/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | layer_norm_lstm.mod.py | 24 n_cell = 4 variable 30 "{%d, %d}" % (n_cell, n_input)) 32 "{%d, %d}" % (n_cell, n_input)) 34 "{%d, %d}" % (n_cell, n_input)) 36 "{%d, %d}" % (n_cell, n_input)) 40 "{%d, %d}" % (n_cell, n_output)) 43 "{%d, %d}" % (n_cell, n_output)) 45 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d}" % (n_cell)) [all …]
|
D | bidirectional_sequence_lstm_float16_batch_major_merge_outputs.mod.py | 23 n_cell = 4 variable 30 "fw_input_to_input_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 32 "fw_input_to_forget_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 34 "fw_input_to_cell_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 36 "fw_input_to_output_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 39 "fw_recurrent_to_input_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 41 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 43 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 45 "fw_recurrent_to_output_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 48 "fw_cell_to_input_weights", "TENSOR_FLOAT16", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm_merge_outputs.mod.py | 23 n_cell = 4 variable 30 "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 32 "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 34 "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 36 "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 39 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 41 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 43 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 45 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 48 "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm_float16_batch_major.mod.py | 22 n_cell = 4 variable 29 "fw_input_to_input_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 31 "fw_input_to_forget_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 33 "fw_input_to_cell_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 35 "fw_input_to_output_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 38 "fw_recurrent_to_input_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 40 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 42 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 44 "fw_recurrent_to_output_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 47 "fw_cell_to_input_weights", "TENSOR_FLOAT16", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm.mod.py | 22 n_cell = 4 variable 29 "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 31 "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 33 "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 35 "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 38 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 40 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 42 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 44 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 47 "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm_cifg_peephole.mod.py | 22 n_cell = 4 variable 29 "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 31 "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 33 "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 35 "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 38 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 40 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 42 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 44 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 47 "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm_aux_input.mod.py | 24 n_cell = 4 variable 31 "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 33 "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 35 "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 37 "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 40 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 42 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 44 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 46 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 49 "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm_float16_batch_major_aux_input.mod.py | 25 n_cell = 4 variable 32 "fw_input_to_input_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 34 "fw_input_to_forget_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 36 "fw_input_to_cell_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 38 "fw_input_to_output_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_input)) 41 "fw_recurrent_to_input_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 43 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 45 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 47 "fw_recurrent_to_output_weights", "TENSOR_FLOAT16", "{{{}, {}}}".format(n_cell, n_output)) 50 "fw_cell_to_input_weights", "TENSOR_FLOAT16", "{{{}}}".format(n_cell)) [all …]
|
D | bidirectional_sequence_lstm_norm_fw_output.mod.py | 23 n_cell = 4 variable 30 "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 32 "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 34 "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 36 "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 39 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 41 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 43 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 45 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 48 "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) [all …]
