1 /**
2 * Copyright (C) 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "aptXHDbtenc.h"
17
18 #include "AptxEncoder.h"
19 #include "AptxParameters.h"
20 #include "AptxTables.h"
21 #include "CodewordPacker.h"
22 #include "SyncInserter.h"
23 #include "swversion.h"
24
25 typedef struct aptxhdbtenc_t {
26 /* m_endian should either be 0 (little endian) or 8 (big endian). */
27 int32_t m_endian;
28
29 /* Autosync inserter & Checker for use with the stereo aptX HD codec. */
30 /* The current phase of the sync word insertion (7 down to 0) */
31 uint32_t m_syncWordPhase;
32
33 /* Stereo channel aptX HD encoder (annotated to produce Kalimba test vectors
34 * for it's I/O. This will process valid PCM from a WAV file). */
35 /* Each Encoder_data structure requires 1592 bytes */
36 Encoder_data m_encoderData[2];
37 Qmf_storage m_qmf_l;
38 Qmf_storage m_qmf_r;
39 } aptxhdbtenc;
40
41 /* Constants */
42 /* Log to linear lookup table used in inverse quantiser*/
43 /* Size of Table: 32*4 = 128 bytes */
44 static const int32_t IQuant_tableLogT[32] = {
45 16384 * 256, 16744 * 256, 17112 * 256, 17488 * 256, 17864 * 256,
46 18256 * 256, 18656 * 256, 19064 * 256, 19480 * 256, 19912 * 256,
47 20344 * 256, 20792 * 256, 21248 * 256, 21712 * 256, 22192 * 256,
48 22672 * 256, 23168 * 256, 23680 * 256, 24200 * 256, 24728 * 256,
49 25264 * 256, 25824 * 256, 26384 * 256, 26968 * 256, 27552 * 256,
50 28160 * 256, 28776 * 256, 29408 * 256, 30048 * 256, 30704 * 256,
51 31376 * 256, 32064 * 256};
52
clearmem_HD(void * mem,int32_t sz)53 static void clearmem_HD(void* mem, int32_t sz) {
54 int8_t* m = (int8_t*)mem;
55 int32_t i = 0;
56 for (; i < sz; i++) {
57 *m = 0;
58 m++;
59 }
60 }
61
SizeofAptxhdbtenc()62 APTXHDBTENCEXPORT int SizeofAptxhdbtenc() { return (sizeof(aptxhdbtenc)); }
63
aptxhdbtenc_version()64 APTXHDBTENCEXPORT const char* aptxhdbtenc_version() { return (swversion); }
65
aptxhdbtenc_init(void * _state,short endian)66 APTXHDBTENCEXPORT int aptxhdbtenc_init(void* _state, short endian) {
67 aptxhdbtenc* state = (aptxhdbtenc*)_state;
68
69 clearmem_HD(_state, sizeof(aptxhdbtenc));
70
71 if (state == 0) {
72 return 1;
73 }
74 state->m_syncWordPhase = 7L;
75
76 if (endian == 0) {
77 state->m_endian = 0;
78 } else {
79 state->m_endian = 8;
80 }
81
82 for (int j = 0; j < 2; j++) {
83 Encoder_data* encode_dat = &state->m_encoderData[j];
84 uint32_t i;
85
86 /* Create a quantiser and subband processor for each suband */
87 for (i = LL; i <= HH; i++) {
88 encode_dat->m_codewordHistory = 0L;
89
90 encode_dat->m_qdata[i].thresholdTablePtr =
91 subbandParameters[i].threshTable;
92 encode_dat->m_qdata[i].thresholdTablePtr_sl1 =
93 subbandParameters[i].threshTable_sl1;
94 encode_dat->m_qdata[i].ditherTablePtr = subbandParameters[i].dithTable;
95 encode_dat->m_qdata[i].minusLambdaDTable =
96 subbandParameters[i].minusLambdaDTable;
97 encode_dat->m_qdata[i].codeBits = subbandParameters[i].numBits;
98 encode_dat->m_qdata[i].qCode = 0L;
99 encode_dat->m_qdata[i].altQcode = 0L;
100 encode_dat->m_qdata[i].distPenalty = 0L;
101
102 /* initialisation of inverseQuantiser data */
103 encode_dat->m_SubbandData[i].m_iqdata.thresholdTablePtr =
104 subbandParameters[i].threshTable;
105 encode_dat->m_SubbandData[i].m_iqdata.thresholdTablePtr_sl1 =
