 * The cases each drop the {@code selector} value they are given, and take an additional 5671 * {@code String} argument, which is concatenated (using {@link String#concat(String)}) 5672 * to a specific constant label string for each case: 5673 * <blockquote><pre>{@code 5674 * MethodHandles.Lookup lookup = MethodHandles.lookup(); 5675 * MethodHandle caseMh = lookup.findVirtual(String.class, "concat", 5676 * MethodType.methodType(String.class, String.class)); 5677 * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class); 5678 * 5679 * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: "); 5680 * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: "); 5681 * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: "); 5682 * 5683 * MethodHandle mhSwitch = MethodHandles.tableSwitch( 5684 * caseDefault, 5685 * case0, 5686 * case1 5687 * ); 5688 * 5689 * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data")); 5690 * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data")); 5691 * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data")); 5692 * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data")); 5693 * }</pre></blockquote> 5694 * 5695 * @param fallback the fallback method handle that is called when the selector is not 5696 * within the range {@code [0, N)}. 5697 * @param targets array of target method handles. 5698 * @return the table switch method handle. 5699 * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any 5700 * any of the elements of the {@code targets} array are 5701 * {@code null}. 5702 * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading 5703 * parameter of the fallback handle or any of the target 5704 * handles is not {@code int}, or if the types of 5705 * the fallback handle and all of target handles are 5706 * not the same. 5707 */ tableSwitch(MethodHandle fallback, MethodHandle... targets)5708 public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) { 5709 Objects.requireNonNull(fallback); 5710 Objects.requireNonNull(targets); 5711 targets = targets.clone(); 5712 MethodType type = tableSwitchChecks(fallback, targets); 5713 // Android-changed: use a Transformer for the implementation. 5714 // return MethodHandleImpl.makeTableSwitch(type, fallback, targets); 5715 return new Transformers.TableSwitch(type, fallback, targets); 5716 } 5717 tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions)5718 private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) { 5719 if (caseActions.length == 0) 5720 throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions)); 5721 5722 MethodType expectedType = defaultCase.type(); 5723 5724 if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class) 5725 throw new IllegalArgumentException( 5726 "Case actions must have int as leading parameter: " + Arrays.toString(caseActions)); 5727 5728 for (MethodHandle mh : caseActions) { 5729 Objects.requireNonNull(mh); 5730 // Android-changed: MethodType's not interned. 5731 // if (mh.type() != expectedType) 5732 if (!mh.type().equals(expectedType)) 5733 throw new IllegalArgumentException( 5734 "Case actions must have the same type: " + Arrays.toString(caseActions)); 5735 } 5736 5737 return expectedType; 5738 } 5739 5740 // BEGIN Android-added: Code from OpenJDK's MethodHandleImpl. 5741 5742 /** 5743 * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, 5744 * MethodHandle) counting loops}. 5745 * 5746 * @param limit the upper bound of the parameter, statically bound at loop creation time. 5747 * @param counter the counter parameter, passed in during loop execution. 5748 * 5749 * @return whether the counter has reached the limit. 5750 * @hide 5751 */ countedLoopPredicate(int limit, int counter)5752 public static boolean countedLoopPredicate(int limit, int counter) { 5753 return counter < limit; 5754 } 5755 5756 /** 5757 * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, 5758 * MethodHandle) counting loops} to increment the counter. 5759 * 5760 * @param limit the upper bound of the loop counter (ignored). 5761 * @param counter the loop counter. 5762 * 5763 * @return the loop counter incremented by 1. 5764 * @hide 5765 */ countedLoopStep(int limit, int counter)5766 public static int countedLoopStep(int limit, int counter) { 5767 return counter + 1; 5768 } 5769 5770 /** 5771 * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}. 5772 * 5773 * @param it the {@link Iterable} over which the loop iterates. 5774 * 5775 * @return an {@link Iterator} over the argument's elements. 5776 * @hide 5777 */ initIterator(Iterable<?> it)5778 public static Iterator<?> initIterator(Iterable<?> it) { 5779 return it.iterator(); 5780 } 5781 5782 /** 5783 * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}. 5784 * 5785 * @param it the iterator to be checked. 5786 * 5787 * @return {@code true} iff there are more elements to iterate over. 5788 * @hide 5789 */ iteratePredicate(Iterator<?> it)5790 public static boolean iteratePredicate(Iterator<?