|
D | unidirectional_sequence_lstm_f16_batch_major.mod.py | 28 n_cell = 4 variable 34 "{%d, %d}" % (n_cell, n_input)) 36 "{%d, %d}" % (n_cell, n_input)) 38 "{%d, %d}" % (n_cell, n_input)) 40 "{%d, %d}" % (n_cell, n_input)) 44 "{%d, %d}" % (n_cell, n_output)) 47 "{%d, %d}" % (n_cell, n_output)) 49 "{%d, %d}" % (n_cell, n_output)) 52 "{%d, %d}" % (n_cell, n_output)) 55 "{%d}" % (n_cell)) [all …]
|
D | unidirectional_sequence_lstm_f16_norm_peephole_projection.mod.py | 27 n_cell = 4 variable 33 "{%d, %d}" % (n_cell, n_input)) 35 "{%d, %d}" % (n_cell, n_input)) 37 "{%d, %d}" % (n_cell, n_input)) 39 "{%d, %d}" % (n_cell, n_input)) 43 "{%d, %d}" % (n_cell, n_output)) 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 54 "{%d}" % (n_cell)) [all …]
|
D | unidirectional_sequence_lstm_norm_peephole_projection.mod.py | 27 n_cell = 4 variable 33 "{%d, %d}" % (n_cell, n_input)) 35 "{%d, %d}" % (n_cell, n_input)) 37 "{%d, %d}" % (n_cell, n_input)) 39 "{%d, %d}" % (n_cell, n_input)) 43 "{%d, %d}" % (n_cell, n_output)) 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 54 "{%d}" % (n_cell)) [all …]
|
D | unidirectional_sequence_lstm_cifg_peephole.mod.py | 27 n_cell = 4 variable 33 "{%d, %d}" % (n_cell, n_input)) 35 "{%d, %d}" % (n_cell, n_input)) 37 "{%d, %d}" % (n_cell, n_input)) 39 "{%d, %d}" % (n_cell, n_input)) 43 "{%d, %d}" % (n_cell, n_output)) 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 54 "{%d}" % (n_cell)) [all …]
|
D | unidirectional_sequence_lstm_1step.mod.py | 27 n_cell = 4 variable 33 "{%d, %d}" % (n_cell, n_input)) 35 "{%d, %d}" % (n_cell, n_input)) 37 "{%d, %d}" % (n_cell, n_input)) 39 "{%d, %d}" % (n_cell, n_input)) 43 "{%d, %d}" % (n_cell, n_output)) 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 54 "{%d}" % (n_cell)) [all …]
|
D | unidirectional_sequence_lstm_batch_major_norm_peephole_projection.mod.py | 27 n_cell = 4 variable 33 "{%d, %d}" % (n_cell, n_input)) 35 "{%d, %d}" % (n_cell, n_input)) 37 "{%d, %d}" % (n_cell, n_input)) 39 "{%d, %d}" % (n_cell, n_input)) 43 "{%d, %d}" % (n_cell, n_output)) 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 54 "{%d}" % (n_cell)) [all …]
|
D | lstm3_float16.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT16", "{%d}" % (n_cell)) [all …]
|
D | lstm3_state3_float16.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT16", "{%d}" % (n_cell)) [all …]
|
D | lstm3_state2_float16.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT16", "{%d}" % (n_cell)) [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | bidirectional_sequence_lstm_state_output.mod.py | 22 n_cell = 4 variable 29 "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 31 "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 33 "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 35 "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) 38 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 40 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 42 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 44 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 47 "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
D | lstm3.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT32", "{%d}" % (n_cell)) [all …]
|
D | lstm3_state3.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT32", "{%d}" % (n_cell)) [all …]
|
D | lstm3_state2.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT32", "{%d}" % (n_cell)) [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
D | lstm3_relaxed.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT32", "{%d}" % (n_cell)) [all …]
|
D | lstm3_state3_relaxed.mod.py | 24 n_cell = 20 variable 29 input_to_input_weights = Input("input_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_… 30 input_to_forget_weights = Input("input_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 31 input_to_cell_weights = Input("input_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_in… 32 input_to_output_weights = Input("input_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, … 34 …ut_weights = Input("recurrent_to_input_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 39 cell_to_input_weights = Input("cell_to_input_weights", "TENSOR_FLOAT32", "{%d}" % (n_cell)) [all …]
|
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | LSTMTest.cpp | 78 LSTMOpModel(uint32_t n_batch, uint32_t n_input, uint32_t n_cell, uint32_t n_output, in LSTMOpModel() argument 95 input_shapes.push_back({n_batch, n_cell}); in LSTMOpModel() 117 {n_batch, n_cell * (use_cifg ? 3 : 4)}, in LSTMOpModel() 119 {n_batch, n_cell}, in LSTMOpModel() 139 CellStateIn_.insert(CellStateIn_.end(), n_batch * n_cell, 0.f); in LSTMOpModel() 276 const int n_cell = 4; in TEST() local 279 LSTMOpModel lstm(n_batch, n_input, n_cell, n_output, in TEST() 287 {n_cell, n_input}, // input_to_input_weight tensor in TEST() 288 {n_cell, n_input}, // input_to_forget_weight tensor in TEST() 289 {n_cell, n_input}, // input_to_cell_weight tensor in TEST() [all …]
|