/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | Reshape.cpp | 40 bool copyData(const void* inputData, const Shape& inputShape, void* outputData, in copyData() argument 44 memcpy(outputData, inputData, count); in copyData() 49 bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, in depthToSpaceGeneric() argument 52 tflite::optimized_ops::DepthToSpace(inputData, convertShapeToDims(inputShape), blockSize, in depthToSpaceGeneric() 56 template bool depthToSpaceGeneric<float>(const float* inputData, const Shape& inputShape, 59 template bool depthToSpaceGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, 62 template bool depthToSpaceGeneric<uint8_t>(const uint8_t* inputData, const Shape& inputShape, 65 template bool depthToSpaceGeneric<int8_t>(const int8_t* inputData, const Shape& inputShape, 70 bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, in spaceToDepthGeneric() argument 73 tflite::optimized_ops::SpaceToDepth(inputData, convertShapeToDims(inputShape), blockSize, in spaceToDepthGeneric() [all …]
|
D | Activation.cpp | 54 bool reluFloat(const T* inputData, const Shape& inputShape, T* outputData, in reluFloat() argument 59 for (int i = 0; i < numElements; i++, inputData++, outputData++) { in reluFloat() 61 std::min(std::max(reluMin, static_cast<float>(*inputData)), reluMax)); in reluFloat() 65 template bool reluFloat<float>(const float* inputData, const Shape& inputShape, float* outputData, 67 template bool reluFloat<_Float16>(const _Float16* inputData, const Shape& inputShape, 72 bool relu1Float(const T* inputData, const Shape& inputShape, T* outputData, in relu1Float() argument 74 return reluFloat(inputData, inputShape, outputData, outputShape, -1.f, 1.f); in relu1Float() 76 template bool relu1Float<float>(const float* inputData, const Shape& inputShape, float* outputData, 78 template bool relu1Float<_Float16>(const _Float16* inputData, const Shape& inputShape, 82 bool relu6Float(const T* inputData, const Shape& inputShape, T* outputData, in relu6Float() argument [all …]
|
D | Split.cpp | 31 bool splitGeneric(const Scalar* inputData, const Shape& inputShape, int32_t axis, in splitGeneric() argument 45 const Scalar* inputPtr = inputData; in splitGeneric() 57 bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in splitFloat16() argument 61 return splitGeneric<_Float16>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat16() 64 bool splitFloat32(const float* inputData, const Shape& inputShape, int32_t axis, in splitFloat32() argument 68 return splitGeneric<float>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat32() 71 bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8() argument 75 return splitGeneric<uint8_t>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitQuant8() 78 bool splitQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8Signed() argument 82 return splitGeneric<int8_t>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitQuant8Signed() [all …]
|
D | Pooling.cpp | 143 bool averagePoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 148 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData, in averagePoolNhwc() 153 bool averagePoolNhwc(const _Float16* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 159 convertFloat16ToFloat32(inputData, &inputDataFloat32); in averagePoolNhwc() 166 bool averagePoolNhwc(const uint8_t* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 171 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData, in averagePoolNhwc() 176 bool averagePoolNhwc(const int8_t* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 184 inputData, convertShapeToTflshape(outputShape), in averagePoolNhwc() 189 bool l2PoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param, in l2PoolNhwc() argument 194 tflite::optimized_ops::L2Pool(op_params, convertShapeToTflshape(inputShape), inputData, in l2PoolNhwc() [all …]
|
D | L2Normalization.cpp | 46 inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, in l2normFloat32Impl() argument 55 const float* inputBeg = inputData + outer * axisSize * innerSize; in l2normFloat32Impl() 74 inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8Impl() argument 82 const uint8_t* inputBeg = inputData + outer * axisSize * innerSize; in l2normQuant8Impl() 106 inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8SignedImpl() argument 114 const int8_t* inputBeg = inputData + outer * axisSize * innerSize; in l2normQuant8SignedImpl() 137 bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, in l2normFloat32() argument 145 tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, in l2normFloat32() 149 return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); in l2normFloat32() 153 bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in l2normFloat16() argument [all …]
|
