/packages/modules/NeuralNetworks/tools/test_generator/tests/P_variation/ |
D | stdout.txt.expect | 12 // Generated model constructor 16 void CreateModel_none(Model *model) { 22 auto op1 = model->addOperand(&type0); 23 auto op2 = model->addOperand(&type1); 24 auto op3 = model->addOperand(&type2); 25 auto param = model->addOperand(&type3); 26 auto param1 = model->addOperand(&type3); 27 auto param2 = model->addOperand(&type3); 28 auto act = model->addOperand(&type3); 29 auto layout = model->addOperand(&type3); [all …]
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_implicit_variation/ |
D | stdout.txt.expect | 12 // Generated model constructor 16 void CreateModel_relu(Model *model) { 22 auto op1 = model->addOperand(&type0); 23 auto op2 = model->addOperand(&type1); 24 auto op3 = model->addOperand(&type2); 25 auto param = model->addOperand(&type3); 26 auto param1 = model->addOperand(&type3); 27 auto param2 = model->addOperand(&type3); 28 auto act = model->addOperand(&type3); 29 auto layout = model->addOperand(&type3); [all …]
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_naming/ |
D | stdout.txt.expect | 12 // Generated model constructor 16 void CreateModel_model_name_nhwc_act_w_as_param_float(Model *model) { 22 auto op1 = model->addOperand(&type0); 23 auto op2 = model->addOperand(&type1); 24 auto op3 = model->addOperand(&type2); 25 auto param = model->addOperand(&type3); 26 auto param1 = model->addOperand(&type3); 27 auto param2 = model->addOperand(&type3); 28 auto act = model->addOperand(&type3); 29 auto layout = model->addOperand(&type3); [all …]
|
/packages/modules/NeuralNetworks/runtime/test/ |
D | TestCompliance.cpp | 48 Model model = modelBuilder->makeModel(); in testAvailableSinceVersion() local 49 const auto modelVersion = validate(model); in testAvailableSinceVersion() 69 WrapperModel model; in TEST_F() local 70 auto op1 = model.addOperand(&kTypeTensorFloatRank0); in TEST_F() 71 auto op2 = model.addOperand(&kTypeTensorFloatRank0); in TEST_F() 72 auto op3 = model.addOperand(&kTypeTensorFloat); in TEST_F() 73 auto act = model.addConstantOperand(&kTypeInt32, kNoActivation); in TEST_F() 74 model.addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); in TEST_F() 75 model.identifyInputsAndOutputs({op1, op2}, {op3}); in TEST_F() 76 ASSERT_TRUE(model.isValid()); in TEST_F() [all …]
|
D | TestValidateModel.cpp | 29 ANeuralNetworksModel* model = nullptr; in TEST_F() local 30 ASSERT_EQ(ANeuralNetworksModel_create(&model), ANEURALNETWORKS_NO_ERROR); in TEST_F() 36 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_0), ANEURALNETWORKS_NO_ERROR); in TEST_F() 42 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_1), ANEURALNETWORKS_NO_ERROR); in TEST_F() 50 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_2), ANEURALNETWORKS_NO_ERROR); in TEST_F() 58 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_3), ANEURALNETWORKS_NO_ERROR); in TEST_F() 66 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_4), ANEURALNETWORKS_NO_ERROR); in TEST_F() 74 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_5), ANEURALNETWORKS_NO_ERROR); in TEST_F() 82 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_6), ANEURALNETWORKS_NO_ERROR); in TEST_F() 90 ASSERT_EQ(ANeuralNetworksModel_addOperand(model, &operand_7), ANEURALNETWORKS_NO_ERROR); in TEST_F() [all …]
|
D | TestMemory.cpp | 64 WrapperModel model; in TEST_F() local 68 auto a = model.addOperand(&matrixType); in TEST_F() 69 auto b = model.addOperand(&matrixType); in TEST_F() 70 auto c = model.addOperand(&matrixType); in TEST_F() 71 auto d = model.addOperand(&matrixType); in TEST_F() 72 auto e = model.addOperand(&matrixType); in TEST_F() 73 auto f = model.addOperand(&scalarType); in TEST_F() 75 model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); in TEST_F() 76 model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); in TEST_F() 77 model.setOperandValue(f, &activation, sizeof(activation)); in TEST_F() [all …]
