Home
last modified time | relevance | path

Searched refs:keep_dims (Results 1 – 11 of 11) sorted by relevance

/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dreduce_sum.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_SUM", input0, axes, keep_dims).To(output0)
30 keep_dims=False,
41 keep_dims=True,
52 keep_dims=False,
63 keep_dims=True,
Dreduce_prod.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_PROD", input0, axes, keep_dims).To(output0)
30 keep_dims=False,
41 keep_dims=True,
52 keep_dims=False,
63 keep_dims=True,
Dreduce_max.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_MAX", input0, axes, keep_dims).To(output0)
34 keep_dims=False,
45 keep_dims=True,
56 keep_dims=False,
67 keep_dims=True,
Dreduce_min.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_MIN", input0, axes, keep_dims).To(output0)
34 keep_dims=False,
45 keep_dims=True,
56 keep_dims=False,
67 keep_dims=True,
Dreduce_all.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_ALL", input0, axes, keep_dims).To(output0)
28 keep_dims=True,
38 keep_dims=False,
48 keep_dims=True,
Dreduce_any.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_ANY", input0, axes, keep_dims).To(output0)
30 keep_dims=True,
40 keep_dims=False,
50 keep_dims=True,
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/
Dreduce_max_quant8_signed.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_MAX", input0, axes, keep_dims).To(output0)
34 keep_dims=False,
45 keep_dims=True,
56 keep_dims=False,
67 keep_dims=True,
Dreduce_min_quant8_signed.mod.py17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument
18 model = Model().Operation("REDUCE_MIN", input0, axes, keep_dims).To(output0)
34 keep_dims=False,
45 keep_dims=True,
56 keep_dims=False,
67 keep_dims=True,
/packages/modules/NeuralNetworks/tools/api/
Dtypes.spec2640 * keep_dims is true, the rank of the tensor is reduced by 1 for each entry
2641 * in axis. If keep_dims is true, the reduced dimensions are retained with
2667 * * 2: An {@link %{OperandTypeLinkPfx}INT32} scalar, keep_dims. If positive,
2680 * If all dimensions are reduced and keep_dims is false, the output
5157 * If keep_dims is true, the reduced dimensions are
5170 * * 2: An {@link %{OperandTypeLinkPfx}BOOL} scalar, keep_dims. If true,
5175 * If all dimensions are reduced and keep_dims is false, the output
5185 * If keep_dims is true, the reduced dimensions are
5198 * * 2: An {@link %{OperandTypeLinkPfx}BOOL} scalar, keep_dims. If true,
5203 * If all dimensions are reduced and keep_dims is false, the output
[all …]
/packages/modules/NeuralNetworks/tools/test_generator/
DREADME.md77 model.Operation("MEAN", i1, [1], 0) # axis = [1], keep_dims = 0
/packages/modules/NeuralNetworks/driver/sample_hidl/
DSampleDriverFloatXNNPACK.cpp1152 int keep_dims = getScalarData<int32_t>(operands[ins[2]]); in VisitMeanNode() local
1153 if (keep_dims <= 0) { in VisitMeanNode()