/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | avg_pool_v1_2.mod.py | 46 pad = 30 variable 47 output_row = (row + 2 * pad - flt + std) // std 48 output_col = (col + 2 * pad - flt + std) // std 52 Model().Operation("AVERAGE_POOL_2D", i2, pad, pad, pad, pad, std, std, flt, flt, 0, layout).To(o2) 74 pad = 0 variable 75 output_row = (row + 2 * pad - flt + std) // std 76 output_col = (col + 2 * pad - flt + std) // std 80 Model().Operation("AVERAGE_POOL_2D", i3, pad, pad, pad, pad, std, std, flt, flt, 0, layout).To(o3) 102 pad = 50 variable 103 output_row = (row + 2 * pad - flt + std) // std [all …]
|
D | max_pool_v1_2.mod.py | 44 pad = 0 variable 45 output_row = (row + 2 * pad - flt + std) // std 46 output_col = (col + 2 * pad - flt + std) // std 50 Model().Operation("MAX_POOL_2D", i2, pad, pad, pad, pad, std, std, flt, flt, 0, layout).To(o2) 72 pad = 0 variable 73 output_row = (row + 2 * pad - flt + std) // std 74 output_col = (col + 2 * pad - flt + std) // std 78 Model().Operation("MAX_POOL_2D", i3, pad, pad, pad, pad, std, std, flt, flt, 3, layout).To(o3)
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | avg_pool_quant8_signed.mod.py | 48 pad = 5 variable 52 padding = Int32Scalar("padding", pad) 54 output_row = (row + 2 * pad - flt + std) // std 55 output_col = (col + 2 * pad - flt + std) // std 85 pad = 0 variable 89 padding = Int32Scalar("padding", pad) 91 output_row = (row + 2 * pad - flt + std) // std 92 output_col = (col + 2 * pad - flt + std) // std 176 pad = 50 variable 177 output_row = (row + 2 * pad - flt + std) // std [all …]
|
D | max_pool_quant8_signed.mod.py | 45 pad = 0 variable 49 padding = Int32Scalar("padding", pad) 51 output_row = (row + 2 * pad - flt + std) // std 52 output_col = (col + 2 * pad - flt + std) // std 84 pad = 0 variable 88 padding = Int32Scalar("padding", pad) 90 output_row = (row + 2 * pad - flt + std) // std 91 output_col = (col + 2 * pad - flt + std) // std 158 pad = 0 variable 159 output_row = (row + 2 * pad - flt + std) // std [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
D | avg_pool_quant8_2.mod.py | 29 pad = 5 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | avg_pool_float_4.mod.py | 29 pad = 50 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | avg_pool_float_3.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | avg_pool_quant8_3.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | avg_pool_float_2.mod.py | 29 pad = 50 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | max_pool_quant8_3.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | max_pool_float_3.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | max_pool_quant8_2.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | max_pool_float_2.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
D | avg_pool_float_3_relaxed.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | avg_pool_float_2_relaxed.mod.py | 31 pad = 30 variable 35 padding = Int32Scalar("padding", pad) 37 output_row = (row + 2 * pad - flt + std) // std 38 output_col = (col + 2 * pad - flt + std) // std
|
D | avg_pool_float_4_relaxed.mod.py | 29 pad = 50 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | max_pool_float_3_relaxed.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
D | max_pool_float_2_relaxed.mod.py | 29 pad = 0 variable 33 padding = Int32Scalar("padding", pad) 35 output_row = (row + 2 * pad - flt + std) // std 36 output_col = (col + 2 * pad - flt + std) // std
|
/packages/apps/EmergencyInfo/src/com/android/emergency/ |
D | CircleFramedDrawable.java | 97 final float pad = (mSize - inside) / 2f; in draw() local 99 mDstRect.set(pad, pad, mSize - pad, mSize - pad); in draw()
|
/packages/modules/NeuralNetworks/runtime/test/generated/spec_V1_1/ |
D | pad.example.cpp | 7 namespace generated_tests::pad { namespace 64 namespace generated_tests::pad { namespace 155 namespace generated_tests::pad { namespace 212 namespace generated_tests::pad { namespace
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_variation/ |
D | conv_float.mod.py | 22 pad = Int32Scalar("param", 1) variable 26 model = model.Operation("CONV_2D", i1, f1, b1, pad, stride0, stride1, act, layout).To(output)
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_vts_variation/ |
D | conv_float.mod.py | 22 pad = Int32Scalar("param", 1) variable 26 model = model.Operation("CONV_2D", i1, f1, b1, pad, stride0, stride1, act, layout).To(output)
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_naming/ |
D | conv_float.mod.py | 22 pad = Int32Scalar("param", 1) variable 26 model = model.Operation("CONV_2D", i1, f1, b1, pad, stride0, stride1, act, layout).To(output)
|
/packages/modules/Connectivity/staticlibs/device/com/android/net/module/util/netlink/ |
D | StructInetDiagReqV2.java | 50 public StructInetDiagReqV2(int protocol, @Nullable StructInetDiagSockId id, int family, int pad, in StructInetDiagReqV2() argument 55 mPad = (byte) pad; in StructInetDiagReqV2()
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_vts_naming/ |
D | conv_float.mod.py | 22 pad = Int32Scalar("param", 1) variable 26 model = model.Operation("CONV_2D", i1, f1, b1, pad, stride0, stride1, act, layout).To(output)
|