|
D | TestFree.cpp | 31 ANeuralNetworksModel* model = nullptr; in createUnfinishedModel() local 32 EXPECT_EQ(ANeuralNetworksModel_create(&model), ANEURALNETWORKS_NO_ERROR); in createUnfinishedModel() 37 EXPECT_EQ(ANeuralNetworksModel_addOperand(model, &type), ANEURALNETWORKS_NO_ERROR); in createUnfinishedModel() 38 EXPECT_EQ(ANeuralNetworksModel_addOperand(model, &type), ANEURALNETWORKS_NO_ERROR); in createUnfinishedModel() 43 ANeuralNetworksModel_addOperation(model, ANEURALNETWORKS_FLOOR, 1, inList, 1, outList), in createUnfinishedModel() 45 EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(model, 1, inList, 1, outList), in createUnfinishedModel() 48 return model; in createUnfinishedModel() 52 ANeuralNetworksModel* const model = createUnfinishedModel(); in createFinishedModel() local 53 EXPECT_EQ(ANeuralNetworksModel_finish(model), ANEURALNETWORKS_NO_ERROR); in createFinishedModel() 54 return model; in createFinishedModel() [all …]
|
D | TestMemoryInternal.cpp | 123 WrapperModel model; in TEST_F() local 127 auto a = model.addOperand(&matrixType); in TEST_F() 128 auto b = model.addOperand(&matrixType); in TEST_F() 129 auto c = model.addOperand(&matrixType); in TEST_F() 130 auto d = model.addOperand(&matrixType); in TEST_F() 131 auto e = model.addOperand(&matrixType); in TEST_F() 132 auto f = model.addOperand(&scalarType); in TEST_F() 134 model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); in TEST_F() 135 model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); in TEST_F() 136 model.setOperandValue(f, &activation, sizeof(activation)); in TEST_F() [all …]
|
/packages/apps/DeskClock/tests/src/com/android/deskclock/uidata/ |
D | FormattedStringModelTest.java | 34 private FormattedStringModel model; field in FormattedStringModelTest 39 model = new FormattedStringModel(context); in setUp() 44 model = null; in tearDown() 49 assertEquals("0", model.getFormattedNumber(0)); in positiveFormattedNumberWithNoPadding() 50 assertEquals("9", model.getFormattedNumber(9)); in positiveFormattedNumberWithNoPadding() 51 assertEquals("10", model.getFormattedNumber(10)); in positiveFormattedNumberWithNoPadding() 52 assertEquals("99", model.getFormattedNumber(99)); in positiveFormattedNumberWithNoPadding() 53 assertEquals("100", model.getFormattedNumber(100)); in positiveFormattedNumberWithNoPadding() 58 assertEquals("0", model.getFormattedNumber(false, 0, 1)); in positiveFormattedNumber() 59 assertEquals("00", model.getFormattedNumber(false, 0, 2)); in positiveFormattedNumber() [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
D | mobilenet_224_gender_basic_fixed_relaxed.mod.py | 19 model = Model() variable 238 model = model.Operation("CONV_2D", i86, i2, i1, i87, i88, i89, i90).To(i0) variable 239 model = model.Operation("DEPTHWISE_CONV_2D", i0, i29, i28, i91, i92, i93, i94, i95).To(i27) variable 240 model = model.Operation("CONV_2D", i27, i32, i31, i96, i97, i98, i99).To(i30) variable 241 model = model.Operation("DEPTHWISE_CONV_2D", i30, i35, i34, i100, i101, i102, i103, i104).To(i33) variable 242 model = model.Operation("CONV_2D", i33, i38, i37, i105, i106, i107, i108).To(i36) variable 243 model = model.Operation("DEPTHWISE_CONV_2D", i36, i41, i40, i109, i110, i111, i112, i113).To(i39) variable 244 model = model.Operation("CONV_2D", i39, i44, i43, i114, i115, i116, i117).To(i42) variable 245 model = model.Operation("DEPTHWISE_CONV_2D", i42, i47, i46, i118, i119, i120, i121, i122).To(i45) variable 246 model = model.Operation("CONV_2D", i45, i50, i49, i123, i124, i125, i126).To(i48) variable [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
