1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "AudioFlinger"
20 // #define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22 
23 #include "Threads.h"
24 
25 #include "Client.h"
26 #include "IAfEffect.h"
27 #include "MelReporter.h"
28 #include "ResamplerBufferProvider.h"
29 
30 #include <afutils/DumpTryLock.h>
31 #include <afutils/Permission.h>
32 #include <afutils/TypedLogger.h>
33 #include <afutils/Vibrator.h>
34 #include <audio_utils/MelProcessor.h>
35 #include <audio_utils/Metadata.h>
36 #include <com_android_media_audioserver.h>
37 #ifdef DEBUG_CPU_USAGE
38 #include <audio_utils/Statistics.h>
39 #include <cpustats/ThreadCpuUsage.h>
40 #endif
41 #include <audio_utils/channels.h>
42 #include <audio_utils/format.h>
43 #include <audio_utils/minifloat.h>
44 #include <audio_utils/mono_blend.h>
45 #include <audio_utils/primitives.h>
46 #include <audio_utils/safe_math.h>
47 #include <audiomanager/AudioManager.h>
48 #include <binder/IPCThreadState.h>
49 #include <binder/IServiceManager.h>
50 #include <binder/PersistableBundle.h>
51 #include <com_android_media_audio.h>
52 #include <cutils/bitops.h>
53 #include <cutils/properties.h>
54 #include <fastpath/AutoPark.h>
55 #include <media/AudioContainers.h>
56 #include <media/AudioDeviceTypeAddr.h>
57 #include <media/AudioParameter.h>
58 #include <media/AudioResamplerPublic.h>
59 #ifdef ADD_BATTERY_DATA
60 #include <media/IMediaPlayerService.h>
61 #include <media/IMediaDeathNotifier.h>
62 #endif
63 #include <media/MmapStreamCallback.h>
64 #include <media/RecordBufferConverter.h>
65 #include <media/TypeConverter.h>
66 #include <media/audiohal/EffectsFactoryHalInterface.h>
67 #include <media/audiohal/StreamHalInterface.h>
68 #include <media/nbaio/AudioStreamInSource.h>
69 #include <media/nbaio/AudioStreamOutSink.h>
70 #include <media/nbaio/MonoPipe.h>
71 #include <media/nbaio/MonoPipeReader.h>
72 #include <media/nbaio/Pipe.h>
73 #include <media/nbaio/PipeReader.h>
74 #include <media/nbaio/SourceAudioBufferProvider.h>
75 #include <mediautils/BatteryNotifier.h>
76 #include <mediautils/Process.h>
77 #include <mediautils/SchedulingPolicyService.h>
78 #include <mediautils/ServiceUtilities.h>
79 #include <powermanager/PowerManager.h>
80 #include <private/android_filesystem_config.h>
81 #include <private/media/AudioTrackShared.h>
82 #include <system/audio_effects/effect_aec.h>
83 #include <system/audio_effects/effect_downmix.h>
84 #include <system/audio_effects/effect_ns.h>
85 #include <system/audio_effects/effect_spatializer.h>
86 #include <utils/Log.h>
87 #include <utils/Trace.h>
88 
89 #include <fcntl.h>
90 #include <linux/futex.h>
91 #include <math.h>
92 #include <memory>
93 #include <pthread.h>
94 #include <sstream>
95 #include <string>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 
99 // ----------------------------------------------------------------------------
100 
101 // Note: the following macro is used for extremely verbose logging message.  In
102 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
103 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
104 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
105 // turned on.  Do not uncomment the #def below unless you really know what you
106 // are doing and want to see all of the extremely verbose messages.
107 //#define VERY_VERY_VERBOSE_LOGGING
108 #ifdef VERY_VERY_VERBOSE_LOGGING
109 #define ALOGVV ALOGV
110 #else
111 #define ALOGVV(a...) do { } while(0)
112 #endif
113 
114 // TODO: Move these macro/inlines to a header file.
115 #define max(a, b) ((a) > (b) ? (a) : (b))
116 
117 template <typename T>
min(const T & a,const T & b)118 static inline T min(const T& a, const T& b)
119 {
120     return a < b ? a : b;
121 }
122 
123 namespace android {
124 
125 using audioflinger::SyncEvent;
126 using media::IEffectClient;
127 using content::AttributionSourceState;
128 
129 // Keep in sync with java definition in media/java/android/media/AudioRecord.java
130 static constexpr int32_t kMaxSharedAudioHistoryMs = 5000;
131 
132 // retry counts for buffer fill timeout
133 // 50 * ~20msecs = 1 second
134 static const int8_t kMaxTrackRetries = 50;
135 static const int8_t kMaxTrackStartupRetries = 50;
136 
137 // allow less retry attempts on direct output thread.
138 // direct outputs can be a scarce resource in audio hardware and should
139 // be released as quickly as possible.
140 // Notes:
141 // 1) The retry duration kMaxTrackRetriesDirectMs may be increased
142 //    in case the data write is bursty for the AudioTrack.  The application
143 //    should endeavor to write at least once every kMaxTrackRetriesDirectMs
144 //    to prevent an underrun situation.  If the data is bursty, then
145 //    the application can also throttle the data sent to be even.
146 // 2) For compressed audio data, any data present in the AudioTrack buffer
147 //    will be sent and reset the retry count.  This delivers data as
148 //    it arrives, with approximately kDirectMinSleepTimeUs = 10ms checking interval.
149 // 3) For linear PCM or proportional PCM, we wait one period for a period's worth
150 //    of data to be available, then any remaining data is delivered.
151 //    This is required to ensure the last bit of data is delivered before underrun.
152 //
153 // Sleep time per cycle is kDirectMinSleepTimeUs for compressed tracks
154 // or the size of the HAL period for proportional / linear PCM tracks.
155 static const int32_t kMaxTrackRetriesDirectMs = 200;
156 
157 // don't warn about blocked writes or record buffer overflows more often than this
158 static const nsecs_t kWarningThrottleNs = seconds(5);
159 
160 // RecordThread loop sleep time upon application overrun or audio HAL read error
161 static const int kRecordThreadSleepUs = 5000;
162 
163 // maximum time to wait in sendConfigEvent_l() for a status to be received
164 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
165 
166 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
167 static const uint32_t kMinThreadSleepTimeUs = 5000;
168 // maximum divider applied to the active sleep time in the mixer thread loop
169 static const uint32_t kMaxThreadSleepTimeShift = 2;
170 
171 // minimum normal sink buffer size, expressed in milliseconds rather than frames
172 // FIXME This should be based on experimentally observed scheduling jitter
173 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
174 // maximum normal sink buffer size
175 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
176 
177 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
178 // FIXME This should be based on experimentally observed scheduling jitter
179 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
180 
181 // Offloaded output thread standby delay: allows track transition without going to standby
182 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
183 
184 // Direct output thread minimum sleep time in idle or active(underrun) state
185 static const nsecs_t kDirectMinSleepTimeUs = 10000;
186 
187 // Minimum amount of time between checking to see if the timestamp is advancing
188 // for underrun detection. If we check too frequently, we may not detect a
189 // timestamp update and will falsely detect underrun.
190 static constexpr nsecs_t kMinimumTimeBetweenTimestampChecksNs = 150 /* ms */ * 1'000'000;
191 
192 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
193 // balance between power consumption and latency, and allows threads to be scheduled reliably
194 // by the CFS scheduler.
195 // FIXME Express other hardcoded references to 20ms with references to this constant and move
196 // it appropriately.
197 #define FMS_20 20
198 
199 // Whether to use fast mixer
200 static const enum {
201     FastMixer_Never,    // never initialize or use: for debugging only
202     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
203                         // normal mixer multiplier is 1
204     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
205                         // multiplier is calculated based on min & max normal mixer buffer size
206     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
207                         // multiplier is calculated based on min & max normal mixer buffer size
208     // FIXME for FastMixer_Dynamic:
209     //  Supporting this option will require fixing HALs that can't handle large writes.
210     //  For example, one HAL implementation returns an error from a large write,
211     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
212     //  We could either fix the HAL implementations, or provide a wrapper that breaks
213     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
214 } kUseFastMixer = FastMixer_Static;
215 
216 // Whether to use fast capture
217 static const enum {
218     FastCapture_Never,  // never initialize or use: for debugging only
219     FastCapture_Always, // always initialize and use, even if not needed: for debugging only
220     FastCapture_Static, // initialize if needed, then use all the time if initialized
221 } kUseFastCapture = FastCapture_Static;
222 
223 // Priorities for requestPriority
224 static const int kPriorityAudioApp = 2;
225 static const int kPriorityFastMixer = 3;
226 static const int kPriorityFastCapture = 3;
227 // Request real-time priority for PlaybackThread in ARC
228 static const int kPriorityPlaybackThreadArc = 1;
229 
230 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
231 // track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
232 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
233 
234 // This is the default value, if not specified by property.
235 static const int kFastTrackMultiplier = 2;
236 
237 // The minimum and maximum allowed values
238 static const int kFastTrackMultiplierMin = 1;
239 static const int kFastTrackMultiplierMax = 2;
240 
241 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
242 static int sFastTrackMultiplier = kFastTrackMultiplier;
243 
244 // See Thread::readOnlyHeap().
245 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
246 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
247 // and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
248 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
249 
250 static const nsecs_t kDefaultStandbyTimeInNsecs = seconds(3);
251 
getStandbyTimeInNanos()252 static nsecs_t getStandbyTimeInNanos() {
253     static nsecs_t standbyTimeInNanos = []() {
254         const int ms = property_get_int32("ro.audio.flinger_standbytime_ms",
255                     kDefaultStandbyTimeInNsecs / NANOS_PER_MILLISECOND);
256         ALOGI("%s: Using %d ms as standby time", __func__, ms);
257         return milliseconds(ms);
258     }();
259     return standbyTimeInNanos;
260 }
261 
262 // Set kEnableExtendedChannels to true to enable greater than stereo output
263 // for the MixerThread and device sink.  Number of channels allowed is
264 // FCC_2 <= channels <= FCC_LIMIT.
265 constexpr bool kEnableExtendedChannels = true;
266 
267 // Returns true if channel mask is permitted for the PCM sink in the MixerThread
268 /* static */
isValidPcmSinkChannelMask(audio_channel_mask_t channelMask)269 bool IAfThreadBase::isValidPcmSinkChannelMask(audio_channel_mask_t channelMask) {
270     switch (audio_channel_mask_get_representation(channelMask)) {
271     case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
272         // Haptic channel mask is only applicable for channel position mask.
273         const uint32_t channelCount = audio_channel_count_from_out_mask(
274                 static_cast<audio_channel_mask_t>(channelMask & ~AUDIO_CHANNEL_HAPTIC_ALL));
275         const uint32_t maxChannelCount = kEnableExtendedChannels
276                 ? FCC_LIMIT : FCC_2;
277         if (channelCount < FCC_2 // mono is not supported at this time
278                 || channelCount > maxChannelCount) {
279             return false;
280         }
281         // check that channelMask is the "canonical" one we expect for the channelCount.
282         return audio_channel_position_mask_is_out_canonical(channelMask);
283         }
284     case AUDIO_CHANNEL_REPRESENTATION_INDEX:
285         if (kEnableExtendedChannels) {
286             const uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
287             if (channelCount >= FCC_2 // mono is not supported at this time
288                     && channelCount <= FCC_LIMIT) {
289                 return true;
290             }
291         }
292         return false;
293     default:
294         return false;
295     }
296 }
297 
298 // Set kEnableExtendedPrecision to true to use extended precision in MixerThread
299 constexpr bool kEnableExtendedPrecision = true;
300 
301 // Returns true if format is permitted for the PCM sink in the MixerThread
302 /* static */
isValidPcmSinkFormat(audio_format_t format)303 bool IAfThreadBase::isValidPcmSinkFormat(audio_format_t format) {
304     switch (format) {
305     case AUDIO_FORMAT_PCM_16_BIT:
306         return true;
307     case AUDIO_FORMAT_PCM_FLOAT:
308     case AUDIO_FORMAT_PCM_24_BIT_PACKED:
309     case AUDIO_FORMAT_PCM_32_BIT:
310     case AUDIO_FORMAT_PCM_8_24_BIT:
311         return kEnableExtendedPrecision;
312     default:
313         return false;
314     }
315 }
316 
317 // ----------------------------------------------------------------------------
318 
319 // formatToString() needs to be exact for MediaMetrics purposes.
320 // Do not use media/TypeConverter.h toString().
321 /* static */
formatToString(audio_format_t format)322 std::string IAfThreadBase::formatToString(audio_format_t format) {
323     std::string result;
324     FormatConverter::toString(format, result);
325     return result;
326 }
327 
328 // TODO: move all toString helpers to audio.h
329 // under  #ifdef __cplusplus #endif
patchSinksToString(const struct audio_patch * patch)330 static std::string patchSinksToString(const struct audio_patch *patch)
331 {
332     std::stringstream ss;
333     for (size_t i = 0; i < patch->num_sinks; ++i) {
334         if (i > 0) {
335             ss << "|";
336         }
337         ss << "(" << toString(patch->sinks[i].ext.device.type)
338             << ", " << patch->sinks[i].ext.device.address << ")";
339     }
340     return ss.str();
341 }
342 
patchSourcesToString(const struct audio_patch * patch)343 static std::string patchSourcesToString(const struct audio_patch *patch)
344 {
345     std::stringstream ss;
346     for (size_t i = 0; i < patch->num_sources; ++i) {
347         if (i > 0) {
348             ss << "|";
349         }
350         ss << "(" << toString(patch->sources[i].ext.device.type)
351             << ", " << patch->sources[i].ext.device.address << ")";
352     }
353     return ss.str();
354 }
355 
toString(audio_latency_mode_t mode)356 static std::string toString(audio_latency_mode_t mode) {
357     // We convert to the AIDL type to print (eventually the legacy type will be removed).
358     const auto result = legacy2aidl_audio_latency_mode_t_AudioLatencyMode(mode);
359     return result.has_value() ? media::audio::common::toString(*result) : "UNKNOWN";
360 }
361 
362 // Could be made a template, but other toString overloads for std::vector are confused.
toString(const std::vector<audio_latency_mode_t> & elements)363 static std::string toString(const std::vector<audio_latency_mode_t>& elements) {
364     std::string s("{ ");
365     for (const auto& e : elements) {
366         s.append(toString(e));
367         s.append(" ");
368     }
369     s.append("}");
370     return s;
371 }
372 
373 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
374 
sFastTrackMultiplierInit()375 static void sFastTrackMultiplierInit()
376 {
377     char value[PROPERTY_VALUE_MAX];
378     if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
379         char *endptr;
380         unsigned long ul = strtoul(value, &endptr, 0);
381         if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
382             sFastTrackMultiplier = (int) ul;
383         }
384     }
385 }
386 
387 // ----------------------------------------------------------------------------
388 
389 #ifdef ADD_BATTERY_DATA
390 // To collect the amplifier usage
addBatteryData(uint32_t params)391 static void addBatteryData(uint32_t params) {
392     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
393     if (service == NULL) {
394         // it already logged
395         return;
396     }
397 
398     service->addBatteryData(params);
399 }
400 #endif
401 
402 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
403 struct {
404     // call when you acquire a partial wakelock
acquireandroid::__anonf7c4eeac0408405     void acquire(const sp<IBinder> &wakeLockToken) {
406         pthread_mutex_lock(&mLock);
407         if (wakeLockToken.get() == nullptr) {
408             adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
409         } else {
410             if (mCount == 0) {
411                 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
412             }
413             ++mCount;
414         }
415         pthread_mutex_unlock(&mLock);
416     }
417 
418     // call when you release a partial wakelock.
releaseandroid::__anonf7c4eeac0408419     void release(const sp<IBinder> &wakeLockToken) {
420         if (wakeLockToken.get() == nullptr) {
421             return;
422         }
423         pthread_mutex_lock(&mLock);
424         if (--mCount < 0) {
425             ALOGE("negative wakelock count");
426             mCount = 0;
427         }
428         pthread_mutex_unlock(&mLock);
429     }
430 
431     // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonf7c4eeac0408432     int64_t getBoottimeOffset() {
433         pthread_mutex_lock(&mLock);
434         int64_t boottimeOffset = mBoottimeOffset;
435         pthread_mutex_unlock(&mLock);
436         return boottimeOffset;
437     }
438 
439     // Adjusts the timebase offset between TIMEBASE_MONOTONIC
440     // and the selected timebase.
441     // Currently only TIMEBASE_BOOTTIME is allowed.
442     //
443     // This only needs to be called upon acquiring the first partial wakelock
444     // after all other partial wakelocks are released.
445     //
446     // We do an empirical measurement of the offset rather than parsing
447     // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonf7c4eeac0408448     static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
449         int clockbase;
450         switch (timebase) {
451         case ExtendedTimestamp::TIMEBASE_BOOTTIME:
452             clockbase = SYSTEM_TIME_BOOTTIME;
453             break;
454         default:
455             LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
456             break;
457         }
458         // try three times to get the clock offset, choose the one
459         // with the minimum gap in measurements.
460         const int tries = 3;
461         nsecs_t bestGap = 0, measured = 0; // not required, initialized for clang-tidy
462         for (int i = 0; i < tries; ++i) {
463             const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
464             const nsecs_t tbase = systemTime(clockbase);
465             const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
466             const nsecs_t gap = tmono2 - tmono;
467             if (i == 0 || gap < bestGap) {
468                 bestGap = gap;
469                 measured = tbase - ((tmono + tmono2) >> 1);
470             }
471         }
472 
473         // to avoid micro-adjusting, we don't change the timebase
474         // unless it is significantly different.
475         //
476         // Assumption: It probably takes more than toleranceNs to
477         // suspend and resume the device.
478         static int64_t toleranceNs = 10000; // 10 us
479         if (llabs(*offset - measured) > toleranceNs) {
480             ALOGV("Adjusting timebase offset old: %lld  new: %lld",
481                     (long long)*offset, (long long)measured);
482             *offset = measured;
483         }
484     }
485 
486     pthread_mutex_t mLock;
487     int32_t mCount;
488     int64_t mBoottimeOffset;
489 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
490 
491 // ----------------------------------------------------------------------------
492 //      CPU Stats
493 // ----------------------------------------------------------------------------
494 
495 class CpuStats {
496 public:
497     CpuStats();
498     void sample(const String8 &title);
499 #ifdef DEBUG_CPU_USAGE
500 private:
501     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
502     audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
503 
504     audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
505 
506     int mCpuNum;                        // thread's current CPU number
507     int mCpukHz;                        // frequency of thread's current CPU in kHz
508 #endif
509 };
510 
CpuStats()511 CpuStats::CpuStats()
512 #ifdef DEBUG_CPU_USAGE
513     : mCpuNum(-1), mCpukHz(-1)
514 #endif
515 {
516 }
517 
sample(const String8 & title __unused)518 void CpuStats::sample(const String8 &title
519 #ifndef DEBUG_CPU_USAGE
520                 __unused
521 #endif
522         ) {
523 #ifdef DEBUG_CPU_USAGE
524     // get current thread's delta CPU time in wall clock ns
525     double wcNs;
526     bool valid = mCpuUsage.sampleAndEnable(wcNs);
527 
528     // record sample for wall clock statistics
529     if (valid) {
530         mWcStats.add(wcNs);
531     }
532 
533     // get the current CPU number
534     int cpuNum = sched_getcpu();
535 
536     // get the current CPU frequency in kHz
537     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
538 
539     // check if either CPU number or frequency changed
540     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
541         mCpuNum = cpuNum;
542         mCpukHz = cpukHz;
543         // ignore sample for purposes of cycles
544         valid = false;
545     }
546 
547     // if no change in CPU number or frequency, then record sample for cycle statistics
548     if (valid && mCpukHz > 0) {
549         const double cycles = wcNs * cpukHz * 0.000001;
550         mHzStats.add(cycles);
551     }
552 
553     const unsigned n = mWcStats.getN();
554     // mCpuUsage.elapsed() is expensive, so don't call it every loop
555     if ((n & 127) == 1) {
556         const long long elapsed = mCpuUsage.elapsed();
557         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
558             const double perLoop = elapsed / (double) n;
559             const double perLoop100 = perLoop * 0.01;
560             const double perLoop1k = perLoop * 0.001;
561             const double mean = mWcStats.getMean();
562             const double stddev = mWcStats.getStdDev();
563             const double minimum = mWcStats.getMin();
564             const double maximum = mWcStats.getMax();
565             const double meanCycles = mHzStats.getMean();
566             const double stddevCycles = mHzStats.getStdDev();
567             const double minCycles = mHzStats.getMin();
568             const double maxCycles = mHzStats.getMax();
569             mCpuUsage.resetElapsed();
570             mWcStats.reset();
571             mHzStats.reset();
572             ALOGD("CPU usage for %s over past %.1f secs\n"
573                 "  (%u mixer loops at %.1f mean ms per loop):\n"
574                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
575                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
576                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
577                     title.c_str(),
578                     elapsed * .000000001, n, perLoop * .000001,
579                     mean * .001,
580                     stddev * .001,
581                     minimum * .001,
582                     maximum * .001,
583                     mean / perLoop100,
584                     stddev / perLoop100,
585                     minimum / perLoop100,
586                     maximum / perLoop100,
587                     meanCycles / perLoop1k,
588                     stddevCycles / perLoop1k,
589                     minCycles / perLoop1k,
590                     maxCycles / perLoop1k);
591 
592         }
593     }
594 #endif
595 };
596 
597 // ----------------------------------------------------------------------------
598 //      ThreadBase
599 // ----------------------------------------------------------------------------
600 
601 // static
threadTypeToString(ThreadBase::type_t type)602 const char* ThreadBase::threadTypeToString(ThreadBase::type_t type)
603 {
604     switch (type) {
605     case MIXER:
606         return "MIXER";
607     case DIRECT:
608         return "DIRECT";
609     case DUPLICATING:
610         return "DUPLICATING";
611     case RECORD:
612         return "RECORD";
613     case OFFLOAD:
614         return "OFFLOAD";
615     case MMAP_PLAYBACK:
616         return "MMAP_PLAYBACK";
617     case MMAP_CAPTURE:
618         return "MMAP_CAPTURE";
619     case SPATIALIZER:
620         return "SPATIALIZER";
621     case BIT_PERFECT:
622         return "BIT_PERFECT";
623     default:
624         return "unknown";
625     }
626 }
627 
ThreadBase(const sp<IAfThreadCallback> & afThreadCallback,audio_io_handle_t id,type_t type,bool systemReady,bool isOut)628 ThreadBase::ThreadBase(const sp<IAfThreadCallback>& afThreadCallback, audio_io_handle_t id,
629         type_t type, bool systemReady, bool isOut)
630     :   Thread(false /*canCallJava*/),
631         mType(type),
632         mAfThreadCallback(afThreadCallback),
633         mThreadMetrics(std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_THREAD) + std::to_string(id),
634                isOut),
635         mIsOut(isOut),
636         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
637         // are set by PlaybackThread::readOutputParameters_l() or
638         // RecordThread::readInputParameters_l()
639         //FIXME: mStandby should be true here. Is this some kind of hack?
640         mStandby(false),
641         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
642         // mName will be set by concrete (non-virtual) subclass
643         mDeathRecipient(new PMDeathRecipient(this)),
644         mSystemReady(systemReady),
645         mSignalPending(false)
646 {
647     mThreadMetrics.logConstructor(getpid(), threadTypeToString(type), id);
648     memset(&mPatch, 0, sizeof(struct audio_patch));
649 }
650 
~ThreadBase()651 ThreadBase::~ThreadBase()
652 {
653     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
654     mConfigEvents.clear();
655 
656     // do not lock the mutex in destructor
657     releaseWakeLock_l();
658     if (mPowerManager != 0) {
659         sp<IBinder> binder = IInterface::asBinder(mPowerManager);
660         binder->unlinkToDeath(mDeathRecipient);
661     }
662 
663     sendStatistics(true /* force */);
664 }
665 
readyToRun()666 status_t ThreadBase::readyToRun()
667 {
668     status_t status = initCheck();
669     if (status == NO_ERROR) {
670         ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
671     } else {
672         ALOGE("No working audio driver found.");
673     }
674     return status;
675 }
676 
exit()677 void ThreadBase::exit()
678 {
679     ALOGV("ThreadBase::exit");
680     // do any cleanup required for exit to succeed
681     preExit();
682     {
683         // This lock prevents the following race in thread (uniprocessor for illustration):
684         //  if (!exitPending()) {
685         //      // context switch from here to exit()
686         //      // exit() calls requestExit(), what exitPending() observes
687         //      // exit() calls signal(), which is dropped since no waiters
688         //      // context switch back from exit() to here
689         //      mWaitWorkCV.wait(...);
690         //      // now thread is hung
691         //  }
692         audio_utils::lock_guard lock(mutex());
693         requestExit();
694         mWaitWorkCV.notify_all();
695     }
696     // When Thread::requestExitAndWait is made virtual and this method is renamed to
697     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
698 
699     // For TimeCheck: track waiting on the thread join of getTid().
700     audio_utils::mutex::scoped_join_wait_check sjw(getTid());
701 
702     requestExitAndWait();
703 }
704 
setParameters(const String8 & keyValuePairs)705 status_t ThreadBase::setParameters(const String8& keyValuePairs)
706 {
707     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.c_str());
708     audio_utils::lock_guard _l(mutex());
709 
710     return sendSetParameterConfigEvent_l(keyValuePairs);
711 }
712 
713 // sendConfigEvent_l() must be called with ThreadBase::mLock held
714 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)715 status_t ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
716 NO_THREAD_SAFETY_ANALYSIS  // condition variable
717 {
718     status_t status = NO_ERROR;
719 
720     if (event->mRequiresSystemReady && !mSystemReady) {
721         event->mWaitStatus = false;
722         mPendingConfigEvents.add(event);
723         return status;
724     }
725     mConfigEvents.add(event);
726     ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
727     mWaitWorkCV.notify_one();
728     mutex().unlock();
729     {
730         audio_utils::unique_lock _l(event->mutex());
731         while (event->mWaitStatus) {
732             if (event->mCondition.wait_for(
733                     _l, std::chrono::nanoseconds(kConfigEventTimeoutNs), getTid())
734                             == std::cv_status::timeout) {
735                 event->mStatus = TIMED_OUT;
736                 event->mWaitStatus = false;
737             }
738         }
739         status = event->mStatus;
740     }
741     mutex().lock();
742     return status;
743 }
744 
sendIoConfigEvent(audio_io_config_event_t event,pid_t pid,audio_port_handle_t portId)745 void ThreadBase::sendIoConfigEvent(audio_io_config_event_t event, pid_t pid,
746                                                  audio_port_handle_t portId)
747 {
748     audio_utils::lock_guard _l(mutex());
749     sendIoConfigEvent_l(event, pid, portId);
750 }
751 
752 // sendIoConfigEvent_l() must be called with ThreadBase::mutex() held
sendIoConfigEvent_l(audio_io_config_event_t event,pid_t pid,audio_port_handle_t portId)753 void ThreadBase::sendIoConfigEvent_l(audio_io_config_event_t event, pid_t pid,
754                                                    audio_port_handle_t portId)
755 {
756     // The audio statistics history is exponentially weighted to forget events
757     // about five or more seconds in the past.  In order to have
758     // crisper statistics for mediametrics, we reset the statistics on
759     // an IoConfigEvent, to reflect different properties for a new device.
760     mIoJitterMs.reset();
761     mLatencyMs.reset();
762     mProcessTimeMs.reset();
763     mMonopipePipeDepthStats.reset();
764     mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS);
765 
766     sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
767     sendConfigEvent_l(configEvent);
768 }
769 
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)770 void ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
771 {
772     audio_utils::lock_guard _l(mutex());
773     sendPrioConfigEvent_l(pid, tid, prio, forApp);
774 }
775 
776 // sendPrioConfigEvent_l() must be called with ThreadBase::mutex() held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)777 void ThreadBase::sendPrioConfigEvent_l(
778         pid_t pid, pid_t tid, int32_t prio, bool forApp)
779 {
780     sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
781     sendConfigEvent_l(configEvent);
782 }
783 
784 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mutex() held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)785 status_t ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
786 {
787     sp<ConfigEvent> configEvent;
788     AudioParameter param(keyValuePair);
789     int value;
790     if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
791         setMasterMono_l(value != 0);
792         if (param.size() == 1) {
793             return NO_ERROR; // should be a solo parameter - we don't pass down
794         }
795         param.remove(String8(AudioParameter::keyMonoOutput));
796         configEvent = new SetParameterConfigEvent(param.toString());
797     } else {
798         configEvent = new SetParameterConfigEvent(keyValuePair);
799     }
800     return sendConfigEvent_l(configEvent);
801 }
802 
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)803 status_t ThreadBase::sendCreateAudioPatchConfigEvent(
804                                                         const struct audio_patch *patch,
805                                                         audio_patch_handle_t *handle)
806 {
807     audio_utils::lock_guard _l(mutex());
808     sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
809     status_t status = sendConfigEvent_l(configEvent);
810     if (status == NO_ERROR) {
811         CreateAudioPatchConfigEventData *data =
812                                         (CreateAudioPatchConfigEventData *)configEvent->mData.get();
813         *handle = data->mHandle;
814     }
815     return status;
816 }
817 
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)818 status_t ThreadBase::sendReleaseAudioPatchConfigEvent(
819                                                                 const audio_patch_handle_t handle)
820 {
821     audio_utils::lock_guard _l(mutex());
822     sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
823     return sendConfigEvent_l(configEvent);
824 }
825 
sendUpdateOutDeviceConfigEvent(const DeviceDescriptorBaseVector & outDevices)826 status_t ThreadBase::sendUpdateOutDeviceConfigEvent(
827         const DeviceDescriptorBaseVector& outDevices)
828 {
829     if (type() != RECORD) {
830         // The update out device operation is only for record thread.
831         return INVALID_OPERATION;
832     }
833     audio_utils::lock_guard _l(mutex());
834     sp<ConfigEvent> configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices);
835     return sendConfigEvent_l(configEvent);
836 }
837 
sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs)838 void ThreadBase::sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs)
839 {
840     ALOG_ASSERT(type() == RECORD, "sendResizeBufferConfigEvent_l() called on non record thread");
841     sp<ConfigEvent> configEvent =
842             (ConfigEvent *)new ResizeBufferConfigEvent(maxSharedAudioHistoryMs);
843     sendConfigEvent_l(configEvent);
844 }
845 
sendCheckOutputStageEffectsEvent()846 void ThreadBase::sendCheckOutputStageEffectsEvent()
847 {
848     audio_utils::lock_guard _l(mutex());
849     sendCheckOutputStageEffectsEvent_l();
850 }
851 
sendCheckOutputStageEffectsEvent_l()852 void ThreadBase::sendCheckOutputStageEffectsEvent_l()
853 {
854     sp<ConfigEvent> configEvent =
855             (ConfigEvent *)new CheckOutputStageEffectsEvent();
856     sendConfigEvent_l(configEvent);
857 }
858 
sendHalLatencyModesChangedEvent_l()859 void ThreadBase::sendHalLatencyModesChangedEvent_l()
860 {
861     sp<ConfigEvent> configEvent = sp<HalLatencyModesChangedEvent>::make();
862     sendConfigEvent_l(configEvent);
863 }
864 
865 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()866 void ThreadBase::processConfigEvents_l()
867 {
868     bool configChanged = false;
869 
870     while (!mConfigEvents.isEmpty()) {
871         ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
872         sp<ConfigEvent> event = mConfigEvents[0];
873         mConfigEvents.removeAt(0);
874         switch (event->mType) {
875         case CFG_EVENT_PRIO: {
876             PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
877             // FIXME Need to understand why this has to be done asynchronously
878             int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
879                     true /*asynchronous*/);
880             if (err != 0) {
881                 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
882                       data->mPrio, data->mPid, data->mTid, err);
883             }
884         } break;
885         case CFG_EVENT_IO: {
886             IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
887             ioConfigChanged_l(data->mEvent, data->mPid, data->mPortId);
888         } break;
889         case CFG_EVENT_SET_PARAMETER: {
890             SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
891             if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
892                 configChanged = true;
893                 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
894                         data->mKeyValuePairs.c_str());
895             }
896         } break;
897         case CFG_EVENT_CREATE_AUDIO_PATCH: {
898             const DeviceTypeSet oldDevices = getDeviceTypes_l();
899             CreateAudioPatchConfigEventData *data =
900                                             (CreateAudioPatchConfigEventData *)event->mData.get();
901             event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
902             const DeviceTypeSet newDevices = getDeviceTypes_l();
903             configChanged = oldDevices != newDevices;
904             mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
905                     dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
906                     dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
907         } break;
908         case CFG_EVENT_RELEASE_AUDIO_PATCH: {
909             const DeviceTypeSet oldDevices = getDeviceTypes_l();
910             ReleaseAudioPatchConfigEventData *data =
911                                             (ReleaseAudioPatchConfigEventData *)event->mData.get();
912             event->mStatus = releaseAudioPatch_l(data->mHandle);
913             const DeviceTypeSet newDevices = getDeviceTypes_l();
914             configChanged = oldDevices != newDevices;
915             mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
916                     dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
917                     dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
918         } break;
919         case CFG_EVENT_UPDATE_OUT_DEVICE: {
920             UpdateOutDevicesConfigEventData *data =
921                     (UpdateOutDevicesConfigEventData *)event->mData.get();
922             updateOutDevices(data->mOutDevices);
923         } break;
924         case CFG_EVENT_RESIZE_BUFFER: {
925             ResizeBufferConfigEventData *data =
926                     (ResizeBufferConfigEventData *)event->mData.get();
927             resizeInputBuffer_l(data->mMaxSharedAudioHistoryMs);
928         } break;
929 
930         case CFG_EVENT_CHECK_OUTPUT_STAGE_EFFECTS: {
931             setCheckOutputStageEffects();
932         } break;
933 
934         case CFG_EVENT_HAL_LATENCY_MODES_CHANGED: {
935             onHalLatencyModesChanged_l();
936         } break;
937 
938         default:
939             ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
940             break;
941         }
942         {
943             audio_utils::lock_guard _l(event->mutex());
944             if (event->mWaitStatus) {
945                 event->mWaitStatus = false;
946                 event->mCondition.notify_one();
947             }
948         }
949         ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
950     }
951 
952     if (configChanged) {
953         cacheParameters_l();
954     }
955 }
956 
channelMaskToString(audio_channel_mask_t mask,bool output)957 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
958     String8 s;
959     const audio_channel_representation_t representation =
960             audio_channel_mask_get_representation(mask);
961 
962     switch (representation) {
963     // Travel all single bit channel mask to convert channel mask to string.
964     case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
965         if (output) {
966             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
967             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
968             if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
969             if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low-frequency, ");
970             if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
971             if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
972             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
973             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
974             if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
975             if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
976             if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
977             if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
978             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
979             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
980             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
981             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
982             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, ");
983             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, ");
984             if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, ");
985             if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, ");
986             if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_LEFT) s.append("bottom-front-left, ");
987             if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_CENTER) s.append("bottom-front-center, ");
988             if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_RIGHT) s.append("bottom-front-right, ");
989             if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY_2) s.append("low-frequency-2, ");
990             if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, ");
991             if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, ");
992             if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
993         } else {
994             if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
995             if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
996             if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
997             if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
998             if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
999             if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
1000             if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
1001             if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
1002             if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
1003             if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
1004             if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
1005             if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
1006             if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
1007             if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
1008             if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
1009             if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low-frequency, ");
1010             if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, ");
1011             if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, ");
1012             if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
1013             if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
1014             if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
1015         }
1016         const int len = s.length();
1017         if (len > 2) {
1018             (void) s.lockBuffer(len);      // needed?
1019             s.unlockBuffer(len - 2);       // remove trailing ", "
1020         }
1021         return s;
1022     }
1023     case AUDIO_CHANNEL_REPRESENTATION_INDEX:
1024         s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
1025         return s;
1026     default:
1027         s.appendFormat("unknown mask, representation:%d  bits:%#x",
1028                 representation, audio_channel_mask_get_bits(mask));
1029         return s;
1030     }
1031 }
1032 
dump(int fd,const Vector<String16> & args)1033 void ThreadBase::dump(int fd, const Vector<String16>& args)
1034 NO_THREAD_SAFETY_ANALYSIS  // conditional try lock
1035 {
1036     dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
1037             this, mThreadName, getTid(), type(), threadTypeToString(type()));
1038 
1039     const bool locked = afutils::dumpTryLock(mutex());
1040     if (!locked) {
1041         dprintf(fd, "  Thread may be deadlocked\n");
1042     }
1043 
1044     dumpBase_l(fd, args);
1045     dumpInternals_l(fd, args);
1046     dumpTracks_l(fd, args);
1047     dumpEffectChains_l(fd, args);
1048 
1049     if (locked) {
1050         mutex().unlock();
1051     }
1052 
1053     dprintf(fd, "  Local log:\n");
1054     mLocalLog.dump(fd, "   " /* prefix */, 40 /* lines */);
1055 
1056     // --all does the statistics
1057     bool dumpAll = false;
1058     for (const auto &arg : args) {
1059         if (arg == String16("--all")) {
1060             dumpAll = true;
1061         }
1062     }
1063     if (dumpAll || type() == SPATIALIZER) {
1064         const std::string sched = mThreadSnapshot.toString();
1065         if (!sched.empty()) {
1066             (void)write(fd, sched.c_str(), sched.size());
1067         }
1068     }
1069 }
1070 
dumpBase_l(int fd,const Vector<String16> &)1071 void ThreadBase::dumpBase_l(int fd, const Vector<String16>& /* args */)
1072 {
1073     dprintf(fd, "  I/O handle: %d\n", mId);
1074     dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
1075     dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
1076     dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
1077     dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat,
1078             IAfThreadBase::formatToString(mHALFormat).c_str());
1079     dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
1080     dprintf(fd, "  Channel count: %u\n", mChannelCount);
1081     dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
1082             channelMaskToString(mChannelMask, mType != RECORD).c_str());
1083     dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat,
1084             IAfThreadBase::formatToString(mFormat).c_str());
1085     dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
1086     dprintf(fd, "  Pending config events:");
1087     size_t numConfig = mConfigEvents.size();
1088     if (numConfig) {
1089         const size_t SIZE = 256;
1090         char buffer[SIZE];
1091         for (size_t i = 0; i < numConfig; i++) {
1092             mConfigEvents[i]->dump(buffer, SIZE);
1093             dprintf(fd, "\n    %s", buffer);
1094         }
1095         dprintf(fd, "\n");
1096     } else {
1097         dprintf(fd, " none\n");
1098     }
1099     // Note: output device may be used by capture threads for effects such as AEC.
1100     dprintf(fd, "  Output devices: %s (%s)\n",
1101             dumpDeviceTypes(outDeviceTypes_l()).c_str(), toString(outDeviceTypes_l()).c_str());
1102     dprintf(fd, "  Input device: %#x (%s)\n",
1103             inDeviceType_l(), toString(inDeviceType_l()).c_str());
1104     dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
1105 
1106     // Dump timestamp statistics for the Thread types that support it.
1107     if (mType == RECORD
1108             || mType == MIXER
1109             || mType == DUPLICATING
1110             || mType == DIRECT
1111             || mType == OFFLOAD
1112             || mType == SPATIALIZER) {
1113         dprintf(fd, "  Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
1114         dprintf(fd, "  Timestamp corrected: %s\n",
1115                 isTimestampCorrectionEnabled_l() ? "yes" : "no");
1116     }
1117 
1118     if (mLastIoBeginNs > 0) { // MMAP may not set this
1119         dprintf(fd, "  Last %s occurred (msecs): %lld\n",
1120                 isOutput() ? "write" : "read",
1121                 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
1122     }
1123 
1124     if (mProcessTimeMs.getN() > 0) {
1125         dprintf(fd, "  Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
1126     }
1127 
1128     if (mIoJitterMs.getN() > 0) {
1129         dprintf(fd, "  Hal %s jitter ms stats: %s\n",
1130                 isOutput() ? "write" : "read",
1131                 mIoJitterMs.toString().c_str());
1132     }
1133 
1134     if (mLatencyMs.getN() > 0) {
1135         dprintf(fd, "  Threadloop %s latency stats: %s\n",
1136                 isOutput() ? "write" : "read",
1137                 mLatencyMs.toString().c_str());
1138     }
1139 
1140     if (mMonopipePipeDepthStats.getN() > 0) {
1141         dprintf(fd, "  Monopipe %s pipe depth stats: %s\n",
1142             isOutput() ? "write" : "read",
1143             mMonopipePipeDepthStats.toString().c_str());
1144     }
1145 }
1146 
dumpEffectChains_l(int fd,const Vector<String16> & args)1147 void ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
1148 {
1149     const size_t SIZE = 256;
1150     char buffer[SIZE];
1151 
1152     size_t numEffectChains = mEffectChains.size();
1153     snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
1154     write(fd, buffer, strlen(buffer));
1155 
1156     for (size_t i = 0; i < numEffectChains; ++i) {
1157         sp<IAfEffectChain> chain = mEffectChains[i];
1158         if (chain != 0) {
1159             chain->dump(fd, args);
1160         }
1161     }
1162 }
1163 
acquireWakeLock()1164 void ThreadBase::acquireWakeLock()
1165 {
1166     audio_utils::lock_guard _l(mutex());
1167     acquireWakeLock_l();
1168 }
1169 
getWakeLockTag()1170 String16 ThreadBase::getWakeLockTag()
1171 {
1172     switch (mType) {
1173     case MIXER:
1174         return String16("AudioMix");
1175     case DIRECT:
1176         return String16("AudioDirectOut");
1177     case DUPLICATING:
1178         return String16("AudioDup");
1179     case RECORD:
1180         return String16("AudioIn");
1181     case OFFLOAD:
1182         return String16("AudioOffload");
1183     case MMAP_PLAYBACK:
1184         return String16("MmapPlayback");
1185     case MMAP_CAPTURE:
1186         return String16("MmapCapture");
1187     case SPATIALIZER:
1188         return String16("AudioSpatial");
1189     default:
1190         ALOG_ASSERT(false);
1191         return String16("AudioUnknown");
1192     }
1193 }
1194 
acquireWakeLock_l()1195 void ThreadBase::acquireWakeLock_l()
1196 {
1197     getPowerManager_l();
1198     if (mPowerManager != 0) {
1199         sp<IBinder> binder = new BBinder();
1200         // Uses AID_AUDIOSERVER for wakelock.  updateWakeLockUids_l() updates with client uids.