D | SimpleMath.cpp | 39 bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis, in meanFloat16() argument 44 convertFloat16ToFloat32(inputData, &inputDataFloat32); in meanFloat16() 54 bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, in meanGeneric() argument 72 inputData, reinterpret_cast<const int*>(inputShape.dimensions.data()), in meanGeneric() 83 template bool meanGeneric<float, float>(float* inputData, const Shape& inputShape, 86 template bool meanGeneric<uint8_t, int32_t>(uint8_t* inputData, const Shape& inputShape, 90 template bool meanGeneric<int8_t, int32_t>(int8_t* inputData, const Shape& inputShape,
|
D | LocalResponseNormalization.cpp | 45 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape, in localResponseNormFloat32Impl() argument 55 const float* inputBase = inputData + outer * axisSize * innerSize; in localResponseNormFloat32Impl() 76 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha, 80 bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius, in localResponseNorm() argument 92 param, convertShapeToTflshape(inputShape), inputData, in localResponseNorm() 96 return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, in localResponseNorm() 102 bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius, in localResponseNorm() argument 107 convertFloat16ToFloat32(inputData, &inputDataFloat32); in localResponseNorm()
|
D | Softmax.cpp | 50 inline bool softmaxSlowFloat32(const float* inputData, const Shape& inputShape, const float beta, in softmaxSlowFloat32() argument 58 const float* inputBeg = inputData + outer * axisSize * innerSize; in softmaxSlowFloat32() 82 bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxFloat32() argument 90 tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData, in softmaxFloat32() 94 return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape); in softmaxFloat32() 98 bool softmaxFloat16(const _Float16* inputData, const Shape& inputShape, const float beta, in softmaxFloat16() argument 102 convertFloat16ToFloat32(inputData, &inputData_float32); in softmaxFloat16() 113 bool softmaxQuant8Impl(const T* inputData, const Shape& inputShape, const float /*beta*/, in softmaxQuant8Impl() argument 133 const T* inputBeg = inputData + outer * axisSize * innerSize; in softmaxQuant8Impl() 200 bool softmaxQuant8(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8() argument [all …]
|
D | Cast.cpp | 44 bool copyToTensor(const FromT* inputData, int numElements, uint8_t* outputData, in copyToTensor() argument 49 copyCast(inputData, reinterpret_cast<dataType*>(outputData), numElements); \ in copyToTensor() 72 bool eval(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData, in eval() argument 80 copyToTensor(reinterpret_cast<const dataType*>(inputData), numElements, outputData, \ in eval() 92 return copyData(inputData, inputShape, outputData, outputShape); in eval()
|
D | ArgMinMax.cpp | 31 static void argMinMaxImpl(const In* inputData, const Shape& inputShape, int32_t axis, bool isArgMin, in argMinMaxImpl() argument 39 auto minMaxValue = inputData[outer * axisSize * innerSize + inner]; in argMinMaxImpl() 42 const auto& value = inputData[(outer * axisSize + i) * innerSize + inner]; in argMinMaxImpl() 53 bool argMinMaxGeneric(const uint8_t* inputData, const Shape& inputShape, int32 axis, bool isArgMin, in argMinMaxGeneric() argument 61 argMinMaxImpl(reinterpret_cast<const dataType*>(inputData), inputShape, axis, isArgMin, \ in argMinMaxGeneric()
|
D | FullyConnected.cpp | 52 bool fullyConnectedFloat32(const float* inputData, const Shape& inputShape, in fullyConnectedFloat32() argument 66 tflite::reference_ops::FullyConnected(inputData, convertShapeToDims(inputShape), in fullyConnectedFloat32() 73 tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), in fullyConnectedFloat32() 82 bool fullyConnectedFloat16(const _Float16* inputData, const Shape& inputShape, in fullyConnectedFloat16() argument 88 convertFloat16ToFloat32(inputData, &inputDataFloat32); in fullyConnectedFloat16() 103 bool fullyConnectedQuant8(const uint8_t* inputData, const Shape& inputShape, in fullyConnectedQuant8() argument 134 tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), inputOffset, in fullyConnectedQuant8() 144 bool fullyConnectedQuant8(const int8_t* inputData, const Shape& inputShape, in fullyConnectedQuant8() argument 173 params, convertShapeToTflshape(inputShape), inputData, in fullyConnectedQuant8()
|
D | InstanceNormalization.cpp | 39 inline bool instanceNormNhwc(const T* inputData, const Shape& inputShape, T gamma, T beta, in instanceNormNhwc() argument 54 T val = inputData[indexBase + (h * width + w) * depth]; in instanceNormNhwc() 63 T val = inputData[indexBase + (h * width + w) * depth] - mean; in instanceNormNhwc() 73 outputData[ind] = (inputData[ind] - mean) * gamma / sigma + beta; in instanceNormNhwc() 82 inline bool instanceNorm(const T* inputData, const Shape& inputShape, T gamma, T beta, T epsilon, in instanceNorm() argument 86 NN_RET_CHECK(input.initialize(inputData, inputShape)); in instanceNorm()