D | mobilenet_quantized.mod.py | 3 model = Model() variable 225 model = model.Operation("CONV_2D", i88, i2, i1, i104, i105, i106, i107).To(i0) variable 226 model = model.Operation("DEPTHWISE_CONV_2D", i0, i29, i28, i108, i109, i110, i111, i112).To(i27) variable 227 model = model.Operation("CONV_2D", i27, i32, i31, i113, i114, i115, i116).To(i30) variable 228 model = model.Operation("DEPTHWISE_CONV_2D", i30, i35, i34, i117, i118, i119, i120, i121).To(i33) variable 229 model = model.Operation("CONV_2D", i33, i38, i37, i122, i123, i124, i125).To(i36) variable 230 model = model.Operation("DEPTHWISE_CONV_2D", i36, i41, i40, i126, i127, i128, i129, i130).To(i39) variable 231 model = model.Operation("CONV_2D", i39, i44, i43, i131, i132, i133, i134).To(i42) variable 232 model = model.Operation("DEPTHWISE_CONV_2D", i42, i47, i46, i135, i136, i137, i138, i139).To(i45) variable 233 model = model.Operation("CONV_2D", i45, i50, i49, i140, i141, i142, i143).To(i48) variable [all …]
|
D | mobilenet_224_gender_basic_fixed.mod.py | 3 model = Model() variable 222 model = model.Operation("CONV_2D", i86, i2, i1, i87, i88, i89, i90).To(i0) variable 223 model = model.Operation("DEPTHWISE_CONV_2D", i0, i29, i28, i91, i92, i93, i94, i95).To(i27) variable 224 model = model.Operation("CONV_2D", i27, i32, i31, i96, i97, i98, i99).To(i30) variable 225 model = model.Operation("DEPTHWISE_CONV_2D", i30, i35, i34, i100, i101, i102, i103, i104).To(i33) variable 226 model = model.Operation("CONV_2D", i33, i38, i37, i105, i106, i107, i108).To(i36) variable 227 model = model.Operation("DEPTHWISE_CONV_2D", i36, i41, i40, i109, i110, i111, i112, i113).To(i39) variable 228 model = model.Operation("CONV_2D", i39, i44, i43, i114, i115, i116, i117).To(i42) variable 229 model = model.Operation("DEPTHWISE_CONV_2D", i42, i47, i46, i118, i119, i120, i121, i122).To(i45) variable 230 model = model.Operation("CONV_2D", i45, i50, i49, i123, i124, i125, i126).To(i48) variable [all …]
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_internal/ |
D | stdout.txt.expect | 12 // Generated model constructor 16 void CreateModel(Model *model) { 20 auto o0 = model->addOperand(&type0); 21 auto o1 = model->addOperand(&type0); 22 auto act = model->addOperand(&type1); 23 auto o2 = model->addOperand(&type0); 24 auto p0 = model->addOperand(&type0); 25 auto t5 = model->addOperand(&type0); 26 auto t6 = model->addOperand(&type0); 27 auto i2 = model->addOperand(&type0); [all …]
|
/packages/apps/Car/Launcher/docklib/tests/src/com/android/car/docklib/ |
D | DockViewModelTest.kt | 65 private lateinit var model: DockViewModel in <lambda>() variable 87 model = createSpyDockViewModel() in <lambda>() 88 doNothing().whenever(model).showToast(any()) in <lambda>() 96 model = createSpyDockViewModel(defaultPinnedItems = defaultPinnedItems) in <lambda>() 112 model = createSpyDockViewModel(defaultPinnedItems = defaultPinnedItems) in <lambda>() 132 model = createSpyDockViewModel(defaultPinnedItems = defaultPinnedItems) in <lambda>() 145 model.internalItems.clear() in <lambda>() 146 model.addDynamicItem(newComponent) in <lambda>() 154 model.internalItems.clear() in <lambda>() 156 model.internalItems[i] = TestUtils.createAppItem( in <lambda>() [all …]
|
/packages/modules/NeuralNetworks/common/ |