1201         binder::Status status = mPowerManager->acquireWakeLockAsync(binder,
1202                     POWERMANAGER_PARTIAL_WAKE_LOCK,
1203                     getWakeLockTag(),
1204                     String16("audioserver"),
1205                     {} /* workSource */,
1206                     {} /* historyTag */);
1207         if (status.isOk()) {
1208             mWakeLockToken = binder;
1209         }
1210         ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status.exceptionCode());
1211     }
1212 
1213     gBoottime.acquire(mWakeLockToken);
1214     mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1215             gBoottime.getBoottimeOffset();
1216 }
1217 
releaseWakeLock()1218 void ThreadBase::releaseWakeLock()
1219 {
1220     audio_utils::lock_guard _l(mutex());
1221     releaseWakeLock_l();
1222 }
1223 
releaseWakeLock_l()1224 void ThreadBase::releaseWakeLock_l()
1225 {
1226     gBoottime.release(mWakeLockToken);
1227     if (mWakeLockToken != 0) {
1228         ALOGV("releaseWakeLock_l() %s", mThreadName);
1229         if (mPowerManager != 0) {
1230             mPowerManager->releaseWakeLockAsync(mWakeLockToken, 0);
1231         }
1232         mWakeLockToken.clear();
1233     }
1234 }
1235 
getPowerManager_l()1236 void ThreadBase::getPowerManager_l() {
1237     if (mSystemReady && mPowerManager == 0) {
1238         // use checkService() to avoid blocking if power service is not up yet
1239         sp<IBinder> binder =
1240             defaultServiceManager()->checkService(String16("power"));
1241         if (binder == 0) {
1242             ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1243         } else {
1244             mPowerManager = interface_cast<os::IPowerManager>(binder);
1245             binder->linkToDeath(mDeathRecipient);
1246         }
1247     }
1248 }
1249 
updateWakeLockUids_l(const SortedVector<uid_t> & uids)1250 void ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t>& uids) {
1251     getPowerManager_l();
1252 
1253 #if !LOG_NDEBUG
1254     std::stringstream s;
1255     for (uid_t uid : uids) {
1256         s << uid << " ";
1257     }
1258     ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1259 #endif
1260 
1261     if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1262         if (mSystemReady) {
1263             ALOGE("no wake lock to update, but system ready!");
1264         } else {
1265             ALOGW("no wake lock to update, system not ready yet");
1266         }
1267         return;
1268     }
1269     if (mPowerManager != 0) {
1270         std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1271         binder::Status status = mPowerManager->updateWakeLockUidsAsync(
1272                 mWakeLockToken, uidsAsInt);
1273         ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status.exceptionCode());
1274     }
1275 }
1276 
clearPowerManager()1277 void ThreadBase::clearPowerManager()
1278 {
1279     audio_utils::lock_guard _l(mutex());
1280     releaseWakeLock_l();
1281     mPowerManager.clear();
1282 }
1283 
updateOutDevices(const DeviceDescriptorBaseVector & outDevices __unused)1284 void ThreadBase::updateOutDevices(
1285         const DeviceDescriptorBaseVector& outDevices __unused)
1286 {
1287     ALOGE("%s should only be called in RecordThread", __func__);
1288 }
1289 
resizeInputBuffer_l(int32_t)1290 void ThreadBase::resizeInputBuffer_l(int32_t /* maxSharedAudioHistoryMs */)
1291 {
1292     ALOGE("%s should only be called in RecordThread", __func__);
1293 }
1294 
binderDied(const wp<IBinder> &)1295 void ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& /* who */)
1296 {
1297     sp<ThreadBase> thread = mThread.promote();
1298     if (thread != 0) {
1299         thread->clearPowerManager();
1300     }
1301     ALOGW("power manager service died !!!");
1302 }
1303 
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1304 void ThreadBase::setEffectSuspended_l(
1305         const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1306 {
1307     sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
1308     if (chain != 0) {
1309         if (type != NULL) {
1310             chain->setEffectSuspended_l(type, suspend);
1311         } else {
1312             chain->setEffectSuspendedAll_l(suspend);
1313         }
1314     }
1315 
1316     updateSuspendedSessions_l(type, suspend, sessionId);
1317 }
1318 
checkSuspendOnAddEffectChain_l(const sp<IAfEffectChain> & chain)1319 void ThreadBase::checkSuspendOnAddEffectChain_l(const sp<IAfEffectChain>& chain)
1320 {
1321     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1322     if (index < 0) {
1323         return;
1324     }
1325 
1326     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1327             mSuspendedSessions.valueAt(index);
1328 
1329     for (size_t i = 0; i < sessionEffects.size(); i++) {
1330         const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1331         for (int j = 0; j < desc->mRefCount; j++) {
1332             if (sessionEffects.keyAt(i) == IAfEffectChain::kKeyForSuspendAll) {
1333                 chain->setEffectSuspendedAll_l(true);
1334             } else {
1335                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1336                     desc->mType.timeLow);
1337                 chain->setEffectSuspended_l(&desc->mType, true);
1338             }
1339         }
1340     }
1341 }
1342 
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1343 void ThreadBase::updateSuspendedSessions_l(const effect_uuid_t* type,
1344                                                          bool suspend,
1345                                                          audio_session_t sessionId)
1346 {
1347     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1348 
1349     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1350 
1351     if (suspend) {
1352         if (index >= 0) {
1353             sessionEffects = mSuspendedSessions.valueAt(index);
1354         } else {
1355             mSuspendedSessions.add(sessionId, sessionEffects);
1356         }
1357     } else {
1358         if (index < 0) {
1359             return;
1360         }
1361         sessionEffects = mSuspendedSessions.valueAt(index);
1362     }
1363 
1364 
1365     int key = IAfEffectChain::kKeyForSuspendAll;
1366     if (type != NULL) {
1367         key = type->timeLow;
1368     }
1369     index = sessionEffects.indexOfKey(key);
1370 
1371     sp<SuspendedSessionDesc> desc;
1372     if (suspend) {
1373         if (index >= 0) {
1374             desc = sessionEffects.valueAt(index);
1375         } else {
1376             desc = new SuspendedSessionDesc();
1377             if (type != NULL) {
1378                 desc->mType = *type;
1379             }
1380             sessionEffects.add(key, desc);
1381             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1382         }
1383         desc->mRefCount++;
1384     } else {
1385         if (index < 0) {
1386             return;
1387         }
1388         desc = sessionEffects.valueAt(index);
1389         if (--desc->mRefCount == 0) {
1390             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1391             sessionEffects.removeItemsAt(index);
1392             if (sessionEffects.isEmpty()) {
1393                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1394                                  sessionId);
1395                 mSuspendedSessions.removeItem(sessionId);
1396             }
1397         }
1398     }
1399     if (!sessionEffects.isEmpty()) {
1400         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1401     }
1402 }
1403 
checkSuspendOnEffectEnabled(bool enabled,audio_session_t sessionId,bool threadLocked)1404 void ThreadBase::checkSuspendOnEffectEnabled(bool enabled,
1405                                                            audio_session_t sessionId,
1406                                                            bool threadLocked)
1407 NO_THREAD_SAFETY_ANALYSIS  // manual locking
1408 {
1409     if (!threadLocked) {
1410         mutex().lock();
1411     }
1412 
1413     if (mType != RECORD) {
1414         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1415         // another session. This gives the priority to well behaved effect control panels
1416         // and applications not using global effects.
1417         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1418         // global effects
1419         if (!audio_is_global_session(sessionId)) {
1420             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1421         }
1422     }
1423 
1424     if (!threadLocked) {
1425         mutex().unlock();
1426     }
1427 }
1428 
1429 // checkEffectCompatibility_l() must be called with ThreadBase::mutex() held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1430 status_t RecordThread::checkEffectCompatibility_l(
1431         const effect_descriptor_t *desc, audio_session_t sessionId)
1432 {
1433     // No global output effect sessions on record threads
1434     if (sessionId == AUDIO_SESSION_OUTPUT_MIX
1435             || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1436         ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1437                 desc->name, mThreadName);
1438         return BAD_VALUE;
1439     }
1440     // only pre processing effects on record thread
1441     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1442         ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1443                 desc->name, mThreadName);
1444         return BAD_VALUE;
1445     }
1446 
1447     // always allow effects without processing load or latency
1448     if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1449         return NO_ERROR;
1450     }
1451 
1452     audio_input_flags_t flags = mInput->flags;
1453     if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1454         if (flags & AUDIO_INPUT_FLAG_RAW) {
1455             ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1456                   desc->name, mThreadName);
1457             return BAD_VALUE;
1458         }
1459         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1460             ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1461                   desc->name, mThreadName);
1462             return BAD_VALUE;
1463         }
1464     }
1465 
1466     if (IAfEffectModule::isHapticGenerator(&desc->type)) {
1467         ALOGE("%s(): HapticGenerator is not supported in RecordThread", __func__);
1468         return BAD_VALUE;
1469     }
1470     return NO_ERROR;
1471 }
1472 
1473 // checkEffectCompatibility_l() must be called with ThreadBase::mutex() held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1474 status_t PlaybackThread::checkEffectCompatibility_l(
1475         const effect_descriptor_t *desc, audio_session_t sessionId)
1476 {
1477     // no preprocessing on playback threads
1478     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1479         ALOGW("%s: pre processing effect %s created on playback"
1480                 " thread %s", __func__, desc->name, mThreadName);
1481         return BAD_VALUE;
1482     }
1483 
1484     // always allow effects without processing load or latency
1485     if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1486         return NO_ERROR;
1487     }
1488 
1489     if (IAfEffectModule::isHapticGenerator(&desc->type) && mHapticChannelCount == 0) {
1490         ALOGW("%s: thread (%s) doesn't support haptic playback while the effect is HapticGenerator",
1491               __func__, threadTypeToString(mType));
1492         return BAD_VALUE;
1493     }
1494 
1495     if (IAfEffectModule::isSpatializer(&desc->type)
1496             && mType != SPATIALIZER) {
1497         ALOGW("%s: attempt to create a spatializer effect on a thread of type %d",
1498                 __func__, mType);
1499         return BAD_VALUE;
1500     }
1501 
1502     switch (mType) {
1503     case MIXER: {
1504         audio_output_flags_t flags = mOutput->flags;
1505         if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1506             if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1507                 // global effects are applied only to non fast tracks if they are SW
1508                 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1509                     break;
1510                 }
1511             } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1512                 // only post processing on output stage session
1513                 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1514                     ALOGW("%s: non post processing effect %s not allowed on output stage session",
1515                             __func__, desc->name);
1516                     return BAD_VALUE;
1517                 }
1518             } else if (sessionId == AUDIO_SESSION_DEVICE) {
1519                 // only post processing on output stage session
1520                 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1521                     ALOGW("%s: non post processing effect %s not allowed on device session",
1522                             __func__, desc->name);
1523                     return BAD_VALUE;
1524                 }
1525             } else {
1526                 // no restriction on effects applied on non fast tracks
1527                 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1528                     break;
1529                 }
1530             }
1531 
1532             if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1533                 ALOGW("%s: effect %s on playback thread in raw mode", __func__, desc->name);
1534                 return BAD_VALUE;
1535             }
1536             if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1537                 ALOGW("%s: non HW effect %s on playback thread in fast mode",
1538                         __func__, desc->name);
1539                 return BAD_VALUE;
1540             }
1541         }
1542     } break;
1543     case OFFLOAD:
1544         // nothing actionable on offload threads, if the effect:
1545         //   - is offloadable: the effect can be created
1546         //   - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1547         //     will take care of invalidating the tracks of the thread
1548         break;
1549     case DIRECT:
1550         // Reject any effect on Direct output threads for now, since the format of
1551         // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1552         ALOGW("%s: effect %s on DIRECT output thread %s",
1553                 __func__, desc->name, mThreadName);
1554         return BAD_VALUE;
1555     case DUPLICATING:
1556         if (audio_is_global_session(sessionId)) {
1557             ALOGW("%s: global effect %s on DUPLICATING thread %s",
1558                     __func__, desc->name, mThreadName);
1559             return BAD_VALUE;
1560         }
1561         if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1562             ALOGW("%s: post processing effect %s on DUPLICATING thread %s",
1563                 __func__, desc->name, mThreadName);
1564             return BAD_VALUE;
1565         }
1566         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1567             ALOGW("%s: HW tunneled effect %s on DUPLICATING thread %s",
1568                     __func__, desc->name, mThreadName);
1569             return BAD_VALUE;
1570         }
1571         break;
1572     case SPATIALIZER:
1573         // Global effects (AUDIO_SESSION_OUTPUT_MIX) are not supported on spatializer mixer
1574         // as there is no common accumulation buffer for sptialized and non sptialized tracks.
1575         // Post processing effects (AUDIO_SESSION_OUTPUT_STAGE or AUDIO_SESSION_DEVICE)
1576         // are supported and added after the spatializer.
1577         if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1578             ALOGW("%s: global effect %s not supported on spatializer thread %s",
1579                     __func__, desc->name, mThreadName);
1580             return BAD_VALUE;
1581         } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1582             // only post processing , downmixer or spatializer effects on output stage session
1583             if (IAfEffectModule::isSpatializer(&desc->type)
1584                     || memcmp(&desc->type, EFFECT_UIID_DOWNMIX, sizeof(effect_uuid_t)) == 0) {
1585                 break;
1586             }
1587             if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1588                 ALOGW("%s: non post processing effect %s not allowed on output stage session",
1589                         __func__, desc->name);
1590                 return BAD_VALUE;
1591             }
1592         } else if (sessionId == AUDIO_SESSION_DEVICE) {
1593             // only post processing on output stage session
1594             if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1595                 ALOGW("%s: non post processing effect %s not allowed on device session",
1596                         __func__, desc->name);
1597                 return BAD_VALUE;
1598             }
1599         }
1600         break;
1601     case BIT_PERFECT:
1602         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1603             // Allow HW accelerated effects of tunnel type
1604             break;
1605         }
1606         // As bit-perfect tracks will not be allowed to apply audio effect that will touch the audio
1607         // data, effects will not be allowed on 1) global effects (AUDIO_SESSION_OUTPUT_MIX),
1608         // 2) post-processing effects (AUDIO_SESSION_OUTPUT_STAGE or AUDIO_SESSION_DEVICE) and
1609         // 3) there is any bit-perfect track with the given session id.
1610         if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE ||
1611             sessionId == AUDIO_SESSION_DEVICE) {
1612             ALOGW("%s: effect %s not supported on bit-perfect thread %s",
1613                   __func__, desc->name, mThreadName);
1614             return BAD_VALUE;
1615         } else if ((hasAudioSession_l(sessionId) & ThreadBase::BIT_PERFECT_SESSION) != 0) {
1616             ALOGW("%s: effect %s not supported as there is a bit-perfect track with session as %d",
1617                   __func__, desc->name, sessionId);
1618             return BAD_VALUE;
1619         }
1620         break;
1621     default:
1622         LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1623     }
1624 
1625     return NO_ERROR;
1626 }
1627 
1628 // ThreadBase::createEffect_l() must be called with AudioFlinger::mutex() held
createEffect_l(const sp<Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned,bool probe,bool notifyFramesProcessed)1629 sp<IAfEffectHandle> ThreadBase::createEffect_l(
1630         const sp<Client>& client,
1631         const sp<IEffectClient>& effectClient,
1632         int32_t priority,
1633         audio_session_t sessionId,
1634         effect_descriptor_t *desc,
1635         int *enabled,
1636         status_t *status,
1637         bool pinned,
1638         bool probe,
1639         bool notifyFramesProcessed)
1640 {
1641     sp<IAfEffectModule> effect;
1642     sp<IAfEffectHandle> handle;
1643     status_t lStatus;
1644     sp<IAfEffectChain> chain;
1645     bool chainCreated = false;
1646     bool effectCreated = false;
1647     audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1648 
1649     lStatus = initCheck();
1650     if (lStatus != NO_ERROR) {
1651         ALOGW("createEffect_l() Audio driver not initialized.");
1652         goto Exit;
1653     }
1654 
1655     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1656 
1657     { // scope for mutex()
1658         audio_utils::lock_guard _l(mutex());
1659 
1660         lStatus = checkEffectCompatibility_l(desc, sessionId);
1661         if (probe || lStatus != NO_ERROR) {
1662             goto Exit;
1663         }
1664 
1665         // check for existing effect chain with the requested audio session
1666         chain = getEffectChain_l(sessionId);
1667         if (chain == 0) {
1668             // create a new chain for this session
1669             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1670             chain = IAfEffectChain::create(this, sessionId, mAfThreadCallback);
1671             addEffectChain_l(chain);
1672             chain->setStrategy(getStrategyForSession_l(sessionId));
1673             chainCreated = true;
1674         } else {
1675             effect = chain->getEffectFromDesc(desc);
1676         }
1677 
1678         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1679 
1680         if (effect == 0) {
1681             effectId = mAfThreadCallback->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1682             // create a new effect module if none present in the chain
1683             lStatus = chain->createEffect(effect, desc, effectId, sessionId, pinned);
1684             if (lStatus != NO_ERROR) {
1685                 goto Exit;
1686             }
1687             effectCreated = true;
1688 
1689             // FIXME: use vector of device and address when effect interface is ready.
1690             effect->setDevices(outDeviceTypeAddrs());
1691             effect->setInputDevice(inDeviceTypeAddr());
1692             effect->setMode(mAfThreadCallback->getMode());
1693             effect->setAudioSource(mAudioSource);
1694         }
1695         if (effect->isHapticGenerator()) {
1696             // TODO(b/184194057): Use the vibrator information from the vibrator that will be used
1697             // for the HapticGenerator.
1698             const std::optional<media::AudioVibratorInfo> defaultVibratorInfo =
1699                     std::move(mAfThreadCallback->getDefaultVibratorInfo_l());
1700             if (defaultVibratorInfo) {
1701                 audio_utils::lock_guard _cl(chain->mutex());
1702                 // Only set the vibrator info when it is a valid one.
1703                 effect->setVibratorInfo_l(*defaultVibratorInfo);
1704             }
1705         }
1706         // create effect handle and connect it to effect module
1707         handle = IAfEffectHandle::create(
1708                 effect, client, effectClient, priority, notifyFramesProcessed);
1709         lStatus = handle->initCheck();
1710         if (lStatus == OK) {
1711             lStatus = effect->addHandle(handle.get());
1712             sendCheckOutputStageEffectsEvent_l();
1713         }
1714         if (enabled != NULL) {
1715             *enabled = (int)effect->isEnabled();
1716         }
1717     }
1718 
1719 Exit:
1720     if (!probe && lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1721         audio_utils::lock_guard _l(mutex());
1722         if (effectCreated) {
1723             chain->removeEffect(effect);
1724         }
1725         if (chainCreated) {
1726             removeEffectChain_l(chain);
1727         }
1728         // handle must be cleared by caller to avoid deadlock.
1729     }
1730 
1731     *status = lStatus;
1732     return handle;
1733 }
1734 
disconnectEffectHandle(IAfEffectHandle * handle,bool unpinIfLast)1735 void ThreadBase::disconnectEffectHandle(IAfEffectHandle* handle,
1736                                                       bool unpinIfLast)
1737 {
1738     bool remove = false;
1739     sp<IAfEffectModule> effect;
1740     {
1741         audio_utils::lock_guard _l(mutex());
1742         sp<IAfEffectBase> effectBase = handle->effect().promote();
1743         if (effectBase == nullptr) {
1744             return;
1745         }
1746         effect = effectBase->asEffectModule();
1747         if (effect == nullptr) {
1748             return;
1749         }
1750         // restore suspended effects if the disconnected handle was enabled and the last one.
1751         remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1752         if (remove) {
1753             removeEffect_l(effect, true);
1754         }
1755         sendCheckOutputStageEffectsEvent_l();
1756     }
1757     if (remove) {
1758         mAfThreadCallback->updateOrphanEffectChains(effect);
1759         if (handle->enabled()) {
1760             effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/);
1761         }
1762     }
1763 }
1764 
onEffectEnable(const sp<IAfEffectModule> & effect)1765 void ThreadBase::onEffectEnable(const sp<IAfEffectModule>& effect) {
1766     if (isOffloadOrMmap()) {
1767         audio_utils::lock_guard _l(mutex());
1768         broadcast_l();
1769     }
1770     if (!effect->isOffloadable()) {
1771         if (mType == ThreadBase::OFFLOAD) {
1772             PlaybackThread *t = (PlaybackThread *)this;
1773             t->invalidateTracks(AUDIO_STREAM_MUSIC);
1774         }
1775         if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) {
1776             mAfThreadCallback->onNonOffloadableGlobalEffectEnable();
1777         }
1778     }
1779 }
1780 
onEffectDisable()1781 void ThreadBase::onEffectDisable() {
1782     if (isOffloadOrMmap()) {
1783         audio_utils::lock_guard _l(mutex());
1784         broadcast_l();
1785     }
1786 }
1787 
getEffect(audio_session_t sessionId,int effectId) const1788 sp<IAfEffectModule> ThreadBase::getEffect(audio_session_t sessionId,
1789         int effectId) const
1790 {
1791     audio_utils::lock_guard _l(mutex());
1792     return getEffect_l(sessionId, effectId);
1793 }
1794 
getEffect_l(audio_session_t sessionId,int effectId) const1795 sp<IAfEffectModule> ThreadBase::getEffect_l(audio_session_t sessionId,
1796         int effectId) const
1797 {
1798     sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
1799     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1800 }
1801 
getEffectIds_l(audio_session_t sessionId) const1802 std::vector<int> ThreadBase::getEffectIds_l(audio_session_t sessionId) const
1803 {
1804     sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
1805     return chain != nullptr ? chain->getEffectIds_l() : std::vector<int>{};
1806 }
1807 
1808 // PlaybackThread::addEffect_ll() must be called with AudioFlinger::mutex() and
1809 // ThreadBase::mutex() held
addEffect_ll(const sp<IAfEffectModule> & effect)1810 status_t ThreadBase::addEffect_ll(const sp<IAfEffectModule>& effect)
1811 {
1812     // check for existing effect chain with the requested audio session
1813     audio_session_t sessionId = effect->sessionId();
1814     sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
1815     bool chainCreated = false;
1816 
1817     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1818              "%s: on offloaded thread %p: effect %s does not support offload flags %#x",
1819              __func__, this, effect->desc().name, effect->desc().flags);
1820 
1821     if (chain == 0) {
1822         // create a new chain for this session
1823         ALOGV("%s: new effect chain for session %d", __func__, sessionId);
1824         chain = IAfEffectChain::create(this, sessionId, mAfThreadCallback);
1825         addEffectChain_l(chain);
1826         chain->setStrategy(getStrategyForSession_l(sessionId));
1827         chainCreated = true;
1828     }
1829     ALOGV("%s: %p chain %p effect %p", __func__, this, chain.get(), effect.get());
1830 
1831     if (chain->getEffectFromId_l(effect->id()) != 0) {
1832         ALOGW("%s: %p effect %s already present in chain %p",
1833                 __func__, this, effect->desc().name, chain.get());
1834         return BAD_VALUE;
1835     }
1836 
1837     effect->setOffloaded_l(mType == OFFLOAD, mId);
1838 
1839     status_t status = chain->addEffect(effect);
1840     if (status != NO_ERROR) {
1841         if (chainCreated) {
1842             removeEffectChain_l(chain);
1843         }
1844         return status;
1845     }
1846 
1847     effect->setDevices(outDeviceTypeAddrs());
1848     effect->setInputDevice(inDeviceTypeAddr());
1849     effect->setMode(mAfThreadCallback->getMode());
1850     effect->setAudioSource(mAudioSource);
1851 
1852     return NO_ERROR;
1853 }
1854 
removeEffect_l(const sp<IAfEffectModule> & effect,bool release)1855 void ThreadBase::removeEffect_l(const sp<IAfEffectModule>& effect, bool release) {
1856 
1857     ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1858     effect_descriptor_t desc = effect->desc();
1859     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1860         detachAuxEffect_l(effect->id());
1861     }
1862 
1863     sp<IAfEffectChain> chain = effect->getCallback()->chain().promote();
1864     if (chain != 0) {
1865         // remove effect chain if removing last effect
1866         if (chain->removeEffect(effect, release) == 0) {
1867             removeEffectChain_l(chain);
1868         }
1869     } else {
1870         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1871     }
1872 }
1873 
lockEffectChains_l(Vector<sp<IAfEffectChain>> & effectChains)1874 void ThreadBase::lockEffectChains_l(Vector<sp<IAfEffectChain>>& effectChains)
1875         NO_THREAD_SAFETY_ANALYSIS  // calls EffectChain::lock()
1876 {
1877     effectChains = mEffectChains;
1878     for (const auto& effectChain : effectChains) {
1879         effectChain->mutex().lock();
1880     }
1881 }
1882 
unlockEffectChains(const Vector<sp<IAfEffectChain>> & effectChains)1883 void ThreadBase::unlockEffectChains(const Vector<sp<IAfEffectChain>>& effectChains)
1884         NO_THREAD_SAFETY_ANALYSIS  // calls EffectChain::unlock()
1885 {
1886     for (const auto& effectChain : effectChains) {
1887         effectChain->mutex().unlock();
1888     }
1889 }
1890 
getEffectChain(audio_session_t sessionId) const1891 sp<IAfEffectChain> ThreadBase::getEffectChain(audio_session_t sessionId) const
1892 {
1893     audio_utils::lock_guard _l(mutex());
1894     return getEffectChain_l(sessionId);
1895 }
1896 
getEffectChain_l(audio_session_t sessionId) const1897 sp<IAfEffectChain> ThreadBase::getEffectChain_l(audio_session_t sessionId)
1898         const
1899 {
1900     size_t size = mEffectChains.size();
1901     for (size_t i = 0; i < size; i++) {
1902         if (mEffectChains[i]->sessionId() == sessionId) {
1903             return mEffectChains[i];
1904         }
1905     }
1906     return 0;
1907 }
1908 
setMode(audio_mode_t mode)1909 void ThreadBase::setMode(audio_mode_t mode)
1910 {
1911     audio_utils::lock_guard _l(mutex());
1912     size_t size = mEffectChains.size();
1913     for (size_t i = 0; i < size; i++) {
1914         mEffectChains[i]->setMode_l(mode);
1915     }
1916 }
1917 
toAudioPortConfig(struct audio_port_config * config)1918 void ThreadBase::toAudioPortConfig(struct audio_port_config* config)
1919 {
1920     config->type = AUDIO_PORT_TYPE_MIX;
1921     config->ext.mix.handle = mId;
1922     config->sample_rate = mSampleRate;
1923     config->format = mHALFormat;
1924     config->channel_mask = mChannelMask;
1925     config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1926                             AUDIO_PORT_CONFIG_FORMAT;
1927 }
1928 
systemReady()1929 void ThreadBase::systemReady()
1930 {
1931     audio_utils::lock_guard _l(mutex());
1932     if (mSystemReady) {
1933         return;
1934     }
1935     mSystemReady = true;
1936 
1937     for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1938         sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1939     }
1940     mPendingConfigEvents.clear();
1941 }
1942 
1943 template <typename T>
add(const sp<T> & track)1944 ssize_t ThreadBase::ActiveTracks<T>::add(const sp<T>& track) {
1945     ssize_t index = mActiveTracks.indexOf(track);
1946     if (index >= 0) {
1947         ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1948         return index;
1949     }
1950     logTrack("add", track);
1951     mActiveTracksGeneration++;
1952     mLatestActiveTrack = track;
1953     track->beginBatteryAttribution();
1954     mHasChanged = true;
1955     return mActiveTracks.add(track);
1956 }
1957 
1958 template <typename T>
remove(const sp<T> & track)1959 ssize_t ThreadBase::ActiveTracks<T>::remove(const sp<T>& track) {
1960     ssize_t index = mActiveTracks.remove(track);
1961     if (index < 0) {
1962         ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1963         return index;
1964     }
1965     logTrack("remove", track);
1966     mActiveTracksGeneration++;
1967     track->endBatteryAttribution();
1968     // mLatestActiveTrack is not cleared even if is the same as track.
1969     mHasChanged = true;
1970 #ifdef TEE_SINK
1971     track->dumpTee(-1 /* fd */, "_REMOVE");
1972 #endif
1973     track->logEndInterval(); // log to MediaMetrics
1974     return index;
1975 }
1976 
1977 template <typename T>
clear()1978 void ThreadBase::ActiveTracks<T>::clear() {
1979     for (const sp<T> &track : mActiveTracks) {
1980         track->endBatteryAttribution();
1981         logTrack("clear", track);
1982     }
1983     mLastActiveTracksGeneration = mActiveTracksGeneration;
1984     if (!mActiveTracks.empty()) { mHasChanged = true; }
1985     mActiveTracks.clear();
1986     mLatestActiveTrack.clear();
1987 }
1988 
1989 template <typename T>
updatePowerState_l(const sp<ThreadBase> & thread,bool force)1990 void ThreadBase::ActiveTracks<T>::updatePowerState_l(
1991         const sp<ThreadBase>& thread, bool force) {
1992     // Updates ActiveTracks client uids to the thread wakelock.
1993     if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1994         thread->updateWakeLockUids_l(getWakeLockUids());
1995         mLastActiveTracksGeneration = mActiveTracksGeneration;
1996     }
1997 }
1998 
1999 template <typename T>
readAndClearHasChanged()2000 bool ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
2001     bool hasChanged = mHasChanged;
2002     mHasChanged = false;
2003 
2004     for (const sp<T> &track : mActiveTracks) {
2005         // Do not short-circuit as all hasChanged states must be reset
2006         // as all the metadata are going to be sent
2007         hasChanged |= track->readAndClearHasChanged();
2008     }
2009     return hasChanged;
2010 }
2011 
2012 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const2013 void ThreadBase::ActiveTracks<T>::logTrack(
2014         const char *funcName, const sp<T> &track) const {
2015     if (mLocalLog != nullptr) {
2016         String8 result;
2017         track->appendDump(result, false /* active */);
2018         mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.c_str());
2019     }
2020 }
2021 
broadcast_l()2022 void ThreadBase::broadcast_l()
2023 {
2024     // Thread could be blocked waiting for async
2025     // so signal it to handle state changes immediately
2026     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2027     // be lost so we also flag to prevent it blocking on mWaitWorkCV
2028     mSignalPending = true;
2029     mWaitWorkCV.notify_all();
2030 }
2031 
2032 // Call only from threadLoop() or when it is idle.
2033 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)2034 void ThreadBase::sendStatistics(bool force)
2035 NO_THREAD_SAFETY_ANALYSIS
2036 {
2037     // Do not log if we have no stats.
2038     // We choose the timestamp verifier because it is the most likely item to be present.
2039     const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
2040     if (nstats == 0) {
2041         return;
2042     }
2043 
2044     // Don't log more frequently than once per 12 hours.
2045     // We use BOOTTIME to include suspend time.
2046     const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
2047     const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
2048     if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
2049         return;
2050     }
2051 
2052     mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
2053     mLastRecordedTimeNs = timeNs;
2054 
2055     std::unique_ptr<mediametrics::Item> item(mediametrics::Item::create("audiothread"));
2056 
2057 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
2058 
2059     // thread configuration
2060     item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
2061     // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
2062     item->setCString(MM_PREFIX "type", threadTypeToString(mType));
2063     item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
2064     item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
2065     item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
2066     item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
2067     item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes_l()).c_str());
2068     item->setCString(MM_PREFIX "inDevice", toString(inDeviceType_l()).c_str());
2069 
2070     // thread statistics
2071     if (mIoJitterMs.getN() > 0) {
2072         item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
2073         item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
2074     }
2075     if (mProcessTimeMs.getN() > 0) {
2076         item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
2077         item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
2078     }
2079     const auto tsjitter = mTimestampVerifier.getJitterMs();
2080     if (tsjitter.getN() > 0) {
2081         item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
2082         item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
2083     }
2084     if (mLatencyMs.getN() > 0) {
2085         item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
2086         item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
2087     }
2088     if (mMonopipePipeDepthStats.getN() > 0) {
2089         item->setDouble(MM_PREFIX "monopipePipeDepthStats.mean",
2090                         mMonopipePipeDepthStats.getMean());
2091         item->setDouble(MM_PREFIX "monopipePipeDepthStats.std",
2092                         mMonopipePipeDepthStats.getStdDev());
2093     }
2094 
2095     item->selfrecord();
2096 }
2097 
getStrategyForStream(audio_stream_type_t stream) const2098 product_strategy_t ThreadBase::getStrategyForStream(audio_stream_type_t stream) const
2099 {
2100     if (!mAfThreadCallback->isAudioPolicyReady()) {
2101         return PRODUCT_STRATEGY_NONE;
2102     }
2103     return AudioSystem::getStrategyForStream(stream);
2104 }
2105 
2106 // startMelComputation_l() must be called with AudioFlinger::mutex() held
startMelComputation_l(const sp<audio_utils::MelProcessor> &)2107 void ThreadBase::startMelComputation_l(
2108         const sp<audio_utils::MelProcessor>& /*processor*/)
2109 {
2110     // Do nothing
2111     ALOGW("%s: ThreadBase does not support CSD", __func__);
2112 }
2113 
2114 // stopMelComputation_l() must be called with AudioFlinger::mutex() held
stopMelComputation_l()2115 void ThreadBase::stopMelComputation_l()
2116 {
2117     // Do nothing
2118     ALOGW("%s: ThreadBase does not support CSD", __func__);
2119 }
2120 
2121 // ----------------------------------------------------------------------------
2122 //      Playback
2123 // ----------------------------------------------------------------------------
2124 
PlaybackThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,type_t type,bool systemReady,audio_config_base_t * mixerConfig)2125 PlaybackThread::PlaybackThread(const sp<IAfThreadCallback>& afThreadCallback,
2126                                              AudioStreamOut* output,
2127                                              audio_io_handle_t id,
2128                                              type_t type,
2129                                              bool systemReady,
2130                                              audio_config_base_t *mixerConfig)
2131     :   ThreadBase(afThreadCallback, id, type, systemReady, true /* isOut */),
2132         mNormalFrameCount(0), mSinkBuffer(NULL),
2133         mMixerBufferEnabled(kEnableExtendedPrecision || type == SPATIALIZER),
2134         mMixerBuffer(NULL),
2135         mMixerBufferSize(0),
2136         mMixerBufferFormat(AUDIO_FORMAT_INVALID),
2137         mMixerBufferValid(false),
2138         mEffectBufferEnabled(kEnableExtendedPrecision || type == SPATIALIZER),
2139         mEffectBuffer(NULL),
2140         mEffectBufferSize(0),
2141         mEffectBufferFormat(AUDIO_FORMAT_INVALID),
2142         mEffectBufferValid(false),
2143         mSuspended(0), mBytesWritten(0),
2144         mFramesWritten(0),
2145         mSuspendedFrames(0),
2146         mActiveTracks(&this->mLocalLog),
2147         // mStreamTypes[] initialized in constructor body
2148         mTracks(type == MIXER),
2149         mOutput(output),
2150         mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
2151         mMixerStatus(MIXER_IDLE),
2152         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
2153         mStandbyDelayNs(getStandbyTimeInNanos()),
2154         mBytesRemaining(0),
2155         mCurrentWriteLength(0),
2156         mUseAsyncWrite(false),
2157         mWriteAckSequence(0),
2158         mDrainSequence(0),
2159         mScreenState(mAfThreadCallback->getScreenState()),
2160         // index 0 is reserved for normal mixer's submix
2161         mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
2162         mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
2163         mLeftVolFloat(-1.0), mRightVolFloat(-1.0),
2164         mDownStreamPatch{},
2165         mIsTimestampAdvancing(kMinimumTimeBetweenTimestampChecksNs)
2166 {
2167     snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
2168     mNBLogWriter = afThreadCallback->newWriter_l(kLogSize, mThreadName);
2169 
2170     // Assumes constructor is called by AudioFlinger with its mutex() held, but
2171     // it would be safer to explicitly pass initial masterVolume/masterMute as
2172     // parameter.
2173     //
2174     // If the HAL we are using has support for master volume or master mute,
2175     // then do not attenuate or mute during mixing (just leave the volume at 1.0
2176     // and the mute set to false).
2177     mMasterVolume = afThreadCallback->masterVolume_l();
2178     mMasterMute = afThreadCallback->masterMute_l();
2179     if (mOutput->audioHwDev) {
2180         if (mOutput->audioHwDev->canSetMasterVolume()) {
2181             mMasterVolume = 1.0;
2182         }
2183 
2184         if (mOutput->audioHwDev->canSetMasterMute()) {
2185             mMasterMute = false;
2186         }
2187         mIsMsdDevice = strcmp(
2188                 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
2189     }
2190 
2191     if (mixerConfig != nullptr && mixerConfig->channel_mask != AUDIO_CHANNEL_NONE) {
2192         mMixerChannelMask = mixerConfig->channel_mask;
2193     }
2194 
2195     readOutputParameters_l();
2196 
2197     if (mType != SPATIALIZER
2198             && mMixerChannelMask != mChannelMask) {
2199         LOG_ALWAYS_FATAL("HAL channel mask %#x does not match mixer channel mask %#x",
2200                 mChannelMask, mMixerChannelMask);
2201     }
2202 
2203     // TODO: We may also match on address as well as device type for
2204     // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
2205     if (type == MIXER || type == DIRECT || type == OFFLOAD) {
2206         // TODO: This property should be ensure that only contains one single device type.
2207         mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
2208                 "audio.timestamp.corrected_output_device",
2209                 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
2210                                        : AUDIO_DEVICE_NONE));
2211     }
2212 
2213     for (int i = AUDIO_STREAM_MIN; i < AUDIO_STREAM_FOR_POLICY_CNT; ++i) {
2214         const audio_stream_type_t stream{static_cast<audio_stream_type_t>(i)};
2215         mStreamTypes[stream].volume = 0.0f;
2216         mStreamTypes[stream].mute = mAfThreadCallback->streamMute_l(stream);
2217     }
2218     // Audio patch and call assistant volume are always max
2219     mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
2220     mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
2221     mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f;
2222     mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false;
2223 }
2224 
~PlaybackThread()2225 PlaybackThread::~PlaybackThread()
2226 {
2227     mAfThreadCallback->unregisterWriter(mNBLogWriter);
2228     free(mSinkBuffer);
2229     free(mMixerBuffer);
2230     free(mEffectBuffer);
2231     free(mPostSpatializerBuffer);
2232 }
2233 
2234 // Thread virtuals
2235 
onFirstRef()2236 void PlaybackThread::onFirstRef()
2237 {
2238     if (!isStreamInitialized()) {
2239         ALOGE("The stream is not open yet"); // This should not happen.
2240     } else {
2241         // Callbacks take strong or weak pointers as a parameter.
2242         // Since PlaybackThread passes itself as a callback handler, it can only
2243         // be done outside of the constructor. Creating weak and especially strong
2244         // pointers to a refcounted object in its own constructor is strongly
2245         // discouraged, see comments in system/core/libutils/include/utils/RefBase.h.
2246         // Even if a function takes a weak pointer, it is possible that it will
2247         // need to convert it to a strong pointer down the line.