> it) { 5791 return it.hasNext(); 5792 } 5793 5794 /** 5795 * This method is bound as the step for retrieving the current value from the iterator in {@linkplain 5796 * MethodHandles#iteratedLoop iterating loops}. 5797 * 5798 * @param it the iterator. 5799 * 5800 * @return the next element from the iterator. 5801 * @hide 5802 */ iterateNext(Iterator<?> it)5803 public static Object iterateNext(Iterator<?> it) { 5804 return it.next(); 5805 } 5806 5807 // Indexes into constant method handles: 5808 static final int 5809 MH_cast = 0, 5810 MH_selectAlternative = 1, 5811 MH_copyAsPrimitiveArray = 2, 5812 MH_fillNewTypedArray = 3, 5813 MH_fillNewArray = 4, 5814 MH_arrayIdentity = 5, 5815 MH_countedLoopPred = 6, 5816 MH_countedLoopStep = 7, 5817 MH_initIterator = 8, 5818 MH_iteratePred = 9, 5819 MH_iterateNext = 10, 5820 MH_Array_newInstance = 11, 5821 MH_LIMIT = 12; 5822 getConstantHandle(int idx)5823 static MethodHandle getConstantHandle(int idx) { 5824 MethodHandle handle = HANDLES[idx]; 5825 if (handle != null) { 5826 return handle; 5827 } 5828 return setCachedHandle(idx, makeConstantHandle(idx)); 5829 } 5830 setCachedHandle(int idx, final MethodHandle method)5831 private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) { 5832 // Simulate a CAS, to avoid racy duplication of results. 5833 MethodHandle prev = HANDLES[idx]; 5834 if (prev != null) { 5835 return prev; 5836 } 5837 HANDLES[idx] = method; 5838 return method; 5839 } 5840 5841 // Local constant method handles: 5842 private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT]; 5843 makeConstantHandle(int idx)5844 private static MethodHandle makeConstantHandle(int idx) { 5845 try { 5846 // Android-added: local IMPL_LOOKUP. 5847 final Lookup IMPL_LOOKUP = MethodHandles.Lookup.IMPL_LOOKUP; 5848 switch (idx) { 5849 // Android-removed: not-used. 5850 /* 5851 case MH_cast: 5852 return IMPL_LOOKUP.findVirtual(Class.class, "cast", 5853 MethodType.methodType(Object.class, Object.class)); 5854 case MH_copyAsPrimitiveArray: 5855 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray", 5856 MethodType.methodType(Object.class, Wrapper.class, Object[].class)); 5857 case MH_arrayIdentity: 5858 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity", 5859 MethodType.methodType(Object[].class, Object[].class)); 5860 case MH_fillNewArray: 5861 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray", 5862 MethodType.methodType(Object[].class, Integer.class, Object[].class)); 5863 case MH_fillNewTypedArray: 5864 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray", 5865 MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class)); 5866 case MH_selectAlternative: 5867 return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative", 5868 MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class)); 5869 */ 5870 case MH_countedLoopPred: 5871 // Android-changed: methods moved to this file. 5872 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate", 5873 // MethodType.methodType(boolean.class, int.class, int.class)); 5874 return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopPredicate", 5875 MethodType.methodType(boolean.class, int.class, int.class)); 5876 case MH_countedLoopStep: 5877 // Android-changed: methods moved to this file. 5878 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep", 5879 // MethodType.methodType(int.class, int.class, int.class)); 5880 return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopStep", 5881 MethodType.methodType(int.class, int.class, int.class)); 5882 case MH_initIterator: 5883 // Android-changed: methods moved to this file. 5884 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator", 5885 // MethodType.methodType(Iterator.class, Iterable.class)); 5886 return IMPL_LOOKUP.findStatic(MethodHandles.class, "initIterator", 5887 MethodType.methodType(Iterator.class, Iterable.class)); 5888 case MH_iteratePred: 5889 // Android-changed: methods moved to this file. 5890 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate", 5891 // MethodType.methodType(boolean.class, Iterator.class)); 5892 return IMPL_LOOKUP.findStatic(MethodHandles.class, "iteratePredicate", 5893 MethodType.methodType(boolean.class, Iterator.class)); 5894 case MH_iterateNext: 5895 // Android-changed: methods moved to this file. 5896 // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext", 5897 // MethodType.methodType(Object.class, Iterator.class)); 5898 return IMPL_LOOKUP.findStatic(MethodHandles.class, "iterateNext", 5899 MethodType.methodType(Object.class, Iterator.class)); 5900 // Android-removed: not-used. 5901 /* 5902 case MH_Array_newInstance: 5903 return IMPL_LOOKUP.findStatic(Array.class, "newInstance", 5904 MethodType.methodType(Object.class, Class.class, int.class)); 5905 */ 5906 } 5907 } catch (ReflectiveOperationException ex) { 5908 throw newInternalError(ex); 5909 } 5910 5911 throw newInternalError("Unknown function index: " + idx); 5912 } 5913 // END Android-added: Code from OpenJDK's MethodHandleImpl. 5914 } 5915