D | ModelUtils.cpp | 79 std::vector<bool> identifyUsedOperands(const Model& model) { in identifyUsedOperands() argument 80 std::vector<bool> used(model.main.operands.size(), false); in identifyUsedOperands() 85 for (const auto& operation : model.main.operations) { in identifyUsedOperands() 89 markUsed(model.main.inputIndexes); in identifyUsedOperands() 90 CHECK_EQ(used.size(), model.main.operands.size()); in identifyUsedOperands() 134 std::vector<bool> identifyUsedSubgraphs(const Model& model) { in identifyUsedSubgraphs() argument 135 std::vector<bool> used(model.referenced.size(), false); in identifyUsedSubgraphs() 136 identifyUsedSubgraphs(model.main.operands, model.referenced, &used); in identifyUsedSubgraphs() 137 CHECK_EQ(used.size(), model.referenced.size()); in identifyUsedSubgraphs() 155 std::vector<bool> identifyUsedPools(const Model& model) { in identifyUsedPools() argument [all …]
|
D | LegacyHalUtils.cpp | 124 void logModelToInfo(const V1_0::Model& model) { in logModelToInfo() argument 126 LOG(INFO) << "operands" << toString(model.operands); in logModelToInfo() 127 LOG(INFO) << "operations" << toString(model.operations); in logModelToInfo() 128 LOG(INFO) << "inputIndexes" << toString(model.inputIndexes); in logModelToInfo() 129 LOG(INFO) << "outputIndexes" << toString(model.outputIndexes); in logModelToInfo() 130 LOG(INFO) << "operandValues size" << model.operandValues.size(); in logModelToInfo() 131 LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools)); in logModelToInfo() 134 void logModelToInfo(const V1_1::Model& model) { in logModelToInfo() argument 136 LOG(INFO) << "operands" << toString(model.operands); in logModelToInfo() 137 LOG(INFO) << "operations" << toString(model.operations); in logModelToInfo() [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | strided_slice_quant8_signed.mod.py | 17 model = Model() variable 28 model = model.Operation("STRIDED_SLICE", i1, begins, ends, strides, beginMask, endMask, shrinkAxisM… variable 42 model = Model() variable 53 model = model.Operation("STRIDED_SLICE", i1, begins, ends, strides, beginMask, endMask, shrinkAxisM… variable 67 model = Model() variable 78 model = model.Operation("STRIDED_SLICE", i1, begins, ends, strides, beginMask, endMask, shrinkAxisM… variable 92 model = Model() variable 103 model = model.Operation("STRIDED_SLICE", i1, begins, ends, strides, beginMask, endMask, shrinkAxisM… variable 117 model = Model() variable 128 model = model.Operation("STRIDED_SLICE", i1, begins, ends, strides, beginMask, endMask, shrinkAxisM… variable [all …]
|
D | while_sum_of_powers_quant8.mod.py | 44 model = Model() 45 model.IdentifyInputs(xi, j, i, x) 46 model.IdentifyOutputs(out) 47 model.Operation("LESS", j, i).To(out) 48 return model 57 model = Model() 58 model.IdentifyInputs(xi, j, i, x) 59 model.IdentifyOutputs(xi_out, j_out) 60 model.Operation("MUL", xi, x, 0).To(xi_out) 61 model.Operation("ADD", j, [1], 0).To(j_out) [all …]
|
D | while_sum_of_powers_quant8_signed.mod.py | 44 model = Model() 45 model.IdentifyInputs(xi, j, i, x) 46 model.IdentifyOutputs(out) 47 model.Operation("LESS", j, i).To(out) 48 return model 57 model = Model() 58 model.IdentifyInputs(xi, j, i, x) 59 model.IdentifyOutputs(xi_out, j_out) 60 model.Operation("MUL", xi, x, 0).To(xi_out) 61 model.Operation("ADD", j, [1], 0).To(j_out) [all …]
|
D | while_sum_of_powers.mod.py | 40 model = Model() 41 model.IdentifyInputs(xi, j, i, x) 42 model.IdentifyOutputs(out) 43 model.Operation("LESS", j, i).To(out) 44 return model 53 model = Model() 54 model.IdentifyInputs(xi, j, i, x) 55 model.IdentifyOutputs(xi_out, j_out) 56 model.Operation("MUL", xi, x, 0).To(xi_out) 57 model.Operation("ADD", j, [1], 0).To(j_out) [all …]
|