2248         if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING &&
2249                 mOutput->stream->setCallback(this) == OK) {
2250             mUseAsyncWrite = true;
2251             mCallbackThread = sp<AsyncCallbackThread>::make(this);
2252         }
2253 
2254         if (mOutput->stream->setEventCallback(this) != OK) {
2255             ALOGD("Failed to add event callback");
2256         }
2257     }
2258     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
2259     mThreadSnapshot.setTid(getTid());
2260 }
2261 
2262 // ThreadBase virtuals
preExit()2263 void PlaybackThread::preExit()
2264 {
2265     ALOGV("  preExit()");
2266     status_t result = mOutput->stream->exit();
2267     ALOGE_IF(result != OK, "Error when calling exit(): %d", result);
2268 }
2269 
dumpTracks_l(int fd,const Vector<String16> &)2270 void PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& /* args */)
2271 {
2272     String8 result;
2273 
2274     result.appendFormat("  Stream volumes in dB: ");
2275     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
2276         const stream_type_t *st = &mStreamTypes[i];
2277         if (i > 0) {
2278             result.appendFormat(", ");
2279         }
2280         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
2281         if (st->mute) {
2282             result.append("M");
2283         }
2284     }
2285     result.append("\n");
2286     write(fd, result.c_str(), result.length());
2287     result.clear();
2288 
2289     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
2290     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
2291     dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
2292             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
2293 
2294     size_t numtracks = mTracks.size();
2295     size_t numactive = mActiveTracks.size();
2296     dprintf(fd, "  %zu Tracks", numtracks);
2297     size_t numactiveseen = 0;
2298     const char *prefix = "    ";
2299     if (numtracks) {
2300         dprintf(fd, " of which %zu are active\n", numactive);
2301         result.append(prefix);
2302         mTracks[0]->appendDumpHeader(result);
2303         for (size_t i = 0; i < numtracks; ++i) {
2304             sp<IAfTrack> track = mTracks[i];
2305             if (track != 0) {
2306                 bool active = mActiveTracks.indexOf(track) >= 0;
2307                 if (active) {
2308                     numactiveseen++;
2309                 }
2310                 result.append(prefix);
2311                 track->appendDump(result, active);
2312             }
2313         }
2314     } else {
2315         result.append("\n");
2316     }
2317     if (numactiveseen != numactive) {
2318         // some tracks in the active list were not in the tracks list
2319         result.append("  The following tracks are in the active list but"
2320                 " not in the track list\n");
2321         result.append(prefix);
2322         mActiveTracks[0]->appendDumpHeader(result);
2323         for (size_t i = 0; i < numactive; ++i) {
2324             sp<IAfTrack> track = mActiveTracks[i];
2325             if (mTracks.indexOf(track) < 0) {
2326                 result.append(prefix);
2327                 track->appendDump(result, true /* active */);
2328             }
2329         }
2330     }
2331 
2332     write(fd, result.c_str(), result.size());
2333 }
2334 
dumpInternals_l(int fd,const Vector<String16> & args)2335 void PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
2336 {
2337     dprintf(fd, "  Master volume: %f\n", mMasterVolume);
2338     dprintf(fd, "  Master mute: %s\n", mMasterMute ? "on" : "off");
2339     dprintf(fd, "  Mixer channel Mask: %#x (%s)\n",
2340             mMixerChannelMask, channelMaskToString(mMixerChannelMask, true /* output */).c_str());
2341     if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2342         dprintf(fd, "  Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
2343                 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
2344     }
2345     dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
2346     dprintf(fd, "  Total writes: %d\n", mNumWrites);
2347     dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
2348     dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
2349     dprintf(fd, "  Suspend count: %d\n", (int32_t)mSuspended);
2350     dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
2351     dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
2352     AudioStreamOut *output = mOutput;
2353     audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
2354     dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n",
2355             output, flags, toString(flags).c_str());
2356     dprintf(fd, "  Frames written: %lld\n", (long long)mFramesWritten);
2357     dprintf(fd, "  Suspended frames: %lld\n", (long long)mSuspendedFrames);
2358     if (mPipeSink.get() != nullptr) {
2359         dprintf(fd, "  PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
2360     }
2361     if (output != nullptr) {
2362         dprintf(fd, "  Hal stream dump:\n");
2363         (void)output->stream->dump(fd, args);
2364     }
2365 }
2366 
2367 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mutex() held
createTrack_l(const sp<Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,const AttributionSourceState & attributionSource,pid_t tid,status_t * status,audio_port_handle_t portId,const sp<media::IAudioTrackCallback> & callback,bool isSpatialized,bool isBitPerfect,audio_output_flags_t * afTrackFlags)2368 sp<IAfTrack> PlaybackThread::createTrack_l(
2369         const sp<Client>& client,
2370         audio_stream_type_t streamType,
2371         const audio_attributes_t& attr,
2372         uint32_t *pSampleRate,
2373         audio_format_t format,
2374         audio_channel_mask_t channelMask,
2375         size_t *pFrameCount,
2376         size_t *pNotificationFrameCount,
2377         uint32_t notificationsPerBuffer,
2378         float speed,
2379         const sp<IMemory>& sharedBuffer,
2380         audio_session_t sessionId,
2381         audio_output_flags_t *flags,
2382         pid_t creatorPid,
2383         const AttributionSourceState& attributionSource,
2384         pid_t tid,
2385         status_t *status,
2386         audio_port_handle_t portId,
2387         const sp<media::IAudioTrackCallback>& callback,
2388         bool isSpatialized,
2389         bool isBitPerfect,
2390         audio_output_flags_t *afTrackFlags)
2391 {
2392     size_t frameCount = *pFrameCount;
2393     size_t notificationFrameCount = *pNotificationFrameCount;
2394     sp<IAfTrack> track;
2395     status_t lStatus;
2396     audio_output_flags_t outputFlags = mOutput->flags;
2397     audio_output_flags_t requestedFlags = *flags;
2398     uint32_t sampleRate;
2399 
2400     if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
2401         lStatus = BAD_VALUE;
2402         goto Exit;
2403     }
2404 
2405     if (*pSampleRate == 0) {
2406         *pSampleRate = mSampleRate;
2407     }
2408     sampleRate = *pSampleRate;
2409 
2410     // special case for FAST flag considered OK if fast mixer is present
2411     if (hasFastMixer()) {
2412         outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
2413     }
2414 
2415     // Check if requested flags are compatible with output stream flags
2416     if ((*flags & outputFlags) != *flags) {
2417         ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
2418               *flags, outputFlags);
2419         *flags = (audio_output_flags_t)(*flags & outputFlags);
2420     }
2421 
2422     if (isBitPerfect) {
2423         audio_utils::lock_guard _l(mutex());
2424         sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
2425         if (chain.get() != nullptr) {
2426             // Bit-perfect is required according to the configuration and preferred mixer
2427             // attributes, but it is not in the output flag from the client's request. Explicitly
2428             // adding bit-perfect flag to check the compatibility
2429             audio_output_flags_t flagsToCheck =
2430                     (audio_output_flags_t)(*flags & AUDIO_OUTPUT_FLAG_BIT_PERFECT);
2431             chain->checkOutputFlagCompatibility(&flagsToCheck);
2432             if ((flagsToCheck & AUDIO_OUTPUT_FLAG_BIT_PERFECT) == AUDIO_OUTPUT_FLAG_NONE) {
2433                 ALOGE("%s cannot create track as there is data-processing effect attached to "
2434                       "given session id(%d)", __func__, sessionId);
2435                 lStatus = BAD_VALUE;
2436                 goto Exit;
2437             }
2438             *flags = flagsToCheck;
2439         }
2440     }
2441 
2442     // client expresses a preference for FAST, but we get the final say
2443     if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2444       if (
2445             // PCM data
2446             audio_is_linear_pcm(format) &&
2447             // TODO: extract as a data library function that checks that a computationally
2448             // expensive downmixer is not required: isFastOutputChannelConversion()
2449             (channelMask == (mChannelMask | mHapticChannelMask) ||
2450                     mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2451                     (channelMask == AUDIO_CHANNEL_OUT_MONO
2452                             /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2453             // hardware sample rate
2454             (sampleRate == mSampleRate) &&
2455             // normal mixer has an associated fast mixer
2456             hasFastMixer() &&
2457             // there are sufficient fast track slots available
2458             (mFastTrackAvailMask != 0)
2459             // FIXME test that MixerThread for this fast track has a capable output HAL
2460             // FIXME add a permission test also?
2461         ) {
2462         // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2463         if (sharedBuffer == 0) {
2464             // read the fast track multiplier property the first time it is needed
2465             int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2466             if (ok != 0) {
2467                 ALOGE("%s pthread_once failed: %d", __func__, ok);
2468             }
2469             frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2470         }
2471 
2472         // check compatibility with audio effects.
2473         { // scope for mutex()
2474             audio_utils::lock_guard _l(mutex());
2475             for (audio_session_t session : {
2476                     AUDIO_SESSION_DEVICE,
2477                     AUDIO_SESSION_OUTPUT_STAGE,
2478                     AUDIO_SESSION_OUTPUT_MIX,
2479                     sessionId,
2480                 }) {
2481                 sp<IAfEffectChain> chain = getEffectChain_l(session);
2482                 if (chain.get() != nullptr) {
2483                     audio_output_flags_t old = *flags;
2484                     chain->checkOutputFlagCompatibility(flags);
2485                     if (old != *flags) {
2486                         ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2487                                 (int)session, (int)old, (int)*flags);
2488                     }
2489                 }
2490             }
2491         }
2492         ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2493                  "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2494                  frameCount, mFrameCount);
2495       } else {
2496         ALOGD("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2497                 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2498                 "sampleRate=%u mSampleRate=%u "
2499                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2500                 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2501                 audio_is_linear_pcm(format), channelMask, sampleRate,
2502                 mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2503         *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2504       }
2505     }
2506 
2507     if (!audio_has_proportional_frames(format)) {
2508         if (sharedBuffer != 0) {
2509             // Same comment as below about ignoring frameCount parameter for set()
2510             frameCount = sharedBuffer->size();
2511         } else if (frameCount == 0) {
2512             frameCount = mNormalFrameCount;
2513         }
2514         if (notificationFrameCount != frameCount) {
2515             notificationFrameCount = frameCount;
2516         }
2517     } else if (sharedBuffer != 0) {
2518         // FIXME: Ensure client side memory buffers need
2519         // not have additional alignment beyond sample
2520         // (e.g. 16 bit stereo accessed as 32 bit frame).
2521         size_t alignment = audio_bytes_per_sample(format);
2522         if (alignment & 1) {
2523             // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2524             alignment = 1;
2525         }
2526         uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2527         size_t frameSize = channelCount * audio_bytes_per_sample(format);
2528         if (channelCount > 1) {
2529             // More than 2 channels does not require stronger alignment than stereo
2530             alignment <<= 1;
2531         }
2532         if (((uintptr_t)sharedBuffer->unsecurePointer() & (alignment - 1)) != 0) {
2533             ALOGE("Invalid buffer alignment: address %p, channel count %u",
2534                   sharedBuffer->unsecurePointer(), channelCount);
2535             lStatus = BAD_VALUE;
2536             goto Exit;
2537         }
2538 
2539         // When initializing a shared buffer AudioTrack via constructors,
2540         // there's no frameCount parameter.
2541         // But when initializing a shared buffer AudioTrack via set(),
2542         // there _is_ a frameCount parameter.  We silently ignore it.
2543         frameCount = sharedBuffer->size() / frameSize;
2544     } else {
2545         size_t minFrameCount = 0;
2546         // For fast tracks we try to respect the application's request for notifications per buffer.
2547         if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2548             if (notificationsPerBuffer > 0) {
2549                 // Avoid possible arithmetic overflow during multiplication.
2550                 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2551                     ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2552                           notificationsPerBuffer, mFrameCount);
2553                 } else {
2554                     minFrameCount = mFrameCount * notificationsPerBuffer;
2555                 }
2556             }
2557         } else {
2558             // For normal PCM streaming tracks, update minimum frame count.
2559             // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2560             // cover audio hardware latency.
2561             // This is probably too conservative, but legacy application code may depend on it.
2562             // If you change this calculation, also review the start threshold which is related.
2563             uint32_t latencyMs = latency_l();
2564             if (latencyMs == 0) {
2565                 ALOGE("Error when retrieving output stream latency");
2566                 lStatus = UNKNOWN_ERROR;
2567                 goto Exit;
2568             }
2569 
2570             minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2571                                 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2572 
2573         }
2574         if (frameCount < minFrameCount) {
2575             frameCount = minFrameCount;
2576         }
2577     }
2578 
2579     // Make sure that application is notified with sufficient margin before underrun.
2580     // The client can divide the AudioTrack buffer into sub-buffers,
2581     // and expresses its desire to server as the notification frame count.
2582     if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2583         size_t maxNotificationFrames;
2584         if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2585             // notify every HAL buffer, regardless of the size of the track buffer
2586             maxNotificationFrames = mFrameCount;
2587         } else {
2588             // Triple buffer the notification period for a triple buffered mixer period;
2589             // otherwise, double buffering for the notification period is fine.
2590             //
2591             // TODO: This should be moved to AudioTrack to modify the notification period
2592             // on AudioTrack::setBufferSizeInFrames() changes.
2593             const int nBuffering =
2594                     (uint64_t{frameCount} * mSampleRate)
2595                             / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2596 
2597             maxNotificationFrames = frameCount / nBuffering;
2598             // If client requested a fast track but this was denied, then use the smaller maximum.
2599             if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2600                 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2601                 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2602                     maxNotificationFrames = maxNotificationFramesFastDenied;
2603                 }
2604             }
2605         }
2606         if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2607             if (notificationFrameCount == 0) {
2608                 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2609                     maxNotificationFrames, frameCount);
2610             } else {
2611                 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2612                       notificationFrameCount, maxNotificationFrames, frameCount);
2613             }
2614             notificationFrameCount = maxNotificationFrames;
2615         }
2616     }
2617 
2618     *pFrameCount = frameCount;
2619     *pNotificationFrameCount = notificationFrameCount;
2620 
2621     switch (mType) {
2622     case BIT_PERFECT:
2623         if (isBitPerfect) {
2624             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2625                 ALOGE("%s, bad parameter when request streaming bit-perfect, sampleRate=%u, "
2626                       "format=%#x, channelMask=%#x, mSampleRate=%u, mFormat=%#x, mChannelMask=%#x",
2627                       __func__, sampleRate, format, channelMask, mSampleRate, mFormat,
2628                       mChannelMask);
2629                 lStatus = BAD_VALUE;
2630                 goto Exit;
2631             }
2632         }
2633         break;
2634 
2635     case DIRECT:
2636         if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2637             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2638                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2639                         "for output %p with format %#x",
2640                         sampleRate, format, channelMask, mOutput, mFormat);
2641                 lStatus = BAD_VALUE;
2642                 goto Exit;
2643             }
2644         }
2645         break;
2646 
2647     case OFFLOAD:
2648         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2649             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2650                     "for output %p with format %#x",
2651                     sampleRate, format, channelMask, mOutput, mFormat);
2652             lStatus = BAD_VALUE;
2653             goto Exit;
2654         }
2655         break;
2656 
2657     default:
2658         if (!audio_is_linear_pcm(format)) {
2659                 ALOGE("createTrack_l() Bad parameter: format %#x \""
2660                         "for output %p with format %#x",
2661                         format, mOutput, mFormat);
2662                 lStatus = BAD_VALUE;
2663                 goto Exit;
2664         }
2665         if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2666             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2667             lStatus = BAD_VALUE;
2668             goto Exit;
2669         }
2670         break;
2671 
2672     }
2673 
2674     lStatus = initCheck();
2675     if (lStatus != NO_ERROR) {
2676         ALOGE("createTrack_l() audio driver not initialized");
2677         goto Exit;
2678     }
2679 
2680     { // scope for mutex()
2681         audio_utils::lock_guard _l(mutex());
2682 
2683         // all tracks in same audio session must share the same routing strategy otherwise
2684         // conflicts will happen when tracks are moved from one output to another by audio policy
2685         // manager
2686         product_strategy_t strategy = getStrategyForStream(streamType);
2687         for (size_t i = 0; i < mTracks.size(); ++i) {
2688             sp<IAfTrack> t = mTracks[i];
2689             if (t != 0 && t->isExternalTrack()) {
2690                 product_strategy_t actual = getStrategyForStream(t->streamType());
2691                 if (sessionId == t->sessionId() && strategy != actual) {
2692                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2693                             strategy, actual);
2694                     lStatus = BAD_VALUE;
2695                     goto Exit;
2696                 }
2697             }
2698         }
2699 
2700         // Set DIRECT/OFFLOAD flag if current thread is DirectOutputThread/OffloadThread.
2701         // This can happen when the playback is rerouted to direct output/offload thread by
2702         // dynamic audio policy.
2703         // Do NOT report the flag changes back to client, since the client
2704         // doesn't explicitly request a direct/offload flag.
2705         audio_output_flags_t trackFlags = *flags;
2706         if (mType == DIRECT) {
2707             trackFlags = static_cast<audio_output_flags_t>(trackFlags | AUDIO_OUTPUT_FLAG_DIRECT);
2708         } else if (mType == OFFLOAD) {
2709             trackFlags = static_cast<audio_output_flags_t>(trackFlags |
2710                                    AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD | AUDIO_OUTPUT_FLAG_DIRECT);
2711         }
2712         *afTrackFlags = trackFlags;
2713 
2714         track = IAfTrack::create(this, client, streamType, attr, sampleRate, format,
2715                           channelMask, frameCount,
2716                           nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2717                           sessionId, creatorPid, attributionSource, trackFlags,
2718                           IAfTrackBase::TYPE_DEFAULT, portId, SIZE_MAX /*frameCountToBeReady*/,
2719                           speed, isSpatialized, isBitPerfect);
2720 
2721         lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2722         if (lStatus != NO_ERROR) {
2723             ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2724             // track must be cleared from the caller as the caller has the AF lock
2725             goto Exit;
2726         }
2727         mTracks.add(track);
2728         {
2729             audio_utils::lock_guard _atCbL(audioTrackCbMutex());
2730             if (callback.get() != nullptr) {
2731                 mAudioTrackCallbacks.emplace(track, callback);
2732             }
2733         }
2734 
2735         sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
2736         if (chain != 0) {
2737             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2738             track->setMainBuffer(chain->inBuffer());
2739             chain->setStrategy(getStrategyForStream(track->streamType()));
2740             chain->incTrackCnt();
2741         }
2742 
2743         if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2744             pid_t callingPid = IPCThreadState::self()->getCallingPid();
2745             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2746             // so ask activity manager to do this on our behalf
2747             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2748         }
2749     }
2750 
2751     lStatus = NO_ERROR;
2752 
2753 Exit:
2754     *status = lStatus;
2755     return track;
2756 }
2757 
2758 template<typename T>
remove(const sp<T> & track)2759 ssize_t PlaybackThread::Tracks<T>::remove(const sp<T>& track)
2760 {
2761     const int trackId = track->id();
2762     const ssize_t index = mTracks.remove(track);
2763     if (index >= 0) {
2764         if (mSaveDeletedTrackIds) {
2765             // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2766             // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2767             // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2768             mDeletedTrackIds.emplace(trackId);
2769         }
2770     }
2771     return index;
2772 }
2773 
correctLatency_l(uint32_t latency) const2774 uint32_t PlaybackThread::correctLatency_l(uint32_t latency) const
2775 {
2776     return latency;
2777 }
2778 
latency() const2779 uint32_t PlaybackThread::latency() const
2780 {
2781     audio_utils::lock_guard _l(mutex());
2782     return latency_l();
2783 }
latency_l() const2784 uint32_t PlaybackThread::latency_l() const
2785 NO_THREAD_SAFETY_ANALYSIS
2786 // Fix later.
2787 {
2788     uint32_t latency;
2789     if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2790         return correctLatency_l(latency);
2791     }
2792     return 0;
2793 }
2794 
setMasterVolume(float value)2795 void PlaybackThread::setMasterVolume(float value)
2796 {
2797     audio_utils::lock_guard _l(mutex());
2798     // Don't apply master volume in SW if our HAL can do it for us.
2799     if (mOutput && mOutput->audioHwDev &&
2800         mOutput->audioHwDev->canSetMasterVolume()) {
2801         mMasterVolume = 1.0;
2802     } else {
2803         mMasterVolume = value;
2804     }
2805 }
2806 
setMasterBalance(float balance)2807 void PlaybackThread::setMasterBalance(float balance)
2808 {
2809     mMasterBalance.store(balance);
2810 }
2811 
setMasterMute(bool muted)2812 void PlaybackThread::setMasterMute(bool muted)
2813 {
2814     if (isDuplicating()) {
2815         return;
2816     }
2817     audio_utils::lock_guard _l(mutex());
2818     // Don't apply master mute in SW if our HAL can do it for us.
2819     if (mOutput && mOutput->audioHwDev &&
2820         mOutput->audioHwDev->canSetMasterMute()) {
2821         mMasterMute = false;
2822     } else {
2823         mMasterMute = muted;
2824     }
2825 }
2826 
setStreamVolume(audio_stream_type_t stream,float value)2827 void PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2828 {
2829     audio_utils::lock_guard _l(mutex());
2830     mStreamTypes[stream].volume = value;
2831     broadcast_l();
2832 }
2833 
setStreamMute(audio_stream_type_t stream,bool muted)2834 void PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2835 {
2836     audio_utils::lock_guard _l(mutex());
2837     mStreamTypes[stream].mute = muted;
2838     broadcast_l();
2839 }
2840 
streamVolume(audio_stream_type_t stream) const2841 float PlaybackThread::streamVolume(audio_stream_type_t stream) const
2842 {
2843     audio_utils::lock_guard _l(mutex());
2844     return mStreamTypes[stream].volume;
2845 }
2846 
setVolumeForOutput_l(float left,float right) const2847 void PlaybackThread::setVolumeForOutput_l(float left, float right) const
2848 {
2849     mOutput->stream->setVolume(left, right);
2850 }
2851 
2852 // addTrack_l() must be called with ThreadBase::mutex() held
addTrack_l(const sp<IAfTrack> & track)2853 status_t PlaybackThread::addTrack_l(const sp<IAfTrack>& track)
2854 {
2855     status_t status = ALREADY_EXISTS;
2856 
2857     if (mActiveTracks.indexOf(track) < 0) {
2858         // the track is newly added, make sure it fills up all its
2859         // buffers before playing. This is to ensure the client will
2860         // effectively get the latency it requested.
2861         if (track->isExternalTrack()) {
2862             IAfTrackBase::track_state state = track->state();
2863             // Because the track is not on the ActiveTracks,
2864             // at this point, only the TrackHandle will be adding the track.
2865             mutex().unlock();
2866             status = AudioSystem::startOutput(track->portId());
2867             mutex().lock();
2868             // abort track was stopped/paused while we released the lock
2869             if (state != track->state()) {
2870                 if (status == NO_ERROR) {
2871                     mutex().unlock();
2872                     AudioSystem::stopOutput(track->portId());
2873                     mutex().lock();
2874                 }
2875                 return INVALID_OPERATION;
2876             }
2877             // abort if start is rejected by audio policy manager
2878             if (status != NO_ERROR) {
2879                 // Do not replace the error if it is DEAD_OBJECT. When this happens, it indicates
2880                 // current playback thread is reopened, which may happen when clients set preferred
2881                 // mixer configuration. Returning DEAD_OBJECT will make the client restore track
2882                 // immediately.
2883                 return status == DEAD_OBJECT ? status : PERMISSION_DENIED;
2884             }
2885 #ifdef ADD_BATTERY_DATA
2886             // to track the speaker usage
2887             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2888 #endif
2889             sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2890         }
2891 
2892         // set retry count for buffer fill
2893         if (track->isOffloaded()) {
2894             if (track->isStopping_1()) {
2895                 track->retryCount() = kMaxTrackStopRetriesOffload;
2896             } else {
2897                 track->retryCount() = kMaxTrackStartupRetriesOffload;
2898             }
2899             track->fillingStatus() = mStandby ? IAfTrack::FS_FILLING : IAfTrack::FS_FILLED;
2900         } else {
2901             track->retryCount() = kMaxTrackStartupRetries;
2902             track->fillingStatus() =
2903                     track->sharedBuffer() != 0 ? IAfTrack::FS_FILLED : IAfTrack::FS_FILLING;
2904         }
2905 
2906         sp<IAfEffectChain> chain = getEffectChain_l(track->sessionId());
2907         if (mHapticChannelMask != AUDIO_CHANNEL_NONE
2908                 && ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2909                         || (chain != nullptr && chain->containsHapticGeneratingEffect()))) {
2910             // Unlock due to VibratorService will lock for this call and will
2911             // call Tracks.mute/unmute which also require thread's lock.
2912             mutex().unlock();
2913             const os::HapticScale hapticScale = afutils::onExternalVibrationStart(
2914                     track->getExternalVibration());
2915             std::optional<media::AudioVibratorInfo> vibratorInfo;
2916             {
2917                 // TODO(b/184194780): Use the vibrator information from the vibrator that will be
2918                 // used to play this track.
2919                  audio_utils::lock_guard _l(mAfThreadCallback->mutex());
2920                 vibratorInfo = std::move(mAfThreadCallback->getDefaultVibratorInfo_l());
2921             }
2922             mutex().lock();
2923             track->setHapticScale(hapticScale);
2924             if (vibratorInfo) {
2925                 track->setHapticMaxAmplitude(vibratorInfo->maxAmplitude);
2926             }
2927 
2928             // Haptic playback should be enabled by vibrator service.
2929             if (track->getHapticPlaybackEnabled()) {
2930                 // Disable haptic playback of all active track to ensure only
2931                 // one track playing haptic if current track should play haptic.
2932                 for (const auto &t : mActiveTracks) {
2933                     t->setHapticPlaybackEnabled(false);
2934                 }
2935             }
2936 
2937             // Set haptic intensity for effect
2938             if (chain != nullptr) {
2939                 chain->setHapticScale_l(track->id(), hapticScale);
2940             }
2941         }
2942 
2943         track->setResetDone(false);
2944         track->resetPresentationComplete();
2945 
2946         // Do not release the ThreadBase mutex after the track is added to mActiveTracks unless
2947         // all key changes are complete.  It is possible that the threadLoop will begin
2948         // processing the added track immediately after the ThreadBase mutex is released.
2949         mActiveTracks.add(track);
2950 
2951         if (chain != 0) {
2952             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2953                     track->sessionId());
2954             chain->incActiveTrackCnt();
2955         }
2956 
2957         track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
2958         status = NO_ERROR;
2959     }
2960 
2961     onAddNewTrack_l();
2962     return status;
2963 }
2964 
destroyTrack_l(const sp<IAfTrack> & track)2965 bool PlaybackThread::destroyTrack_l(const sp<IAfTrack>& track)
2966 {
2967     track->terminate();
2968     // active tracks are removed by threadLoop()
2969     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2970     track->setState(IAfTrackBase::STOPPED);
2971     if (!trackActive) {
2972         removeTrack_l(track);
2973     } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2974         if (track->isPausePending()) {
2975             track->pauseAck();
2976         }
2977         track->setState(IAfTrackBase::STOPPING_1);
2978     }
2979 
2980     return trackActive;
2981 }
2982 
removeTrack_l(const sp<IAfTrack> & track)2983 void PlaybackThread::removeTrack_l(const sp<IAfTrack>& track)
2984 {
2985     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2986 
2987     String8 result;
2988     track->appendDump(result, false /* active */);
2989     mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.c_str());
2990 
2991     mTracks.remove(track);
2992     {
2993         audio_utils::lock_guard _atCbL(audioTrackCbMutex());
2994         mAudioTrackCallbacks.erase(track);
2995     }
2996     if (track->isFastTrack()) {
2997         int index = track->fastIndex();
2998         ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2999         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
3000         mFastTrackAvailMask |= 1 << index;
3001         // redundant as track is about to be destroyed, for dumpsys only
3002         track->fastIndex() = -1;
3003     }
3004     sp<IAfEffectChain> chain = getEffectChain_l(track->sessionId());
3005     if (chain != 0) {
3006         chain->decTrackCnt();
3007     }
3008 }
3009 
getTrackPortIds_l()3010 std::set<audio_port_handle_t> PlaybackThread::getTrackPortIds_l()
3011 {
3012     std::set<int32_t> result;
3013     for (const auto& t : mTracks) {
3014         if (t->isExternalTrack()) {
3015             result.insert(t->portId());
3016         }
3017     }
3018     return result;
3019 }
3020 
getTrackPortIds()3021 std::set<audio_port_handle_t> PlaybackThread::getTrackPortIds()
3022 {
3023     audio_utils::lock_guard _l(mutex());
3024     return getTrackPortIds_l();
3025 }
3026 
getParameters(const String8 & keys)3027 String8 PlaybackThread::getParameters(const String8& keys)
3028 {
3029     audio_utils::lock_guard _l(mutex());
3030     String8 out_s8;
3031     if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
3032         return out_s8;
3033     }
3034     return {};
3035 }
3036 
selectPresentation(int presentationId,int programId)3037 status_t DirectOutputThread::selectPresentation(int presentationId, int programId) {
3038     audio_utils::lock_guard _l(mutex());
3039     if (!isStreamInitialized()) {
3040         return NO_INIT;
3041     }
3042     return mOutput->stream->selectPresentation(presentationId, programId);
3043 }
3044 
ioConfigChanged_l(audio_io_config_event_t event,pid_t pid,audio_port_handle_t portId)3045 void PlaybackThread::ioConfigChanged_l(audio_io_config_event_t event, pid_t pid,
3046                                                    audio_port_handle_t portId) {
3047     ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
3048     sp<AudioIoDescriptor> desc;
3049     const struct audio_patch patch = isMsdDevice() ? mDownStreamPatch : mPatch;
3050     switch (event) {
3051     case AUDIO_OUTPUT_OPENED:
3052     case AUDIO_OUTPUT_REGISTERED:
3053     case AUDIO_OUTPUT_CONFIG_CHANGED:
3054         desc = sp<AudioIoDescriptor>::make(mId, patch, false /*isInput*/,
3055                 mSampleRate, mFormat, mChannelMask,
3056                 // FIXME AudioFlinger::frameCount(audio_io_handle_t) instead of mNormalFrameCount?
3057                 mNormalFrameCount, mFrameCount, latency_l());
3058         break;
3059     case AUDIO_CLIENT_STARTED:
3060         desc = sp<AudioIoDescriptor>::make(mId, patch, portId);
3061         break;
3062     case AUDIO_OUTPUT_CLOSED:
3063     default:
3064         desc = sp<AudioIoDescriptor>::make(mId);
3065         break;
3066     }
3067     mAfThreadCallback->ioConfigChanged_l(event, desc, pid);
3068 }
3069 
onWriteReady()3070 void PlaybackThread::onWriteReady()
3071 {
3072     mCallbackThread->resetWriteBlocked();
3073 }
3074 
onDrainReady()3075 void PlaybackThread::onDrainReady()
3076 {
3077     mCallbackThread->resetDraining();
3078 }
3079 
onError(bool isHardError)3080 void PlaybackThread::onError(bool isHardError)
3081 {
3082     mCallbackThread->setAsyncError(isHardError);
3083 }
3084 
onCodecFormatChanged(const std::vector<uint8_t> & metadataBs)3085 void PlaybackThread::onCodecFormatChanged(
3086         const std::vector<uint8_t>& metadataBs)
3087 {
3088     const auto weakPointerThis = wp<PlaybackThread>::fromExisting(this);
3089     std::thread([this, metadataBs, weakPointerThis]() {
3090             const sp<PlaybackThread> playbackThread = weakPointerThis.promote();
3091             if (playbackThread == nullptr) {
3092                 ALOGW("PlaybackThread was destroyed, skip codec format change event");
3093                 return;
3094             }
3095 
3096             audio_utils::metadata::Data metadata =
3097                     audio_utils::metadata::dataFromByteString(metadataBs);
3098             if (metadata.empty()) {
3099                 ALOGW("Can not transform the buffer to audio metadata, %s, %d",
3100                       reinterpret_cast<char*>(const_cast<uint8_t*>(metadataBs.data())),
3101                       (int)metadataBs.size());
3102                 return;
3103             }
3104 
3105             audio_utils::metadata::ByteString metaDataStr =
3106                     audio_utils::metadata::byteStringFromData(metadata);
3107             std::vector metadataVec(metaDataStr.begin(), metaDataStr.end());
3108             audio_utils::lock_guard _l(audioTrackCbMutex());
3109             for (const auto& callbackPair : mAudioTrackCallbacks) {
3110                 callbackPair.second->onCodecFormatChanged(metadataVec);
3111             }
3112     }).detach();
3113 }
3114 
resetWriteBlocked(uint32_t sequence)3115 void PlaybackThread::resetWriteBlocked(uint32_t sequence)
3116 {
3117     audio_utils::lock_guard _l(mutex());
3118     // reject out of sequence requests
3119     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
3120         mWriteAckSequence &= ~1;
3121         mWaitWorkCV.notify_one();
3122     }
3123 }
3124 
resetDraining(uint32_t sequence)3125 void PlaybackThread::resetDraining(uint32_t sequence)
3126 {
3127     audio_utils::lock_guard _l(mutex());
3128     // reject out of sequence requests
3129     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
3130         // Register discontinuity when HW drain is completed because that can cause
3131         // the timestamp frame position to reset to 0 for direct and offload threads.
3132         // (Out of sequence requests are ignored, since the discontinuity would be handled
3133         // elsewhere, e.g. in flush).
3134         mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
3135         mDrainSequence &= ~1;
3136         mWaitWorkCV.notify_one();
3137     }
3138 }
3139 
readOutputParameters_l()3140 void PlaybackThread::readOutputParameters_l()
3141 NO_THREAD_SAFETY_ANALYSIS
3142 // 'moveEffectChain_ll' requires holding mutex 'AudioFlinger_Mutex' exclusively
3143 {
3144     // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
3145     const audio_config_base_t audioConfig = mOutput->getAudioProperties();
3146     mSampleRate = audioConfig.sample_rate;
3147     mChannelMask = audioConfig.channel_mask;
3148     if (!audio_is_output_channel(mChannelMask)) {
3149         LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
3150     }
3151     if (hasMixer() && !isValidPcmSinkChannelMask(mChannelMask)) {
3152         LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
3153                 mChannelMask);
3154     }
3155 
3156     if (mMixerChannelMask == AUDIO_CHANNEL_NONE) {
3157         mMixerChannelMask = mChannelMask;
3158     }
3159 
3160     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
3161     mBalance.setChannelMask(mChannelMask);
3162 
3163     uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mMixerChannelMask);
3164 
3165     // Get actual HAL format.
3166     status_t result = mOutput->stream->getAudioProperties(nullptr, nullptr, &mHALFormat);
3167     LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
3168     // Get format from the shim, which will be different than the HAL format
3169     // if playing compressed audio over HDMI passthrough.
3170     mFormat = audioConfig.format;
3171     if (!audio_is_valid_format(mFormat)) {
3172         LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
3173     }
3174     if (hasMixer() && !isValidPcmSinkFormat(mFormat)) {
3175         LOG_FATAL("HAL format %#x not supported for mixed output",
3176                 mFormat);
3177     }
3178     mFrameSize = mOutput->getFrameSize();
3179     result = mOutput->stream->getBufferSize(&mBufferSize);
3180     LOG_ALWAYS_FATAL_IF(result != OK,
3181             "Error when retrieving output stream buffer size: %d", result);
3182     mFrameCount = mBufferSize / mFrameSize;
3183     if (hasMixer() && (mFrameCount & 15)) {
3184         ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
3185                 mFrameCount);
3186     }
3187 
3188     mHwSupportsPause = false;
3189     if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
3190         bool supportsPause = false, supportsResume = false;
3191         if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
3192             if (supportsPause && supportsResume) {
3193                 mHwSupportsPause = true;
3194             } else if (supportsPause) {
3195                 ALOGW("direct output implements pause but not resume");
3196             } else if (supportsResume) {
3197                 ALOGW("direct output implements resume but not pause");
3198             }
3199         }
3200     }
3201     if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
3202         LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
3203     }
3204 
3205     if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
3206         // For best precision, we use float instead of the associated output
3207         // device format (typically PCM 16 bit).
3208 
3209         mFormat = AUDIO_FORMAT_PCM_FLOAT;
3210         mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3211         mBufferSize = mFrameSize * mFrameCount;
3212 
3213         // TODO: We currently use the associated output device channel mask and sample rate.
3214         // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
3215         // (if a valid mask) to avoid premature downmix.
3216         // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
3217         // instead of the output device sample rate to avoid loss of high frequency information.
3218         // This may need to be updated as MixerThread/OutputTracks are added and not here.
3219     }
3220 
3221     // Calculate size of normal sink buffer relative to the HAL output buffer size
3222     double multiplier = 1.0;
3223     // Note: mType == SPATIALIZER does not support FastMixer.
3224     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
3225             kUseFastMixer == FastMixer_Dynamic)) {
3226         size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
3227         size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
3228 
3229         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
3230         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
3231         maxNormalFrameCount = maxNormalFrameCount & ~15;
3232         if (maxNormalFrameCount < minNormalFrameCount) {
3233             maxNormalFrameCount = minNormalFrameCount;
3234         }
3235         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
3236         if (multiplier <= 1.0) {
3237             multiplier = 1.0;
3238         } else if (multiplier <= 2.0) {
3239             if (2 * mFrameCount <= maxNormalFrameCount) {
3240                 multiplier = 2.0;
3241             } else {
3242                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
3243             }
3244         } else {
3245             multiplier = floor(multiplier);
3246         }
3247     }
3248     mNormalFrameCount = multiplier * mFrameCount;
3249     // round up to nearest 16 frames to satisfy AudioMixer
3250     if (hasMixer()) {
3251         mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
3252     }
3253     ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames",
3254             (size_t)mFrameCount, mNormalFrameCount);
3255 
3256     // Check if we want to throttle the processing to no more than 2x normal rate
3257     mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
3258     mThreadThrottleTimeMs = 0;
3259     mThreadThrottleEndMs = 0;
3260     mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
3261 
3262     // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
3263     // Originally this was int16_t[] array, need to remove legacy implications.
3264     free(mSinkBuffer);
3265     mSinkBuffer = NULL;
3266 
3267     // For sink buffer size, we use the frame size from the downstream sink to avoid problems
3268     // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
3269     const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3270     (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3271 
3272     // We resize the mMixerBuffer according to the requirements of the sink buffer which
3273     // drives the output.
3274     free(mMixerBuffer);
3275     mMixerBuffer = NULL;
3276     if (mMixerBufferEnabled) {
3277         mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
3278         mMixerBufferSize = mNormalFrameCount * mixerChannelCount
3279                 * audio_bytes_per_sample(mMixerBufferFormat);
3280         (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
3281     }
3282     free(mEffectBuffer);
3283     mEffectBuffer = NULL;
3284     if (mEffectBufferEnabled) {
3285         mEffectBufferFormat = AUDIO_FORMAT_PCM_FLOAT;
3286         mEffectBufferSize = mNormalFrameCount * mixerChannelCount
3287                 * audio_bytes_per_sample(mEffectBufferFormat);
3288         (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
3289     }
3290 
3291     if (mType == SPATIALIZER) {
3292         free(mPostSpatializerBuffer);
3293         mPostSpatializerBuffer = nullptr;
3294         mPostSpatializerBufferSize = mNormalFrameCount * mChannelCount
3295                 * audio_bytes_per_sample(mEffectBufferFormat);
3296         (void)posix_memalign(&mPostSpatializerBuffer, 32, mPostSpatializerBufferSize);
3297     }
3298 
3299     mHapticChannelMask = static_cast<audio_channel_mask_t>(mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL);
3300     mChannelMask = static_cast<audio_channel_mask_t>(mChannelMask & ~mHapticChannelMask);
3301     mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
3302     mChannelCount -= mHapticChannelCount;
3303     mMixerChannelMask = static_cast<audio_channel_mask_t>(mMixerChannelMask & ~mHapticChannelMask);
3304 
3305     // force reconfiguration of effect chains and engines to take new buffer size and audio
3306     // parameters into account
3307     // Note that mutex() is not held when readOutputParameters_l() is called from the constructor
3308     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
3309     // matter.
3310     // create a copy of mEffectChains as calling moveEffectChain_ll()
3311     // can reorder some effect chains
3312     Vector<sp<IAfEffectChain>> effectChains = mEffectChains;
3313     for (size_t i = 0; i < effectChains.size(); i ++) {
3314         mAfThreadCallback->moveEffectChain_ll(effectChains[i]->sessionId(),
3315             this/* srcThread */, this/* dstThread */);
3316     }
3317 
3318     audio_output_flags_t flags = mOutput->flags;
3319     mediametrics::LogItem item(mThreadMetrics.getMetricsId()); // TODO: method in ThreadMetrics?