|
D | ResizeImageOps.cpp | 61 bool resizeNearestNeighbor(const T* inputData, const Shape& inputShape, bool alignCorners, in resizeNearestNeighbor() argument 91 std::copy_n(inputData + b * inHeight * inWidth * channels + in resizeNearestNeighbor() 104 bool resizeImageOpNhwc(OperationType opType, const T* inputData, const Shape& inputShape, in resizeImageOpNhwc() argument 119 convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outDimShape), in resizeImageOpNhwc() 124 resizeNearestNeighbor(inputData, inputShape, alignCorners, halfPixelCenters, outputData, in resizeImageOpNhwc() 131 bool resizeImageOpNhwc<_Float16>(OperationType opType, const _Float16* inputData, in resizeImageOpNhwc() argument 136 convertFloat16ToFloat32(inputData, &inputData_float32); in resizeImageOpNhwc() 145 bool resizeImageOp(OperationType opType, const T* inputData, const Shape& inputShape, bool useNchw, in resizeImageOp() argument 150 NN_RET_CHECK(input.initialize(inputData, inputShape)); in resizeImageOp()
|
D | GroupedConv2D.cpp | 50 bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, in groupedConvFloat32() argument 62 const float* inputBase = inputData; in groupedConvFloat32() 108 bool groupedConvQuant8(const T* inputData, const Shape& inputShape, const T* filterData, in groupedConvQuant8() argument 134 const T* inputBase = inputData; in groupedConvQuant8() 185 template bool groupedConvQuant8<int8_t>(const int8_t* inputData, const Shape& inputShape, 194 template bool groupedConvQuant8<uint8_t>(const uint8_t* inputData, const Shape& inputShape, 204 bool groupedConvQuant8PerChannel(const T* inputData, const Shape& inputShape, in groupedConvQuant8PerChannel() argument 239 const T* inputBase = inputData; in groupedConvQuant8PerChannel() 290 bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape, in groupedConvFloat16() argument 303 convertFloat16ToFloat32(inputData, &inputData_float32); in groupedConvFloat16() [all …]
|
D | RNN.cpp | 116 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData, in RNNStep() argument 124 return RNNStep<T>(inputData, inputShape, /*auxInputData=*/nullptr, /*auxInputShape=*/dummyShape, in RNNStep() 136 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData, in RNNStep() argument 162 const T* input_ptr_batch = inputData + b * input_size; in RNNStep() 223 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, 229 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, 239 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape, 245 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
|
D | Quantize.cpp | 36 bool quantizeToQuant8(const T* inputData, uint8_t* outputData, const Shape& outputShape) { in quantizeToQuant8() argument 41 0.0f, std::min<float>(255.0f, outputShape.offset + std::round(inputData[i] / in quantizeToQuant8() 49 bool quantizeToQuant8Signed(const T* inputData, int8_t* outputData, const Shape& outputShape) { in quantizeToQuant8Signed() argument 56 std::round(inputData[i] / outputShape.scale)))); in quantizeToQuant8Signed()
|
D | RoiPooling.cpp | 42 inline bool roiPoolingNhwc(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData, in roiPoolingNhwc() argument 94 const T_Input* batchBase = inputData + batchId * inHeight * inWidth * inDepth; in roiPoolingNhwc() 131 inline bool roiPooling(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData, in roiPooling() argument 137 NN_RET_CHECK(input.initialize(inputData, inputShape)); in roiPooling() 147 inline bool roiPooling<uint8_t, uint16_t>(const uint8_t* inputData, const Shape& inputShape, in roiPooling() argument 155 NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData, in roiPooling() 162 inline bool roiPooling<int8_t, uint16_t>(const int8_t* inputData, const Shape& inputShape, in roiPooling() argument 170 NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData, in roiPooling()
|
D | Tile.cpp | 69 void tileImpl(const T* inputData, const Shape& inputShape, const int32_t* multiples, T* outputData, in tileImpl() argument 71 TileOneDimension(inputShape, inputData, multiples, outputData, 0); in tileImpl() 90 bool eval(const uint8_t* inputData, const Shape& inputShape, const int32_t* multiples, in eval() argument 96 tileImpl(reinterpret_cast<const dataType*>(inputData), inputShape, multiples, \ in eval()
|
