Home
last modified time | relevance | path

Searched refs:filterWidth (Results 1 – 8 of 8) sorted by relevance

/packages/modules/NeuralNetworks/common/cpu_operations/
DGroupedConv2D.cpp43 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
76 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvFloat32()
84 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvFloat32()
95 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvFloat32()
148 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvQuant8()
156 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvQuant8()
173 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvQuant8()
253 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvQuant8PerChannel()
261 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvQuant8PerChannel()
278 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvQuant8PerChannel()
DTransposeConv2D.cpp71 int32_t filterWidth = getSizeOfDimension(filterShape, 2); in initialize() local
78 calculateExplicitPaddingTransposeConv(outputWidth, strideWidth, filterWidth, in initialize()
111 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
145 for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) { in transposeConvNhwc()
230 for (uint32_t j = 0; j < filterWidth; j++) { in transposeConvNhwc()
237 k * filterHeight * filterWidth * inputDepth + in transposeConvNhwc()
238 i * filterWidth * inputDepth + j * inputDepth + d; in transposeConvNhwc()
372 for (uint32_t j = 0; j < filterWidth; j++) { in transposeConvQuant8PerChannelNhwc()
379 k * filterHeight * filterWidth * inputDepth + in transposeConvQuant8PerChannelNhwc()
380 i * filterWidth * inputDepth + j * inputDepth + d; in transposeConvQuant8PerChannelNhwc()
[all …]
DConv2D.cpp134 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
146 im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \
364 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in convQuant8PerChannelNhwc() local
405 for (uint32_t j = 0; j < filterWidth; j++) { in convQuant8PerChannelNhwc()
415 i * filterWidth * filterDepth + j * filterDepth + k; in convQuant8PerChannelNhwc()
431 filterBase += filterHeight * filterWidth * filterDepth; in convQuant8PerChannelNhwc()
457 [[maybe_unused]] uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in convQuant8PerChannelNhwc() local
560 uint32_t filterWidth = getSizeOfDimension(filter, 2); in prepare() local
569 int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; in prepare()
577 computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, in prepare()
DDepthwiseConv2D.cpp122 [[maybe_unused]] uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
290 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in depthwiseConvQuant8PerChannelNhwc() local
332 for (uint32_t j = 0; j < filterWidth; j++) { in depthwiseConvQuant8PerChannelNhwc()
341 i * filterWidth * filterDepth + j * filterDepth + oc; in depthwiseConvQuant8PerChannelNhwc()
448 uint32_t filterWidth = getSizeOfDimension(filter, 2); in prepare() local
451 int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; in prepare()
462 computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, in prepare()
/packages/modules/NeuralNetworks/runtime/test/fuzzing/operation_signatures/
DPoolings.cpp34 auto filterWidth = op->inputs[7]->value<RandomVariable>(); in poolingExplicitOpConstructor() local
59 explicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, /*dilation=*/1, in poolingExplicitOpConstructor()
73 auto filterWidth = op->inputs[4]->value<RandomVariable>(); in poolingImplicitOpConstructor() local
95 implicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, in poolingImplicitOpConstructor()
/packages/modules/NeuralNetworks/common/
DOperationsExecutionUtils.cpp644 uint32_t filterWidth = getSizeOfDimension(filter, 2); in groupedConvPrepare() local
648 NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_left); in groupedConvPrepare()
649 NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_right); in groupedConvPrepare()
654 computeOutSize(width, filterWidth, stride_width, padding_left, padding_right); in groupedConvPrepare()
/packages/modules/NeuralNetworks/common/include/
DOperationsExecutionUtils.h164 int32_t strideHeight, int32_t filterWidth, in getPaddingScheme() argument
175 calculateExplicitPadding(inWidth, strideWidth, filterWidth, kPaddingSame, &expectedPaddingLeft, in getPaddingScheme()
/packages/modules/NeuralNetworks/runtime/test/
DTestValidateOperations.cpp1883 ANeuralNetworksOperandType filterWidth = scalar; in poolingOpTest() local
1889 strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest()
1896 {input, padImplicit, strideWidth, strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest()
1908 {input, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight, filterWidth, in poolingOpTest()
1915 filterWidth, filterHeight, activation, layout}, in poolingOpTest()