106 subbandParameters[i].threshTable_sl1;
107 encode_dat->m_SubbandData[i].m_iqdata.ditherTablePtr_sf1 =
108 subbandParameters[i].dithTable_sh1;
109 encode_dat->m_SubbandData[i].m_iqdata.incrTablePtr =
110 subbandParameters[i].incrTable;
111 encode_dat->m_SubbandData[i].m_iqdata.maxLogDelta =
112 subbandParameters[i].maxLogDelta;
113 encode_dat->m_SubbandData[i].m_iqdata.minLogDelta =
114 subbandParameters[i].minLogDelta;
115 encode_dat->m_SubbandData[i].m_iqdata.delta = 0;
116 encode_dat->m_SubbandData[i].m_iqdata.logDelta = 0;
117 encode_dat->m_SubbandData[i].m_iqdata.invQ = 0;
118 encode_dat->m_SubbandData[i].m_iqdata.iquantTableLogPtr =
119 &IQuant_tableLogT[0];
120
121 // Initializing data for predictor filter
122 encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.modulo =
123 subbandParameters[i].numZeros;
124
125 for (int t = 0; t < 48; t++) {
126 encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.buffer[t] = 0;
127 }
128
129 encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.pointer = 0;
130 /* Initialise the previous zero filter output and predictor output to zero
131 */
132 encode_dat->m_SubbandData[i].m_predData.m_zeroVal = 0L;
133 encode_dat->m_SubbandData[i].m_predData.m_predVal = 0L;
134 encode_dat->m_SubbandData[i].m_predData.m_numZeros =
135 subbandParameters[i].numZeros;
136 /* Initialise the contents of the pole data delay line to zero */
137 encode_dat->m_SubbandData[i].m_predData.m_poleDelayLine[0] = 0L;
138 encode_dat->m_SubbandData[i].m_predData.m_poleDelayLine[1] = 0L;
139
140 for (int k = 0; k < 24; k++) {
141 encode_dat->m_SubbandData[i].m_ZeroCoeffData.m_zeroCoeff[k] = 0;
142 }
143
144 // Initializing data for zerocoeff update function.
145 encode_dat->m_SubbandData[i].m_ZeroCoeffData.m_numZeros =
146 subbandParameters[i].numZeros;
147
148 /* Initializing data for PoleCoeff Update function.
149 * Fill the adaptation delay line with +1 initially */
150 encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleAdaptDelayLine.s32 =
151 0x00010001;
152
153 /* Zero the pole coefficients */
154 encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleCoeff[0] = 0L;
155 encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleCoeff[1] = 0L;
156 }
157 }
158 return 0;
159 }
160
aptxhdbtenc_encodestereo(void * _state,void * _pcmL,void * _pcmR,void * _buffer)161 APTXHDBTENCEXPORT int aptxhdbtenc_encodestereo(void* _state, void* _pcmL,
162 void* _pcmR, void* _buffer) {
163 aptxhdbtenc* state = (aptxhdbtenc*)_state;
164 int32_t* pcmL = (int32_t*)_pcmL;
165 int32_t* pcmR = (int32_t*)_pcmR;
166 int32_t* buffer = (int32_t*)_buffer;
167
168 // Feed the PCM to the dual aptX HD encoders
169 aptxhdEncode(pcmL, &state->m_qmf_l, &state->m_encoderData[0]);
170 aptxhdEncode(pcmR, &state->m_qmf_r, &state->m_encoderData[1]);
171
172 // Insert the autosync information into the stereo quantised codes
173 xbtEncinsertSync(&state->m_encoderData[0], &state->m_encoderData[1],
174 &state->m_syncWordPhase);
175
176 aptxhdPostEncode(&state->m_encoderData[0]);
177 aptxhdPostEncode(&state->m_encoderData[1]);
178
179 // Pack the (possibly adjusted) codes into a 24-bit codeword per channel
180 buffer[0] = packCodeword(&state->m_encoderData[0]);
181 buffer[1] = packCodeword(&state->m_encoderData[1]);
182
183 return 0;
184 }
185