3320     item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
3321         .set(AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mFormat).c_str())
3322         .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
3323         .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
3324         .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
3325         .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mNormalFrameCount)
3326         .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
3327         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
3328                 (int32_t)mHapticChannelMask)
3329         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
3330                 (int32_t)mHapticChannelCount)
3331         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_ENCODING,
3332                 IAfThreadBase::formatToString(mHALFormat).c_str())
3333         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_FRAMECOUNT,
3334                 (int32_t)mFrameCount) // sic - added HAL
3335         ;
3336     uint32_t latencyMs;
3337     if (mOutput->stream->getLatency(&latencyMs) == NO_ERROR) {
3338         item.set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_LATENCYMS, (double)latencyMs);
3339     }
3340     item.record();
3341 }
3342 
updateMetadata_l()3343 ThreadBase::MetadataUpdate PlaybackThread::updateMetadata_l()
3344 {
3345     if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
3346         return {}; // nothing to do
3347     }
3348     StreamOutHalInterface::SourceMetadata metadata;
3349     static const bool stereo_spatialization_property =
3350             property_get_bool("ro.audio.stereo_spatialization_enabled", false);
3351     const bool stereo_spatialization_enabled =
3352             stereo_spatialization_property && com_android_media_audio_stereo_spatialization();
3353     if (stereo_spatialization_enabled) {
3354         std::map<audio_session_t, std::vector<playback_track_metadata_v7_t> >allSessionsMetadata;
3355         for (const sp<IAfTrack>& track : mActiveTracks) {
3356             std::vector<playback_track_metadata_v7_t>& sessionMetadata =
3357                     allSessionsMetadata[track->sessionId()];
3358             auto backInserter = std::back_inserter(sessionMetadata);
3359             // No track is invalid as this is called after prepareTrack_l in the same
3360             // critical section
3361             track->copyMetadataTo(backInserter);
3362         }
3363         std::vector<playback_track_metadata_v7_t> spatializedTracksMetaData;
3364         for (const auto& [session, sessionTrackMetadata] : allSessionsMetadata) {
3365             metadata.tracks.insert(metadata.tracks.end(),
3366                     sessionTrackMetadata.begin(), sessionTrackMetadata.end());
3367             if (auto chain = getEffectChain_l(session) ; chain != nullptr) {
3368                 chain->sendMetadata_l(sessionTrackMetadata, {});
3369             }
3370             if ((hasAudioSession_l(session) & IAfThreadBase::SPATIALIZED_SESSION) != 0) {
3371                 spatializedTracksMetaData.insert(spatializedTracksMetaData.end(),
3372                         sessionTrackMetadata.begin(), sessionTrackMetadata.end());
3373             }
3374         }
3375         if (auto chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); chain != nullptr) {
3376             chain->sendMetadata_l(metadata.tracks, {});
3377         }
3378         if (auto chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE); chain != nullptr) {
3379             chain->sendMetadata_l(metadata.tracks, spatializedTracksMetaData);
3380         }
3381         if (auto chain = getEffectChain_l(AUDIO_SESSION_DEVICE); chain != nullptr) {
3382             chain->sendMetadata_l(metadata.tracks, {});
3383         }
3384     } else {
3385         auto backInserter = std::back_inserter(metadata.tracks);
3386         for (const sp<IAfTrack>& track : mActiveTracks) {
3387             // No track is invalid as this is called after prepareTrack_l in the same
3388             // critical section
3389             track->copyMetadataTo(backInserter);
3390         }
3391     }
3392     sendMetadataToBackend_l(metadata);
3393     MetadataUpdate change;
3394     change.playbackMetadataUpdate = metadata.tracks;
3395     return change;
3396 }
3397 
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)3398 void PlaybackThread::sendMetadataToBackend_l(
3399         const StreamOutHalInterface::SourceMetadata& metadata)
3400 {
3401     mOutput->stream->updateSourceMetadata(metadata);
3402 };
3403 
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames) const3404 status_t PlaybackThread::getRenderPosition(
3405         uint32_t* halFrames, uint32_t* dspFrames) const
3406 {
3407     if (halFrames == NULL || dspFrames == NULL) {
3408         return BAD_VALUE;
3409     }
3410     audio_utils::lock_guard _l(mutex());
3411     if (initCheck() != NO_ERROR) {
3412         return INVALID_OPERATION;
3413     }
3414     int64_t framesWritten = mBytesWritten / mFrameSize;
3415     *halFrames = framesWritten;
3416 
3417     if (isSuspended()) {
3418         // return an estimation of rendered frames when the output is suspended
3419         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
3420         *dspFrames = (uint32_t)
3421                 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
3422         return NO_ERROR;
3423     } else {
3424         status_t status;
3425         uint64_t frames = 0;
3426         status = mOutput->getRenderPosition(&frames);
3427         *dspFrames = (uint32_t)frames;
3428         return status;
3429     }
3430 }
3431 
getStrategyForSession_l(audio_session_t sessionId) const3432 product_strategy_t PlaybackThread::getStrategyForSession_l(audio_session_t sessionId) const
3433 {
3434     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
3435     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
3436     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
3437         return getStrategyForStream(AUDIO_STREAM_MUSIC);
3438     }
3439     for (size_t i = 0; i < mTracks.size(); i++) {
3440         sp<IAfTrack> track = mTracks[i];
3441         if (sessionId == track->sessionId() && !track->isInvalid()) {
3442             return getStrategyForStream(track->streamType());
3443         }
3444     }
3445     return getStrategyForStream(AUDIO_STREAM_MUSIC);
3446 }
3447 
3448 
getOutput() const3449 AudioStreamOut* PlaybackThread::getOutput() const
3450 {
3451     audio_utils::lock_guard _l(mutex());
3452     return mOutput;
3453 }
3454 
clearOutput()3455 AudioStreamOut* PlaybackThread::clearOutput()
3456 {
3457     audio_utils::lock_guard _l(mutex());
3458     AudioStreamOut *output = mOutput;
3459     mOutput = NULL;
3460     // FIXME FastMixer might also have a raw ptr to mOutputSink;
3461     //       must push a NULL and wait for ack
3462     mOutputSink.clear();
3463     mPipeSink.clear();
3464     mNormalSink.clear();
3465     return output;
3466 }
3467 
3468 // this method must always be called either with ThreadBase mutex() held or inside the thread loop
stream() const3469 sp<StreamHalInterface> PlaybackThread::stream() const
3470 {
3471     if (mOutput == NULL) {
3472         return NULL;
3473     }
3474     return mOutput->stream;
3475 }
3476 
activeSleepTimeUs() const3477 uint32_t PlaybackThread::activeSleepTimeUs() const
3478 {
3479     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3480 }
3481 
setSyncEvent(const sp<SyncEvent> & event)3482 status_t PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
3483 {
3484     if (!isValidSyncEvent(event)) {
3485         return BAD_VALUE;
3486     }
3487 
3488     audio_utils::lock_guard _l(mutex());
3489 
3490     for (size_t i = 0; i < mTracks.size(); ++i) {
3491         sp<IAfTrack> track = mTracks[i];
3492         if (event->triggerSession() == track->sessionId()) {
3493             (void) track->setSyncEvent(event);
3494             return NO_ERROR;
3495         }
3496     }
3497 
3498     return NAME_NOT_FOUND;
3499 }
3500 
isValidSyncEvent(const sp<SyncEvent> & event) const3501 bool PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
3502 {
3503     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
3504 }
3505 
threadLoop_removeTracks(const Vector<sp<IAfTrack>> & tracksToRemove)3506 void PlaybackThread::threadLoop_removeTracks(
3507         [[maybe_unused]] const Vector<sp<IAfTrack>>& tracksToRemove)
3508 {
3509     // Miscellaneous track cleanup when removed from the active list,
3510     // called without Thread lock but synchronized with threadLoop processing.
3511 #ifdef ADD_BATTERY_DATA
3512     for (const auto& track : tracksToRemove) {
3513         if (track->isExternalTrack()) {
3514             // to track the speaker usage
3515             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
3516         }
3517     }
3518 #endif
3519 }
3520 
checkSilentMode_l()3521 void PlaybackThread::checkSilentMode_l()
3522 {
3523     if (!mMasterMute) {
3524         char value[PROPERTY_VALUE_MAX];
3525         if (mOutDeviceTypeAddrs.empty()) {
3526             ALOGD("ro.audio.silent is ignored since no output device is set");
3527             return;
3528         }
3529         if (isSingleDeviceType(outDeviceTypes_l(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) {
3530             ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
3531             return;
3532         }
3533         if (property_get("ro.audio.silent", value, "0") > 0) {
3534             char *endptr;
3535             unsigned long ul = strtoul(value, &endptr, 0);
3536             if (*endptr == '\0' && ul != 0) {
3537                 ALOGW("%s: mute from ro.audio.silent. Silence is golden", __func__);
3538                 // The setprop command will not allow a property to be changed after
3539                 // the first time it is set, so we don't have to worry about un-muting.
3540                 setMasterMute_l(true);
3541             }
3542         }
3543     }
3544 }
3545 
3546 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()3547 ssize_t PlaybackThread::threadLoop_write()
3548 {
3549     LOG_HIST_TS();
3550     mInWrite = true;
3551     ssize_t bytesWritten;
3552     const size_t offset = mCurrentWriteLength - mBytesRemaining;
3553 
3554     // If an NBAIO sink is present, use it to write the normal mixer's submix
3555     if (mNormalSink != 0) {
3556 
3557         const size_t count = mBytesRemaining / mFrameSize;
3558 
3559         ATRACE_BEGIN("write");
3560         // update the setpoint when AudioFlinger::mScreenState changes
3561         const uint32_t screenState = mAfThreadCallback->getScreenState();
3562         if (screenState != mScreenState) {
3563             mScreenState = screenState;
3564             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3565             if (pipe != NULL) {
3566                 pipe->setAvgFrames((mScreenState & 1) ?
3567                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3568             }
3569         }
3570         ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
3571         ATRACE_END();
3572 
3573         if (framesWritten > 0) {
3574             bytesWritten = framesWritten * mFrameSize;
3575 
3576 #ifdef TEE_SINK
3577             mTee.write((char *)mSinkBuffer + offset, framesWritten);
3578 #endif
3579         } else {
3580             bytesWritten = framesWritten;
3581         }
3582     // otherwise use the HAL / AudioStreamOut directly
3583     } else {
3584         // Direct output and offload threads
3585 
3586         if (mUseAsyncWrite) {
3587             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
3588             mWriteAckSequence += 2;
3589             mWriteAckSequence |= 1;
3590             ALOG_ASSERT(mCallbackThread != 0);
3591             mCallbackThread->setWriteBlocked(mWriteAckSequence);
3592         }
3593         ATRACE_BEGIN("write");
3594         // FIXME We should have an implementation of timestamps for direct output threads.
3595         // They are used e.g for multichannel PCM playback over HDMI.
3596         bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
3597         ATRACE_END();
3598 
3599         if (mUseAsyncWrite &&
3600                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
3601             // do not wait for async callback in case of error of full write
3602             mWriteAckSequence &= ~1;
3603             ALOG_ASSERT(mCallbackThread != 0);
3604             mCallbackThread->setWriteBlocked(mWriteAckSequence);
3605         }
3606     }
3607 
3608     mNumWrites++;
3609     mInWrite = false;
3610     if (mStandby) {
3611         mThreadMetrics.logBeginInterval();
3612         mThreadSnapshot.onBegin();
3613         mStandby = false;
3614     }
3615     return bytesWritten;
3616 }
3617 
3618 // startMelComputation_l() must be called with AudioFlinger::mutex() held
startMelComputation_l(const sp<audio_utils::MelProcessor> & processor)3619 void PlaybackThread::startMelComputation_l(
3620         const sp<audio_utils::MelProcessor>& processor)
3621 {
3622     auto outputSink = static_cast<AudioStreamOutSink*>(mOutputSink.get());
3623     if (outputSink != nullptr) {
3624         outputSink->startMelComputation(processor);
3625     }
3626 }
3627 
3628 // stopMelComputation_l() must be called with AudioFlinger::mutex() held
stopMelComputation_l()3629 void PlaybackThread::stopMelComputation_l()
3630 {
3631     auto outputSink = static_cast<AudioStreamOutSink*>(mOutputSink.get());
3632     if (outputSink != nullptr) {
3633         outputSink->stopMelComputation();
3634     }
3635 }
3636 
threadLoop_drain()3637 void PlaybackThread::threadLoop_drain()
3638 {
3639     bool supportsDrain = false;
3640     if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
3641         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
3642         if (mUseAsyncWrite) {
3643             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
3644             mDrainSequence |= 1;
3645             ALOG_ASSERT(mCallbackThread != 0);
3646             mCallbackThread->setDraining(mDrainSequence);
3647         }
3648         status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
3649         ALOGE_IF(result != OK, "Error when draining stream: %d", result);
3650     }
3651 }
3652 
threadLoop_exit()3653 void PlaybackThread::threadLoop_exit()
3654 {
3655     {
3656         audio_utils::lock_guard _l(mutex());
3657         for (size_t i = 0; i < mTracks.size(); i++) {
3658             sp<IAfTrack> track = mTracks[i];
3659             track->invalidate();
3660         }
3661         // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3662         // After we exit there are no more track changes sent to BatteryNotifier
3663         // because that requires an active threadLoop.
3664         // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3665         mActiveTracks.clear();
3666     }
3667 }
3668 
3669 /*
3670 The derived values that are cached:
3671  - mSinkBufferSize from frame count * frame size
3672  - mActiveSleepTimeUs from activeSleepTimeUs()
3673  - mIdleSleepTimeUs from idleSleepTimeUs()
3674  - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3675    kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3676  - maxPeriod from frame count and sample rate (MIXER only)
3677 
3678 The parameters that affect these derived values are:
3679  - frame count
3680  - frame size
3681  - sample rate
3682  - device type: A2DP or not
3683  - device latency
3684  - format: PCM or not
3685  - active sleep time
3686  - idle sleep time
3687 */
3688 
cacheParameters_l()3689 void PlaybackThread::cacheParameters_l()
3690 {
3691     mSinkBufferSize = mNormalFrameCount * mFrameSize;
3692     mActiveSleepTimeUs = activeSleepTimeUs();
3693     mIdleSleepTimeUs = idleSleepTimeUs();
3694 
3695     mStandbyDelayNs = getStandbyTimeInNanos();
3696 
3697     // make sure standby delay is not too short when connected to an A2DP sink to avoid
3698     // truncating audio when going to standby.
3699     if (!Intersection(outDeviceTypes_l(),  getAudioDeviceOutAllA2dpSet()).empty()) {
3700         if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3701             mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3702         }
3703     }
3704 }
3705 
invalidateTracks_l(audio_stream_type_t streamType)3706 bool PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3707 {
3708     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3709             this,  streamType, mTracks.size());
3710     bool trackMatch = false;
3711     size_t size = mTracks.size();
3712     for (size_t i = 0; i < size; i++) {
3713         sp<IAfTrack> t = mTracks[i];
3714         if (t->streamType() == streamType && t->isExternalTrack()) {
3715             t->invalidate();
3716             trackMatch = true;
3717         }
3718     }
3719     return trackMatch;
3720 }
3721 
invalidateTracks(audio_stream_type_t streamType)3722 void PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3723 {
3724     audio_utils::lock_guard _l(mutex());
3725     invalidateTracks_l(streamType);
3726 }
3727 
invalidateTracks(std::set<audio_port_handle_t> & portIds)3728 void PlaybackThread::invalidateTracks(std::set<audio_port_handle_t>& portIds) {
3729     audio_utils::lock_guard _l(mutex());
3730     invalidateTracks_l(portIds);
3731 }
3732 
invalidateTracks_l(std::set<audio_port_handle_t> & portIds)3733 bool PlaybackThread::invalidateTracks_l(std::set<audio_port_handle_t>& portIds) {
3734     bool trackMatch = false;
3735     const size_t size = mTracks.size();
3736     for (size_t i = 0; i < size; i++) {
3737         sp<IAfTrack> t = mTracks[i];
3738         if (t->isExternalTrack() && portIds.find(t->portId()) != portIds.end()) {
3739             t->invalidate();
3740             portIds.erase(t->portId());
3741             trackMatch = true;
3742         }
3743         if (portIds.empty()) {
3744             break;
3745         }
3746     }
3747     return trackMatch;
3748 }
3749 
3750 // getTrackById_l must be called with holding thread lock
getTrackById_l(audio_port_handle_t trackPortId)3751 IAfTrack* PlaybackThread::getTrackById_l(
3752         audio_port_handle_t trackPortId) {
3753     for (size_t i = 0; i < mTracks.size(); i++) {
3754         if (mTracks[i]->portId() == trackPortId) {
3755             return mTracks[i].get();
3756         }
3757     }
3758     return nullptr;
3759 }
3760 
addEffectChain_l(const sp<IAfEffectChain> & chain)3761 status_t PlaybackThread::addEffectChain_l(const sp<IAfEffectChain>& chain)
3762 {
3763     audio_session_t session = chain->sessionId();
3764     sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3765     float *buffer = nullptr; // only used for non global sessions
3766 
3767     if (mType == SPATIALIZER) {
3768         if (!audio_is_global_session(session)) {
3769             // player sessions on a spatializer output will use a dedicated input buffer and
3770             // will either output multi channel to mEffectBuffer if the track is spatilaized
3771             // or stereo to mPostSpatializerBuffer if not spatialized.
3772             uint32_t channelMask;
3773             bool isSessionSpatialized =
3774                 (hasAudioSession_l(session) & ThreadBase::SPATIALIZED_SESSION) != 0;
3775             if (isSessionSpatialized) {
3776                 channelMask = mMixerChannelMask;
3777             } else {
3778                 channelMask = mChannelMask;
3779             }
3780             size_t numSamples = mNormalFrameCount
3781                     * (audio_channel_count_from_out_mask(channelMask) + mHapticChannelCount);
3782             status_t result = mAfThreadCallback->getEffectsFactoryHal()->allocateBuffer(
3783                     numSamples * sizeof(float),
3784                     &halInBuffer);
3785             if (result != OK) return result;
3786 
3787             result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer(
3788                     isSessionSpatialized ? mEffectBuffer : mPostSpatializerBuffer,
3789                     isSessionSpatialized ? mEffectBufferSize : mPostSpatializerBufferSize,
3790                     &halOutBuffer);
3791             if (result != OK) return result;
3792 
3793             buffer = halInBuffer ? halInBuffer->audioBuffer()->f32 : buffer;
3794 
3795             ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3796                     buffer, session);
3797         } else {
3798             // A global session on a SPATIALIZER thread is either OUTPUT_STAGE or DEVICE
3799             // - OUTPUT_STAGE session uses the mEffectBuffer as input buffer and
3800             // mPostSpatializerBuffer as output buffer
3801             // - DEVICE session uses the mPostSpatializerBuffer as input and output buffer.
3802             status_t result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer(
3803                     mEffectBuffer, mEffectBufferSize, &halInBuffer);
3804             if (result != OK) return result;
3805             result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer(
3806                     mPostSpatializerBuffer, mPostSpatializerBufferSize, &halOutBuffer);
3807             if (result != OK) return result;
3808 
3809             if (session == AUDIO_SESSION_DEVICE) {
3810                 halInBuffer = halOutBuffer;
3811             }
3812         }
3813     } else {
3814         status_t result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer(
3815                 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3816                 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3817                 &halInBuffer);
3818         if (result != OK) return result;
3819         halOutBuffer = halInBuffer;
3820         ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3821         if (!audio_is_global_session(session)) {
3822             buffer = halInBuffer ? reinterpret_cast<float*>(halInBuffer->externalData())
3823                                  : buffer;
3824             // Only one effect chain can be present in direct output thread and it uses
3825             // the sink buffer as input
3826             if (mType != DIRECT) {
3827                 size_t numSamples = mNormalFrameCount
3828                         * (audio_channel_count_from_out_mask(mMixerChannelMask)
3829                                                              + mHapticChannelCount);
3830                 const status_t allocateStatus =
3831                         mAfThreadCallback->getEffectsFactoryHal()->allocateBuffer(
3832                         numSamples * sizeof(float),
3833                         &halInBuffer);
3834                 if (allocateStatus != OK) return allocateStatus;
3835 
3836                 buffer = halInBuffer ? halInBuffer->audioBuffer()->f32 : buffer;
3837                 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3838                         buffer, session);
3839             }
3840         }
3841     }
3842 
3843     if (!audio_is_global_session(session)) {
3844         // Attach all tracks with same session ID to this chain.
3845         for (size_t i = 0; i < mTracks.size(); ++i) {
3846             sp<IAfTrack> track = mTracks[i];
3847             if (session == track->sessionId()) {
3848                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p",
3849                         track.get(), buffer);
3850                 track->setMainBuffer(buffer);
3851                 chain->incTrackCnt();
3852             }
3853         }
3854 
3855         // indicate all active tracks in the chain
3856         for (const sp<IAfTrack>& track : mActiveTracks) {
3857             if (session == track->sessionId()) {
3858                 ALOGV("addEffectChain_l() activating track %p on session %d",
3859                         track.get(), session);
3860                 chain->incActiveTrackCnt();
3861             }
3862         }
3863     }
3864 
3865     chain->setThread(this);
3866     chain->setInBuffer(halInBuffer);
3867     chain->setOutBuffer(halOutBuffer);
3868     // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect
3869     // chains list in order to be processed last as it contains output device effects.
3870     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post
3871     // processing effects specific to an output stream before effects applied to all streams
3872     // routed to a given device.
3873     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3874     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3875     // after track specific effects and before output stage.
3876     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3877     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3878     // Effect chain for other sessions are inserted at beginning of effect
3879     // chains list to be processed before output mix effects. Relative order between other
3880     // sessions is not important.
3881     static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3882             AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX &&
3883             AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE,
3884             "audio_session_t constants misdefined");
3885     size_t size = mEffectChains.size();
3886     size_t i = 0;
3887     for (i = 0; i < size; i++) {
3888         if (mEffectChains[i]->sessionId() < session) {
3889             break;
3890         }
3891     }
3892     mEffectChains.insertAt(chain, i);
3893     checkSuspendOnAddEffectChain_l(chain);
3894 
3895     return NO_ERROR;
3896 }
3897 
removeEffectChain_l(const sp<IAfEffectChain> & chain)3898 size_t PlaybackThread::removeEffectChain_l(const sp<IAfEffectChain>& chain)
3899 {
3900     audio_session_t session = chain->sessionId();
3901 
3902     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3903 
3904     for (size_t i = 0; i < mEffectChains.size(); i++) {
3905         if (chain == mEffectChains[i]) {
3906             mEffectChains.removeAt(i);
3907             // detach all active tracks from the chain
3908             for (const sp<IAfTrack>& track : mActiveTracks) {
3909                 if (session == track->sessionId()) {
3910                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3911                             chain.get(), session);
3912                     chain->decActiveTrackCnt();
3913                 }
3914             }
3915 
3916             // detach all tracks with same session ID from this chain
3917             for (size_t j = 0; j < mTracks.size(); ++j) {
3918                 sp<IAfTrack> track = mTracks[j];
3919                 if (session == track->sessionId()) {
3920                     track->setMainBuffer(reinterpret_cast<float*>(mSinkBuffer));
3921                     chain->decTrackCnt();
3922                 }
3923             }
3924             break;
3925         }
3926     }
3927     return mEffectChains.size();
3928 }
3929 
attachAuxEffect(const sp<IAfTrack> & track,int EffectId)3930 status_t PlaybackThread::attachAuxEffect(
3931         const sp<IAfTrack>& track, int EffectId)
3932 {
3933     audio_utils::lock_guard _l(mutex());
3934     return attachAuxEffect_l(track, EffectId);
3935 }
3936 
attachAuxEffect_l(const sp<IAfTrack> & track,int EffectId)3937 status_t PlaybackThread::attachAuxEffect_l(
3938         const sp<IAfTrack>& track, int EffectId)
3939 {
3940     status_t status = NO_ERROR;
3941 
3942     if (EffectId == 0) {
3943         track->setAuxBuffer(0, NULL);
3944     } else {
3945         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3946         sp<IAfEffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3947         if (effect != 0) {
3948             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3949                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3950             } else {
3951                 status = INVALID_OPERATION;
3952             }
3953         } else {
3954             status = BAD_VALUE;
3955         }
3956     }
3957     return status;
3958 }
3959 
detachAuxEffect_l(int effectId)3960 void PlaybackThread::detachAuxEffect_l(int effectId)
3961 {
3962     for (size_t i = 0; i < mTracks.size(); ++i) {
3963         sp<IAfTrack> track = mTracks[i];
3964         if (track->auxEffectId() == effectId) {
3965             attachAuxEffect_l(track, 0);
3966         }
3967     }
3968 }
3969 
threadLoop()3970 bool PlaybackThread::threadLoop()
3971 NO_THREAD_SAFETY_ANALYSIS  // manual locking of AudioFlinger
3972 {
3973     aflog::setThreadWriter(mNBLogWriter.get());
3974 
3975     if (mType == SPATIALIZER) {
3976         const pid_t tid = getTid();
3977         if (tid == -1) {  // odd: we are here, we must be a running thread.
3978             ALOGW("%s: Cannot update Spatializer mixer thread priority, no tid", __func__);
3979         } else {
3980             const int priorityBoost = requestSpatializerPriority(getpid(), tid);
3981             if (priorityBoost > 0) {
3982                 stream()->setHalThreadPriority(priorityBoost);
3983             }
3984         }
3985     } else if (property_get_bool("ro.boot.container", false /* default_value */)) {
3986         // In ARC experiments (b/73091832), the latency under using CFS scheduler with any priority
3987         // is not enough for PlaybackThread to process audio data in time. We request the lowest
3988         // real-time priority, SCHED_FIFO=1, for PlaybackThread in ARC. ro.boot.container is true
3989         // only on ARC.
3990         const pid_t tid = getTid();
3991         if (tid == -1) {
3992             ALOGW("%s: Cannot update PlaybackThread priority for ARC, no tid", __func__);
3993         } else {
3994             const status_t status = requestPriority(getpid(),
3995                                                     tid,
3996                                                     kPriorityPlaybackThreadArc,
3997                                                     false /* isForApp */,
3998                                                     true /* asynchronous */);
3999             if (status != OK) {
4000                 ALOGW("%s: Cannot update PlaybackThread priority for ARC, status %d", __func__,
4001                         status);
4002             } else {
4003                 stream()->setHalThreadPriority(kPriorityPlaybackThreadArc);
4004             }
4005         }
4006     }
4007 
4008     Vector<sp<IAfTrack>> tracksToRemove;
4009 
4010     mStandbyTimeNs = systemTime();
4011     int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
4012 
4013     // MIXER
4014     nsecs_t lastWarning = 0;
4015 
4016     // DUPLICATING
4017     // FIXME could this be made local to while loop?
4018     writeFrames = 0;
4019 
4020     cacheParameters_l();
4021     mSleepTimeUs = mIdleSleepTimeUs;
4022 
4023     if (mType == MIXER || mType == SPATIALIZER) {
4024         sleepTimeShift = 0;
4025     }
4026 
4027     CpuStats cpuStats;
4028     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
4029 
4030     acquireWakeLock();
4031 
4032     // mNBLogWriter logging APIs can only be called by a single thread, typically the
4033     // thread associated with this PlaybackThread.
4034     // If you want to share the mNBLogWriter with other threads (for example, binder threads)
4035     // then all such threads must agree to hold a common mutex before logging.
4036     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
4037     // and then that string will be logged at the next convenient opportunity.
4038     // See reference to logString below.
4039     const char *logString = NULL;
4040 
4041     // Estimated time for next buffer to be written to hal. This is used only on
4042     // suspended mode (for now) to help schedule the wait time until next iteration.
4043     nsecs_t timeLoopNextNs = 0;
4044 
4045     checkSilentMode_l();
4046 
4047     audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
4048 
4049     sendCheckOutputStageEffectsEvent();
4050 
4051     // loopCount is used for statistics and diagnostics.
4052     for (int64_t loopCount = 0; !exitPending(); ++loopCount)
4053     {
4054         // Log merge requests are performed during AudioFlinger binder transactions, but
4055         // that does not cover audio playback. It's requested here for that reason.
4056         mAfThreadCallback->requestLogMerge();
4057 
4058         cpuStats.sample(myName);
4059 
4060         Vector<sp<IAfEffectChain>> effectChains;
4061         audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
4062         bool isHapticSessionSpatialized = false;
4063         std::vector<sp<IAfTrack>> activeTracks;
4064 
4065         // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
4066         //
4067         // Note: we access outDeviceTypes() outside of mutex().
4068         if (isMsdDevice() && outDeviceTypes_l().count(AUDIO_DEVICE_OUT_BUS) != 0) {
4069             // Here, we try for the AF lock, but do not block on it as the latency
4070             // is more informational.
4071             if (mAfThreadCallback->mutex().try_lock()) {
4072                 std::vector<SoftwarePatch> swPatches;
4073                 double latencyMs = 0.; // not required; initialized for clang-tidy
4074                 status_t status = INVALID_OPERATION;
4075                 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
4076                 if (mAfThreadCallback->getPatchPanel()->getDownstreamSoftwarePatches(
4077                                 id(), &swPatches) == OK
4078                         && swPatches.size() > 0) {
4079                         status = swPatches[0].getLatencyMs_l(&latencyMs);
4080                         downstreamPatchHandle = swPatches[0].getPatchHandle();
4081                 }
4082                 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
4083                     mDownstreamLatencyStatMs.reset();
4084                     lastDownstreamPatchHandle = downstreamPatchHandle;
4085                 }
4086                 if (status == OK) {
4087                     // verify downstream latency (we assume a max reasonable
4088                     // latency of 5 seconds).
4089                     const double minLatency = 0., maxLatency = 5000.;
4090                     if (latencyMs >= minLatency && latencyMs <= maxLatency) {
4091                         ALOGVV("new downstream latency %lf ms", latencyMs);
4092                     } else {
4093                         ALOGD("out of range downstream latency %lf ms", latencyMs);
4094                         latencyMs = std::clamp(latencyMs, minLatency, maxLatency);
4095                     }
4096                     mDownstreamLatencyStatMs.add(latencyMs);
4097                 }
4098                 mAfThreadCallback->mutex().unlock();
4099             }
4100         } else {
4101             if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
4102                 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
4103                 mDownstreamLatencyStatMs.reset();
4104                 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
4105             }
4106         }
4107 
4108         if (mCheckOutputStageEffects.exchange(false)) {
4109             checkOutputStageEffects();
4110         }
4111 
4112         MetadataUpdate metadataUpdate;
4113         { // scope for mutex()
4114 
4115             audio_utils::unique_lock _l(mutex());
4116 
4117             processConfigEvents_l();
4118             if (mCheckOutputStageEffects.load()) {
4119                 continue;
4120             }
4121 
4122             // See comment at declaration of logString for why this is done under mutex()
4123             if (logString != NULL) {
4124                 mNBLogWriter->logTimestamp();
4125                 mNBLogWriter->log(logString);
4126                 logString = NULL;
4127             }
4128 
4129             collectTimestamps_l();
4130 
4131             saveOutputTracks();
4132             if (mSignalPending) {
4133                 // A signal was raised while we were unlocked
4134                 mSignalPending = false;
4135             } else if (waitingAsyncCallback_l()) {
4136                 if (exitPending()) {
4137                     break;
4138                 }
4139                 bool released = false;
4140                 if (!keepWakeLock()) {
4141                     releaseWakeLock_l();
4142                     released = true;
4143                 }
4144 
4145                 const int64_t waitNs = computeWaitTimeNs_l();
4146                 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
4147                 std::cv_status cvstatus =
4148                         mWaitWorkCV.wait_for(_l, std::chrono::nanoseconds(waitNs));
4149                 if (cvstatus == std::cv_status::timeout) {
4150                     mSignalPending = true; // if timeout recheck everything
4151                 }
4152                 ALOGV("async completion/wake");
4153                 if (released) {
4154                     acquireWakeLock_l();
4155                 }
4156                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4157                 mSleepTimeUs = 0;
4158 
4159                 continue;
4160             }
4161             if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
4162                                    isSuspended()) {
4163                 // put audio hardware into standby after short delay
4164                 if (shouldStandby_l()) {
4165 
4166                     threadLoop_standby();
4167 
4168                     // This is where we go into standby
4169                     if (!mStandby) {
4170                         LOG_AUDIO_STATE();
4171                         mThreadMetrics.logEndInterval();
4172                         mThreadSnapshot.onEnd();
4173                         setStandby_l();
4174                     }
4175                     sendStatistics(false /* force */);
4176                 }
4177 
4178                 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
4179                     // we're about to wait, flush the binder command buffer
4180                     IPCThreadState::self()->flushCommands();
4181 
4182                     clearOutputTracks();
4183 
4184                     if (exitPending()) {
4185                         break;
4186                     }
4187 
4188                     releaseWakeLock_l();
4189                     // wait until we have something to do...
4190                     ALOGV("%s going to sleep", myName.c_str());
4191                     mWaitWorkCV.wait(_l);
4192                     ALOGV("%s waking up", myName.c_str());
4193                     acquireWakeLock_l();
4194 
4195                     mMixerStatus = MIXER_IDLE;
4196                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
4197                     mBytesWritten = 0;
4198                     mBytesRemaining = 0;
4199                     checkSilentMode_l();
4200 
4201                     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4202                     mSleepTimeUs = mIdleSleepTimeUs;
4203                     if (mType == MIXER || mType == SPATIALIZER) {
4204                         sleepTimeShift = 0;
4205                     }
4206 
4207                     continue;
4208                 }
4209             }
4210             // mMixerStatusIgnoringFastTracks is also updated internally
4211             mMixerStatus = prepareTracks_l(&tracksToRemove);
4212 
4213             mActiveTracks.updatePowerState_l(this);
4214 
4215             metadataUpdate = updateMetadata_l();
4216 
4217             // Acquire a local copy of active tracks with lock (release w/o lock).
4218             //
4219             // Control methods on the track acquire the ThreadBase lock (e.g. start()
4220             // stop(), pause(), etc.), but the threadLoop is entitled to call audio
4221             // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
4222             activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
4223 
4224             setHalLatencyMode_l();
4225 
4226             // updateTeePatches_l will acquire the ThreadBase_Mutex of other threads,
4227             // so this is done before we lock our effect chains.
4228             for (const auto& track : mActiveTracks) {
4229                 track->updateTeePatches_l();
4230             }
4231 
4232             // signal actual start of output stream when the render position reported by
4233             // the kernel starts moving.
4234             if (!mHalStarted && ((isSuspended() && (mBytesWritten != 0)) || (!mStandby
4235                     && (mKernelPositionOnStandby
4236                             != mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL])))) {
4237                 mHalStarted = true;
4238                 mWaitHalStartCV.notify_all();
4239             }
4240 
4241             // prevent any changes in effect chain list and in each effect chain
4242             // during mixing and effect process as the audio buffers could be deleted
4243             // or modified if an effect is created or deleted
4244             lockEffectChains_l(effectChains);
4245 
4246             // Determine which session to pick up haptic data.
4247             // This must be done under the same lock as prepareTracks_l().
4248             // The haptic data from the effect is at a higher priority than the one from track.
4249             // TODO: Write haptic data directly to sink buffer when mixing.
4250             if (mHapticChannelCount > 0) {
4251                 for (const auto& track : mActiveTracks) {
4252                     sp<IAfEffectChain> effectChain = getEffectChain_l(track->sessionId());
4253                     if (effectChain != nullptr
4254                             && effectChain->containsHapticGeneratingEffect_l()) {
4255                         activeHapticSessionId = track->sessionId();
4256                         isHapticSessionSpatialized =
4257                                 mType == SPATIALIZER && track->isSpatialized();
4258                         break;
4259                     }
4260                     if (activeHapticSessionId == AUDIO_SESSION_NONE
4261                             && track->getHapticPlaybackEnabled()) {
4262                         activeHapticSessionId = track->sessionId();
4263                         isHapticSessionSpatialized =
4264                                 mType == SPATIALIZER && track->isSpatialized();
4265                     }
4266                 }
4267             }
4268         } // mutex() scope ends
4269 
4270         if (mBytesRemaining == 0) {
4271             mCurrentWriteLength = 0;
4272             if (mMixerStatus == MIXER_TRACKS_READY) {
4273                 // threadLoop_mix() sets mCurrentWriteLength
4274                 threadLoop_mix();
4275             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
4276                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
4277                 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
4278                 // must be written to HAL
4279                 threadLoop_sleepTime();
4280                 if (mSleepTimeUs == 0) {
4281                     mCurrentWriteLength = mSinkBufferSize;
4282 
4283                     // Tally underrun frames as we are inserting 0s here.
4284                     for (const auto& track : activeTracks) {
4285                         if (track->fillingStatus() == IAfTrack::FS_ACTIVE
4286                                 && !track->isStopped()
4287                                 && !track->isPaused()
4288                                 && !track->isTerminated()) {
4289                             ALOGV("%s: track(%d) %s underrun due to thread sleep of %zu frames",
4290                                     __func__, track->id(), track->getTrackStateAsString(),
4291                                     mNormalFrameCount);
4292                             track->audioTrackServerProxy()->tallyUnderrunFrames(
4293                                     mNormalFrameCount);
4294                         }
4295                     }
4296                 }
4297             }
4298             // Either threadLoop_mix() or threadLoop_sleepTime() should have set
4299             // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
4300             // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
4301             // or mSinkBuffer (if there are no effects and there is no data already copied to
4302             // mSinkBuffer).
4303             //
4304             // This is done pre-effects computation; if effects change to
4305             // support higher precision, this needs to move.
4306             //
4307             // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
4308             // TODO use mSleepTimeUs == 0 as an additional condition.
4309             uint32_t mixerChannelCount = mEffectBufferValid ?
4310                         audio_channel_count_from_out_mask(mMixerChannelMask) : mChannelCount;
4311             if (mMixerBufferValid && (mEffectBufferValid || !mHasDataCopiedToSinkBuffer)) {
4312                 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
4313                 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
4314 
4315                 // Apply mono blending and balancing if the effect buffer is not valid. Otherwise,
4316                 // do these processes after effects are applied.
4317                 if (!mEffectBufferValid) {
4318                     // mono blend occurs for mixer threads only (not direct or offloaded)
4319                     // and is handled here if we're going directly to the sink.
4320                     if (requireMonoBlend()) {
4321                         mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount,
4322                                 mNormalFrameCount, true /*limit*/);
4323                     }
4324 
4325                     if (!hasFastMixer()) {
4326                         // Balance must take effect after mono conversion.
4327                         // We do it here if there is no FastMixer.
4328                         // mBalance detects zero balance within the class for speed
4329                         // (not needed here).
4330                         mBalance.setBalance(mMasterBalance.load());
4331                         mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
4332                     }
4333                 }
4334 
4335                 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
4336                         mNormalFrameCount * (mixerChannelCount + mHapticChannelCount));
4337 
4338                 // If we're going directly to the sink and there are haptic channels,
4339                 // we should adjust channels as the sample data is partially interleaved
4340                 // in this case.
4341                 if (!mEffectBufferValid && mHapticChannelCount > 0) {
4342                     adjust_channels_non_destructive(buffer, mChannelCount, buffer,
4343                             mChannelCount + mHapticChannelCount,
4344                             audio_bytes_per_sample(format),
4345                             audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
4346                 }
4347             }
4348 
4349             mBytesRemaining = mCurrentWriteLength;
4350             if (isSuspended()) {
4351                 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
4352                 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
4353                 const size_t framesRemaining = mBytesRemaining / mFrameSize;
4354                 mBytesWritten += mBytesRemaining;
4355                 mFramesWritten += framesRemaining;
4356                 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
4357                 mBytesRemaining = 0;
4358             }
4359 
4360             // only process effects if we're going to write
4361             if (mSleepTimeUs == 0 && mType != OFFLOAD) {
4362                 for (size_t i = 0; i < effectChains.size(); i ++) {
4363                     effectChains[i]->process_l();
4364                     // TODO: Write haptic data directly to sink buffer when mixing.
4365                     if (activeHapticSessionId != AUDIO_SESSION_NONE
4366                             && activeHapticSessionId == effectChains[i]->sessionId()) {
4367                         // Haptic data is active in this case, copy it directly from
4368                         // in buffer to out buffer.
4369                         uint32_t hapticSessionChannelCount = mEffectBufferValid ?
4370                                             audio_channel_count_from_out_mask(mMixerChannelMask) :
4371                                             mChannelCount;
4372                         if (mType == SPATIALIZER && !isHapticSessionSpatialized) {
4373                             hapticSessionChannelCount = mChannelCount;
4374                         }
4375 
4376                         const size_t audioBufferSize = mNormalFrameCount
4377                             * audio_bytes_per_frame(hapticSessionChannelCount,
4378                                                     AUDIO_FORMAT_PCM_FLOAT);
4379                         memcpy_by_audio_format(
4380                                 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
4381                                 AUDIO_FORMAT_PCM_FLOAT,
4382                                 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
4383                                 AUDIO_FORMAT_PCM_FLOAT, mNormalFrameCount * mHapticChannelCount);
4384                     }
4385                 }
4386             }
4387         }
4388         // Process effect chains for offloaded thread even if no audio
4389         // was read from audio track: process only updates effect state
4390         // and thus does have to be synchronized with audio writes but may have
4391         // to be called while waiting for async write callback
4392         if (mType == OFFLOAD) {
4393             for (size_t i = 0; i < effectChains.size(); i ++) {
4394                 effectChains[i]->process_l();
4395             }
4396         }
4397 
4398         // Only if the Effects buffer is enabled and there is data in the
4399         // Effects buffer (buffer valid), we need to
4400         // copy into the sink buffer.
4401         // TODO use mSleepTimeUs == 0 as an additional condition.
4402         if (mEffectBufferValid && !mHasDataCopiedToSinkBuffer) {
4403             //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
4404             void *effectBuffer = (mType == SPATIALIZER) ? mPostSpatializerBuffer : mEffectBuffer;
4405             if (requireMonoBlend()) {
4406                 mono_blend(effectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
4407                            true /*limit*/);
4408             }
4409 
4410             if (!hasFastMixer()) {
4411                 // Balance must take effect after mono conversion.
4412                 // We do it here if there is no FastMixer.
4413                 // mBalance detects zero balance within the class for speed (not needed here).
4414                 mBalance.setBalance(mMasterBalance.load());
4415                 mBalance.process((float *)effectBuffer, mNormalFrameCount);
4416             }
4417 
4418             // for SPATIALIZER thread, Move haptics channels from mEffectBuffer to
4419             // mPostSpatializerBuffer if the haptics track is spatialized.
4420             // Otherwise, the haptics channels are already in mPostSpatializerBuffer.
4421             // For other thread types, the haptics channels are already in mEffectBuffer.
4422             if (mType == SPATIALIZER && isHapticSessionSpatialized) {
4423                 const size_t srcBufferSize = mNormalFrameCount *
4424                         audio_bytes_per_frame(audio_channel_count_from_out_mask(mMixerChannelMask),
4425                                               mEffectBufferFormat);
4426                 const size_t dstBufferSize = mNormalFrameCount
4427                         * audio_bytes_per_frame(mChannelCount, mEffectBufferFormat);
4428 
4429                 memcpy_by_audio_format((uint8_t*)mPostSpatializerBuffer + dstBufferSize,
4430                                        mEffectBufferFormat,
4431                                        (uint8_t*)mEffectBuffer + srcBufferSize,
4432                                        mEffectBufferFormat,
4433                                        mNormalFrameCount * mHapticChannelCount);
4434             }
4435             const size_t framesToCopy = mNormalFrameCount * (mChannelCount + mHapticChannelCount);
4436             if (mFormat == AUDIO_FORMAT_PCM_FLOAT &&
4437                     mEffectBufferFormat == AUDIO_FORMAT_PCM_FLOAT) {
4438                 // Clamp PCM float values more than this distance from 0 to insulate
4439                 // a HAL which doesn't handle NaN correctly.
4440                 static constexpr float HAL_FLOAT_SAMPLE_LIMIT = 2.0f;
4441                 memcpy_to_float_from_float_with_clamping(static_cast<float*>(mSinkBuffer),
4442                         static_cast<const float*>(effectBuffer),
4443                         framesToCopy, HAL_FLOAT_SAMPLE_LIMIT /* absMax */);
4444             } else {
4445                 memcpy_by_audio_format(mSinkBuffer, mFormat,
4446                         effectBuffer, mEffectBufferFormat, framesToCopy);
4447             }
4448             // The sample data is partially interleaved when haptic channels exist,
4449             // we need to adjust channels here.
