Searched refs:numInputDims (Results 1 – 5 of 5) sorted by relevance
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | StridedSlice.cpp | 59 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape)); in compute() local 60 for (int32_t idx = numInputDims - 1; idx >= 0; --idx) { in compute() 66 for (int i = numInputDims; i < kMaxDim; i++) { in compute() 72 beginMask = ReverseMaskBits(beginMask, numInputDims); in compute() 73 endMask = ReverseMaskBits(endMask, numInputDims); in compute() 74 shrinkAxisMask = ReverseMaskBits(shrinkAxisMask, numInputDims); in compute() 100 uint32_t numInputDims = getNumberOfDimensions(inputShape); in prepare() local 101 NN_OPS_CHECK(numInputDims <= 4); in prepare() 111 NN_OPS_CHECK(getSizeOfDimension(beginShape, 0) == numInputDims); in prepare() 112 NN_OPS_CHECK(getSizeOfDimension(endShape, 0) == numInputDims); in prepare() [all …]
|
D | Squeeze.cpp | 42 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape)); in prepare() local 50 std::vector<bool> shouldSqueeze(numInputDims, false); in prepare() 55 for (int32_t idx = 0; idx < numInputDims; ++idx) { in prepare() 65 squeezeDims[idx] < 0 ? squeezeDims[idx] + numInputDims : squeezeDims[idx]; in prepare() 66 NN_OPS_CHECK(current >= 0 && current < numInputDims && in prepare() 74 std::vector<uint32_t> outDims(numInputDims - numDimsSqueezed); in prepare() 75 if (numInputDims == numDimsSqueezed) { in prepare() 79 for (int32_t inIdx = 0, outIdx = 0; inIdx < numInputDims; ++inIdx) { in prepare()
|
D | Transpose.cpp | 80 uint32_t numInputDims = getNumberOfDimensions(input); in prepare() local 88 NN_RET_CHECK_EQ(numInputDims, 2u); in prepare() 95 NN_RET_CHECK_LE(numInputDims, 4u); in prepare() 100 NN_RET_CHECK_EQ(numInputDims, getSizeOfDimension(permShape, 0)); in prepare() 102 std::vector<uint32_t> outDims(numInputDims); in prepare() 103 for (int32_t idx = 0; idx < static_cast<int32_t>(numInputDims); ++idx) { in prepare() 104 NN_RET_CHECK(permData[idx] >= 0 && permData[idx] < static_cast<int32_t>(numInputDims)); in prepare()
|
D | Reshape.cpp | 100 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape)); in padGeneric() local 101 NN_OPS_CHECK(numInputDims <= 4); in padGeneric() 102 std::vector<int> leftPaddings(4 - numInputDims, 0); in padGeneric() 103 std::vector<int> rightPaddings(4 - numInputDims, 0); in padGeneric() 104 for (int32_t i = 0; i < numInputDims; ++i) { in padGeneric()
|
/packages/modules/NeuralNetworks/common/ |
D | OperationsExecutionUtils.cpp | 412 uint32_t numInputDims = getNumberOfDimensions(input); in padPrepare() local 417 NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == numInputDims); in padPrepare() 420 std::vector<uint32_t> outDims(numInputDims); in padPrepare() 421 for (uint32_t i = 0; i < numInputDims; ++i) { in padPrepare() 507 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(input)); in meanPrepare() local 512 std::vector<uint32_t> outDims(numInputDims); in meanPrepare() 513 for (int32_t idx = 0; idx < numInputDims; ++idx) { in meanPrepare() 516 if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) { in meanPrepare() 534 current += numInputDims; in meanPrepare() 536 NN_OPS_CHECK(current >= 0 && current < numInputDims); in meanPrepare() [all …]
|