D | DepthwiseConv2D.cpp | 129 bool depthwiseConvNhwc(const float* inputData, const Shape& inputShape, const float* filterData, in depthwiseConvNhwc() argument 155 tflite::reference_ops::DepthwiseConv(params, convertShapeToTflshape(inputShape), inputData, in depthwiseConvNhwc() 163 bool depthwiseConvNhwc(const _Float16* inputData, const Shape& inputShape, in depthwiseConvNhwc() argument 172 convertFloat16ToFloat32(inputData, &inputDataFloat32); in depthwiseConvNhwc() 189 bool depthwiseConvNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, in depthwiseConvNhwc() argument 231 tflite::reference_ops::DepthwiseConv(params, convertShapeToTflshape(inputShape), inputData, in depthwiseConvNhwc() 240 bool depthwiseConvNhwc(const int8_t* inputData, Shape inputShape, const int8_t* filterData, in depthwiseConvNhwc() argument 250 convertInt8ToUInt8(inputData, &unsignedInput); in depthwiseConvNhwc() 273 const T* inputData, const Shape& inputShape, const int8_t* filterData, in depthwiseConvQuant8PerChannelNhwc() argument 319 const T* inputBase = inputData; in depthwiseConvQuant8PerChannelNhwc() [all …]
|
D | Conv2D.cpp | 191 bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData, in convNhwc() argument 212 inputData, convertShapeToDims(inputShape), filterData, convertShapeToDims(filterShape), in convNhwc() 220 bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, in convNhwc() argument 261 tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), inputOffset, filterData, in convNhwc() 274 bool convNhwc(const int8_t* inputData, Shape inputShape, const int8_t* filterData, in convNhwc() argument 283 convertInt8ToUInt8(inputData, &unsignedInput); in convNhwc() 303 bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, in convNhwc() argument 316 convertFloat16ToFloat32(inputData, &inputData_float32); in convNhwc() 330 bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData, in conv() argument 338 NN_RET_CHECK(input.initialize(inputData, inputShape)); in conv() [all …]
|
D | MirrorPad.cpp | 116 inputData(theInputData), in EvalData() 126 const T* inputData = nullptr; member 178 const auto* inputData = evalData.inputData; in run() local 181 outputData[i] = inputData[getFlatIndex(i, evalData)]; in run()
|
/packages/modules/NeuralNetworks/common/include/ |
D | Operations.h | 32 bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape); 33 bool floorFloat32(const float* inputData, float* outputData, const Shape& shape); 35 bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape, 42 bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, 49 bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape, 56 bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, 66 bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius, 69 bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, 73 bool copyData(const void* inputData, const Shape& inputShape, void* outputData, 77 bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, [all …]
|
/packages/providers/MediaProvider/src/com/android/providers/media/photopicker/sync/ |
D | PickerSyncManager.java | 183 final Data inputData = in schedulePeriodicSyncs() local 185 final PeriodicWorkRequest periodicSyncRequest = getPeriodicProactiveSyncRequest(inputData); in schedulePeriodicSyncs() 207 final Data inputData = in schedulePeriodicAlbumReset() local 215 getPeriodicAlbumResetRequest(inputData); in schedulePeriodicAlbumReset() 245 final Data inputData = new Data(Map.of(SYNC_WORKER_INPUT_SYNC_SOURCE, syncSource)); in syncMediaProactively() local 246 final OneTimeWorkRequest syncRequest = getOneTimeProactiveSyncRequest(inputData); in syncMediaProactively() 273 final Data inputData = new Data(Map.of(SYNC_WORKER_INPUT_SYNC_SOURCE, syncSource)); in syncMediaImmediately() local 275 buildOneTimeWorkerRequest(ImmediateSyncWorker.class, inputData); in syncMediaImmediately() 314 final Data inputData = in syncAlbumMediaForProviderImmediately() local 322 buildOneTimeWorkerRequest(MediaResetWorker.class, inputData); in syncAlbumMediaForProviderImmediately() [all …]
|
/packages/modules/DeviceLock/DeviceLockController/src/com/android/devicelockcontroller/provision/worker/ |
D | ReportDeviceProvisionStateWorker.java | 84 Data inputData = new Data.Builder() in reportSetupFailed() local 88 enqueueReportWork(inputData, workManager); in reportSetupFailed() 95 Data inputData = new Data.Builder() in reportSetupCompleted() local 98 enqueueReportWork(inputData, workManager); in reportSetupCompleted() 105 Data inputData = new Data.Builder() in reportCurrentFailedStep() local 109 enqueueReportWork(inputData, workManager); in reportCurrentFailedStep() 112 private static void enqueueReportWork(Data inputData, WorkManager workManager) { in enqueueReportWork() argument 125 .setInputData(inputData) in enqueueReportWork()
|
/packages/modules/NeuralNetworks/runtime/test/specs/experimental/ |
D | densify_7.mod.py | 22 inputData = [0.0] * 210 variable 23 inputData[0:22:7] = [11.0, 13.0, 17.0, 19.0] 26 inputData}
|