4450             if (mHapticChannelCount > 0) {
4451                 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
4452                         mChannelCount + mHapticChannelCount,
4453                         audio_bytes_per_sample(mFormat),
4454                         audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
4455             }
4456         }
4457 
4458         // enable changes in effect chain
4459         unlockEffectChains(effectChains);
4460 
4461         if (!metadataUpdate.playbackMetadataUpdate.empty()) {
4462             mAfThreadCallback->getMelReporter()->updateMetadataForCsd(id(),
4463                     metadataUpdate.playbackMetadataUpdate);
4464         }
4465 
4466         if (!waitingAsyncCallback()) {
4467             // mSleepTimeUs == 0 means we must write to audio hardware
4468             if (mSleepTimeUs == 0) {
4469                 ssize_t ret = 0;
4470                 // writePeriodNs is updated >= 0 when ret > 0.
4471                 int64_t writePeriodNs = -1;
4472                 if (mBytesRemaining) {
4473                     // FIXME rewrite to reduce number of system calls
4474                     const int64_t lastIoBeginNs = systemTime();
4475                     ret = threadLoop_write();
4476                     const int64_t lastIoEndNs = systemTime();
4477                     if (ret < 0) {
4478                         mBytesRemaining = 0;
4479                     } else if (ret > 0) {
4480                         mBytesWritten += ret;
4481                         mBytesRemaining -= ret;
4482                         const int64_t frames = ret / mFrameSize;
4483                         mFramesWritten += frames;
4484 
4485                         writePeriodNs = lastIoEndNs - mLastIoEndNs;
4486                         // process information relating to write time.
4487                         if (audio_has_proportional_frames(mFormat)) {
4488                             // we are in a continuous mixing cycle
4489                             if (mMixerStatus == MIXER_TRACKS_READY &&
4490                                     loopCount == lastLoopCountWritten + 1) {
4491 
4492                                 const double jitterMs =
4493                                         TimestampVerifier<int64_t, int64_t>::computeJitterMs(
4494                                                 {frames, writePeriodNs},
4495                                                 {0, 0} /* lastTimestamp */, mSampleRate);
4496                                 const double processMs =
4497                                        (lastIoBeginNs - mLastIoEndNs) * 1e-6;
4498 
4499                                 audio_utils::lock_guard _l(mutex());
4500                                 mIoJitterMs.add(jitterMs);
4501                                 mProcessTimeMs.add(processMs);
4502 
4503                                 if (mPipeSink.get() != nullptr) {
4504                                     // Using the Monopipe availableToWrite, we estimate the current
4505                                     // buffer size.
4506                                     MonoPipe* monoPipe = static_cast<MonoPipe*>(mPipeSink.get());
4507                                     const ssize_t
4508                                             availableToWrite = mPipeSink->availableToWrite();
4509                                     const size_t pipeFrames = monoPipe->maxFrames();
4510                                     const size_t
4511                                             remainingFrames = pipeFrames - max(availableToWrite, 0);
4512                                     mMonopipePipeDepthStats.add(remainingFrames);
4513                                 }
4514                             }
4515 
4516                             // write blocked detection
4517                             const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
4518                             if ((mType == MIXER || mType == SPATIALIZER)
4519                                     && deltaWriteNs > maxPeriod) {
4520                                 mNumDelayedWrites++;
4521                                 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
4522                                     ATRACE_NAME("underrun");
4523                                     ALOGW("write blocked for %lld msecs, "
4524                                             "%d delayed writes, thread %d",
4525                                             (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
4526                                             mNumDelayedWrites, mId);
4527                                     lastWarning = lastIoEndNs;
4528                                 }
4529                             }
4530                         }
4531                         // update timing info.
4532                         mLastIoBeginNs = lastIoBeginNs;
4533                         mLastIoEndNs = lastIoEndNs;
4534                         lastLoopCountWritten = loopCount;
4535                     }
4536                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
4537                         (mMixerStatus == MIXER_DRAIN_ALL)) {
4538                     threadLoop_drain();
4539                 }
4540                 if ((mType == MIXER || mType == SPATIALIZER) && !mStandby) {
4541 
4542                     if (mThreadThrottle
4543                             && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
4544                             && writePeriodNs > 0) {               // we have write period info
4545                         // Limit MixerThread data processing to no more than twice the
4546                         // expected processing rate.
4547                         //
4548                         // This helps prevent underruns with NuPlayer and other applications
4549                         // which may set up buffers that are close to the minimum size, or use
4550                         // deep buffers, and rely on a double-buffering sleep strategy to fill.
4551                         //
4552                         // The throttle smooths out sudden large data drains from the device,
4553                         // e.g. when it comes out of standby, which often causes problems with
4554                         // (1) mixer threads without a fast mixer (which has its own warm-up)
4555                         // (2) minimum buffer sized tracks (even if the track is full,
4556                         //     the app won't fill fast enough to handle the sudden draw).
4557                         //
4558                         // Total time spent in last processing cycle equals time spent in
4559                         // 1. threadLoop_write, as well as time spent in
4560                         // 2. threadLoop_mix (significant for heavy mixing, especially
4561                         //                    on low tier processors)
4562 
4563                         // it's OK if deltaMs is an overestimate.
4564 
4565                         const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
4566 
4567                         const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
4568                         if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
4569                             mThreadMetrics.logThrottleMs((double)throttleMs);
4570 
4571                             usleep(throttleMs * 1000);
4572                             // notify of throttle start on verbose log
4573                             ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
4574                                     "mixer(%p) throttle begin:"
4575                                     " ret(%zd) deltaMs(%d) requires sleep %d ms",
4576                                     this, ret, deltaMs, throttleMs);
4577                             mThreadThrottleTimeMs += throttleMs;
4578                             // Throttle must be attributed to the previous mixer loop's write time
4579                             // to allow back-to-back throttling.
4580                             // This also ensures proper timing statistics.
4581                             mLastIoEndNs = systemTime();  // we fetch the write end time again.
4582                         } else {
4583                             uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
4584                             if (diff > 0) {
4585                                 // notify of throttle end on debug log
4586                                 // but prevent spamming for bluetooth
4587                                 ALOGD_IF(!isSingleDeviceType(
4588                                                  outDeviceTypes_l(), audio_is_a2dp_out_device) &&
4589                                          !isSingleDeviceType(
4590                                                  outDeviceTypes_l(),
4591                                                  audio_is_hearing_aid_out_device),
4592                                         "mixer(%p) throttle end: throttle time(%u)", this, diff);
4593                                 mThreadThrottleEndMs = mThreadThrottleTimeMs;
4594                             }
4595                         }
4596                     }
4597                 }
4598 
4599             } else {
4600                 ATRACE_BEGIN("sleep");
4601                 audio_utils::unique_lock _l(mutex());
4602                 // suspended requires accurate metering of sleep time.
4603                 if (isSuspended()) {
4604                     // advance by expected sleepTime
4605                     timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
4606                     const nsecs_t nowNs = systemTime();
4607 
4608                     // compute expected next time vs current time.
4609                     // (negative deltas are treated as delays).
4610                     nsecs_t deltaNs = timeLoopNextNs - nowNs;
4611                     if (deltaNs < -kMaxNextBufferDelayNs) {
4612                         // Delays longer than the max allowed trigger a reset.
4613                         ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
4614                         deltaNs = microseconds((nsecs_t)mSleepTimeUs);
4615                         timeLoopNextNs = nowNs + deltaNs;
4616                     } else if (deltaNs < 0) {
4617                         // Delays within the max delay allowed: zero the delta/sleepTime
4618                         // to help the system catch up in the next iteration(s)
4619                         ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
4620                         deltaNs = 0;
4621                     }
4622                     // update sleep time (which is >= 0)
4623                     mSleepTimeUs = deltaNs / 1000;
4624                 }
4625                 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
4626                     mWaitWorkCV.wait_for(_l, std::chrono::microseconds(mSleepTimeUs));
4627                 }
4628                 ATRACE_END();
4629             }
4630         }
4631 
4632         // Finally let go of removed track(s), without the lock held
4633         // since we can't guarantee the destructors won't acquire that
4634         // same lock.  This will also mutate and push a new fast mixer state.
4635         threadLoop_removeTracks(tracksToRemove);
4636         tracksToRemove.clear();
4637 
4638         // FIXME I don't understand the need for this here;
4639         //       it was in the original code but maybe the
4640         //       assignment in saveOutputTracks() makes this unnecessary?
4641         clearOutputTracks();
4642 
4643         // Effect chains will be actually deleted here if they were removed from
4644         // mEffectChains list during mixing or effects processing
4645         effectChains.clear();
4646 
4647         // FIXME Note that the above .clear() is no longer necessary since effectChains
4648         // is now local to this block, but will keep it for now (at least until merge done).
4649     }
4650 
4651     threadLoop_exit();
4652 
4653     if (!mStandby) {
4654         threadLoop_standby();
4655         setStandby();
4656     }
4657 
4658     releaseWakeLock();
4659 
4660     ALOGV("Thread %p type %d exiting", this, mType);
4661     return false;
4662 }
4663 
collectTimestamps_l()4664 void PlaybackThread::collectTimestamps_l()
4665 {
4666     if (mStandby) {
4667         mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush());
4668         return;
4669     } else if (mHwPaused) {
4670         mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS);
4671         return;
4672     }
4673 
4674     // Gather the framesReleased counters for all active tracks,
4675     // and associate with the sink frames written out.  We need
4676     // this to convert the sink timestamp to the track timestamp.
4677     bool kernelLocationUpdate = false;
4678     ExtendedTimestamp timestamp; // use private copy to fetch
4679 
4680     // Always query HAL timestamp and update timestamp verifier. In standby or pause,
4681     // HAL may be draining some small duration buffered data for fade out.
4682     if (threadloop_getHalTimestamp_l(&timestamp) == OK) {
4683         mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
4684                 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4685                 mSampleRate);
4686 
4687         if (isTimestampCorrectionEnabled_l()) {
4688             ALOGVV("TS_BEFORE: %d %lld %lld", id(),
4689                     (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4690                     (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
4691             auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
4692             timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4693                     = correctedTimestamp.mFrames;
4694             timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
4695                     = correctedTimestamp.mTimeNs;
4696             ALOGVV("TS_AFTER: %d %lld %lld", id(),
4697                     (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4698                     (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
4699 
4700             // Note: Downstream latency only added if timestamp correction enabled.
4701             if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
4702                 const int64_t newPosition =
4703                         timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4704                         - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
4705                 // prevent retrograde
4706                 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
4707                         newPosition,
4708                         (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4709                                 - mSuspendedFrames));
4710             }
4711         }
4712 
4713         // We always fetch the timestamp here because often the downstream
4714         // sink will block while writing.
4715 
4716         // We keep track of the last valid kernel position in case we are in underrun
4717         // and the normal mixer period is the same as the fast mixer period, or there
4718         // is some error from the HAL.
4719         if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
4720             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
4721                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
4722             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
4723                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4724 
4725             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
4726                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
4727             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
4728                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
4729         }
4730 
4731         if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
4732             kernelLocationUpdate = true;
4733         } else {
4734             ALOGVV("getTimestamp error - no valid kernel position");
4735         }
4736 
4737         // copy over kernel info
4738         mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
4739                 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4740                 + mSuspendedFrames; // add frames discarded when suspended
4741         mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
4742                 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4743     } else {
4744         mTimestampVerifier.error();
4745     }
4746 
4747     // mFramesWritten for non-offloaded tracks are contiguous
4748     // even after standby() is called. This is useful for the track frame
4749     // to sink frame mapping.
4750     bool serverLocationUpdate = false;
4751     if (mFramesWritten != mLastFramesWritten) {
4752         serverLocationUpdate = true;
4753         mLastFramesWritten = mFramesWritten;
4754     }
4755     // Only update timestamps if there is a meaningful change.
4756     // Either the kernel timestamp must be valid or we have written something.
4757     if (kernelLocationUpdate || serverLocationUpdate) {
4758         if (serverLocationUpdate) {
4759             // use the time before we called the HAL write - it is a bit more accurate
4760             // to when the server last read data than the current time here.
4761             //
4762             // If we haven't written anything, mLastIoBeginNs will be -1
4763             // and we use systemTime().
4764             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
4765             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
4766                     ? systemTime() : (int64_t)mLastIoBeginNs;
4767         }
4768 
4769         for (const sp<IAfTrack>& t : mActiveTracks) {
4770             if (!t->isFastTrack()) {
4771                 t->updateTrackFrameInfo(
4772                         t->audioTrackServerProxy()->framesReleased(),
4773                         mFramesWritten,
4774                         mSampleRate,
4775                         mTimestamp);
4776             }
4777         }
4778     }
4779 
4780     if (audio_has_proportional_frames(mFormat)) {
4781         const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
4782         if (latencyMs != 0.) { // note 0. means timestamp is empty.
4783             mLatencyMs.add(latencyMs);
4784         }
4785     }
4786 #if 0
4787     // logFormat example
4788     if (z % 100 == 0) {
4789         timespec ts;
4790         clock_gettime(CLOCK_MONOTONIC, &ts);
4791         LOGT("This is an integer %d, this is a float %f, this is my "
4792             "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
4793         LOGT("A deceptive null-terminated string %\0");
4794     }
4795     ++z;
4796 #endif
4797 }
4798 
4799 // removeTracks_l() must be called with ThreadBase::mutex() held
removeTracks_l(const Vector<sp<IAfTrack>> & tracksToRemove)4800 void PlaybackThread::removeTracks_l(const Vector<sp<IAfTrack>>& tracksToRemove)
4801 NO_THREAD_SAFETY_ANALYSIS  // release and re-acquire mutex()
4802 {
4803     if (tracksToRemove.empty()) return;
4804 
4805     // Block all incoming TrackHandle requests until we are finished with the release.
4806     setThreadBusy_l(true);
4807 
4808     for (const auto& track : tracksToRemove) {
4809         ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
4810         sp<IAfEffectChain> chain = getEffectChain_l(track->sessionId());
4811         if (chain != 0) {
4812             ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
4813                     __func__, track->id(), chain.get(), track->sessionId());
4814             chain->decActiveTrackCnt();
4815         }
4816 
4817         // If an external client track, inform APM we're no longer active, and remove if needed.
4818         // Since the track is active, we do it here instead of TrackBase::destroy().
4819         if (track->isExternalTrack()) {
4820             mutex().unlock();
4821             AudioSystem::stopOutput(track->portId());
4822             if (track->isTerminated()) {
4823                 AudioSystem::releaseOutput(track->portId());
4824             }
4825             mutex().lock();
4826         }
4827         if (mHapticChannelCount > 0 &&
4828                 ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
4829                         || (chain != nullptr && chain->containsHapticGeneratingEffect()))) {
4830             mutex().unlock();
4831             // Unlock due to VibratorService will lock for this call and will
4832             // call Tracks.mute/unmute which also require thread's lock.
4833             afutils::onExternalVibrationStop(track->getExternalVibration());
4834             mutex().lock();
4835 
4836             // When the track is stop, set the haptic intensity as MUTE
4837             // for the HapticGenerator effect.
4838             if (chain != nullptr) {
4839                 chain->setHapticScale_l(track->id(), os::HapticScale::mute());
4840             }
4841         }
4842 
4843         // Under lock, the track is removed from the active tracks list.
4844         //
4845         // Once the track is no longer active, the TrackHandle may directly
4846         // modify it as the threadLoop() is no longer responsible for its maintenance.
4847         // Do not modify the track from threadLoop after the mutex is unlocked
4848         // if it is not active.
4849         mActiveTracks.remove(track);
4850 
4851         if (track->isTerminated()) {
4852             // remove from our tracks vector
4853             removeTrack_l(track);
4854         }
4855     }
4856 
4857     // Allow incoming TrackHandle requests.  We still hold the mutex,
4858     // so pending TrackHandle requests will occur after we unlock it.
4859     setThreadBusy_l(false);
4860 }
4861 
getTimestamp_l(AudioTimestamp & timestamp)4862 status_t PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
4863 {
4864     if (mNormalSink != 0) {
4865         ExtendedTimestamp ets;
4866         status_t status = mNormalSink->getTimestamp(ets);
4867         if (status == NO_ERROR) {
4868             status = ets.getBestTimestamp(&timestamp);
4869         }
4870         return status;
4871     }
4872     if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
4873         collectTimestamps_l();
4874         if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] <= 0) {
4875             return INVALID_OPERATION;
4876         }
4877         timestamp.mPosition = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
4878         const int64_t timeNs = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4879         timestamp.mTime.tv_sec = timeNs / NANOS_PER_SECOND;
4880         timestamp.mTime.tv_nsec = timeNs - (timestamp.mTime.tv_sec * NANOS_PER_SECOND);
4881         return NO_ERROR;
4882     }
4883     return INVALID_OPERATION;
4884 }
4885 
4886 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4887 // still applied by the mixer.
4888 // All tracks attached to a mixer with flag VOIP_RX are tied to the same
4889 // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even
4890 // if more than one track are active
handleVoipVolume_l(float * volume)4891 status_t PlaybackThread::handleVoipVolume_l(float* volume)
4892 {
4893     status_t result = NO_ERROR;
4894     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4895         if (*volume != mLeftVolFloat) {
4896             result = mOutput->stream->setVolume(*volume, *volume);
4897             // HAL can return INVALID_OPERATION if operation is not supported.
4898             ALOGE_IF(result != OK && result != INVALID_OPERATION,
4899                      "Error when setting output stream volume: %d", result);
4900             if (result == NO_ERROR) {
4901                 mLeftVolFloat = *volume;
4902             }
4903         }
4904         // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4905         // remove stream volume contribution from software volume.
4906         if (mLeftVolFloat == *volume) {
4907             *volume = 1.0f;
4908         }
4909     }
4910     return result;
4911 }
4912 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4913 status_t MixerThread::createAudioPatch_l(const struct audio_patch* patch,
4914                                                           audio_patch_handle_t *handle)
4915 {
4916     status_t status;
4917     if (property_get_bool("af.patch_park", false /* default_value */)) {
4918         // Park FastMixer to avoid potential DOS issues with writing to the HAL
4919         // or if HAL does not properly lock against access.
4920         AutoPark<FastMixer> park(mFastMixer);
4921         status = PlaybackThread::createAudioPatch_l(patch, handle);
4922     } else {
4923         status = PlaybackThread::createAudioPatch_l(patch, handle);
4924     }
4925 
4926     updateHalSupportedLatencyModes_l();
4927     return status;
4928 }
4929 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4930 status_t PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
4931                                                           audio_patch_handle_t *handle)
4932 {
4933     status_t status = NO_ERROR;
4934 
4935     // store new device and send to effects
4936     audio_devices_t type = AUDIO_DEVICE_NONE;
4937     AudioDeviceTypeAddrVector deviceTypeAddrs;
4938     for (unsigned int i = 0; i < patch->num_sinks; i++) {
4939         LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
4940                             && !mOutput->audioHwDev->supportsAudioPatches(),
4941                             "Enumerated device type(%#x) must not be used "
4942                             "as it does not support audio patches",
4943                             patch->sinks[i].ext.device.type);
4944         type = static_cast<audio_devices_t>(type | patch->sinks[i].ext.device.type);
4945         deviceTypeAddrs.emplace_back(patch->sinks[i].ext.device.type,
4946                 patch->sinks[i].ext.device.address);
4947     }
4948 
4949     audio_port_handle_t sinkPortId = patch->sinks[0].id;
4950 #ifdef ADD_BATTERY_DATA
4951     // when changing the audio output device, call addBatteryData to notify
4952     // the change
4953     if (outDeviceTypes() != deviceTypes) {
4954         uint32_t params = 0;
4955         // check whether speaker is on
4956         if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) {
4957             params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4958         }
4959 
4960         // check if any other device (except speaker) is on
4961         if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) {
4962             params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4963         }
4964 
4965         if (params != 0) {
4966             addBatteryData(params);
4967         }
4968     }
4969 #endif
4970 
4971     for (size_t i = 0; i < mEffectChains.size(); i++) {
4972         mEffectChains[i]->setDevices_l(deviceTypeAddrs);
4973     }
4974 
4975     // mPatch.num_sinks is not set when the thread is created so that
4976     // the first patch creation triggers an ioConfigChanged callback
4977     bool configChanged = (mPatch.num_sinks == 0) ||
4978                          (mPatch.sinks[0].id != sinkPortId);
4979     mPatch = *patch;
4980     mOutDeviceTypeAddrs = deviceTypeAddrs;
4981     checkSilentMode_l();
4982 
4983     if (mOutput->audioHwDev->supportsAudioPatches()) {
4984         sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4985         status = hwDevice->createAudioPatch(patch->num_sources,
4986                                             patch->sources,
4987                                             patch->num_sinks,
4988                                             patch->sinks,
4989                                             handle);
4990     } else {
4991         status = mOutput->stream->legacyCreateAudioPatch(patch->sinks[0], std::nullopt, type);
4992         *handle = AUDIO_PATCH_HANDLE_NONE;
4993     }
4994     const std::string patchSinksAsString = patchSinksToString(patch);
4995 
4996     mThreadMetrics.logEndInterval();
4997     mThreadMetrics.logCreatePatch(/* inDevices */ {}, patchSinksAsString);
4998     mThreadMetrics.logBeginInterval();
4999     // also dispatch to active AudioTracks for MediaMetrics
5000     for (const auto &track : mActiveTracks) {
5001         track->logEndInterval();
5002         track->logBeginInterval(patchSinksAsString);
5003     }
5004 
5005     if (configChanged) {
5006         sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5007     }
5008     // Force metadata update after a route change
5009     mActiveTracks.setHasChanged();
5010 
5011     return status;
5012 }
5013 
releaseAudioPatch_l(const audio_patch_handle_t handle)5014 status_t MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
5015 {
5016     status_t status;
5017     if (property_get_bool("af.patch_park", false /* default_value */)) {
5018         // Park FastMixer to avoid potential DOS issues with writing to the HAL
5019         // or if HAL does not properly lock against access.
5020         AutoPark<FastMixer> park(mFastMixer);
5021         status = PlaybackThread::releaseAudioPatch_l(handle);
5022     } else {
5023         status = PlaybackThread::releaseAudioPatch_l(handle);
5024     }
5025     return status;
5026 }
5027 
releaseAudioPatch_l(const audio_patch_handle_t handle)5028 status_t PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
5029 {
5030     status_t status = NO_ERROR;
5031 
5032     mPatch = audio_patch{};
5033     mOutDeviceTypeAddrs.clear();
5034 
5035     if (mOutput->audioHwDev->supportsAudioPatches()) {
5036         sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
5037         status = hwDevice->releaseAudioPatch(handle);
5038     } else {
5039         status = mOutput->stream->legacyReleaseAudioPatch();
5040     }
5041     // Force meteadata update after a route change
5042     mActiveTracks.setHasChanged();
5043 
5044     return status;
5045 }
5046 
addPatchTrack(const sp<IAfPatchTrack> & track)5047 void PlaybackThread::addPatchTrack(const sp<IAfPatchTrack>& track)
5048 {
5049     audio_utils::lock_guard _l(mutex());
5050     mTracks.add(track);
5051 }
5052 
deletePatchTrack(const sp<IAfPatchTrack> & track)5053 void PlaybackThread::deletePatchTrack(const sp<IAfPatchTrack>& track)
5054 {
5055     audio_utils::lock_guard _l(mutex());
5056     destroyTrack_l(track);
5057 }
5058 
toAudioPortConfig(struct audio_port_config * config)5059 void PlaybackThread::toAudioPortConfig(struct audio_port_config* config)
5060 {
5061     ThreadBase::toAudioPortConfig(config);
5062     config->role = AUDIO_PORT_ROLE_SOURCE;
5063     config->ext.mix.hw_module = mOutput->audioHwDev->handle();
5064     config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
5065     if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
5066         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
5067         config->flags.output = mOutput->flags;
5068     }
5069 }
5070 
5071 // ----------------------------------------------------------------------------
5072 
5073 /* static */
createMixerThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type,audio_config_base_t * mixerConfig)5074 sp<IAfPlaybackThread> IAfPlaybackThread::createMixerThread(
5075         const sp<IAfThreadCallback>& afThreadCallback, AudioStreamOut* output,
5076         audio_io_handle_t id, bool systemReady, type_t type, audio_config_base_t* mixerConfig) {
5077     return sp<MixerThread>::make(afThreadCallback, output, id, systemReady, type, mixerConfig);
5078 }
5079 
MixerThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type,audio_config_base_t * mixerConfig)5080 MixerThread::MixerThread(const sp<IAfThreadCallback>& afThreadCallback, AudioStreamOut* output,
5081         audio_io_handle_t id, bool systemReady, type_t type, audio_config_base_t *mixerConfig)
5082     :   PlaybackThread(afThreadCallback, output, id, type, systemReady, mixerConfig),
5083         // mAudioMixer below
5084         // mFastMixer below
5085         mBluetoothLatencyModesEnabled(false),
5086         mFastMixerFutex(0),
5087         mMasterMono(false)
5088         // mOutputSink below
5089         // mPipeSink below
5090         // mNormalSink below
5091 {
5092     setMasterBalance(afThreadCallback->getMasterBalance_l());
5093     ALOGV("MixerThread() id=%d type=%d", id, type);
5094     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
5095             "mFrameCount=%zu, mNormalFrameCount=%zu",
5096             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
5097             mNormalFrameCount);
5098     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5099 
5100     if (type == DUPLICATING) {
5101         // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
5102         // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
5103         // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
5104         return;
5105     }
5106     // create an NBAIO sink for the HAL output stream, and negotiate
5107     mOutputSink = new AudioStreamOutSink(output->stream);
5108     size_t numCounterOffers = 0;
5109     const NBAIO_Format offers[1] = {Format_from_SR_C(
5110             mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
5111 #if !LOG_NDEBUG
5112     ssize_t index =
5113 #else
5114     (void)
5115 #endif
5116             mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
5117     ALOG_ASSERT(index == 0);
5118 
5119     // initialize fast mixer depending on configuration
5120     bool initFastMixer;
5121     if (mType == SPATIALIZER || mType == BIT_PERFECT) {
5122         initFastMixer = false;
5123     } else {
5124         switch (kUseFastMixer) {
5125         case FastMixer_Never:
5126             initFastMixer = false;
5127             break;
5128         case FastMixer_Always:
5129             initFastMixer = true;
5130             break;
5131         case FastMixer_Static:
5132         case FastMixer_Dynamic:
5133             initFastMixer = mFrameCount < mNormalFrameCount;
5134             break;
5135         }
5136         ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
5137                 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
5138                 mFrameCount, mNormalFrameCount);
5139     }
5140     if (initFastMixer) {
5141         audio_format_t fastMixerFormat;
5142         if (mMixerBufferEnabled && mEffectBufferEnabled) {
5143             fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
5144         } else {
5145             fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
5146         }
5147         if (mFormat != fastMixerFormat) {
5148             // change our Sink format to accept our intermediate precision
5149             mFormat = fastMixerFormat;
5150             free(mSinkBuffer);
5151             mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
5152             const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
5153             (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
5154         }
5155 
5156         // create a MonoPipe to connect our submix to FastMixer
5157         NBAIO_Format format = mOutputSink->format();
5158 
5159         // adjust format to match that of the Fast Mixer
5160         ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
5161         format.mFormat = fastMixerFormat;
5162         format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
5163 
5164         // This pipe depth compensates for scheduling latency of the normal mixer thread.
5165         // When it wakes up after a maximum latency, it runs a few cycles quickly before
5166         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
5167         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
5168         const NBAIO_Format offersFast[1] = {format};
5169         size_t numCounterOffersFast = 0;
5170 #if !LOG_NDEBUG
5171         index =
5172 #else
5173         (void)
5174 #endif
5175                 monoPipe->negotiate(offersFast, std::size(offersFast),
5176                         nullptr /* counterOffers */, numCounterOffersFast);
5177         ALOG_ASSERT(index == 0);
5178         monoPipe->setAvgFrames((mScreenState & 1) ?
5179                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
5180         mPipeSink = monoPipe;
5181 
5182         // create fast mixer and configure it initially with just one fast track for our submix
5183         mFastMixer = new FastMixer(mId);
5184         FastMixerStateQueue *sq = mFastMixer->sq();
5185 #ifdef STATE_QUEUE_DUMP
5186         sq->setObserverDump(&mStateQueueObserverDump);
5187         sq->setMutatorDump(&mStateQueueMutatorDump);
5188 #endif
5189         FastMixerState *state = sq->begin();
5190         FastTrack *fastTrack = &state->mFastTracks[0];
5191         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
5192         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
5193         fastTrack->mVolumeProvider = NULL;
5194         fastTrack->mChannelMask = static_cast<audio_channel_mask_t>(
5195                 mChannelMask | mHapticChannelMask); // mPipeSink channel mask for
5196                                                     // audio to FastMixer
5197         fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
5198         fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
5199         fastTrack->mHapticScale = {/*level=*/os::HapticLevel::NONE };
5200         fastTrack->mHapticMaxAmplitude = NAN;
5201         fastTrack->mGeneration++;
5202         state->mFastTracksGen++;
5203         state->mTrackMask = 1;
5204         // fast mixer will use the HAL output sink
5205         state->mOutputSink = mOutputSink.get();
5206         state->mOutputSinkGen++;
5207         state->mFrameCount = mFrameCount;
5208         // specify sink channel mask when haptic channel mask present as it can not
5209         // be calculated directly from channel count
5210         state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
5211                 ? AUDIO_CHANNEL_NONE
5212                 : static_cast<audio_channel_mask_t>(mChannelMask | mHapticChannelMask);
5213         state->mCommand = FastMixerState::COLD_IDLE;
5214         // already done in constructor initialization list
5215         //mFastMixerFutex = 0;
5216         state->mColdFutexAddr = &mFastMixerFutex;
5217         state->mColdGen++;
5218         state->mDumpState = &mFastMixerDumpState;
5219         mFastMixerNBLogWriter = afThreadCallback->newWriter_l(kFastMixerLogSize, "FastMixer");
5220         state->mNBLogWriter = mFastMixerNBLogWriter.get();
5221         sq->end();
5222         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
5223 
5224         NBLog::thread_info_t info;
5225         info.id = mId;
5226         info.type = NBLog::FASTMIXER;
5227         mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
5228 
5229         // start the fast mixer
5230         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
5231         pid_t tid = mFastMixer->getTid();
5232         sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
5233         stream()->setHalThreadPriority(kPriorityFastMixer);
5234 
5235 #ifdef AUDIO_WATCHDOG
5236         // create and start the watchdog
5237         mAudioWatchdog = new AudioWatchdog();
5238         mAudioWatchdog->setDump(&mAudioWatchdogDump);
5239         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
5240         tid = mAudioWatchdog->getTid();
5241         sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
5242 #endif
5243     } else {
5244 #ifdef TEE_SINK
5245         // Only use the MixerThread tee if there is no FastMixer.
5246         mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
5247         mTee.setId(std::string("_") + std::to_string(mId) + "_M");
5248 #endif
5249     }
5250 
5251     switch (kUseFastMixer) {
5252     case FastMixer_Never:
5253     case FastMixer_Dynamic:
5254         mNormalSink = mOutputSink;
5255         break;
5256     case FastMixer_Always:
5257         mNormalSink = mPipeSink;
5258         break;
5259     case FastMixer_Static:
5260         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
5261         break;
5262     }
5263 }
5264 
~MixerThread()5265 MixerThread::~MixerThread()
5266 {
5267     if (mFastMixer != 0) {
5268         FastMixerStateQueue *sq = mFastMixer->sq();
5269         FastMixerState *state = sq->begin();
5270         if (state->mCommand == FastMixerState::COLD_IDLE) {
5271             int32_t old = android_atomic_inc(&mFastMixerFutex);
5272             if (old == -1) {
5273                 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
5274             }
5275         }
5276         state->mCommand = FastMixerState::EXIT;
5277         sq->end();
5278         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
5279         mFastMixer->join();
5280         // Though the fast mixer thread has exited, it's state queue is still valid.
5281         // We'll use that extract the final state which contains one remaining fast track
5282         // corresponding to our sub-mix.
5283         state = sq->begin();
5284         ALOG_ASSERT(state->mTrackMask == 1);
5285         FastTrack *fastTrack = &state->mFastTracks[0];
5286         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
5287         delete fastTrack->mBufferProvider;
5288         sq->end(false /*didModify*/);
5289         mFastMixer.clear();
5290 #ifdef AUDIO_WATCHDOG
5291         if (mAudioWatchdog != 0) {
5292             mAudioWatchdog->requestExit();
5293             mAudioWatchdog->requestExitAndWait();
5294             mAudioWatchdog.clear();
5295         }
5296 #endif
5297     }
5298     mAfThreadCallback->unregisterWriter(mFastMixerNBLogWriter);
5299     delete mAudioMixer;
5300 }
5301 
onFirstRef()5302 void MixerThread::onFirstRef() {
5303     PlaybackThread::onFirstRef();
5304 
5305     audio_utils::lock_guard _l(mutex());
5306     if (mOutput != nullptr && mOutput->stream != nullptr) {
5307         status_t status = mOutput->stream->setLatencyModeCallback(this);
5308         if (status != INVALID_OPERATION) {
5309             updateHalSupportedLatencyModes_l();
5310         }
5311         // Default to enabled if the HAL supports it. This can be changed by Audioflinger after
5312         // the thread construction according to AudioFlinger::mBluetoothLatencyModesEnabled
5313         mBluetoothLatencyModesEnabled.store(
5314                 mOutput->audioHwDev->supportsBluetoothVariableLatency());
5315     }
5316 }
5317 
correctLatency_l(uint32_t latency) const5318 uint32_t MixerThread::correctLatency_l(uint32_t latency) const
5319 {
5320     if (mFastMixer != 0) {
5321         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
5322         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
5323     }
5324     return latency;
5325 }
5326 
threadLoop_write()5327 ssize_t MixerThread::threadLoop_write()
5328 {
5329     // FIXME we should only do one push per cycle; confirm this is true
5330     // Start the fast mixer if it's not already running
5331     if (mFastMixer != 0) {
5332         FastMixerStateQueue *sq = mFastMixer->sq();
5333         FastMixerState *state = sq->begin();
5334         if (state->mCommand != FastMixerState::MIX_WRITE &&
5335                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
5336             if (state->mCommand == FastMixerState::COLD_IDLE) {
5337 
5338                 // FIXME workaround for first HAL write being CPU bound on some devices
5339                 ATRACE_BEGIN("write");
5340                 mOutput->write((char *)mSinkBuffer, 0);
5341                 ATRACE_END();
5342 
5343                 int32_t old = android_atomic_inc(&mFastMixerFutex);
5344                 if (old == -1) {
5345                     (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
5346                 }
5347 #ifdef AUDIO_WATCHDOG
5348                 if (mAudioWatchdog != 0) {
5349                     mAudioWatchdog->resume();
5350                 }
5351 #endif
5352             }
5353             state->mCommand = FastMixerState::MIX_WRITE;
5354 #ifdef FAST_THREAD_STATISTICS
5355             mFastMixerDumpState.increaseSamplingN(mAfThreadCallback->isLowRamDevice() ?
5356                 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
5357 #endif
5358             sq->end();
5359             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
5360             if (kUseFastMixer == FastMixer_Dynamic) {
5361                 mNormalSink = mPipeSink;
5362             }
5363         } else {
5364             sq->end(false /*didModify*/);
5365         }
5366     }
5367     return PlaybackThread::threadLoop_write();
5368 }
5369 
threadLoop_standby()5370 void MixerThread::threadLoop_standby()
5371 {
5372     // Idle the fast mixer if it's currently running
5373     if (mFastMixer != 0) {
5374         FastMixerStateQueue *sq = mFastMixer->sq();
5375         FastMixerState *state = sq->begin();
5376         if (!(state->mCommand & FastMixerState::IDLE)) {
5377             // Report any frames trapped in the Monopipe
5378             MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
5379             const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
5380             mLocalLog.log("threadLoop_standby: framesWritten:%lld  suspendedFrames:%lld  "
5381                     "monoPipeWritten:%lld  monoPipeLeft:%lld",
5382                     (long long)mFramesWritten, (long long)mSuspendedFrames,
5383                     (long long)mPipeSink->framesWritten(), pipeFrames);
5384             mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
5385 
5386             state->mCommand = FastMixerState::COLD_IDLE;
5387             state->mColdFutexAddr = &mFastMixerFutex;
5388             state->mColdGen++;
5389             mFastMixerFutex = 0;
5390             sq->end();
5391             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5392             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
5393             if (kUseFastMixer == FastMixer_Dynamic) {
5394                 mNormalSink = mOutputSink;
5395             }
5396 #ifdef AUDIO_WATCHDOG
5397             if (mAudioWatchdog != 0) {
5398                 mAudioWatchdog->pause();
5399             }
5400 #endif
5401         } else {
5402             sq->end(false /*didModify*/);
5403         }
5404     }
5405     PlaybackThread::threadLoop_standby();
5406 }
5407 
waitingAsyncCallback_l()5408 bool PlaybackThread::waitingAsyncCallback_l()
5409 {
5410     return false;
5411 }
5412 
shouldStandby_l()5413 bool PlaybackThread::shouldStandby_l()
5414 {
5415     return !mStandby;
5416 }
5417 
waitingAsyncCallback()5418 bool PlaybackThread::waitingAsyncCallback()
5419 {
5420     audio_utils::lock_guard _l(mutex());
5421     return waitingAsyncCallback_l();
5422 }
5423 
5424 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()5425 void PlaybackThread::threadLoop_standby()
5426 {
5427     ALOGV("%s: audio hardware entering standby, mixer %p, suspend count %d",
5428             __func__, this, (int32_t)mSuspended);
5429     mOutput->standby();
5430     if (mUseAsyncWrite != 0) {
5431         // discard any pending drain or write ack by incrementing sequence
5432         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5433         mDrainSequence = (mDrainSequence + 2) & ~1;
5434         ALOG_ASSERT(mCallbackThread != 0);
5435         mCallbackThread->setWriteBlocked(mWriteAckSequence);
5436         mCallbackThread->setDraining(mDrainSequence);
5437     }
5438     mHwPaused = false;
5439     setHalLatencyMode_l();
5440 }
5441 
onAddNewTrack_l()5442 void PlaybackThread::onAddNewTrack_l()
5443 {
5444     ALOGV("signal playback thread");
5445     broadcast_l();
5446 }
5447 
onAsyncError(bool isHardError)5448 void PlaybackThread::onAsyncError(bool isHardError)
5449 {
5450     auto allTrackPortIds = getTrackPortIds();
5451     for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
5452         invalidateTracks((audio_stream_type_t)i);
5453     }
5454     if (isHardError) {
5455         mAfThreadCallback->onHardError(allTrackPortIds);
5456     }
5457 }
5458 
threadLoop_mix()5459 void MixerThread::threadLoop_mix()
5460 {
5461     // mix buffers...
5462     mAudioMixer->process();
5463     mCurrentWriteLength = mSinkBufferSize;
5464     // increase sleep time progressively when application underrun condition clears.
5465     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
5466     // that a steady state of alternating ready/not ready conditions keeps the sleep time
5467     // such that we would underrun the audio HAL.
5468     if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
5469         sleepTimeShift--;
5470     }
5471     mSleepTimeUs = 0;
5472     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5473     //TODO: delay standby when effects have a tail
5474 
5475 }
5476 
threadLoop_sleepTime()5477 void MixerThread::threadLoop_sleepTime()
5478 {
5479     // If no tracks are ready, sleep once for the duration of an output
5480     // buffer size, then write 0s to the output
5481     if (mSleepTimeUs == 0) {
5482         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5483             if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
5484                 // Using the Monopipe availableToWrite, we estimate the
5485                 // sleep time to retry for more data (before we underrun).
5486                 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
5487                 const ssize_t availableToWrite = mPipeSink->availableToWrite();
5488                 const size_t pipeFrames = monoPipe->maxFrames();
5489                 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
5490                 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
5491                 const size_t framesDelay = std::min(
5492                         mNormalFrameCount, max(framesLeft / 2, mFrameCount));
5493                 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
5494                         pipeFrames, framesLeft, framesDelay);
5495                 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
5496             } else {
5497                 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
5498                 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
5499                     mSleepTimeUs = kMinThreadSleepTimeUs;
5500                 }
5501                 // reduce sleep time in case of consecutive application underruns to avoid
5502                 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
5503                 // duration we would end up writing less data than needed by the audio HAL if
5504                 // the condition persists.
5505                 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
5506                     sleepTimeShift++;
5507                 }
5508             }
5509         } else {
5510             mSleepTimeUs = mIdleSleepTimeUs;
5511         }
5512     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
5513         // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
5514         // before effects processing or output.
