/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | reduce_sum.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_SUM", input0, axes, keep_dims).To(output0) 30 keep_dims=False, 41 keep_dims=True, 52 keep_dims=False, 63 keep_dims=True,
|
D | reduce_prod.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_PROD", input0, axes, keep_dims).To(output0) 30 keep_dims=False, 41 keep_dims=True, 52 keep_dims=False, 63 keep_dims=True,
|
D | reduce_max.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_MAX", input0, axes, keep_dims).To(output0) 34 keep_dims=False, 45 keep_dims=True, 56 keep_dims=False, 67 keep_dims=True,
|
D | reduce_min.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_MIN", input0, axes, keep_dims).To(output0) 34 keep_dims=False, 45 keep_dims=True, 56 keep_dims=False, 67 keep_dims=True,
|
D | reduce_all.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_ALL", input0, axes, keep_dims).To(output0) 28 keep_dims=True, 38 keep_dims=False, 48 keep_dims=True,
|
D | reduce_any.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_ANY", input0, axes, keep_dims).To(output0) 30 keep_dims=True, 40 keep_dims=False, 50 keep_dims=True,
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | reduce_max_quant8_signed.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_MAX", input0, axes, keep_dims).To(output0) 34 keep_dims=False, 45 keep_dims=True, 56 keep_dims=False, 67 keep_dims=True,
|
D | reduce_min_quant8_signed.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 18 model = Model().Operation("REDUCE_MIN", input0, axes, keep_dims).To(output0) 34 keep_dims=False, 45 keep_dims=True, 56 keep_dims=False, 67 keep_dims=True,
|
/packages/modules/NeuralNetworks/tools/api/ |
D | types.spec | 2640 * keep_dims is true, the rank of the tensor is reduced by 1 for each entry 2641 * in axis. If keep_dims is true, the reduced dimensions are retained with 2667 * * 2: An {@link %{OperandTypeLinkPfx}INT32} scalar, keep_dims. If positive, 2680 * If all dimensions are reduced and keep_dims is false, the output 5157 * If keep_dims is true, the reduced dimensions are 5170 * * 2: An {@link %{OperandTypeLinkPfx}BOOL} scalar, keep_dims. If true, 5175 * If all dimensions are reduced and keep_dims is false, the output 5185 * If keep_dims is true, the reduced dimensions are 5198 * * 2: An {@link %{OperandTypeLinkPfx}BOOL} scalar, keep_dims. If true, 5203 * If all dimensions are reduced and keep_dims is false, the output [all …]
|
/packages/modules/NeuralNetworks/tools/test_generator/ |
D | README.md | 77 model.Operation("MEAN", i1, [1], 0) # axis = [1], keep_dims = 0
|
/packages/modules/NeuralNetworks/driver/sample_hidl/ |
D | SampleDriverFloatXNNPACK.cpp | 1152 int keep_dims = getScalarData<int32_t>(operands[ins[2]]); in VisitMeanNode() local 1153 if (keep_dims <= 0) { in VisitMeanNode()
|