Searched refs:numOutputs (Results 1 – 8 of 8) sorted by relevance
/packages/modules/NeuralNetworks/common/types/operations/src/ |
D | BidirectionalSequenceRNN.cpp | 30 const uint32_t numOutputs = context->getNumOutputs(); in validate() local 31 NN_RET_CHECK(numOutputs == kNumOutputs || numOutputs == kNumOutputsMerged || in validate() 32 numOutputs == kNumOutputsWithState || numOutputs == kNumOutputsMergedWithState); in validate() 44 std::vector<OperandType> outExpectedTypes(numOutputs, inputType); in validate() 48 if (numOutputs == kNumOutputsWithState || numOutputs == kNumOutputsMergedWithState) { in validate()
|
D | UnidirectionalSequenceRNN.cpp | 28 const int numOutputs = context->getNumOutputs(); in validate() local 29 NN_RET_CHECK(numOutputs == kNumOutputs || numOutputs == kNumOutputsWithState); in validate() 39 if (numOutputs == kNumOutputsWithState) { in validate()
|
D | UnidirectionalSequenceLSTM.cpp | 28 const uint32_t numOutputs = context->getNumOutputs(); in validate() local 29 NN_RET_CHECK(numOutputs == kNumOutputs || numOutputs == kNumOutputsWithState); in validate()
|
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | BidirectionalSequenceRNN.cpp | 290 const int32_t numOutputs = context->getNumOutputs(); in prepare() local 292 NN_RET_CHECK(numOutputs == kNumOutputsMerged || numOutputs == kNumOutputsMergedWithState); in prepare() 294 NN_RET_CHECK(numOutputs == kNumOutputs || numOutputs == kNumOutputsWithState); in prepare() 395 (numOutputs == kNumOutputsWithState || numOutputs == kNumOutputsMergedWithState); in prepare()
|
/packages/modules/NeuralNetworks/common/ |
D | CpuExecutor.cpp | 1376 const int32_t numOutputs = getScalarData<int32_t>(operands[ins[2]]); in executeOperation() local 1378 if (static_cast<size_t>(numOutputs) != outs.size()) { in executeOperation() 1382 std::vector<Shape> outputShapes(numOutputs); in executeOperation() 1383 for (int i = 0; i < numOutputs; ++i) { in executeOperation() 1387 success = splitPrepare(input.shape(), axis, numOutputs, &outputShapes); in executeOperation() 1388 for (int i = 0; i < numOutputs; ++i) { in executeOperation() 1394 std::vector<_Float16*> outputDataPtrs(numOutputs); in executeOperation() 1395 for (int i = 0; i < numOutputs; ++i) { in executeOperation() 1403 std::vector<float*> outputDataPtrs(numOutputs); in executeOperation() 1404 for (int i = 0; i < numOutputs; ++i) { in executeOperation() [all …]
|
D | OperationsExecutionUtils.cpp | 598 bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, in splitPrepare() argument 603 NN_OPS_CHECK(sizeOfAxisToSplit % numOutputs == 0); in splitPrepare() 604 const int32_t sliceSize = sizeOfAxisToSplit / numOutputs; in splitPrepare() 606 for (int i = 0; i < numOutputs; ++i) { in splitPrepare()
|
/packages/modules/NeuralNetworks/shim_and_sl/ |
D | ShimPreparedModel.cpp | 339 int numOutputs, ExecutionResult* executionResult) { in executeSynchronouslyInternal() argument 347 outputShapes.reserve(numOutputs); in executeSynchronouslyInternal() 349 for (int i = 0; i < numOutputs; ++i) { in executeSynchronouslyInternal()
|
/packages/modules/NeuralNetworks/common/include/ |
D | OperationsExecutionUtils.h | 259 bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, std::vector<Shape>* output);
|