5515         if (mMixerBufferValid) {
5516             memset(mMixerBuffer, 0, mMixerBufferSize);
5517             if (mType == SPATIALIZER) {
5518                 memset(mSinkBuffer, 0, mSinkBufferSize);
5519             }
5520         } else {
5521             memset(mSinkBuffer, 0, mSinkBufferSize);
5522         }
5523         mSleepTimeUs = 0;
5524         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
5525                 "anticipated start");
5526     }
5527     // TODO add standby time extension fct of effect tail
5528 }
5529 
5530 // prepareTracks_l() must be called with ThreadBase::mutex() held
prepareTracks_l(Vector<sp<IAfTrack>> * tracksToRemove)5531 PlaybackThread::mixer_state MixerThread::prepareTracks_l(
5532         Vector<sp<IAfTrack>>* tracksToRemove)
5533 {
5534     // clean up deleted track ids in AudioMixer before allocating new tracks
5535     (void)mTracks.processDeletedTrackIds([this](int trackId) {
5536         // for each trackId, destroy it in the AudioMixer
5537         if (mAudioMixer->exists(trackId)) {
5538             mAudioMixer->destroy(trackId);
5539         }
5540     });
5541     mTracks.clearDeletedTrackIds();
5542 
5543     mixer_state mixerStatus = MIXER_IDLE;
5544     // find out which tracks need to be processed
5545     size_t count = mActiveTracks.size();
5546     size_t mixedTracks = 0;
5547     size_t tracksWithEffect = 0;
5548     // counts only _active_ fast tracks
5549     size_t fastTracks = 0;
5550     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
5551 
5552     float masterVolume = mMasterVolume;
5553     bool masterMute = mMasterMute;
5554 
5555     if (masterMute) {
5556         masterVolume = 0;
5557     }
5558     // Delegate master volume control to effect in output mix effect chain if needed
5559     sp<IAfEffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
5560     if (chain != 0) {
5561         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
5562         chain->setVolume(&v, &v);
5563         masterVolume = (float)((v + (1 << 23)) >> 24);
5564         chain.clear();
5565     }
5566 
5567     // prepare a new state to push
5568     FastMixerStateQueue *sq = NULL;
5569     FastMixerState *state = NULL;
5570     bool didModify = false;
5571     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
5572     bool coldIdle = false;
5573     if (mFastMixer != 0) {
5574         sq = mFastMixer->sq();
5575         state = sq->begin();
5576         coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
5577     }
5578 
5579     mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
5580     mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
5581 
5582     // DeferredOperations handles statistics after setting mixerStatus.
5583     class DeferredOperations {
5584     public:
5585         DeferredOperations(mixer_state *mixerStatus, ThreadMetrics *threadMetrics)
5586             : mMixerStatus(mixerStatus)
5587             , mThreadMetrics(threadMetrics) {}
5588 
5589         // when leaving scope, tally frames properly.
5590         ~DeferredOperations() {
5591             // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
5592             // because that is when the underrun occurs.
5593             // We do not distinguish between FastTracks and NormalTracks here.
5594             size_t maxUnderrunFrames = 0;
5595             if (*mMixerStatus == MIXER_TRACKS_READY && mUnderrunFrames.size() > 0) {
5596                 for (const auto &underrun : mUnderrunFrames) {
5597                     underrun.first->tallyUnderrunFrames(underrun.second);
5598                     maxUnderrunFrames = max(underrun.second, maxUnderrunFrames);
5599                 }
5600             }
5601             // send the max underrun frames for this mixer period
5602             mThreadMetrics->logUnderrunFrames(maxUnderrunFrames);
5603         }
5604 
5605         // tallyUnderrunFrames() is called to update the track counters
5606         // with the number of underrun frames for a particular mixer period.
5607         // We defer tallying until we know the final mixer status.
5608         void tallyUnderrunFrames(const sp<IAfTrack>& track, size_t underrunFrames) {
5609             mUnderrunFrames.emplace_back(track, underrunFrames);
5610         }
5611 
5612     private:
5613         const mixer_state * const mMixerStatus;
5614         ThreadMetrics * const mThreadMetrics;
5615         std::vector<std::pair<sp<IAfTrack>, size_t>> mUnderrunFrames;
5616     } deferredOperations(&mixerStatus, &mThreadMetrics);
5617     // implicit nested scope for variable capture
5618 
5619     bool noFastHapticTrack = true;
5620     for (size_t i=0 ; i<count ; i++) {
5621         const sp<IAfTrack> t = mActiveTracks[i];
5622 
5623         // this const just means the local variable doesn't change
5624         IAfTrack* const track = t.get();
5625 
5626         // process fast tracks
5627         if (track->isFastTrack()) {
5628             LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
5629                     "%s(%d): FastTrack(%d) present without FastMixer",
5630                      __func__, id(), track->id());
5631 
5632             if (track->getHapticPlaybackEnabled()) {
5633                 noFastHapticTrack = false;
5634             }
5635 
5636             // It's theoretically possible (though unlikely) for a fast track to be created
5637             // and then removed within the same normal mix cycle.  This is not a problem, as
5638             // the track never becomes active so it's fast mixer slot is never touched.
5639             // The converse, of removing an (active) track and then creating a new track
5640             // at the identical fast mixer slot within the same normal mix cycle,
5641             // is impossible because the slot isn't marked available until the end of each cycle.
5642             int j = track->fastIndex();
5643             ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
5644             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
5645             FastTrack *fastTrack = &state->mFastTracks[j];
5646 
5647             // Determine whether the track is currently in underrun condition,
5648             // and whether it had a recent underrun.
5649             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
5650             FastTrackUnderruns underruns = ftDump->mUnderruns;
5651             uint32_t recentFull = (underruns.mBitFields.mFull -
5652                     track->fastTrackUnderruns().mBitFields.mFull) & UNDERRUN_MASK;
5653             uint32_t recentPartial = (underruns.mBitFields.mPartial -
5654                     track->fastTrackUnderruns().mBitFields.mPartial) & UNDERRUN_MASK;
5655             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
5656                     track->fastTrackUnderruns().mBitFields.mEmpty) & UNDERRUN_MASK;
5657             uint32_t recentUnderruns = recentPartial + recentEmpty;
5658             track->fastTrackUnderruns() = underruns;
5659             // don't count underruns that occur while stopping or pausing
5660             // or stopped which can occur when flush() is called while active
5661             size_t underrunFrames = 0;
5662             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
5663                     recentUnderruns > 0) {
5664                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
5665                 underrunFrames = recentUnderruns * mFrameCount;
5666             }
5667             // Immediately account for FastTrack underruns.
5668             track->audioTrackServerProxy()->tallyUnderrunFrames(underrunFrames);
5669 
5670             // This is similar to the state machine for normal tracks,
5671             // with a few modifications for fast tracks.
5672             bool isActive = true;
5673             switch (track->state()) {
5674             case IAfTrackBase::STOPPING_1:
5675                 // track stays active in STOPPING_1 state until first underrun
5676                 if (recentUnderruns > 0 || track->isTerminated()) {
5677                     track->setState(IAfTrackBase::STOPPING_2);
5678                 }
5679                 break;
5680             case IAfTrackBase::PAUSING:
5681                 // ramp down is not yet implemented
5682                 track->setPaused();
5683                 break;
5684             case IAfTrackBase::RESUMING:
5685                 // ramp up is not yet implemented
5686                 track->setState(IAfTrackBase::ACTIVE);
5687                 break;
5688             case IAfTrackBase::ACTIVE:
5689                 if (recentFull > 0 || recentPartial > 0) {
5690                     // track has provided at least some frames recently: reset retry count
5691                     track->retryCount() = kMaxTrackRetries;
5692                 }
5693                 if (recentUnderruns == 0) {
5694                     // no recent underruns: stay active
5695                     break;
5696                 }
5697                 // there has recently been an underrun of some kind
5698                 if (track->sharedBuffer() == 0) {
5699                     // were any of the recent underruns "empty" (no frames available)?
5700                     if (recentEmpty == 0) {
5701                         // no, then ignore the partial underruns as they are allowed indefinitely
5702                         break;
5703                     }
5704                     // there has recently been an "empty" underrun: decrement the retry counter
5705                     if (--(track->retryCount()) > 0) {
5706                         break;
5707                     }
5708                     // indicate to client process that the track was disabled because of underrun;
5709                     // it will then automatically call start() when data is available
5710                     track->disable();
5711                     // remove from active list, but state remains ACTIVE [confusing but true]
5712                     isActive = false;
5713                     break;
5714                 }
5715                 FALLTHROUGH_INTENDED;
5716             case IAfTrackBase::STOPPING_2:
5717             case IAfTrackBase::PAUSED:
5718             case IAfTrackBase::STOPPED:
5719             case IAfTrackBase::FLUSHED:   // flush() while active
5720                 // Check for presentation complete if track is inactive
5721                 // We have consumed all the buffers of this track.
5722                 // This would be incomplete if we auto-paused on underrun
5723                 {
5724                     uint32_t latency = 0;
5725                     status_t result = mOutput->stream->getLatency(&latency);
5726                     ALOGE_IF(result != OK,
5727                             "Error when retrieving output stream latency: %d", result);
5728                     size_t audioHALFrames = (latency * mSampleRate) / 1000;
5729                     int64_t framesWritten = mBytesWritten / mFrameSize;
5730                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
5731                         // track stays in active list until presentation is complete
5732                         break;
5733                     }
5734                 }
5735                 if (track->isStopping_2()) {
5736                     track->setState(IAfTrackBase::STOPPED);
5737                 }
5738                 if (track->isStopped()) {
5739                     // Can't reset directly, as fast mixer is still polling this track
5740                     //   track->reset();
5741                     // So instead mark this track as needing to be reset after push with ack
5742                     resetMask |= 1 << i;
5743                 }
5744                 isActive = false;
5745                 break;
5746             case IAfTrackBase::IDLE:
5747             default:
5748                 LOG_ALWAYS_FATAL("unexpected track state %d", (int)track->state());
5749             }
5750 
5751             if (isActive) {
5752                 // was it previously inactive?
5753                 if (!(state->mTrackMask & (1 << j))) {
5754                     ExtendedAudioBufferProvider *eabp = track->asExtendedAudioBufferProvider();
5755                     VolumeProvider *vp = track->asVolumeProvider();
5756                     fastTrack->mBufferProvider = eabp;
5757                     fastTrack->mVolumeProvider = vp;
5758                     fastTrack->mChannelMask = track->channelMask();
5759                     fastTrack->mFormat = track->format();
5760                     fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5761                     fastTrack->mHapticScale = track->getHapticScale();
5762                     fastTrack->mHapticMaxAmplitude = track->getHapticMaxAmplitude();
5763                     fastTrack->mGeneration++;
5764                     state->mTrackMask |= 1 << j;
5765                     didModify = true;
5766                     // no acknowledgement required for newly active tracks
5767                 }
5768                 sp<AudioTrackServerProxy> proxy = track->audioTrackServerProxy();
5769                 float volume;
5770                 if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) {
5771                     volume = 0.f;
5772                 } else {
5773                     volume = masterVolume * mStreamTypes[track->streamType()].volume;
5774                 }
5775 
5776                 handleVoipVolume_l(&volume);
5777 
5778                 // cache the combined master volume and stream type volume for fast mixer; this
5779                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
5780                 const float vh = track->getVolumeHandler()->getVolume(
5781                     proxy->framesReleased()).first;
5782                 volume *= vh;
5783                 track->setCachedVolume(volume);
5784                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5785                 float vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5786                 float vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5787 
5788                 track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(),
5789                     /*muteState=*/{masterVolume == 0.f,
5790                                    mStreamTypes[track->streamType()].volume == 0.f,
5791                                    mStreamTypes[track->streamType()].mute,
5792                                    track->isPlaybackRestricted(),
5793                                    vlf == 0.f && vrf == 0.f,
5794                                    vh == 0.f});
5795 
5796                 vlf *= volume;
5797                 vrf *= volume;
5798 
5799                 if (track->getInternalMute()) {
5800                     vlf = 0.f;
5801                     vrf = 0.f;
5802                 }
5803 
5804                 track->setFinalVolume(vlf, vrf);
5805                 ++fastTracks;
5806             } else {
5807                 // was it previously active?
5808                 if (state->mTrackMask & (1 << j)) {
5809                     fastTrack->mBufferProvider = NULL;
5810                     fastTrack->mGeneration++;
5811                     state->mTrackMask &= ~(1 << j);
5812                     didModify = true;
5813                     // If any fast tracks were removed, we must wait for acknowledgement
5814                     // because we're about to decrement the last sp<> on those tracks.
5815                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5816                 } else {
5817                     // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
5818                     // AudioTrack may start (which may not be with a start() but with a write()
5819                     // after underrun) and immediately paused or released.  In that case the
5820                     // FastTrack state hasn't had time to update.
5821                     // TODO Remove the ALOGW when this theory is confirmed.
5822                     ALOGW("fast track %d should have been active; "
5823                             "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
5824                             j, (int)track->state(), state->mTrackMask, recentUnderruns,
5825                             track->sharedBuffer() != 0);
5826                     // Since the FastMixer state already has the track inactive, do nothing here.
5827                 }
5828                 tracksToRemove->add(track);
5829                 // Avoids a misleading display in dumpsys
5830                 track->fastTrackUnderruns().mBitFields.mMostRecent = UNDERRUN_FULL;
5831             }
5832             if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
5833                 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5834                 didModify = true;
5835             }
5836             continue;
5837         }
5838 
5839         {   // local variable scope to avoid goto warning
5840 
5841         audio_track_cblk_t* cblk = track->cblk();
5842 
5843         // The first time a track is added we wait
5844         // for all its buffers to be filled before processing it
5845         const int trackId = track->id();
5846 
5847         // if an active track doesn't exist in the AudioMixer, create it.
5848         // use the trackId as the AudioMixer name.
5849         if (!mAudioMixer->exists(trackId)) {
5850             status_t status = mAudioMixer->create(
5851                     trackId,
5852                     track->channelMask(),
5853                     track->format(),
5854                     track->sessionId());
5855             if (status != OK) {
5856                 ALOGW("%s(): AudioMixer cannot create track(%d)"
5857                         " mask %#x, format %#x, sessionId %d",
5858                         __func__, trackId,
5859                         track->channelMask(), track->format(), track->sessionId());
5860                 tracksToRemove->add(track);
5861                 track->invalidate(); // consider it dead.
5862                 continue;
5863             }
5864         }
5865 
5866         // make sure that we have enough frames to mix one full buffer.
5867         // enforce this condition only once to enable draining the buffer in case the client
5868         // app does not call stop() and relies on underrun to stop:
5869         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
5870         // during last round
5871         size_t desiredFrames;
5872         const uint32_t sampleRate = track->audioTrackServerProxy()->getSampleRate();
5873         const AudioPlaybackRate playbackRate = track->audioTrackServerProxy()->getPlaybackRate();
5874 
5875         desiredFrames = sourceFramesNeededWithTimestretch(
5876                 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
5877         // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
5878         // add frames already consumed but not yet released by the resampler
5879         // because mAudioTrackServerProxy->framesReady() will include these frames
5880         desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
5881 
5882         uint32_t minFrames = 1;
5883         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
5884                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
5885             minFrames = desiredFrames;
5886         }
5887 
5888         size_t framesReady = track->framesReady();
5889         if (ATRACE_ENABLED()) {
5890             // I wish we had formatted trace names
5891             std::string traceName("nRdy");
5892             traceName += std::to_string(trackId);
5893             ATRACE_INT(traceName.c_str(), framesReady);
5894         }
5895         if ((framesReady >= minFrames) && track->isReady() &&
5896                 !track->isPaused() && !track->isTerminated())
5897         {
5898             ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
5899 
5900             mixedTracks++;
5901 
5902             // track->mainBuffer() != mSinkBuffer and mMixerBuffer means
5903             // there is an effect chain connected to the track
5904             chain.clear();
5905             if (track->mainBuffer() != mSinkBuffer &&
5906                     track->mainBuffer() != mMixerBuffer) {
5907                 if (mEffectBufferEnabled) {
5908                     mEffectBufferValid = true; // Later can set directly.
5909                 }
5910                 chain = getEffectChain_l(track->sessionId());
5911                 // Delegate volume control to effect in track effect chain if needed
5912                 if (chain != 0) {
5913                     tracksWithEffect++;
5914                 } else {
5915                     ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
5916                             "session %d",
5917                             trackId, track->sessionId());
5918                 }
5919             }
5920 
5921 
5922             int param = AudioMixer::VOLUME;
5923             if (track->fillingStatus() == IAfTrack::FS_FILLED) {
5924                 // no ramp for the first volume setting
5925                 track->fillingStatus() = IAfTrack::FS_ACTIVE;
5926                 if (track->state() == IAfTrackBase::RESUMING) {
5927                     track->setState(IAfTrackBase::ACTIVE);
5928                     // If a new track is paused immediately after start, do not ramp on resume.
5929                     if (cblk->mServer != 0) {
5930                         param = AudioMixer::RAMP_VOLUME;
5931                     }
5932                 }
5933                 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
5934                 mLeftVolFloat = -1.0;
5935             // FIXME should not make a decision based on mServer
5936             } else if (cblk->mServer != 0) {
5937                 // If the track is stopped before the first frame was mixed,
5938                 // do not apply ramp
5939                 param = AudioMixer::RAMP_VOLUME;
5940             }
5941 
5942             // compute volume for this track
5943             uint32_t vl, vr;       // in U8.24 integer format
5944             float vlf, vrf, vaf;   // in [0.0, 1.0] float format
5945             // read original volumes with volume control
5946             float v = masterVolume * mStreamTypes[track->streamType()].volume;
5947             // Always fetch volumeshaper volume to ensure state is updated.
5948             const sp<AudioTrackServerProxy> proxy = track->audioTrackServerProxy();
5949             const float vh = track->getVolumeHandler()->getVolume(
5950                     track->audioTrackServerProxy()->framesReleased()).first;
5951 
5952             if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5953                 v = 0;
5954             }
5955 
5956             handleVoipVolume_l(&v);
5957 
5958             if (track->isPausing()) {
5959                 vl = vr = 0;
5960                 vlf = vrf = vaf = 0.;
5961                 track->setPaused();
5962             } else {
5963                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5964                 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5965                 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5966                 // track volumes come from shared memory, so can't be trusted and must be clamped
5967                 if (vlf > GAIN_FLOAT_UNITY) {
5968                     ALOGV("Track left volume out of range: %.3g", vlf);
5969                     vlf = GAIN_FLOAT_UNITY;
5970                 }
5971                 if (vrf > GAIN_FLOAT_UNITY) {
5972                     ALOGV("Track right volume out of range: %.3g", vrf);
5973                     vrf = GAIN_FLOAT_UNITY;
5974                 }
5975 
5976                 track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(),
5977                     /*muteState=*/{masterVolume == 0.f,
5978                                    mStreamTypes[track->streamType()].volume == 0.f,
5979                                    mStreamTypes[track->streamType()].mute,
5980                                    track->isPlaybackRestricted(),
5981                                    vlf == 0.f && vrf == 0.f,
5982                                    vh == 0.f});
5983 
5984                 // now apply the master volume and stream type volume and shaper volume
5985                 vlf *= v * vh;
5986                 vrf *= v * vh;
5987                 // assuming master volume and stream type volume each go up to 1.0,
5988                 // then derive vl and vr as U8.24 versions for the effect chain
5989                 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
5990                 vl = (uint32_t) (scaleto8_24 * vlf);
5991                 vr = (uint32_t) (scaleto8_24 * vrf);
5992                 // vl and vr are now in U8.24 format
5993                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
5994                 // send level comes from shared memory and so may be corrupt
5995                 if (sendLevel > MAX_GAIN_INT) {
5996                     ALOGV("Track send level out of range: %04X", sendLevel);
5997                     sendLevel = MAX_GAIN_INT;
5998                 }
5999                 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
6000                 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
6001             }
6002 
6003             if (track->getInternalMute()) {
6004                 vrf = 0.f;
6005                 vlf = 0.f;
6006             }
6007 
6008             track->setFinalVolume(vlf, vrf);
6009 
6010             // Delegate volume control to effect in track effect chain if needed
6011             if (chain != 0 && chain->setVolume(&vl, &vr)) {
6012                 // Do not ramp volume if volume is controlled by effect
6013                 param = AudioMixer::VOLUME;
6014                 // Update remaining floating point volume levels
6015                 vlf = (float)vl / (1 << 24);
6016                 vrf = (float)vr / (1 << 24);
6017                 track->setHasVolumeController(true);
6018             } else {
6019                 // force no volume ramp when volume controller was just disabled or removed
6020                 // from effect chain to avoid volume spike
6021                 if (track->hasVolumeController()) {
6022                     param = AudioMixer::VOLUME;
6023                 }
6024                 track->setHasVolumeController(false);
6025             }
6026 
6027             // XXX: these things DON'T need to be done each time
6028             mAudioMixer->setBufferProvider(trackId, track->asExtendedAudioBufferProvider());
6029             mAudioMixer->enable(trackId);
6030 
6031             mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
6032             mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
6033             mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
6034             mAudioMixer->setParameter(
6035                 trackId,
6036                 AudioMixer::TRACK,
6037                 AudioMixer::FORMAT, (void *)track->format());
6038             mAudioMixer->setParameter(
6039                 trackId,
6040                 AudioMixer::TRACK,
6041                 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
6042 
6043             if (mType == SPATIALIZER && !track->isSpatialized()) {
6044                 mAudioMixer->setParameter(
6045                     trackId,
6046                     AudioMixer::TRACK,
6047                     AudioMixer::MIXER_CHANNEL_MASK,
6048                     (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
6049             } else {
6050                 mAudioMixer->setParameter(
6051                     trackId,
6052                     AudioMixer::TRACK,
6053                     AudioMixer::MIXER_CHANNEL_MASK,
6054                     (void *)(uintptr_t)(mMixerChannelMask | mHapticChannelMask));
6055             }
6056 
6057             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
6058             uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
6059             uint32_t reqSampleRate = proxy->getSampleRate();
6060             if (reqSampleRate == 0) {
6061                 reqSampleRate = mSampleRate;
6062             } else if (reqSampleRate > maxSampleRate) {
6063                 reqSampleRate = maxSampleRate;
6064             }
6065             mAudioMixer->setParameter(
6066                 trackId,
6067                 AudioMixer::RESAMPLE,
6068                 AudioMixer::SAMPLE_RATE,
6069                 (void *)(uintptr_t)reqSampleRate);
6070 
6071             mAudioMixer->setParameter(
6072                 trackId,
6073                 AudioMixer::TIMESTRETCH,
6074                 AudioMixer::PLAYBACK_RATE,
6075                 // cast away constness for this generic API.
6076                 const_cast<void *>(reinterpret_cast<const void *>(&playbackRate)));
6077 
6078             /*
6079              * Select the appropriate output buffer for the track.
6080              *
6081              * Tracks with effects go into their own effects chain buffer
6082              * and from there into either mEffectBuffer or mSinkBuffer.
6083              *
6084              * Other tracks can use mMixerBuffer for higher precision
6085              * channel accumulation.  If this buffer is enabled
6086              * (mMixerBufferEnabled true), then selected tracks will accumulate
6087              * into it.
6088              *
6089              */
6090             if (mMixerBufferEnabled
6091                     && (track->mainBuffer() == mSinkBuffer
6092                             || track->mainBuffer() == mMixerBuffer)) {
6093                 if (mType == SPATIALIZER && !track->isSpatialized()) {
6094                     mAudioMixer->setParameter(
6095                             trackId,
6096                             AudioMixer::TRACK,
6097                             AudioMixer::MIXER_FORMAT, (void *)mEffectBufferFormat);
6098                     mAudioMixer->setParameter(
6099                             trackId,
6100                             AudioMixer::TRACK,
6101                             AudioMixer::MAIN_BUFFER, (void *)mPostSpatializerBuffer);
6102                 } else {
6103                     mAudioMixer->setParameter(
6104                             trackId,
6105                             AudioMixer::TRACK,
6106                             AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
6107                     mAudioMixer->setParameter(
6108                             trackId,
6109                             AudioMixer::TRACK,
6110                             AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
6111                     // TODO: override track->mainBuffer()?
6112                     mMixerBufferValid = true;
6113                 }
6114             } else {
6115                 mAudioMixer->setParameter(
6116                         trackId,
6117                         AudioMixer::TRACK,
6118                         AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_FLOAT);
6119                 mAudioMixer->setParameter(
6120                         trackId,
6121                         AudioMixer::TRACK,
6122                         AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
6123             }
6124             mAudioMixer->setParameter(
6125                 trackId,
6126                 AudioMixer::TRACK,
6127                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
6128             mAudioMixer->setParameter(
6129                 trackId,
6130                 AudioMixer::TRACK,
6131                 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
6132             const os::HapticScale hapticScale = track->getHapticScale();
6133             mAudioMixer->setParameter(
6134                     trackId,
6135                     AudioMixer::TRACK,
6136                     AudioMixer::HAPTIC_SCALE, (void *)&hapticScale);
6137             const float hapticMaxAmplitude = track->getHapticMaxAmplitude();
6138             mAudioMixer->setParameter(
6139                 trackId,
6140                 AudioMixer::TRACK,
6141                 AudioMixer::HAPTIC_MAX_AMPLITUDE, (void *)&hapticMaxAmplitude);
6142 
6143             // reset retry count
6144             track->retryCount() = kMaxTrackRetries;
6145 
6146             // If one track is ready, set the mixer ready if:
6147             //  - the mixer was not ready during previous round OR
6148             //  - no other track is not ready
6149             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
6150                     mixerStatus != MIXER_TRACKS_ENABLED) {
6151                 mixerStatus = MIXER_TRACKS_READY;
6152             }
6153 
6154             // Enable the next few lines to instrument a test for underrun log handling.
6155             // TODO: Remove when we have a better way of testing the underrun log.
6156 #if 0
6157             static int i;
6158             if ((++i & 0xf) == 0) {
6159                 deferredOperations.tallyUnderrunFrames(track, 10 /* underrunFrames */);
6160             }
6161 #endif
6162         } else {
6163             size_t underrunFrames = 0;
6164             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
6165                 ALOGV("track(%d) underrun, track state %s  framesReady(%zu) < framesDesired(%zd)",
6166                         trackId, track->getTrackStateAsString(), framesReady, desiredFrames);
6167                 underrunFrames = desiredFrames;
6168             }
6169             deferredOperations.tallyUnderrunFrames(track, underrunFrames);
6170 
6171             // clear effect chain input buffer if an active track underruns to avoid sending
6172             // previous audio buffer again to effects
6173             chain = getEffectChain_l(track->sessionId());
6174             if (chain != 0) {
6175                 chain->clearInputBuffer();
6176             }
6177 
6178             ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
6179             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
6180                     track->isStopped() || track->isPaused()) {
6181                 // We have consumed all the buffers of this track.
6182                 // Remove it from the list of active tracks.
6183                 // TODO: use actual buffer filling status instead of latency when available from
6184                 // audio HAL
6185                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
6186                 int64_t framesWritten = mBytesWritten / mFrameSize;
6187                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
6188                     if (track->isStopped()) {
6189                         track->reset();
6190                     }
6191                     tracksToRemove->add(track);
6192                 }
6193             } else {
6194                 // No buffers for this track. Give it a few chances to
6195                 // fill a buffer, then remove it from active list.
6196                 if (--(track->retryCount()) <= 0) {
6197                     ALOGI("%s BUFFER TIMEOUT: remove track(%d) from active list due to underrun"
6198                           " on thread %d", __func__, trackId, mId);
6199                     tracksToRemove->add(track);
6200                     // indicate to client process that the track was disabled because of underrun;
6201                     // it will then automatically call start() when data is available
6202                     track->disable();
6203                 // If one track is not ready, mark the mixer also not ready if:
6204                 //  - the mixer was ready during previous round OR
6205                 //  - no other track is ready
6206                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
6207                                 mixerStatus != MIXER_TRACKS_READY) {
6208                     mixerStatus = MIXER_TRACKS_ENABLED;
6209                 }
6210             }
6211             mAudioMixer->disable(trackId);
6212         }
6213 
6214         }   // local variable scope to avoid goto warning
6215 
6216     }
6217 
6218     if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
6219         // When there is no fast track playing haptic and FastMixer exists,
6220         // enabling the first FastTrack, which provides mixed data from normal
6221         // tracks, to play haptic data.
6222         FastTrack *fastTrack = &state->mFastTracks[0];
6223         if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
6224             fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
6225             didModify = true;
6226         }
6227     }
6228 
6229     // Push the new FastMixer state if necessary
6230     [[maybe_unused]] bool pauseAudioWatchdog = false;
6231     if (didModify) {
6232         state->mFastTracksGen++;
6233         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
6234         if (kUseFastMixer == FastMixer_Dynamic &&
6235                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
6236             state->mCommand = FastMixerState::COLD_IDLE;
6237             state->mColdFutexAddr = &mFastMixerFutex;
6238             state->mColdGen++;
6239             mFastMixerFutex = 0;
6240             if (kUseFastMixer == FastMixer_Dynamic) {
6241                 mNormalSink = mOutputSink;
6242             }
6243             // If we go into cold idle, need to wait for acknowledgement
6244             // so that fast mixer stops doing I/O.
6245             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
6246             pauseAudioWatchdog = true;
6247         }
6248     }
6249     if (sq != NULL) {
6250         sq->end(didModify);
6251         // No need to block if the FastMixer is in COLD_IDLE as the FastThread
6252         // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
6253         // when bringing the output sink into standby.)
6254         //
6255         // We will get the latest FastMixer state when we come out of COLD_IDLE.
6256         //
6257         // This occurs with BT suspend when we idle the FastMixer with
6258         // active tracks, which may be added or removed.
6259         sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
6260     }
6261 #ifdef AUDIO_WATCHDOG
6262     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
6263         mAudioWatchdog->pause();
6264     }
6265 #endif
6266 
6267     // Now perform the deferred reset on fast tracks that have stopped
6268     while (resetMask != 0) {
6269         size_t i = __builtin_ctz(resetMask);
6270         ALOG_ASSERT(i < count);
6271         resetMask &= ~(1 << i);
6272         sp<IAfTrack> track = mActiveTracks[i];
6273         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
6274         track->reset();
6275     }
6276 
6277     // Track destruction may occur outside of threadLoop once it is removed from active tracks.
6278     // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
6279     // it ceases to be active, to allow safe removal from the AudioMixer at the start
6280     // of prepareTracks_l(); this releases any outstanding buffer back to the track.
6281     // See also the implementation of destroyTrack_l().
6282     for (const auto &track : *tracksToRemove) {
6283         const int trackId = track->id();
6284         if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
6285             mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
6286         }
6287     }
6288 
6289     // remove all the tracks that need to be...
6290     removeTracks_l(*tracksToRemove);
6291 
6292     if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0 ||
6293             getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE) != 0) {
6294         mEffectBufferValid = true;
6295     }
6296 
6297     if (mEffectBufferValid) {
6298         // as long as there are effects we should clear the effects buffer, to avoid
6299         // passing a non-clean buffer to the effect chain
6300         memset(mEffectBuffer, 0, mEffectBufferSize);
6301         if (mType == SPATIALIZER) {
6302             memset(mPostSpatializerBuffer, 0, mPostSpatializerBufferSize);
6303         }
6304     }
6305     // sink or mix buffer must be cleared if all tracks are connected to an
6306     // effect chain as in this case the mixer will not write to the sink or mix buffer
6307     // and track effects will accumulate into it
6308     // always clear sink buffer for spatializer output as the output of the spatializer
6309     // effect will be accumulated into it
6310     if ((mBytesRemaining == 0) && (((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
6311             (mixedTracks == 0 && fastTracks > 0)) || (mType == SPATIALIZER))) {
6312         // FIXME as a performance optimization, should remember previous zero status
6313         if (mMixerBufferValid) {
6314             memset(mMixerBuffer, 0, mMixerBufferSize);
6315             // TODO: In testing, mSinkBuffer below need not be cleared because
6316             // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
6317             // after mixing.
6318             //
6319             // To enforce this guarantee:
6320             // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
6321             // (mixedTracks == 0 && fastTracks > 0))
6322             // must imply MIXER_TRACKS_READY.
6323             // Later, we may clear buffers regardless, and skip much of this logic.
6324         }
6325         // FIXME as a performance optimization, should remember previous zero status
6326         memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
6327     }
6328 
6329     // if any fast tracks, then status is ready
6330     mMixerStatusIgnoringFastTracks = mixerStatus;
6331     if (fastTracks > 0) {
6332         mixerStatus = MIXER_TRACKS_READY;
6333     }
6334     return mixerStatus;
6335 }
6336 
6337 // trackCountForUid_l() must be called with ThreadBase::mutex() held
trackCountForUid_l(uid_t uid) const6338 uint32_t PlaybackThread::trackCountForUid_l(uid_t uid) const
6339 {
6340     uint32_t trackCount = 0;
6341     for (size_t i = 0; i < mTracks.size() ; i++) {
6342         if (mTracks[i]->uid() == uid) {
6343             trackCount++;
6344         }
6345     }
6346     return trackCount;
6347 }
6348 
check(AudioStreamOut * output)6349 bool PlaybackThread::IsTimestampAdvancing::check(AudioStreamOut* output)
6350 {
6351     // Check the timestamp to see if it's advancing once every 150ms. If we check too frequently, we
6352     // could falsely detect that the frame position has stalled due to underrun because we haven't
6353     // given the Audio HAL enough time to update.
6354     const nsecs_t nowNs = systemTime();
6355     if (nowNs - mPreviousNs < mMinimumTimeBetweenChecksNs) {
6356         return mLatchedValue;
6357     }
6358     mPreviousNs = nowNs;
6359     mLatchedValue = false;
6360     // Determine if the presentation position is still advancing.
6361     uint64_t position = 0;
6362     struct timespec unused;
6363     const status_t ret = output->getPresentationPosition(&position, &unused);
6364     if (ret == NO_ERROR) {
6365         if (position != mPreviousPosition) {
6366             mPreviousPosition = position;
6367             mLatchedValue = true;
6368         }
6369     }
6370     return mLatchedValue;
6371 }
6372 
clear()6373 void PlaybackThread::IsTimestampAdvancing::clear()
6374 {
6375     mLatchedValue = true;
6376     mPreviousPosition = 0;
6377     mPreviousNs = 0;
6378 }
6379 
6380 // isTrackAllowed_l() must be called with ThreadBase::mutex() held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const6381 bool MixerThread::isTrackAllowed_l(
6382         audio_channel_mask_t channelMask, audio_format_t format,
6383         audio_session_t sessionId, uid_t uid) const
6384 {
6385     if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
6386         return false;
6387     }
6388     // Check validity as we don't call AudioMixer::create() here.
6389     if (!mAudioMixer->isValidFormat(format)) {
6390         ALOGW("%s: invalid format: %#x", __func__, format);
6391         return false;
6392     }
6393     if (!mAudioMixer->isValidChannelMask(channelMask)) {
6394         ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
6395         return false;
6396     }
6397     return true;
6398 }
6399 
6400 // checkForNewParameter_l() must be called with ThreadBase::mutex() held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6401 bool MixerThread::checkForNewParameter_l(const String8& keyValuePair,
6402                                                        status_t& status)
6403 {
6404     bool reconfig = false;
6405     status = NO_ERROR;
6406 
6407     AutoPark<FastMixer> park(mFastMixer);
6408 
6409     AudioParameter param = AudioParameter(keyValuePair);
6410     int value;
6411     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6412         reconfig = true;
6413     }
6414     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6415         if (!isValidPcmSinkFormat(static_cast<audio_format_t>(value))) {
6416             status = BAD_VALUE;
6417         } else {
6418             // no need to save value, since it's constant
6419             reconfig = true;
6420         }
6421     }
6422     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6423         if (!isValidPcmSinkChannelMask(static_cast<audio_channel_mask_t>(value))) {
6424             status = BAD_VALUE;
6425         } else {
6426             // no need to save value, since it's constant
6427             reconfig = true;
6428         }
6429     }
6430     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6431         // do not accept frame count changes if tracks are open as the track buffer
6432         // size depends on frame count and correct behavior would not be guaranteed
6433         // if frame count is changed after track creation
6434         if (!mTracks.isEmpty()) {
6435             status = INVALID_OPERATION;
6436         } else {
6437             reconfig = true;
6438         }
6439     }
6440     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6441         LOG_FATAL("Should not set routing device in MixerThread");
6442     }
6443 
6444     if (status == NO_ERROR) {
6445         status = mOutput->stream->setParameters(keyValuePair);
6446         if (!mStandby && status == INVALID_OPERATION) {
6447             ALOGW("%s: setParameters failed with keyValuePair %s, entering standby",
6448                     __func__, keyValuePair.c_str());
6449             mOutput->standby();
6450             mThreadMetrics.logEndInterval();
6451             mThreadSnapshot.onEnd();
6452             setStandby_l();
6453             mBytesWritten = 0;
6454             status = mOutput->stream->setParameters(keyValuePair);
6455         }
6456         if (status == NO_ERROR && reconfig) {
6457             readOutputParameters_l();
6458             delete mAudioMixer;
6459             mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
6460             for (const auto &track : mTracks) {
6461                 const int trackId = track->id();
6462                 const status_t createStatus = mAudioMixer->create(
6463                         trackId,
6464                         track->channelMask(),
6465                         track->format(),
6466                         track->sessionId());
6467                 ALOGW_IF(createStatus != NO_ERROR,
6468                         "%s(): AudioMixer cannot create track(%d)"
6469                         " mask %#x, format %#x, sessionId %d",
6470                         __func__,
6471                         trackId, track->channelMask(), track->format(), track->sessionId());
6472             }
6473             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
6474         }
6475     }
6476 
6477     return reconfig;
6478 }
6479 
6480 
dumpInternals_l(int fd,const Vector<String16> & args)6481 void MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
6482 {
6483     PlaybackThread::dumpInternals_l(fd, args);
6484     dprintf(fd, "  Thread throttle time (msecs): %u\n", (uint32_t)mThreadThrottleTimeMs);
6485     dprintf(fd, "  AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
6486     dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
6487     dprintf(fd, "  Master balance: %f (%s)\n", mMasterBalance.load(),
6488             (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
6489                             : mBalance.toString()).c_str());
6490     if (hasFastMixer()) {
6491         dprintf(fd, "  FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
6492 
6493         // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
6494         // while we are dumping it.  It may be inconsistent, but it won't mutate!
6495         // This is a large object so we place it on the heap.
6496         // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6497         const std::unique_ptr<FastMixerDumpState> copy =
6498                 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
6499         copy->dump(fd);
6500 
6501 #ifdef STATE_QUEUE_DUMP
6502         // Similar for state queue
6503         StateQueueObserverDump observerCopy = mStateQueueObserverDump;
6504         observerCopy.dump(fd);
6505         StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
6506         mutatorCopy.dump(fd);
6507 #endif
6508 
6509 #ifdef AUDIO_WATCHDOG
6510         if (mAudioWatchdog != 0) {
6511             // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
6512             AudioWatchdogDump wdCopy = mAudioWatchdogDump;
6513             wdCopy.dump(fd);
6514         }
6515 #endif
6516 
6517     } else {
6518         dprintf(fd, "  No FastMixer\n");
6519     }
6520 
6521      dprintf(fd, "Bluetooth latency modes are %senabled\n",
6522             mBluetoothLatencyModesEnabled ? "" : "not ");
6523      dprintf(fd, "HAL does %ssupport Bluetooth latency modes\n", mOutput != nullptr &&
6524              mOutput->audioHwDev->supportsBluetoothVariableLatency() ? "" : "not ");
6525      dprintf(fd, "Supported latency modes: %s\n", toString(mSupportedLatencyModes).c_str());
6526 }
6527 
idleSleepTimeUs() const6528 uint32_t MixerThread::idleSleepTimeUs() const
6529 {
6530     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
6531 }
6532 
suspendSleepTimeUs() const6533 uint32_t MixerThread::suspendSleepTimeUs() const
6534 {
6535     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
6536 }
6537 
cacheParameters_l()6538 void MixerThread::cacheParameters_l()
6539 {
6540     PlaybackThread::cacheParameters_l();
6541 
6542     // FIXME: Relaxed timing because of a certain device that can't meet latency
6543     // Should be reduced to 2x after the vendor fixes the driver issue
6544     // increase threshold again due to low power audio mode. The way this warning
6545     // threshold is calculated and its usefulness should be reconsidered anyway.