D | fully_connected_quant8_signed.mod.py | 17 model = Model() variable 26 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act_relu).To(out0) variable 40 model = Model() variable 46 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) variable 59 model = Model() variable 65 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) variable 82 model = Model() variable 88 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) variable 101 model = Model() variable 107 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) variable [all …]
|
D | resize_quant8_signed.mod.py | 39 Example(test1, model=model_shape).AddNchw(i1, o1, layout).AddVariations(quant8_signed, includeDefau… 40 Example(test1, model=model_scale).AddNchw(i1, o1, layout).AddVariations(quant8_signed, includeDefau… 63 Example(test2, model=model_shape).AddNchw(i2, o2, layout).AddVariations(quant8_signed, includeDefau… 64 Example(test2, model=model_scale).AddNchw(i2, o2, layout).AddVariations(quant8_signed, includeDefau… 87 Example(test3, model=model_shape).AddVariations(quant8_signed, includeDefault=False) 88 Example(test3, model=model_scale).AddVariations(quant8_signed, includeDefault=False) 100 model = Model("zero_sized").Operation("BOX_WITH_NMS_LIMIT", p1, p2, [0], 0.3, -1, 0, 0.4, 1.0, 0.3… variable 105 model = model.Operation("ROI_ALIGN", i1, tmp1, tmp2, 2, 2, 2.0, 2.0, 4, 4, layout).To(zero_sized) variable 109 model = model.Operation("RESIZE_BILINEAR", zero_sized, 3, 3, layout).To(o3) variable 138 model = Model("zero_sized").Operation("BOX_WITH_NMS_LIMIT", p1, p2, [0], 0.3, -1, 0, 0.4, 1.0, 0.3… variable [all …]
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_backward_compatibility_float/ |
D | stdout.txt.expect | 12 // Generated model constructor 16 void CreateModel(Model *model) { 28 auto input = model->addOperand(&type0); 29 auto input_to_input_weights = model->addOperand(&type1); 30 auto input_to_forget_weights = model->addOperand(&type1); 31 auto input_to_cell_weights = model->addOperand(&type1); 32 auto input_to_output_weights = model->addOperand(&type1); 33 auto recurrent_to_input_weights = model->addOperand(&type2); 34 auto recurrent_to_forget_weights = model->addOperand(&type2); 35 auto recurrent_to_cell_weights = model->addOperand(&type2); [all …]
|
/packages/apps/Contacts/ |
D | proguard.flags | 1 -keep class com.android.contacts.model.Sources { 40 -keep class com.android.contacts.model.account.AccountDisplayInfo { *; } 41 -keep class com.android.contacts.model.account.AccountDisplayInfoFactory { *; } 42 -keep class com.android.contacts.model.account.AccountInfo { *; } 43 -keep class com.android.contacts.model.account.AccountType { *; } 44 -keep class com.android.contacts.model.account.AccountType$* { *; } 45 -keep class com.android.contacts.model.account.AccountTypeWithDataSet { *; } 46 -keep class com.android.contacts.model.account.AccountWithDataSet { *; } 47 -keep class com.android.contacts.model.account.BaseAccountType { *; } 48 -keep class com.android.contacts.model.account.BaseAccountType$* { *; } [all …]
|
/packages/services/Car/tests/DiagnosticTools/src/com/google/android/car/diagnostictools/utils/ |
D | SelectableAdapter.java | 43 public void toggleSelect(M model) { in toggleSelect() argument 44 if (model.isSelected()) { in toggleSelect() 45 model.setSelected(false); in toggleSelect() 46 mSelected.remove(model); in toggleSelect() 48 model.setSelected(true); in toggleSelect() 49 mSelected.add(model); in toggleSelect() 62 for (M model : mSelected) { in numSelected() 63 count += model.numSelected(); in numSelected() 66 for (M model : getBaseList()) { in numSelected() 67 count += model.numSelected(); in numSelected() [all …]
|