/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | gather.mod.py | 17 def test(input0, axis, indices, output0, input_data, output_data): argument 36 input0: input_data, 45 input_data=[-2.0, 0.2, 56 input_data=[-2.0, 0.2, 66 input_data=[1, 2, 3], 75 input_data=[1, 2, 3], 84 input_data=[-2.0, 0.2, 97 input_data=[-2.0, 0.2, 0.7, 0.8], 106 input_data=[1, 2, 3, 117 input_data=[1, 2, 3,
|
D | log_softmax.mod.py | 19 def test(input0, output0, input_data, beta, axis, output_data): argument 22 input0: input_data, 29 input_data=[0, -6, 2, 4, 40 input_data=[0, -6, 55 input_data=[0, 2, 3, 10, 66 input_data=[0, -.6, .2, .4,
|
D | reduce_sum.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 20 input0: input_data, 26 input_data=[-1, -2, 39 input_data=[9.527], 48 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 59 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
|
D | reduce_prod.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 20 input0: input_data, 26 input_data=[-1, -2, 39 input_data=[9.527], 48 input_data=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 59 input_data=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
|
D | reduce_max.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 24 input0: input_data, 30 input_data=[-1, -2, 43 input_data=[9.527], 52 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 63 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
|
D | reduce_min.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 24 input0: input_data, 30 input_data=[-1, -2, 43 input_data=[9.527], 52 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 63 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
|
D | unidirectional_sequence_rnn.mod.py | 20 activation, time_major, output, input_data, weights_data, argument 28 input: input_data, 49 input_data = [ variable 154 input_data=input_data, 176 input_data=convert_to_time_major(input_data, num_batches, max_time,
|
D | bidirectional_sequence_rnn.mod.py | 41 time_major, merge_outputs, fw_output, bw_output, input_data, argument 61 input: input_data, 88 input_data = [ variable 241 input_data=input_data, 291 input_data=convert_to_time_major(input_data, 342 input_data=convert_to_time_major(input_data, 398 input_data=reverse_batch_major(input_data, [num_batches, max_time, input_size]), 452 input_data=[0] * num_batches * max_time * input_size, 461 aux_input_data=input_data, 471 input_data, [num_batches, max_time, input_size]) [all …]
|
D | reduce_all.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 20 input0: input_data, 26 input_data=[False], 35 input_data=[True, True, True, True, True, False, 45 input_data=[True, True, True, True, True, True,
|
D | reduce_any.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 20 input0: input_data, 28 input_data=[False], 37 input_data=[False, False, False, False, False, False, 47 input_data=[False, False, False, False, False, False,
|
D | neg.mod.py | 21 input_data = [(i - 60) / 10 for i in range(120)] variable 22 output_data = [-x for x in input_data] 25 input0: input_data,
|
D | abs.mod.py | 21 input_data = [(i - 60) / 10 for i in range(120)] variable 22 output_data = [abs(x) for x in input_data] 25 input0: input_data,
|
D | log.mod.py | 23 input_data = [(i + 1) / 10 for i in range(120)] variable 24 output_data = [math.log(x) for x in input_data] 27 input0: input_data,
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | gather_quant8_signed.mod.py | 46 def test(input0, axis, indices, output0, input_data, output_data): argument 55 input0: input_data, 64 input_data=[-2.0, 0.2, 75 input_data=[-2.0, 0.2, 85 input_data=[1, 2, 3], 94 input_data=[1, 2, 3], 103 input_data=[-2.0, 0.2, 116 input_data=[-2.0, 0.2, 0.7, 0.8], 125 input_data=[1, 2, 3, 136 input_data=[1, 2, 3,
|
D | reduce_max_quant8_signed.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 24 input0: input_data, 30 input_data=[-1, -2, 43 input_data=[9.527], 52 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 63 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
|
D | reduce_min_quant8_signed.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 24 input0: input_data, 30 input_data=[-1, -2, 43 input_data=[9.527], 52 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 63 input_data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
|
D | bidirectional_sequence_rnn_1_3.mod.py | 41 time_major, merge_outputs, fw_output, bw_output, input_data, argument 67 input: input_data, 94 input_data = [ variable 247 input_data=[0] * len(input_data), 256 aux_input_data=input_data, 297 input_data=[0] * len(input_data), 306 aux_input_data=convert_to_time_major(input_data, 349 input_data=convert_to_time_major(input_data, 359 aux_input_data=convert_to_time_major(input_data,
|
D | unidirectional_sequence_rnn.mod.py | 20 activation, time_major, output, output_state, input_data, weights_data, argument 30 input: input_data, 52 input_data = [ variable 194 input_data=input_data, 220 input_data=convert_to_time_major(input_data, num_batches, max_time,
|
D | if_simple.mod.py | 19 input_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] variable 20 output_add = [y + 10 for y in input_data] 21 output_sub = [y - 10 for y in input_data] 46 Test(x_data=True, y_data=input_data, z_data=output_add, name="true") 47 Test(x_data=False, y_data=input_data, z_data=output_sub, name="false")
|
D | bidirectional_sequence_rnn_state_output.mod.py | 46 input_data, fw_weights_data, fw_recurrent_weights_data, fw_bias_data, argument 67 input: input_data, 96 input_data = [ variable 256 input_data=input_data, 312 input_data=convert_to_time_major(input_data, 370 input_data=convert_to_time_major(input_data, 434 input_data=reverse_batch_major(input_data, 499 input_data=[0] * num_batches * max_time * input_size, 508 aux_input_data=input_data, 520 input_data, [num_batches, max_time, input_size]) [all …]
|
D | if_same_branch_model.mod.py | 20 input_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] variable 21 output_add = [y + 10 for y in input_data] 47 Test(x=True, y=input_data, z=output_add, name="true") 48 Test(x=False, y=input_data, z=output_add, name="false")
|
D | abs_int32.mod.py | 21 input_data = [i - 60 for i in range(119)] + [-(2 ** 24 + 1)] variable 22 output_data = [abs(x) for x in input_data] 25 input0: input_data,
|
/packages/modules/NeuralNetworks/runtime/test/specs/AIDL_V3/ |
D | reverse.mod.py | 19 def test(name, axis_value, input_tensor, output_tensor, input_data, output_data): argument 32 input_tensor: input_data, 44 input_data=[6, 7, 8], 53 input_data = list(range(24)), 62 input_data = list(range(24)), 72 input_data = list(range(24)),
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3_cts_only/ |
D | if_simple_unknown_dimension.mod.py | 19 input_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] variable 20 output_add = [y + 10 for y in input_data] 21 output_sub = [y - 10 for y in input_data] 47 Test(x_data=True, y_data=input_data, z_data=output_add, name="true") 48 Test(x_data=False, y_data=input_data, z_data=output_sub, name="false")
|
D | if_simple_unknown_rank.mod.py | 19 input_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] variable 20 output_add = [y + 10 for y in input_data] 21 output_sub = [y - 10 for y in input_data] 47 Test(x_data=True, y_data=input_data, z_data=output_add, name="true") 48 Test(x_data=False, y_data=input_data, z_data=output_sub, name="false")
|