6546     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
6547 }
6548 
onHalLatencyModesChanged_l()6549 void MixerThread::onHalLatencyModesChanged_l() {
6550     mAfThreadCallback->onSupportedLatencyModesChanged(mId, mSupportedLatencyModes);
6551 }
6552 
setHalLatencyMode_l()6553 void MixerThread::setHalLatencyMode_l() {
6554     // Only handle latency mode if:
6555     // - mBluetoothLatencyModesEnabled is true
6556     // - the HAL supports latency modes
6557     // - the selected device is Bluetooth LE or A2DP
6558     if (!mBluetoothLatencyModesEnabled.load() || mSupportedLatencyModes.empty()) {
6559         return;
6560     }
6561     if (mOutDeviceTypeAddrs.size() != 1
6562             || !(audio_is_a2dp_out_device(mOutDeviceTypeAddrs[0].mType)
6563                  || audio_is_ble_out_device(mOutDeviceTypeAddrs[0].mType))) {
6564         return;
6565     }
6566 
6567     audio_latency_mode_t latencyMode = AUDIO_LATENCY_MODE_FREE;
6568     if (mSupportedLatencyModes.size() == 1) {
6569         // If the HAL only support one latency mode currently, confirm the choice
6570         latencyMode = mSupportedLatencyModes[0];
6571     } else if (mSupportedLatencyModes.size() > 1) {
6572         // Request low latency if:
6573         // - At least one active track is either:
6574         //   - a fast track with gaming usage or
6575         //   - a track with acessibility usage
6576         for (const auto& track : mActiveTracks) {
6577             if ((track->isFastTrack() && track->attributes().usage == AUDIO_USAGE_GAME)
6578                     || track->attributes().usage == AUDIO_USAGE_ASSISTANCE_ACCESSIBILITY) {
6579                 latencyMode = AUDIO_LATENCY_MODE_LOW;
6580                 break;
6581             }
6582         }
6583     }
6584 
6585     if (latencyMode != mSetLatencyMode) {
6586         status_t status = mOutput->stream->setLatencyMode(latencyMode);
6587         ALOGD("%s: thread(%d) setLatencyMode(%s) returned %d",
6588                 __func__, mId, toString(latencyMode).c_str(), status);
6589         if (status == NO_ERROR) {
6590             mSetLatencyMode = latencyMode;
6591         }
6592     }
6593 }
6594 
updateHalSupportedLatencyModes_l()6595 void MixerThread::updateHalSupportedLatencyModes_l() {
6596 
6597     if (mOutput == nullptr || mOutput->stream == nullptr) {
6598         return;
6599     }
6600     std::vector<audio_latency_mode_t> latencyModes;
6601     const status_t status = mOutput->stream->getRecommendedLatencyModes(&latencyModes);
6602     if (status != NO_ERROR) {
6603         latencyModes.clear();
6604     }
6605     if (latencyModes != mSupportedLatencyModes) {
6606         ALOGD("%s: thread(%d) status %d supported latency modes: %s",
6607             __func__, mId, status, toString(latencyModes).c_str());
6608         mSupportedLatencyModes.swap(latencyModes);
6609         sendHalLatencyModesChangedEvent_l();
6610     }
6611 }
6612 
getSupportedLatencyModes(std::vector<audio_latency_mode_t> * modes)6613 status_t MixerThread::getSupportedLatencyModes(
6614         std::vector<audio_latency_mode_t>* modes) {
6615     if (modes == nullptr) {
6616         return BAD_VALUE;
6617     }
6618     audio_utils::lock_guard _l(mutex());
6619     *modes = mSupportedLatencyModes;
6620     return NO_ERROR;
6621 }
6622 
onRecommendedLatencyModeChanged(std::vector<audio_latency_mode_t> modes)6623 void MixerThread::onRecommendedLatencyModeChanged(
6624         std::vector<audio_latency_mode_t> modes) {
6625     audio_utils::lock_guard _l(mutex());
6626     if (modes != mSupportedLatencyModes) {
6627         ALOGD("%s: thread(%d) supported latency modes: %s",
6628             __func__, mId, toString(modes).c_str());
6629         mSupportedLatencyModes.swap(modes);
6630         sendHalLatencyModesChangedEvent_l();
6631     }
6632 }
6633 
setBluetoothVariableLatencyEnabled(bool enabled)6634 status_t MixerThread::setBluetoothVariableLatencyEnabled(bool enabled) {
6635     if (mOutput == nullptr || mOutput->audioHwDev == nullptr
6636             || !mOutput->audioHwDev->supportsBluetoothVariableLatency()) {
6637         return INVALID_OPERATION;
6638     }
6639     mBluetoothLatencyModesEnabled.store(enabled);
6640     return NO_ERROR;
6641 }
6642 
6643 // ----------------------------------------------------------------------------
6644 
6645 /* static */
createDirectOutputThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,const audio_offload_info_t & offloadInfo)6646 sp<IAfPlaybackThread> IAfPlaybackThread::createDirectOutputThread(
6647         const sp<IAfThreadCallback>& afThreadCallback,
6648         AudioStreamOut* output, audio_io_handle_t id, bool systemReady,
6649         const audio_offload_info_t& offloadInfo) {
6650     return sp<DirectOutputThread>::make(
6651             afThreadCallback, output, id, systemReady, offloadInfo);
6652 }
6653 
DirectOutputThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,ThreadBase::type_t type,bool systemReady,const audio_offload_info_t & offloadInfo)6654 DirectOutputThread::DirectOutputThread(const sp<IAfThreadCallback>& afThreadCallback,
6655         AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady,
6656         const audio_offload_info_t& offloadInfo)
6657     :   PlaybackThread(afThreadCallback, output, id, type, systemReady)
6658     , mOffloadInfo(offloadInfo)
6659 {
6660     setMasterBalance(afThreadCallback->getMasterBalance_l());
6661 }
6662 
~DirectOutputThread()6663 DirectOutputThread::~DirectOutputThread()
6664 {
6665 }
6666 
dumpInternals_l(int fd,const Vector<String16> & args)6667 void DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
6668 {
6669     PlaybackThread::dumpInternals_l(fd, args);
6670     dprintf(fd, "  Master balance: %f  Left: %f  Right: %f\n",
6671             mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
6672 }
6673 
setMasterBalance(float balance)6674 void DirectOutputThread::setMasterBalance(float balance)
6675 {
6676     audio_utils::lock_guard _l(mutex());
6677     if (mMasterBalance != balance) {
6678         mMasterBalance.store(balance);
6679         mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
6680         broadcast_l();
6681     }
6682 }
6683 
processVolume_l(IAfTrack * track,bool lastTrack)6684 void DirectOutputThread::processVolume_l(IAfTrack* track, bool lastTrack)
6685 {
6686     float left, right;
6687 
6688     // Ensure volumeshaper state always advances even when muted.
6689     const sp<AudioTrackServerProxy> proxy = track->audioTrackServerProxy();
6690 
6691     const int64_t frames = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
6692     const int64_t time = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
6693 
6694     ALOGVV("%s: Direct/Offload bufferConsumed:%zu  timestamp frames:%lld  time:%lld",
6695             __func__, proxy->framesReleased(), (long long)frames, (long long)time);
6696 
6697     const int64_t volumeShaperFrames =
6698             mMonotonicFrameCounter.updateAndGetMonotonicFrameCount(frames, time);
6699     const auto [shaperVolume, shaperActive] =
6700             track->getVolumeHandler()->getVolume(volumeShaperFrames);
6701     mVolumeShaperActive = shaperActive;
6702 
6703     gain_minifloat_packed_t vlr = proxy->getVolumeLR();
6704     left = float_from_gain(gain_minifloat_unpack_left(vlr));
6705     right = float_from_gain(gain_minifloat_unpack_right(vlr));
6706 
6707     const bool clientVolumeMute = (left == 0.f && right == 0.f);
6708 
6709     if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
6710         left = right = 0;
6711     } else {
6712         float typeVolume = mStreamTypes[track->streamType()].volume;
6713         const float v = mMasterVolume * typeVolume * shaperVolume;
6714 
6715         if (left > GAIN_FLOAT_UNITY) {
6716             left = GAIN_FLOAT_UNITY;
6717         }
6718         if (right > GAIN_FLOAT_UNITY) {
6719             right = GAIN_FLOAT_UNITY;
6720         }
6721         left *= v;
6722         right *= v;
6723         if (mAfThreadCallback->getMode() != AUDIO_MODE_IN_COMMUNICATION
6724                 || audio_channel_count_from_out_mask(mChannelMask) > 1) {
6725             left *= mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
6726             right *= mMasterBalanceRight;
6727         }
6728     }
6729 
6730     track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(),
6731         /*muteState=*/{mMasterMute,
6732                        mStreamTypes[track->streamType()].volume == 0.f,
6733                        mStreamTypes[track->streamType()].mute,
6734                        track->isPlaybackRestricted(),
6735                        clientVolumeMute,
6736                        shaperVolume == 0.f});
6737 
6738     if (lastTrack) {
6739         track->setFinalVolume(left, right);
6740         if (left != mLeftVolFloat || right != mRightVolFloat) {
6741             mLeftVolFloat = left;
6742             mRightVolFloat = right;
6743 
6744             // Delegate volume control to effect in track effect chain if needed
6745             // only one effect chain can be present on DirectOutputThread, so if
6746             // there is one, the track is connected to it
6747             if (!mEffectChains.isEmpty()) {
6748                 // if effect chain exists, volume is handled by it.
6749                 // Convert volumes from float to 8.24
6750                 uint32_t vl = (uint32_t)(left * (1 << 24));
6751                 uint32_t vr = (uint32_t)(right * (1 << 24));
6752                 // Direct/Offload effect chains set output volume in setVolume().
6753                 (void)mEffectChains[0]->setVolume(&vl, &vr);
6754             } else {
6755                 // otherwise we directly set the volume.
6756                 setVolumeForOutput_l(left, right);
6757             }
6758         }
6759     }
6760 }
6761 
onAddNewTrack_l()6762 void DirectOutputThread::onAddNewTrack_l()
6763 {
6764     sp<IAfTrack> previousTrack = mPreviousTrack.promote();
6765     sp<IAfTrack> latestTrack = mActiveTracks.getLatest();
6766 
6767     if (previousTrack != 0 && latestTrack != 0) {
6768         if (mType == DIRECT) {
6769             if (previousTrack.get() != latestTrack.get()) {
6770                 mFlushPending = true;
6771             }
6772         } else /* mType == OFFLOAD */ {
6773             if (previousTrack->sessionId() != latestTrack->sessionId() ||
6774                 previousTrack->isFlushPending()) {
6775                 mFlushPending = true;
6776             }
6777         }
6778     } else if (previousTrack == 0) {
6779         // there could be an old track added back during track transition for direct
6780         // output, so always issues flush to flush data of the previous track if it
6781         // was already destroyed with HAL paused, then flush can resume the playback
6782         mFlushPending = true;
6783     }
6784     PlaybackThread::onAddNewTrack_l();
6785 }
6786 
prepareTracks_l(Vector<sp<IAfTrack>> * tracksToRemove)6787 PlaybackThread::mixer_state DirectOutputThread::prepareTracks_l(
6788     Vector<sp<IAfTrack>>* tracksToRemove
6789 )
6790 {
6791     size_t count = mActiveTracks.size();
6792     mixer_state mixerStatus = MIXER_IDLE;
6793     bool doHwPause = false;
6794     bool doHwResume = false;
6795 
6796     // find out which tracks need to be processed
6797     for (const sp<IAfTrack>& t : mActiveTracks) {
6798         if (t->isInvalid()) {
6799             ALOGW("An invalidated track shouldn't be in active list");
6800             tracksToRemove->add(t);
6801             continue;
6802         }
6803 
6804         IAfTrack* const track = t.get();
6805 #ifdef VERY_VERY_VERBOSE_LOGGING
6806         audio_track_cblk_t* cblk = track->cblk();
6807 #endif
6808         // Only consider last track started for volume and mixer state control.
6809         // In theory an older track could underrun and restart after the new one starts
6810         // but as we only care about the transition phase between two tracks on a
6811         // direct output, it is not a problem to ignore the underrun case.
6812         sp<IAfTrack> l = mActiveTracks.getLatest();
6813         bool last = l.get() == track;
6814 
6815         if (track->isPausePending()) {
6816             track->pauseAck();
6817             // It is possible a track might have been flushed or stopped.
6818             // Other operations such as flush pending might occur on the next prepare.
6819             if (track->isPausing()) {
6820                 track->setPaused();
6821             }
6822             // Always perform pause, as an immediate flush will change
6823             // the pause state to be no longer isPausing().
6824             if (mHwSupportsPause && last && !mHwPaused) {
6825                 doHwPause = true;
6826                 mHwPaused = true;
6827             }
6828         } else if (track->isFlushPending()) {
6829             track->flushAck();
6830             if (last) {
6831                 mFlushPending = true;
6832             }
6833         } else if (track->isResumePending()) {
6834             track->resumeAck();
6835             if (last) {
6836                 mLeftVolFloat = mRightVolFloat = -1.0;
6837                 if (mHwPaused) {
6838                     doHwResume = true;
6839                     mHwPaused = false;
6840                 }
6841             }
6842         }
6843 
6844         // The first time a track is added we wait
6845         // for all its buffers to be filled before processing it.
6846         // Allow draining the buffer in case the client
6847         // app does not call stop() and relies on underrun to stop:
6848         // hence the test on (track->retryCount() > 1).
6849         // If track->retryCount() <= 1 then track is about to be disabled, paused, removed,
6850         // so we accept any nonzero amount of data delivered by the AudioTrack (which will
6851         // reset the retry counter).
6852         // Do not use a high threshold for compressed audio.
6853 
6854         // target retry count that we will use is based on the time we wait for retries.
6855         const int32_t targetRetryCount = kMaxTrackRetriesDirectMs * 1000 / mActiveSleepTimeUs;
6856         // the retry threshold is when we accept any size for PCM data.  This is slightly
6857         // smaller than the retry count so we can push small bits of data without a glitch.
6858         const int32_t retryThreshold = targetRetryCount > 2 ? targetRetryCount - 1 : 1;
6859         uint32_t minFrames;
6860         if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
6861             && (track->retryCount() > retryThreshold) && audio_has_proportional_frames(mFormat)) {
6862             minFrames = mNormalFrameCount;
6863         } else {
6864             minFrames = 1;
6865         }
6866 
6867         const size_t framesReady = track->framesReady();
6868         const int trackId = track->id();
6869         if (ATRACE_ENABLED()) {
6870             std::string traceName("nRdy");
6871             traceName += std::to_string(trackId);
6872             ATRACE_INT(traceName.c_str(), framesReady);
6873         }
6874         if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() &&
6875                 !track->isStopping_2() && !track->isStopped())
6876         {
6877             ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer);
6878 
6879             if (track->fillingStatus() == IAfTrack::FS_FILLED) {
6880                 track->fillingStatus() = IAfTrack::FS_ACTIVE;
6881                 if (last) {
6882                     // make sure processVolume_l() will apply new volume even if 0
6883                     mLeftVolFloat = mRightVolFloat = -1.0;
6884                 }
6885                 if (!mHwSupportsPause) {
6886                     track->resumeAck();
6887                 }
6888             }
6889 
6890             // compute volume for this track
6891             processVolume_l(track, last);
6892             if (last) {
6893                 sp<IAfTrack> previousTrack = mPreviousTrack.promote();
6894                 if (previousTrack != 0) {
6895                     if (track != previousTrack.get()) {
6896                         // Flush any data still being written from last track
6897                         mBytesRemaining = 0;
6898                         // Invalidate previous track to force a seek when resuming.
6899                         previousTrack->invalidate();
6900                     }
6901                 }
6902                 mPreviousTrack = track;
6903 
6904                 // reset retry count
6905                 track->retryCount() = targetRetryCount;
6906                 mActiveTrack = t;
6907                 mixerStatus = MIXER_TRACKS_READY;
6908                 if (mHwPaused) {
6909                     doHwResume = true;
6910                     mHwPaused = false;
6911                 }
6912             }
6913         } else {
6914             // clear effect chain input buffer if the last active track started underruns
6915             // to avoid sending previous audio buffer again to effects
6916             if (!mEffectChains.isEmpty() && last) {
6917                 mEffectChains[0]->clearInputBuffer();
6918             }
6919             if (track->isStopping_1()) {
6920                 track->setState(IAfTrackBase::STOPPING_2);
6921                 if (last && mHwPaused) {
6922                      doHwResume = true;
6923                      mHwPaused = false;
6924                  }
6925             }
6926             if ((track->sharedBuffer() != 0) || track->isStopped() ||
6927                     track->isStopping_2() || track->isPaused()) {
6928                 // We have consumed all the buffers of this track.
6929                 // Remove it from the list of active tracks.
6930                 bool presComplete = false;
6931                 if (mStandby || !last ||
6932                         (presComplete = track->presentationComplete(latency_l())) ||
6933                         track->isPaused() || mHwPaused) {
6934                     if (presComplete) {
6935                         mOutput->presentationComplete();
6936                     }
6937                     if (track->isStopping_2()) {
6938                         track->setState(IAfTrackBase::STOPPED);
6939                     }
6940                     if (track->isStopped()) {
6941                         track->reset();
6942                     }
6943                     tracksToRemove->add(track);
6944                 }
6945             } else {
6946                 // No buffers for this track. Give it a few chances to
6947                 // fill a buffer, then remove it from active list.
6948                 // Only consider last track started for mixer state control
6949                 bool isTimestampAdvancing = mIsTimestampAdvancing.check(mOutput);
6950                 if (!isTunerStream()  // tuner streams remain active in underrun
6951                         && --(track->retryCount()) <= 0) {
6952                     if (isTimestampAdvancing) { // HAL is still playing audio, give us more time.
6953                         track->retryCount() = kMaxTrackRetriesOffload;
6954                     } else {
6955                         ALOGI("%s BUFFER TIMEOUT: remove track(%d) from active list due to"
6956                               " underrun on thread %d", __func__, trackId, mId);
6957                         tracksToRemove->add(track);
6958                         // indicate to client process that the track was disabled because of
6959                         // underrun; it will then automatically call start() when data is available
6960                         track->disable();
6961                         // only do hw pause when track is going to be removed due to BUFFER TIMEOUT.
6962                         // unlike mixerthread, HAL can be paused for direct output
6963                         ALOGW("pause because of UNDERRUN, framesReady = %zu,"
6964                                 "minFrames = %u, mFormat = %#x",
6965                                 framesReady, minFrames, mFormat);
6966                         if (last && mHwSupportsPause && !mHwPaused && !mStandby) {
6967                             doHwPause = true;
6968                             mHwPaused = true;
6969                         }
6970                     }
6971                 } else if (last) {
6972                     mixerStatus = MIXER_TRACKS_ENABLED;
6973                 }
6974             }
6975         }
6976     }
6977 
6978     // if an active track did not command a flush, check for pending flush on stopped tracks
6979     if (!mFlushPending) {
6980         for (size_t i = 0; i < mTracks.size(); i++) {
6981             if (mTracks[i]->isFlushPending()) {
6982                 mTracks[i]->flushAck();
6983                 mFlushPending = true;
6984             }
6985         }
6986     }
6987 
6988     // make sure the pause/flush/resume sequence is executed in the right order.
6989     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6990     // before flush and then resume HW. This can happen in case of pause/flush/resume
6991     // if resume is received before pause is executed.
6992     if (mHwSupportsPause && !mStandby &&
6993             (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6994         status_t result = mOutput->stream->pause();
6995         ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6996         doHwResume = !doHwPause;  // resume if pause is due to flush.
6997     }
6998     if (mFlushPending) {
6999         flushHw_l();
7000     }
7001     if (mHwSupportsPause && !mStandby && doHwResume) {
7002         status_t result = mOutput->stream->resume();
7003         ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
7004     }
7005     // remove all the tracks that need to be...
7006     removeTracks_l(*tracksToRemove);
7007 
7008     return mixerStatus;
7009 }
7010 
threadLoop_mix()7011 void DirectOutputThread::threadLoop_mix()
7012 {
7013     size_t frameCount = mFrameCount;
7014     int8_t *curBuf = (int8_t *)mSinkBuffer;
7015     // output audio to hardware
7016     while (frameCount) {
7017         AudioBufferProvider::Buffer buffer;
7018         buffer.frameCount = frameCount;
7019         status_t status = mActiveTrack->getNextBuffer(&buffer);
7020         if (status != NO_ERROR || buffer.raw == NULL) {
7021             // no need to pad with 0 for compressed audio
7022             if (audio_has_proportional_frames(mFormat)) {
7023                 memset(curBuf, 0, frameCount * mFrameSize);
7024             }
7025             break;
7026         }
7027         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
7028         frameCount -= buffer.frameCount;
7029         curBuf += buffer.frameCount * mFrameSize;
7030         mActiveTrack->releaseBuffer(&buffer);
7031     }
7032     mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
7033     mSleepTimeUs = 0;
7034     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
7035     mActiveTrack.clear();
7036 }
7037 
threadLoop_sleepTime()7038 void DirectOutputThread::threadLoop_sleepTime()
7039 {
7040     // do not write to HAL when paused
7041     if (mHwPaused || (usesHwAvSync() && mStandby)) {
7042         mSleepTimeUs = mIdleSleepTimeUs;
7043         return;
7044     }
7045     if (mMixerStatus == MIXER_TRACKS_ENABLED) {
7046         mSleepTimeUs = mActiveSleepTimeUs;
7047     } else {
7048         mSleepTimeUs = mIdleSleepTimeUs;
7049     }
7050     // Note: In S or later, we do not write zeroes for
7051     // linear or proportional PCM direct tracks in underrun.
7052 }
7053 
threadLoop_exit()7054 void DirectOutputThread::threadLoop_exit()
7055 {
7056     {
7057         audio_utils::lock_guard _l(mutex());
7058         for (size_t i = 0; i < mTracks.size(); i++) {
7059             if (mTracks[i]->isFlushPending()) {
7060                 mTracks[i]->flushAck();
7061                 mFlushPending = true;
7062             }
7063         }
7064         if (mFlushPending) {
7065             flushHw_l();
7066         }
7067     }
7068     PlaybackThread::threadLoop_exit();
7069 }
7070 
7071 // must be called with thread mutex locked
shouldStandby_l()7072 bool DirectOutputThread::shouldStandby_l()
7073 {
7074     bool trackPaused = false;
7075     bool trackStopped = false;
7076     bool trackDisabled = false;
7077 
7078     // do not put the HAL in standby when paused. NuPlayer clear the offloaded AudioTrack
7079     // after a timeout and we will enter standby then.
7080     // On offload threads, do not enter standby if the main track is still underrunning.
7081     if (mTracks.size() > 0) {
7082         const auto& mainTrack = mTracks[mTracks.size() - 1];
7083 
7084         trackPaused = mainTrack->isPaused();
7085         trackStopped = mainTrack->isStopped() || mainTrack->state() == IAfTrackBase::IDLE;
7086         trackDisabled = (mType == OFFLOAD) && mainTrack->isDisabled();
7087     }
7088 
7089     return !mStandby && !(trackPaused || (mHwPaused && !trackStopped) || trackDisabled);
7090 }
7091 
7092 // checkForNewParameter_l() must be called with ThreadBase::mutex() held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7093 bool DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
7094                                                               status_t& status)
7095 {
7096     bool reconfig = false;
7097     status = NO_ERROR;
7098 
7099     AudioParameter param = AudioParameter(keyValuePair);
7100     int value;
7101     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7102         LOG_FATAL("Should not set routing device in DirectOutputThread");
7103     }
7104     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7105         // do not accept frame count changes if tracks are open as the track buffer
7106         // size depends on frame count and correct behavior would not be garantied
7107         // if frame count is changed after track creation
7108         if (!mTracks.isEmpty()) {
7109             status = INVALID_OPERATION;
7110         } else {
7111             reconfig = true;
7112         }
7113     }
7114     if (status == NO_ERROR) {
7115         status = mOutput->stream->setParameters(keyValuePair);
7116         if (!mStandby && status == INVALID_OPERATION) {
7117             mOutput->standby();
7118             if (!mStandby) {
7119                 mThreadMetrics.logEndInterval();
7120                 mThreadSnapshot.onEnd();
7121                 setStandby_l();
7122             }
7123             mBytesWritten = 0;
7124             status = mOutput->stream->setParameters(keyValuePair);
7125         }
7126         if (status == NO_ERROR && reconfig) {
7127             readOutputParameters_l();
7128             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
7129         }
7130     }
7131 
7132     return reconfig;
7133 }
7134 
activeSleepTimeUs() const7135 uint32_t DirectOutputThread::activeSleepTimeUs() const
7136 {
7137     uint32_t time;
7138     if (audio_has_proportional_frames(mFormat)) {
7139         time = PlaybackThread::activeSleepTimeUs();
7140     } else {
7141         time = kDirectMinSleepTimeUs;
7142     }
7143     return time;
7144 }
7145 
idleSleepTimeUs() const7146 uint32_t DirectOutputThread::idleSleepTimeUs() const
7147 {
7148     uint32_t time;
7149     if (audio_has_proportional_frames(mFormat)) {
7150         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
7151     } else {
7152         time = kDirectMinSleepTimeUs;
7153     }
7154     return time;
7155 }
7156 
suspendSleepTimeUs() const7157 uint32_t DirectOutputThread::suspendSleepTimeUs() const
7158 {
7159     uint32_t time;
7160     if (audio_has_proportional_frames(mFormat)) {
7161         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
7162     } else {
7163         time = kDirectMinSleepTimeUs;
7164     }
7165     return time;
7166 }
7167 
cacheParameters_l()7168 void DirectOutputThread::cacheParameters_l()
7169 {
7170     PlaybackThread::cacheParameters_l();
7171 
7172     // use shorter standby delay as on normal output to release
7173     // hardware resources as soon as possible
7174     // no delay on outputs with HW A/V sync
7175     if (usesHwAvSync()) {
7176         mStandbyDelayNs = 0;
7177     } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
7178         mStandbyDelayNs = kOffloadStandbyDelayNs;
7179     } else {
7180         mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
7181     }
7182 }
7183 
flushHw_l()7184 void DirectOutputThread::flushHw_l()
7185 {
7186     PlaybackThread::flushHw_l();
7187     mOutput->flush();
7188     mFlushPending = false;
7189     mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush());
7190     mTimestamp.clear();
7191     mMonotonicFrameCounter.onFlush();
7192     // We do not reset mHwPaused which is hidden from the Track client.
7193     // Note: the client track in Tracks.cpp and AudioTrack.cpp
7194     // has a FLUSHED state but the DirectOutputThread does not;
7195     // those tracks will continue to show isStopped().
7196 }
7197 
computeWaitTimeNs_l() const7198 int64_t DirectOutputThread::computeWaitTimeNs_l() const {
7199     // If a VolumeShaper is active, we must wake up periodically to update volume.
7200     const int64_t NS_PER_MS = 1000000;
7201     return mVolumeShaperActive ?
7202             kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
7203 }
7204 
7205 // ----------------------------------------------------------------------------
7206 
AsyncCallbackThread(const wp<PlaybackThread> & playbackThread)7207 AsyncCallbackThread::AsyncCallbackThread(
7208         const wp<PlaybackThread>& playbackThread)
7209     :   Thread(false /*canCallJava*/),
7210         mPlaybackThread(playbackThread),
7211         mWriteAckSequence(0),
7212         mDrainSequence(0),
7213         mAsyncError(ASYNC_ERROR_NONE)
7214 {
7215 }
7216 
onFirstRef()7217 void AsyncCallbackThread::onFirstRef()
7218 {
7219     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
7220 }
7221 
threadLoop()7222 bool AsyncCallbackThread::threadLoop()
7223 {
7224     while (!exitPending()) {
7225         uint32_t writeAckSequence;
7226         uint32_t drainSequence;
7227         AsyncError asyncError;
7228 
7229         {
7230             audio_utils::unique_lock _l(mutex());
7231             while (!((mWriteAckSequence & 1) ||
7232                      (mDrainSequence & 1) ||
7233                      mAsyncError ||
7234                      exitPending())) {
7235                 mWaitWorkCV.wait(_l);
7236             }
7237 
7238             if (exitPending()) {
7239                 break;
7240             }
7241             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
7242                   mWriteAckSequence, mDrainSequence);
7243             writeAckSequence = mWriteAckSequence;
7244             mWriteAckSequence &= ~1;
7245             drainSequence = mDrainSequence;
7246             mDrainSequence &= ~1;
7247             asyncError = mAsyncError;
7248             mAsyncError = ASYNC_ERROR_NONE;
7249         }
7250         {
7251             const sp<PlaybackThread> playbackThread = mPlaybackThread.promote();
7252             if (playbackThread != 0) {
7253                 if (writeAckSequence & 1) {
7254                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
7255                 }
7256                 if (drainSequence & 1) {
7257                     playbackThread->resetDraining(drainSequence >> 1);
7258                 }
7259                 if (asyncError != ASYNC_ERROR_NONE) {
7260                     playbackThread->onAsyncError(asyncError == ASYNC_ERROR_HARD);
7261                 }
7262             }
7263         }
7264     }
7265     return false;
7266 }
7267 
exit()7268 void AsyncCallbackThread::exit()
7269 {
7270     ALOGV("AsyncCallbackThread::exit");
7271     audio_utils::lock_guard _l(mutex());
7272     requestExit();
7273     mWaitWorkCV.notify_all();
7274 }
7275 
setWriteBlocked(uint32_t sequence)7276 void AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
7277 {
7278     audio_utils::lock_guard _l(mutex());
7279     // bit 0 is cleared
7280     mWriteAckSequence = sequence << 1;
7281 }
7282 
resetWriteBlocked()7283 void AsyncCallbackThread::resetWriteBlocked()
7284 {
7285     audio_utils::lock_guard _l(mutex());
7286     // ignore unexpected callbacks
7287     if (mWriteAckSequence & 2) {
7288         mWriteAckSequence |= 1;
7289         mWaitWorkCV.notify_one();
7290     }
7291 }
7292 
setDraining(uint32_t sequence)7293 void AsyncCallbackThread::setDraining(uint32_t sequence)
7294 {
7295     audio_utils::lock_guard _l(mutex());
7296     // bit 0 is cleared
7297     mDrainSequence = sequence << 1;
7298 }
7299 
resetDraining()7300 void AsyncCallbackThread::resetDraining()
7301 {
7302     audio_utils::lock_guard _l(mutex());
7303     // ignore unexpected callbacks
7304     if (mDrainSequence & 2) {
7305         mDrainSequence |= 1;
7306         mWaitWorkCV.notify_one();
7307     }
7308 }
7309 
setAsyncError(bool isHardError)7310 void AsyncCallbackThread::setAsyncError(bool isHardError)
7311 {
7312     audio_utils::lock_guard _l(mutex());
7313     mAsyncError = isHardError ? ASYNC_ERROR_HARD : ASYNC_ERROR_SOFT;
7314     mWaitWorkCV.notify_one();
7315 }
7316 
7317 
7318 // ----------------------------------------------------------------------------
7319 
7320 /* static */
createOffloadThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,const audio_offload_info_t & offloadInfo)7321 sp<IAfPlaybackThread> IAfPlaybackThread::createOffloadThread(
7322         const sp<IAfThreadCallback>& afThreadCallback,
7323         AudioStreamOut* output, audio_io_handle_t id, bool systemReady,
7324         const audio_offload_info_t& offloadInfo) {
7325     return sp<OffloadThread>::make(afThreadCallback, output, id, systemReady, offloadInfo);
7326 }
7327 
OffloadThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,const audio_offload_info_t & offloadInfo)7328 OffloadThread::OffloadThread(const sp<IAfThreadCallback>& afThreadCallback,
7329         AudioStreamOut* output, audio_io_handle_t id, bool systemReady,
7330         const audio_offload_info_t& offloadInfo)
7331     :   DirectOutputThread(afThreadCallback, output, id, OFFLOAD, systemReady, offloadInfo),
7332         mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true)
7333 {
7334     //FIXME: mStandby should be set to true by ThreadBase constructo
7335     mStandby = true;
7336     mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
7337 }
7338 
threadLoop_exit()7339 void OffloadThread::threadLoop_exit()
7340 {
7341     if (mFlushPending || mHwPaused) {
7342         // If a flush is pending or track was paused, just discard buffered data
7343         audio_utils::lock_guard l(mutex());
7344         flushHw_l();
7345     } else {
7346         mMixerStatus = MIXER_DRAIN_ALL;
7347         threadLoop_drain();
7348     }
7349     if (mUseAsyncWrite) {
7350         ALOG_ASSERT(mCallbackThread != 0);
7351         mCallbackThread->exit();
7352     }
7353     PlaybackThread::threadLoop_exit();
7354 }
7355 
prepareTracks_l(Vector<sp<IAfTrack>> * tracksToRemove)7356 PlaybackThread::mixer_state OffloadThread::prepareTracks_l(
7357     Vector<sp<IAfTrack>>* tracksToRemove
7358 )
7359 {
7360     size_t count = mActiveTracks.size();
7361 
7362     mixer_state mixerStatus = MIXER_IDLE;
7363     bool doHwPause = false;
7364     bool doHwResume = false;
7365 
7366     ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
7367 
7368     // find out which tracks need to be processed
7369     for (const sp<IAfTrack>& t : mActiveTracks) {
7370         IAfTrack* const track = t.get();
7371 #ifdef VERY_VERY_VERBOSE_LOGGING
7372         audio_track_cblk_t* cblk = track->cblk();
7373 #endif
7374         // Only consider last track started for volume and mixer state control.
7375         // In theory an older track could underrun and restart after the new one starts
7376         // but as we only care about the transition phase between two tracks on a
7377         // direct output, it is not a problem to ignore the underrun case.
7378         sp<IAfTrack> l = mActiveTracks.getLatest();
7379         bool last = l.get() == track;
7380 
7381         if (track->isInvalid()) {
7382             ALOGW("An invalidated track shouldn't be in active list");
7383             tracksToRemove->add(track);
7384             continue;
7385         }
7386 
7387         if (track->state() == IAfTrackBase::IDLE) {
7388             ALOGW("An idle track shouldn't be in active list");
7389             continue;
7390         }
7391 
7392         if (track->isPausePending()) {
7393             track->pauseAck();
7394             // It is possible a track might have been flushed or stopped.
7395             // Other operations such as flush pending might occur on the next prepare.
7396             if (track->isPausing()) {
7397                 track->setPaused();
7398             }
7399             // Always perform pause if last, as an immediate flush will change
7400             // the pause state to be no longer isPausing().
7401             if (last) {
7402                 if (mHwSupportsPause && !mHwPaused) {
7403                     doHwPause = true;
7404                     mHwPaused = true;
7405                 }
7406                 // If we were part way through writing the mixbuffer to
7407                 // the HAL we must save this until we resume
7408                 // BUG - this will be wrong if a different track is made active,
7409                 // in that case we want to discard the pending data in the
7410                 // mixbuffer and tell the client to present it again when the
7411                 // track is resumed
7412                 mPausedWriteLength = mCurrentWriteLength;
7413                 mPausedBytesRemaining = mBytesRemaining;
7414                 mBytesRemaining = 0;    // stop writing
7415             }
7416             tracksToRemove->add(track);
7417         } else if (track->isFlushPending()) {
7418             if (track->isStopping_1()) {
7419                 track->retryCount() = kMaxTrackStopRetriesOffload;
7420             } else {
7421                 track->retryCount() = kMaxTrackRetriesOffload;
7422             }
7423             track->flushAck();
7424             if (last) {
7425                 mFlushPending = true;
7426             }
7427         } else if (track->isResumePending()){
7428             track->resumeAck();
7429             if (last) {
7430                 if (mPausedBytesRemaining) {
7431                     // Need to continue write that was interrupted
7432                     mCurrentWriteLength = mPausedWriteLength;
7433                     mBytesRemaining = mPausedBytesRemaining;
7434                     mPausedBytesRemaining = 0;
7435                 }
7436                 if (mHwPaused) {
7437                     doHwResume = true;
7438                     mHwPaused = false;
7439                     // threadLoop_mix() will handle the case that we need to
7440                     // resume an interrupted write
7441                 }
7442                 // enable write to audio HAL
7443                 mSleepTimeUs = 0;
7444 
7445                 mLeftVolFloat = mRightVolFloat = -1.0;
7446 
7447                 // Do not handle new data in this iteration even if track->framesReady()
7448                 mixerStatus = MIXER_TRACKS_ENABLED;
7449             }
7450         }  else if (track->framesReady() && track->isReady() &&
7451                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
7452             ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
7453             if (track->fillingStatus() == IAfTrack::FS_FILLED) {
7454                 track->fillingStatus() = IAfTrack::FS_ACTIVE;
7455                 if (last) {
7456                     // make sure processVolume_l() will apply new volume even if 0
7457                     mLeftVolFloat = mRightVolFloat = -1.0;
7458                 }
7459             }
7460 
7461             if (last) {
7462                 sp<IAfTrack> previousTrack = mPreviousTrack.promote();
7463                 if (previousTrack != 0) {
7464                     if (track != previousTrack.get()) {
7465                         // Flush any data still being written from last track
7466                         mBytesRemaining = 0;
7467                         if (mPausedBytesRemaining) {
7468                             // Last track was paused so we also need to flush saved
7469                             // mixbuffer state and invalidate track so that it will
7470                             // re-submit that unwritten data when it is next resumed
7471                             mPausedBytesRemaining = 0;
7472                             // Invalidate is a bit drastic - would be more efficient
7473                             // to have a flag to tell client that some of the
7474                             // previously written data was lost
7475                             previousTrack->invalidate();
7476                         }
7477                         // flush data already sent to the DSP if changing audio session as audio
7478                         // comes from a different source. Also invalidate previous track to force a
7479                         // seek when resuming.
7480                         if (previousTrack->sessionId() != track->sessionId()) {
7481                             previousTrack->invalidate();
7482                         }
7483                     }
7484                 }
7485                 mPreviousTrack = track;
7486                 // reset retry count
7487                 if (track->isStopping_1()) {
7488                     track->retryCount() = kMaxTrackStopRetriesOffload;
7489                 } else {
7490                     track->retryCount() = kMaxTrackRetriesOffload;
7491                 }
7492                 mActiveTrack = t;
7493                 mixerStatus = MIXER_TRACKS_READY;
7494             }
7495         } else {
7496             ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
7497             if (track->isStopping_1()) {
7498                 if (--(track->retryCount()) <= 0) {
7499                     // Hardware buffer can hold a large amount of audio so we must
7500                     // wait for all current track's data to drain before we say
7501                     // that the track is stopped.
7502                     if (mBytesRemaining == 0) {
7503                         // Only start draining when all data in mixbuffer
7504                         // has been written
7505                         ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
7506                         track->setState(IAfTrackBase::STOPPING_2);
7507                         // so presentation completes after
7508                         // drain do not drain if no data was ever sent to HAL (mStandby == true)
7509                         if (last && !mStandby) {
7510                             // do not modify drain sequence if we are already draining. This happens
7511                             // when resuming from pause after drain.
7512                             if ((mDrainSequence & 1) == 0) {
7513                                 mSleepTimeUs = 0;
7514                                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
7515                                 mixerStatus = MIXER_DRAIN_TRACK;
7516                                 mDrainSequence += 2;
7517                             }
7518                             if (mHwPaused) {
7519                                 // It is possible to move from PAUSED to STOPPING_1 without
7520                                 // a resume so we must ensure hardware is running
7521                                 doHwResume = true;
7522                                 mHwPaused = false;
7523                             }
7524                         }
7525                     }
7526                 } else if (last) {
7527                     ALOGV("stopping1 underrun retries left %d", track->retryCount());
7528                     mixerStatus = MIXER_TRACKS_ENABLED;
7529                 }
7530             } else if (track->isStopping_2()) {
7531                 // Drain has completed or we are in standby, signal presentation complete
7532                 if (!(mDrainSequence & 1) || !last || mStandby) {
7533                     track->setState(IAfTrackBase::STOPPED);
7534                     mOutput->presentationComplete();
7535                     track->presentationComplete(latency_l()); // always returns true
7536                     track->reset();
7537                     tracksToRemove->add(track);
7538                     // OFFLOADED stop resets frame counts.
7539                     if (!mUseAsyncWrite) {
7540                         // If we don't get explicit drain notification we must
7541                         // register discontinuity regardless of whether this is
7542                         // the previous (!last) or the upcoming (last) track
7543                         // to avoid skipping the discontinuity.
7544                         mTimestampVerifier.discontinuity(
7545                                 mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
7546                     }
7547                 }
7548             } else {
7549                 // No buffers for this track. Give it a few chances to
7550                 // fill a buffer, then remove it from active list.
7551                 bool isTimestampAdvancing = mIsTimestampAdvancing.check(mOutput);
7552                 if (!isTunerStream()  // tuner streams remain active in underrun
7553                         && --(track->retryCount()) <= 0) {
7554                     if (isTimestampAdvancing) { // HAL is still playing audio, give us more time.
7555                         track->retryCount() = kMaxTrackRetriesOffload;
7556                     } else {
7557                         ALOGI("%s BUFFER TIMEOUT: remove track(%d) from active list due to"
7558                               " underrun on thread %d", __func__, track->id(), mId);
7559                         tracksToRemove->add(track);
7560                         // tell client process that the track was disabled because of underrun;
7561                         // it will then automatically call start() when data is available
7562                         track->disable();
7563                     }
7564                 } else if (last){
7565                     mixerStatus = MIXER_TRACKS_ENABLED;
7566                 }
7567             }
7568         }
7569         // compute volume for this track
7570         if (track->isReady()) {  // check ready to prevent premature start.
7571             processVolume_l(track, last);
7572         }
7573     }
7574 
7575     // make sure the pause/flush/resume sequence is executed in the right order.
7576     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
7577     // before flush and then resume HW. This can happen in case of pause/flush/resume
7578     // if resume is received before pause is executed.
7579     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
7580         status_t result = mOutput->stream->pause();
7581         ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
7582         doHwResume = !doHwPause;  // resume if pause is due to flush.
7583     }
7584     if (mFlushPending) {
7585         flushHw_l();
7586     }
7587     if (!mStandby && doHwResume) {
7588         status_t result = mOutput->stream->resume();
7589         ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
7590     }
7591 
7592     // remove all the tracks that need to be...
7593     removeTracks_l(*tracksToRemove);
7594 
7595     return mixerStatus;
7596 }
7597 
7598 // must be called with thread mutex locked
waitingAsyncCallback_l()7599 bool OffloadThread::waitingAsyncCallback_l()
7600 {
7601     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
7602           mWriteAckSequence, mDrainSequence);
7603     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
7604         return true;
7605     }
7606     return false;
7607 }
7608 
waitingAsyncCallback()7609 bool OffloadThread::waitingAsyncCallback()
7610 {
7611     audio_utils::lock_guard _l(mutex());
7612     return waitingAsyncCallback_l();
7613 }
7614 
flushHw_l()7615 void OffloadThread::flushHw_l()
7616 {
7617     DirectOutputThread::flushHw_l();
7618     // Flush anything still waiting in the mixbuffer
7619     mCurrentWriteLength = 0;
7620     mBytesRemaining = 0;
7621     mPausedWriteLength = 0;
7622     mPausedBytesRemaining = 0;
7623     // reset bytes written count to reflect that DSP buffers are empty after flush.
7624     mBytesWritten = 0;
7625 
7626     if (mUseAsyncWrite) {
7627         // discard any pending drain or write ack by incrementing sequence
7628         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
7629         mDrainSequence = (mDrainSequence + 2) & ~1;
7630         ALOG_ASSERT(mCallbackThread != 0);
7631         mCallbackThread->setWriteBlocked(mWriteAckSequence);
7632         mCallbackThread->setDraining(mDrainSequence);
7633     }
7634 }
7635 
invalidateTracks(audio_stream_type_t streamType)7636 void OffloadThread::invalidateTracks(audio_stream_type_t streamType)
7637 {
7638     audio_utils::lock_guard _l(mutex());
7639     if (PlaybackThread::invalidateTracks_l(streamType)) {
7640         mFlushPending = true;
7641     }
7642 }
7643 
invalidateTracks(std::set<audio_port_handle_t> & portIds)7644 void OffloadThread::invalidateTracks(std::set<audio_port_handle_t>& portIds) {
7645     audio_utils::lock_guard _l(mutex());
7646     if (PlaybackThread::invalidateTracks_l(portIds)) {
7647         mFlushPending = true;
7648     }
7649 }
7650 
7651 // ----------------------------------------------------------------------------
7652 
7653 /* static */
create(const sp<IAfThreadCallback> & afThreadCallback,IAfPlaybackThread * mainThread,audio_io_handle_t id,bool systemReady)7654 sp<IAfDuplicatingThread> IAfDuplicatingThread::create(
7655         const sp<IAfThreadCallback>& afThreadCallback,
7656         IAfPlaybackThread* mainThread, audio_io_handle_t id, bool systemReady) {
7657     return sp<DuplicatingThread>::make(afThreadCallback, mainThread, id, systemReady);
7658 }
7659 
DuplicatingThread(const sp<IAfThreadCallback> & afThreadCallback,IAfPlaybackThread * mainThread,audio_io_handle_t id,bool systemReady)7660 DuplicatingThread::DuplicatingThread(const sp<IAfThreadCallback>& afThreadCallback,
7661        IAfPlaybackThread* mainThread, audio_io_handle_t id, bool systemReady)
7662     :   MixerThread(afThreadCallback, mainThread->getOutput(), id,
7663                     systemReady, DUPLICATING),
7664         mWaitTimeMs(UINT_MAX)
7665 {
7666     addOutputTrack(mainThread);
7667 }
7668 
~DuplicatingThread()7669 DuplicatingThread::~DuplicatingThread()
7670 {
7671     for (size_t i = 0; i < mOutputTracks.size(); i++) {
7672         mOutputTracks[i]->destroy();
7673     }
7674 }
7675 
threadLoop_mix()7676 void DuplicatingThread::threadLoop_mix()
7677 {
7678     // mix buffers...
7679     if (outputsReady()) {
7680         mAudioMixer->process();
7681     } else {
7682         if (mMixerBufferValid) {
7683             memset(mMixerBuffer, 0, mMixerBufferSize);
7684         } else {
7685             memset(mSinkBuffer, 0, mSinkBufferSize);
7686         }
7687     }
7688     mSleepTimeUs = 0;
7689     writeFrames = mNormalFrameCount;
7690     mCurrentWriteLength = mSinkBufferSize;
7691     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
7692 }
7693 
threadLoop_sleepTime()7694 void DuplicatingThread::threadLoop_sleepTime()
7695 {
7696     if (mSleepTimeUs == 0) {
7697         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
7698             mSleepTimeUs = mActiveSleepTimeUs;
7699         } else {
7700             mSleepTimeUs = mIdleSleepTimeUs;
7701         }
7702     } else if (mBytesWritten != 0) {
7703         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
7704             writeFrames = mNormalFrameCount;
7705             memset(mSinkBuffer, 0, mSinkBufferSize);
7706         } else {
7707             // flush remaining overflow buffers in output tracks
7708             writeFrames = 0;
7709         }
7710         mSleepTimeUs = 0;
7711     }
7712 }
7713 
threadLoop_write()7714 ssize_t DuplicatingThread::threadLoop_write()
7715 {
7716     for (size_t i = 0; i < outputTracks.size(); i++) {
7717         const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
7718 
7719         // Consider the first OutputTrack for timestamp and frame counting.
7720 
7721         // The threadLoop() generally assumes writing a full sink buffer size at a time.
7722         // Here, we correct for writeFrames of 0 (a stop) or underruns because
7723         // we always claim success.
7724         if (i == 0) {
7725             const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
7726             ALOGD_IF(correction != 0 && writeFrames != 0,
7727                     "%s: writeFrames:%u  actualWritten:%zd  correction:%zd  mFramesWritten:%lld",
7728                     __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
7729             mFramesWritten -= correction;
7730         }
7731 
7732         // TODO: Report correction for the other output tracks and show in the dump.
7733     }
7734     if (mStandby) {
7735         mThreadMetrics.logBeginInterval();
7736         mThreadSnapshot.onBegin();
7737         mStandby = false;
7738     }
7739     return (ssize_t)mSinkBufferSize;
7740 }
7741 
threadLoop_standby()7742 void DuplicatingThread::threadLoop_standby()
7743 {
7744     // DuplicatingThread implements standby by stopping all tracks
7745     for (size_t i = 0; i < outputTracks.size(); i++) {
7746         outputTracks[i]->stop();
7747     }
7748 }
7749 
threadLoop_exit()7750 void DuplicatingThread::threadLoop_exit()
7751 {
7752     // Prevent calling the OutputTrack dtor in the DuplicatingThread dtor
7753     // where other mutexes (i.e. AudioPolicyService_Mutex) may be held.
7754     // Do so here in the threadLoop_exit().
7755 
7756     SortedVector <sp<IAfOutputTrack>> localTracks;
7757     {
7758         audio_utils::lock_guard l(mutex());
7759         localTracks = std::move(mOutputTracks);
7760         mOutputTracks.clear();
7761     }
7762     localTracks.clear();
7763     outputTracks.clear();
7764     PlaybackThread::threadLoop_exit();
7765 }
7766 
dumpInternals_l(int fd,const Vector<String16> & args)7767 void DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args)
7768 {
7769     MixerThread::dumpInternals_l(fd, args);
7770 
7771     std::stringstream ss;
7772     const size_t numTracks = mOutputTracks.size();
7773     ss << "  " << numTracks << " OutputTracks";
7774     if (numTracks > 0) {
7775         ss << ":";
7776         for (const auto &track : mOutputTracks) {
7777             const auto thread = track->thread().promote();
7778             ss << " (" << track->id() << " : ";
7779             if (thread.get() != nullptr) {
7780                 ss << thread.get() << ", " << thread->id();
7781             } else {
7782                 ss << "null";
7783             }
7784             ss << ")";
7785         }
7786     }
7787     ss << "\n";
7788     std::string result = ss.str();
7789     write(fd, result.c_str(), result.size());
7790 }
7791 
saveOutputTracks()7792 void DuplicatingThread::saveOutputTracks()
7793 {
7794     outputTracks = mOutputTracks;
7795 }
7796 
clearOutputTracks()7797 void DuplicatingThread::clearOutputTracks()
7798 {
7799     outputTracks.clear();
7800 }
7801 
addOutputTrack(IAfPlaybackThread * thread)7802 void DuplicatingThread::addOutputTrack(IAfPlaybackThread* thread)
7803 {
7804     audio_utils::lock_guard _l(mutex());
7805     // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
7806     // Adjust for thread->sampleRate() to determine minimum buffer frame count.
7807     // Then triple buffer because Threads do not run synchronously and may not be clock locked.
7808     const size_t frameCount =
7809             3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
7810     // TODO: Consider asynchronous sample rate conversion to handle clock disparity
7811     // from different OutputTracks and their associated MixerThreads (e.g. one may
7812     // nearly empty and the other may be dropping data).
7813 
7814     // TODO b/182392769: use attribution source util, move to server edge
7815     AttributionSourceState attributionSource = AttributionSourceState();
7816     attributionSource.uid = VALUE_OR_FATAL(legacy2aidl_uid_t_int32_t(
7817         IPCThreadState::self()->getCallingUid()));
7818     attributionSource.pid = VALUE_OR_FATAL(legacy2aidl_pid_t_int32_t(
7819       IPCThreadState::self()->getCallingPid()));
7820     attributionSource.token = sp<BBinder>::make();
7821     sp<IAfOutputTrack> outputTrack = IAfOutputTrack::create(thread,
7822                                             this,
7823                                             mSampleRate,
7824                                             mFormat,
7825                                             mChannelMask,
7826                                             frameCount,
7827                                             attributionSource);
7828     status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
7829     if (status != NO_ERROR) {
7830         ALOGE("addOutputTrack() initCheck failed %d", status);
7831         return;
7832     }
7833     thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
7834     mOutputTracks.add(outputTrack);
7835     ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
7836     updateWaitTime_l();
7837 }
7838 
removeOutputTrack(IAfPlaybackThread * thread)7839 void DuplicatingThread::removeOutputTrack(IAfPlaybackThread* thread)
7840 {
7841     audio_utils::lock_guard _l(mutex());
7842     for (size_t i = 0; i < mOutputTracks.size(); i++) {
7843         if (mOutputTracks[i]->thread() == thread) {
7844             mOutputTracks[i]->destroy();
7845             mOutputTracks.removeAt(i);
7846             updateWaitTime_l();
7847             // NO_THREAD_SAFETY_ANALYSIS
7848             // Lambda workaround: as thread != this
7849             // we can safely call the remote thread getOutput.
7850             const bool equalOutput =
7851                     [&](){ return thread->getOutput() == mOutput; }();
7852             if (equalOutput) {
7853                 mOutput = nullptr;
7854             }
7855             return;
7856         }
7857     }
7858     ALOGV("removeOutputTrack(): unknown thread: %p", thread);
7859 }
7860 
7861 // caller must hold mutex()
updateWaitTime_l()7862 void DuplicatingThread::updateWaitTime_l()
7863 {
7864     mWaitTimeMs = UINT_MAX;
7865     for (size_t i = 0; i < mOutputTracks.size(); i++) {
7866         const auto strong = mOutputTracks[i]->thread().promote();
7867         if (strong != 0) {
7868             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
7869             if (waitTimeMs < mWaitTimeMs) {
7870                 mWaitTimeMs = waitTimeMs;
7871             }
7872         }
7873     }
7874 }
7875 
outputsReady()7876 bool DuplicatingThread::outputsReady()
7877 {
7878     for (size_t i = 0; i < outputTracks.size(); i++) {
7879         const auto thread = outputTracks[i]->thread().promote();
7880         if (thread == 0) {
7881             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
7882                     outputTracks[i].get());
7883             return false;
7884         }
7885         IAfPlaybackThread* const playbackThread = thread->asIAfPlaybackThread().get();
7886         // see note at standby() declaration
7887         if (playbackThread->inStandby() && !playbackThread->isSuspended()) {
7888             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
7889                     thread.get());
7890             return false;
7891         }
7892     }
7893     return true;
7894 }
7895 
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)7896 void DuplicatingThread::sendMetadataToBackend_l(
7897         const StreamOutHalInterface::SourceMetadata& metadata)
7898 {
7899     for (auto& outputTrack : outputTracks) { // not mOutputTracks
7900         outputTrack->setMetadatas(metadata.tracks);
7901     }
7902 }
7903 
activeSleepTimeUs() const7904 uint32_t DuplicatingThread::activeSleepTimeUs() const
7905 {
7906     // return half the wait time in microseconds.
7907     return std::min(mWaitTimeMs * 500ULL, (unsigned long long)UINT32_MAX);  // prevent overflow.
7908 }
7909 
cacheParameters_l()7910 void DuplicatingThread::cacheParameters_l()
7911 {
7912     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
7913     updateWaitTime_l();
7914 
7915     MixerThread::cacheParameters_l();
7916 }
7917 
7918 // ----------------------------------------------------------------------------
7919 
7920 /* static */
createSpatializerThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,audio_config_base_t * mixerConfig)7921 sp<IAfPlaybackThread> IAfPlaybackThread::createSpatializerThread(
7922         const sp<IAfThreadCallback>& afThreadCallback,
7923         AudioStreamOut* output,
7924         audio_io_handle_t id,
7925         bool systemReady,
7926         audio_config_base_t* mixerConfig) {
7927     return sp<SpatializerThread>::make(afThreadCallback, output, id, systemReady, mixerConfig);
7928 }
7929 
SpatializerThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,audio_config_base_t * mixerConfig)7930 SpatializerThread::SpatializerThread(const sp<IAfThreadCallback>& afThreadCallback,
7931                                                              AudioStreamOut* output,
7932                                                              audio_io_handle_t id,
7933                                                              bool systemReady,
7934                                                              audio_config_base_t *mixerConfig)
7935     : MixerThread(afThreadCallback, output, id, systemReady, SPATIALIZER, mixerConfig)
7936 {
7937 }
7938 
setHalLatencyMode_l()7939 void SpatializerThread::setHalLatencyMode_l() {
7940     // if mSupportedLatencyModes is empty, the HAL stream does not support
7941     // latency mode control and we can exit.
7942     if (mSupportedLatencyModes.empty()) {
7943         return;
7944     }
7945     // Do not update the HAL latency mode if no track is active
7946     if (mActiveTracks.isEmpty()) {
7947         return;
7948     }
7949 
7950     audio_latency_mode_t latencyMode = AUDIO_LATENCY_MODE_FREE;
7951     if (mSupportedLatencyModes.size() == 1) {
7952         // If the HAL only support one latency mode currently, confirm the choice
7953         latencyMode = mSupportedLatencyModes[0];
7954     } else if (mSupportedLatencyModes.size() > 1) {
7955         // Request low latency if:
7956         // - The low latency mode is requested by the spatializer controller
7957         //   (mRequestedLatencyMode = AUDIO_LATENCY_MODE_LOW)
7958         //      AND
7959         // - At least one active track is spatialized
7960         for (const auto& track : mActiveTracks) {
7961             if (track->isSpatialized()) {
7962                 latencyMode = mRequestedLatencyMode;
7963                 break;
7964             }
7965         }
7966     }
7967 
7968     if (latencyMode != mSetLatencyMode) {
7969         status_t status = mOutput->stream->setLatencyMode(latencyMode);
7970         ALOGD("%s: thread(%d) setLatencyMode(%s) returned %d",
7971                 __func__, mId, toString(latencyMode).c_str(), status);
7972         if (status == NO_ERROR) {
7973             mSetLatencyMode = latencyMode;
7974         }
7975     }
7976 }
7977 
setRequestedLatencyMode(audio_latency_mode_t mode)7978 status_t SpatializerThread::setRequestedLatencyMode(audio_latency_mode_t mode) {
7979     if (mode < 0 || mode >= AUDIO_LATENCY_MODE_CNT) {
7980         return BAD_VALUE;
7981     }
7982     audio_utils::lock_guard _l(mutex());
7983     mRequestedLatencyMode = mode;
7984     return NO_ERROR;
7985 }
7986 
checkOutputStageEffects()7987 void SpatializerThread::checkOutputStageEffects()
7988 NO_THREAD_SAFETY_ANALYSIS
7989 //  'createEffect_l' requires holding mutex 'AudioFlinger_Mutex' exclusively
7990 {
7991     bool hasVirtualizer = false;
7992     bool hasDownMixer = false;
7993     sp<IAfEffectHandle> finalDownMixer;
7994     {
7995         audio_utils::lock_guard _l(mutex());
7996         sp<IAfEffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
7997         if (chain != 0) {
7998             hasVirtualizer = chain->getEffectFromType_l(FX_IID_SPATIALIZER) != nullptr;
7999             hasDownMixer = chain->getEffectFromType_l(EFFECT_UIID_DOWNMIX) != nullptr;
8000         }
8001 
8002         finalDownMixer = mFinalDownMixer;
8003         mFinalDownMixer.clear();
8004     }
8005 
8006     if (hasVirtualizer) {
8007         if (finalDownMixer != nullptr) {
8008             int32_t ret;
8009             finalDownMixer->asIEffect()->disable(&ret);
8010         }
8011         finalDownMixer.clear();
8012     } else if (!hasDownMixer) {
8013         std::vector<effect_descriptor_t> descriptors;
8014         status_t status = mAfThreadCallback->getEffectsFactoryHal()->getDescriptors(
8015                                                         EFFECT_UIID_DOWNMIX, &descriptors);
8016         if (status != NO_ERROR) {
8017             return;
8018         }
8019         ALOG_ASSERT(!descriptors.empty(),
8020                 "%s getDescriptors() returned no error but empty list", __func__);
8021 
8022         finalDownMixer = createEffect_l(nullptr /*client*/, nullptr /*effectClient*/,
8023                 0 /*priority*/, AUDIO_SESSION_OUTPUT_STAGE, &descriptors[0], nullptr /*enabled*/,
8024                 &status, false /*pinned*/, false /*probe*/, false /*notifyFramesProcessed*/);
8025 
8026         if (finalDownMixer == nullptr || (status != NO_ERROR && status != ALREADY_EXISTS)) {
8027             ALOGW("%s error creating downmixer %d", __func__, status);
8028             finalDownMixer.clear();
8029         } else {
8030             int32_t ret;
8031             finalDownMixer->asIEffect()->enable(&ret);
8032         }
8033     }
8034 
8035     {
8036         audio_utils::lock_guard _l(mutex());
8037         mFinalDownMixer = finalDownMixer;
8038     }
8039 }
8040 
threadLoop_exit()8041 void SpatializerThread::threadLoop_exit()
8042 {
8043     // The Spatializer EffectHandle must be released on the PlaybackThread
8044     // threadLoop() to prevent lock inversion in the SpatializerThread dtor.
8045     mFinalDownMixer.clear();
8046 
8047     PlaybackThread::threadLoop_exit();
8048 }
8049 
8050 // ----------------------------------------------------------------------------
8051 //      Record
8052 // ----------------------------------------------------------------------------
8053 
create(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)8054 sp<IAfRecordThread> IAfRecordThread::create(const sp<IAfThreadCallback>& afThreadCallback,
8055         AudioStreamIn* input,
8056         audio_io_handle_t id,
8057         bool systemReady) {
8058     return sp<RecordThread>::make(afThreadCallback, input, id, systemReady);
8059 }
8060 
RecordThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)8061 RecordThread::RecordThread(const sp<IAfThreadCallback>& afThreadCallback,
8062                                          AudioStreamIn *input,
8063                                          audio_io_handle_t id,
8064                                          bool systemReady
8065                                          ) :
8066     ThreadBase(afThreadCallback, id, RECORD, systemReady, false /* isOut */),
8067     mInput(input),
8068     mSource(mInput),
8069     mActiveTracks(&this->mLocalLog),
8070     mRsmpInBuffer(NULL),
8071     // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
8072     mRsmpInRear(0)
8073     , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
8074             "RecordThreadRO", MemoryHeapBase::READ_ONLY))
8075     // mFastCapture below
8076     , mFastCaptureFutex(0)
8077     // mInputSource
8078     // mPipeSink
8079     // mPipeSource
8080     , mPipeFramesP2(0)
8081     // mPipeMemory
8082     // mFastCaptureNBLogWriter
8083     , mFastTrackAvail(false)
8084     , mBtNrecSuspended(false)
8085 {
8086     snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
8087     mNBLogWriter = afThreadCallback->newWriter_l(kLogSize, mThreadName);
8088 
8089     if (mInput->audioHwDev != nullptr) {
8090         mIsMsdDevice = strcmp(
8091                 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
8092     }
8093 
8094     readInputParameters_l();
8095 
8096     // TODO: We may also match on address as well as device type for
8097     // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
8098     // TODO: This property should be ensure that only contains one single device type.
8099     mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
8100             "audio.timestamp.corrected_input_device",
8101             (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
8102                                    : AUDIO_DEVICE_NONE));
8103 
8104     // create an NBAIO source for the HAL input stream, and negotiate
8105     mInputSource = new AudioStreamInSource(input->stream);
8106     size_t numCounterOffers = 0;
8107     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
8108 #if !LOG_NDEBUG
8109     [[maybe_unused]] ssize_t index =
8110 #else
8111     (void)
8112 #endif
8113             mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
8114     ALOG_ASSERT(index == 0);
8115 
8116     // initialize fast capture depending on configuration
8117     bool initFastCapture;
8118     switch (kUseFastCapture) {
8119     case FastCapture_Never:
8120         initFastCapture = false;
8121         ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
8122         break;
8123     case FastCapture_Always:
8124         initFastCapture = true;
8125         ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
8126         break;
8127     case FastCapture_Static:
8128         initFastCapture = !mIsMsdDevice // Disable fast capture for MSD BUS devices.
8129                 && audio_is_linear_pcm(mFormat)
8130                 && (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
8131         ALOGV("%p kUseFastCapture = Static, format = 0x%x, (%lld * 1000) / %u vs %u, "
8132                 "initFastCapture = %d, mIsMsdDevice = %d", this, mFormat, (long long)mFrameCount,
8133                 mSampleRate, kMinNormalCaptureBufferSizeMs, initFastCapture, mIsMsdDevice);
8134         break;
8135     // case FastCapture_Dynamic:
8136     }
8137 
8138     if (initFastCapture) {
8139         // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
8140         NBAIO_Format format = mInputSource->format();
8141         // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
8142         size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
8143         size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
8144         void *pipeBuffer = nullptr;
8145         const sp<MemoryDealer> roHeap(readOnlyHeap());
8146         sp<IMemory> pipeMemory;
8147         if ((roHeap == 0) ||
8148                 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
8149                 (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) {
8150             ALOGE("not enough memory for pipe buffer size=%zu; "
8151                     "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
8152                     pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
8153                     (long long)kRecordThreadReadOnlyHeapSize);
8154             goto failed;
8155         }
8156         // pipe will be shared directly with fast clients, so clear to avoid leaking old information
8157         memset(pipeBuffer, 0, pipeSize);
8158         Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
8159         const NBAIO_Format offersFast[1] = {format};
8160         size_t numCounterOffersFast = 0;
8161         [[maybe_unused]] ssize_t index2 = pipe->negotiate(offersFast, std::size(offersFast),
8162                 nullptr /* counterOffers */, numCounterOffersFast);
8163         ALOG_ASSERT(index2 == 0);
8164         mPipeSink = pipe;
8165         PipeReader *pipeReader = new PipeReader(*pipe);
8166         numCounterOffersFast = 0;
8167         index2 = pipeReader->negotiate(offersFast, std::size(offersFast),
8168                 nullptr /* counterOffers */, numCounterOffersFast);
8169         ALOG_ASSERT(index2 == 0);
8170         mPipeSource = pipeReader;
8171         mPipeFramesP2 = pipeFramesP2;
8172         mPipeMemory = pipeMemory;
8173 
8174         // create fast capture
8175         mFastCapture = new FastCapture();
8176         FastCaptureStateQueue *sq = mFastCapture->sq();
8177 #ifdef STATE_QUEUE_DUMP
8178         // FIXME
8179 #endif
8180         FastCaptureState *state = sq->begin();
8181         state->mCblk = NULL;
8182         state->mInputSource = mInputSource.get();
8183         state->mInputSourceGen++;
8184         state->mPipeSink = pipe;
8185         state->mPipeSinkGen++;
8186         state->mFrameCount = mFrameCount;
8187         state->mCommand = FastCaptureState::COLD_IDLE;
8188         // already done in constructor initialization list
8189         //mFastCaptureFutex = 0;
8190         state->mColdFutexAddr = &mFastCaptureFutex;
8191         state->mColdGen++;
8192         state->mDumpState = &mFastCaptureDumpState;
8193 #ifdef TEE_SINK
8194         // FIXME
8195 #endif
8196         mFastCaptureNBLogWriter =
8197                 afThreadCallback->newWriter_l(kFastCaptureLogSize, "FastCapture");
8198         state->mNBLogWriter = mFastCaptureNBLogWriter.get();
8199         sq->end();
8200         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
8201 
8202         // start the fast capture
8203         mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
8204         pid_t tid = mFastCapture->getTid();
8205         sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
8206         stream()->setHalThreadPriority(kPriorityFastCapture);
8207 #ifdef AUDIO_WATCHDOG
8208         // FIXME
8209 #endif
8210 
8211         mFastTrackAvail = true;
8212     }
8213 #ifdef TEE_SINK
8214     mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
8215     mTee.setId(std::string("_") + std::to_string(mId) + "_C");
8216 #endif
8217 failed: ;
8218 
8219     // FIXME mNormalSource
8220 }
8221 
~RecordThread()8222 RecordThread::~RecordThread()
8223 {
8224     if (mFastCapture != 0) {
8225         FastCaptureStateQueue *sq = mFastCapture->sq();
8226         FastCaptureState *state = sq->begin();
8227         if (state->mCommand == FastCaptureState::COLD_IDLE) {
8228             int32_t old = android_atomic_inc(&mFastCaptureFutex);
8229             if (old == -1) {
8230                 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
8231             }
8232         }
8233         state->mCommand = FastCaptureState::EXIT;
8234         sq->end();
8235         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
8236         mFastCapture->join();
8237         mFastCapture.clear();
8238     }
8239     mAfThreadCallback->unregisterWriter(mFastCaptureNBLogWriter);
8240     mAfThreadCallback->unregisterWriter(mNBLogWriter);
8241     free(mRsmpInBuffer);
8242 }
8243 
onFirstRef()8244 void RecordThread::onFirstRef()
8245 {
8246     run(mThreadName, PRIORITY_URGENT_AUDIO);
8247 }
8248 
preExit()8249 void RecordThread::preExit()
8250 {
8251     ALOGV("  preExit()");
8252     audio_utils::lock_guard _l(mutex());
8253     for (size_t i = 0; i < mTracks.size(); i++) {
8254         sp<IAfRecordTrack> track = mTracks[i];
8255         track->invalidate();
8256     }
8257     mActiveTracks.clear();
8258     mStartStopCV.notify_all();
8259 }
8260 
threadLoop()8261 bool RecordThread::threadLoop()
8262 {
8263     nsecs_t lastWarning = 0;
8264 
8265     inputStandBy();
8266 
8267 reacquire_wakelock:
8268     {
8269         audio_utils::lock_guard _l(mutex());
8270         acquireWakeLock_l();
8271     }
8272 
8273     // used to request a deferred sleep, to be executed later while mutex is unlocked
8274     uint32_t sleepUs = 0;
8275 
8276     // timestamp correction enable is determined under lock, used in processing step.
8277     bool timestampCorrectionEnabled = false;
8278 
8279     int64_t lastLoopCountRead = -2;  // never matches "previous" loop, when loopCount = 0.
8280 
8281     // loop while there is work to do
8282     for (int64_t loopCount = 0;; ++loopCount) {  // loopCount used for statistics tracking
8283         // Note: these sp<> are released at the end of the for loop outside of the mutex() lock.
8284         sp<IAfRecordTrack> activeTrack;
8285         std::vector<sp<IAfRecordTrack>> oldActiveTracks;
8286         Vector<sp<IAfEffectChain>> effectChains;
8287 
8288         // activeTracks accumulates a copy of a subset of mActiveTracks
8289         Vector<sp<IAfRecordTrack>> activeTracks;
8290 
8291         // reference to the (first and only) active fast track
8292         sp<IAfRecordTrack> fastTrack;
8293 
8294         // reference to a fast track which is about to be removed
8295         sp<IAfRecordTrack> fastTrackToRemove;
8296 
8297         bool silenceFastCapture = false;
8298 
8299         { // scope for mutex()
8300             audio_utils::unique_lock _l(mutex());
8301 
8302             processConfigEvents_l();
8303 
8304             // check exitPending here because checkForNewParameters_l() and
8305             // checkForNewParameters_l() can temporarily release mutex()
8306             if (exitPending()) {
8307                 break;
8308             }
8309 
8310             // sleep with mutex unlocked
8311             if (sleepUs > 0) {
8312                 ATRACE_BEGIN("sleepC");
8313                 (void)mWaitWorkCV.wait_for(_l, std::chrono::microseconds(sleepUs));
8314                 ATRACE_END();
8315                 sleepUs = 0;
8316                 continue;
8317             }
8318 
8319             // if no active track(s), then standby and release wakelock
8320             size_t size = mActiveTracks.size();
8321             if (size == 0) {
8322                 standbyIfNotAlreadyInStandby();
8323                 // exitPending() can't become true here
8324                 releaseWakeLock_l();
8325                 ALOGV("RecordThread: loop stopping");
8326                 // go to sleep
8327                 mWaitWorkCV.wait(_l);
8328                 ALOGV("RecordThread: loop starting");
8329                 goto reacquire_wakelock;
8330             }
8331 
8332             bool doBroadcast = false;
8333             bool allStopped = true;
8334             for (size_t i = 0; i < size; ) {
8335                 if (activeTrack) {  // ensure track release is outside lock.
8336                     oldActiveTracks.emplace_back(std::move(activeTrack));
8337                 }
8338                 activeTrack = mActiveTracks[i];
8339                 if (activeTrack->isTerminated()) {
8340                     if (activeTrack->isFastTrack()) {
8341                         ALOG_ASSERT(fastTrackToRemove == 0);
8342                         fastTrackToRemove = activeTrack;
8343                     }
8344                     removeTrack_l(activeTrack);
8345                     mActiveTracks.remove(activeTrack);
8346                     size--;
8347                     continue;
8348                 }
8349 
8350                 IAfTrackBase::track_state activeTrackState = activeTrack->state();
8351                 switch (activeTrackState) {
8352 
8353                 case IAfTrackBase::PAUSING:
8354                     mActiveTracks.remove(activeTrack);
8355                     activeTrack->setState(IAfTrackBase::PAUSED);
8356                     if (activeTrack->isFastTrack()) {
8357                         ALOGV("%s fast track is paused, thus removed from active list", __func__);
8358                         // Keep a ref on fast track to wait for FastCapture thread to get updated
8359                         // state before potential track removal
8360                         fastTrackToRemove = activeTrack;
8361                     }
8362                     doBroadcast = true;
8363                     size--;
8364                     continue;
8365 
8366                 case IAfTrackBase::STARTING_1:
8367                     sleepUs = 10000;
8368                     i++;
8369                     allStopped = false;
8370                     continue;
8371 
8372                 case IAfTrackBase::STARTING_2:
8373                     doBroadcast = true;
8374                     if (mStandby) {
8375                         mThreadMetrics.logBeginInterval();
8376                         mThreadSnapshot.onBegin();
8377                         mStandby = false;
8378                     }
8379                     activeTrack->setState(IAfTrackBase::ACTIVE);
8380                     allStopped = false;
8381                     break;
8382 
8383                 case IAfTrackBase::ACTIVE:
8384                     allStopped = false;
8385                     break;
8386 
8387                 case IAfTrackBase::IDLE:    // cannot be on ActiveTracks if idle
8388                 case IAfTrackBase::PAUSED:  // cannot be on ActiveTracks if paused
8389                 case IAfTrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
8390                 default:
8391                     LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
8392                             __func__, activeTrackState, activeTrack->id(), size);
8393                 }
8394 
8395                 if (activeTrack->isFastTrack()) {
8396                     ALOG_ASSERT(!mFastTrackAvail);
8397                     ALOG_ASSERT(fastTrack == 0);
8398                     // if the active fast track is silenced either:
8399                     // 1) silence the whole capture from fast capture buffer if this is
8400                     //    the only active track
8401                     // 2) invalidate this track: this will cause the client to reconnect and possibly
8402                     //    be invalidated again until unsilenced
8403                     bool invalidate = false;
8404                     if (activeTrack->isSilenced()) {
8405                         if (size > 1) {
8406                             invalidate = true;
8407                         } else {
8408                             silenceFastCapture = true;
8409                         }
8410                     }
8411                     // Invalidate fast tracks if access to audio history is required as this is not
8412                     // possible with fast tracks. Once the fast track has been invalidated, no new
8413                     // fast track will be created until mMaxSharedAudioHistoryMs is cleared.
8414                     if (mMaxSharedAudioHistoryMs != 0) {
8415                         invalidate = true;
8416                     }
8417                     if (invalidate) {
8418                         activeTrack->invalidate();
8419                         ALOG_ASSERT(fastTrackToRemove == 0);
8420                         fastTrackToRemove = activeTrack;
8421                         removeTrack_l(activeTrack);
8422                         mActiveTracks.remove(activeTrack);
8423                         size--;
8424                         continue;
8425                     }
8426                     fastTrack = activeTrack;
8427                 }
8428 
8429                 activeTracks.add(activeTrack);
8430                 i++;
8431 
8432             }
8433 
8434             mActiveTracks.updatePowerState_l(this);
8435 
8436             updateMetadata_l();
8437 
8438             if (allStopped) {
8439                 standbyIfNotAlreadyInStandby();
8440             }
8441             if (doBroadcast) {
8442                 mStartStopCV.notify_all();
8443             }
8444 
8445             // sleep if there are no active tracks to process
8446             if (activeTracks.isEmpty()) {
8447                 if (sleepUs == 0) {
8448                     sleepUs = kRecordThreadSleepUs;
8449                 }
8450                 continue;
8451             }
8452             sleepUs = 0;
8453 
8454             timestampCorrectionEnabled = isTimestampCorrectionEnabled_l();
8455             lockEffectChains_l(effectChains);
8456         }
8457 
8458         // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
8459 
8460         size_t size = effectChains.size();
8461         for (size_t i = 0; i < size; i++) {
8462             // thread mutex is not locked, but effect chain is locked
8463             effectChains[i]->process_l();
8464         }
8465 
8466         // Push a new fast capture state if fast capture is not already running, or cblk change
8467         if (mFastCapture != 0) {
8468             FastCaptureStateQueue *sq = mFastCapture->sq();
8469             FastCaptureState *state = sq->begin();
8470             bool didModify = false;
8471             FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
8472             if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
8473                     (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
8474                 if (state->mCommand == FastCaptureState::COLD_IDLE) {
8475                     int32_t old = android_atomic_inc(&mFastCaptureFutex);
8476                     if (old == -1) {
8477                         (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
8478                     }
8479                 }
8480                 state->mCommand = FastCaptureState::READ_WRITE;
8481 #if 0   // FIXME
8482                 mFastCaptureDumpState.increaseSamplingN(mAfThreadCallback->isLowRamDevice() ?
8483                         FastThreadDumpState::kSamplingNforLowRamDevice :
8484                         FastThreadDumpState::kSamplingN);
8485 #endif
8486                 didModify = true;
8487             }
8488             audio_track_cblk_t *cblkOld = state->mCblk;
8489             audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
8490             if (cblkNew != cblkOld) {
8491                 state->mCblk = cblkNew;
8492                 // block until acked if removing a fast track
8493                 if (cblkOld != NULL) {
8494                     block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
8495                 }
8496                 didModify = true;
8497             }
8498             AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
8499                     reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
8500             if (state->mFastPatchRecordBufferProvider != abp) {
8501                 state->mFastPatchRecordBufferProvider = abp;
8502                 state->mFastPatchRecordFormat = fastTrack == 0 ?
8503                         AUDIO_FORMAT_INVALID : fastTrack->format();
8504                 didModify = true;
8505             }
8506             if (state->mSilenceCapture != silenceFastCapture) {
8507                 state->mSilenceCapture = silenceFastCapture;
8508                 didModify = true;
8509             }
8510             sq->end(didModify);
8511             if (didModify) {
8512                 sq->push(block);
8513 #if 0
8514                 if (kUseFastCapture == FastCapture_Dynamic) {
8515                     mNormalSource = mPipeSource;
8516                 }
8517 #endif
8518             }
8519         }
8520 
8521         // now run the fast track destructor with thread mutex unlocked
8522         fastTrackToRemove.clear();
8523 
8524         // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
8525         // Only the client(s) that are too slow will overrun. But if even the fastest client is too
8526         // slow, then this RecordThread will overrun by not calling HAL read often enough.
8527         // If destination is non-contiguous, first read past the nominal end of buffer, then
8528         // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
8529 
8530         int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
8531         ssize_t framesRead = 0; // not needed, remove clang-tidy warning.
8532         const int64_t lastIoBeginNs = systemTime(); // start IO timing
8533 
8534         // If an NBAIO source is present, use it to read the normal capture's data
8535         if (mPipeSource != 0) {
8536             size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
8537 
8538             // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
8539             // to the full buffer point (clearing the overflow condition).  Upon OVERRUN error,
8540             // we immediately retry the read() to get data and prevent another overflow.
8541             for (int retries = 0; retries <= 2; ++retries) {
8542                 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
8543                 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
8544                         framesToRead);
8545                 if (framesRead != OVERRUN) break;
8546             }
8547 
8548             const ssize_t availableToRead = mPipeSource->availableToRead();
8549             if (availableToRead >= 0) {
8550                 mMonopipePipeDepthStats.add(availableToRead);
8551                 // PipeSource is the primary clock.  It is up to the AudioRecord client to keep up.
8552                 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
8553                         "more frames to read than fifo size, %zd > %zu",
8554                         availableToRead, mPipeFramesP2);
8555                 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
8556                 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
8557                 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
8558                         mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
8559                 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
8560             }
8561             if (framesRead < 0) {
8562                 status_t status = (status_t) framesRead;
8563                 switch (status) {
8564                 case OVERRUN:
8565                     ALOGW("overrun on read from pipe");
8566                     framesRead = 0;
8567                     break;
8568                 case NEGOTIATE:
8569                     ALOGE("re-negotiation is needed");
8570                     framesRead = -1;  // Will cause an attempt to recover.
8571                     break;
8572                 default:
8573                     ALOGE("unknown error %d on read from pipe", status);
8574                     break;
8575                 }
8576             }
8577         // otherwise use the HAL / AudioStreamIn directly
8578         } else {
8579             ATRACE_BEGIN("read");
8580             size_t bytesRead;
8581             status_t result = mSource->read(
8582                     (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
8583             ATRACE_END();
8584             if (result < 0) {
8585                 framesRead = result;
8586             } else {
8587                 framesRead = bytesRead / mFrameSize;
8588             }
8589         }
8590 
8591         const int64_t lastIoEndNs = systemTime(); // end IO timing
8592 
8593         // Update server timestamp with server stats
8594         // systemTime() is optional if the hardware supports timestamps.
8595         if (framesRead >= 0) {
8596             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
8597             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
8598         }
8599 
8600         // Update server timestamp with kernel stats
8601         if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
8602             int64_t position, time;
8603             if (mStandby) {
8604                 mTimestampVerifier.discontinuity(audio_is_linear_pcm(mFormat) ?
8605                     mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS :
8606                     mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
8607             } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
8608                     && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
8609 
8610                 mTimestampVerifier.add(position, time, mSampleRate);
8611                 if (timestampCorrectionEnabled) {
8612                     ALOGVV("TS_BEFORE: %d %lld %lld",
8613                             id(), (long long)time, (long long)position);
8614                     auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
8615                     position = correctedTimestamp.mFrames;
8616                     time = correctedTimestamp.mTimeNs;
8617                     ALOGVV("TS_AFTER: %d %lld %lld",
8618                             id(), (long long)time, (long long)position);
8619                 }
8620 
8621                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
8622                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
8623                 // Note: In general record buffers should tend to be empty in
8624                 // a properly running pipeline.
8625                 //
8626                 // Also, it is not advantageous to call get_presentation_position during the read
8627                 // as the read obtains a lock, preventing the timestamp call from executing.
8628             } else {
8629                 mTimestampVerifier.error();
8630             }
8631         }
8632 
8633         // From the timestamp, input read latency is negative output write latency.
8634         const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
8635         const double latencyMs = IAfRecordTrack::checkServerLatencySupported(mFormat, flags)
8636                 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
8637         if (latencyMs != 0.) { // note 0. means timestamp is empty.
8638             mLatencyMs.add(latencyMs);
8639         }
8640 
8641         // Use this to track timestamp information
8642         // ALOGD("%s", mTimestamp.toString().c_str());
8643 
8644         if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
8645             ALOGE("read failed: framesRead=%zd", framesRead);
8646             // Force input into standby so that it tries to recover at next read attempt
8647             inputStandBy();
8648             sleepUs = kRecordThreadSleepUs;
8649         }
8650         if (framesRead <= 0) {
8651             goto unlock;
8652         }
8653         ALOG_ASSERT(framesRead > 0);
8654         mFramesRead += framesRead;
8655 
8656 #ifdef TEE_SINK
8657         (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
8658 #endif
8659         // If destination is non-contiguous, we now correct for reading past end of buffer.
8660         {
8661             size_t part1 = mRsmpInFramesP2 - rear;
8662             if ((size_t) framesRead > part1) {
8663                 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
8664                         (framesRead - part1) * mFrameSize);
8665             }
8666         }
8667         mRsmpInRear = audio_utils::safe_add_overflow(mRsmpInRear, (int32_t)framesRead);
8668 
8669         size = activeTracks.size();
8670 
8671         // loop over each active track
8672         for (size_t i = 0; i < size; i++) {
8673             activeTrack = activeTracks[i];
8674 
8675             // skip fast tracks, as those are handled directly by FastCapture
8676             if (activeTrack->isFastTrack()) {
8677                 continue;
8678             }
8679 
8680             // TODO: This code probably should be moved to RecordTrack.
8681             // TODO: Update the activeTrack buffer converter in case of reconfigure.
8682 
8683             enum {
8684                 OVERRUN_UNKNOWN,
8685                 OVERRUN_TRUE,
8686                 OVERRUN_FALSE
8687             } overrun = OVERRUN_UNKNOWN;
8688 
8689             // loop over getNextBuffer to handle circular sink
8690             for (;;) {
8691 
8692                 activeTrack->sinkBuffer().frameCount = ~0;
8693                 status_t status = activeTrack->getNextBuffer(&activeTrack->sinkBuffer());
8694                 size_t framesOut = activeTrack->sinkBuffer().frameCount;
8695                 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
8696 
8697                 // check available frames and handle overrun conditions
8698                 // if the record track isn't draining fast enough.
8699                 bool hasOverrun;
8700                 size_t framesIn;
8701                 activeTrack->resamplerBufferProvider()->sync(&framesIn, &hasOverrun);
8702                 if (hasOverrun) {
8703                     overrun = OVERRUN_TRUE;
8704                 }
8705                 if (framesOut == 0 || framesIn == 0) {
8706                     break;
8707                 }
8708 
8709                 // Don't allow framesOut to be larger than what is possible with resampling
8710                 // from framesIn.
8711                 // This isn't strictly necessary but helps limit buffer resizing in
8712                 // RecordBufferConverter.  TODO: remove when no longer needed.
8713                 if (audio_is_linear_pcm(activeTrack->format())) {
8714                     framesOut = min(framesOut,
8715                             destinationFramesPossible(
8716                                     framesIn, mSampleRate, activeTrack->sampleRate()));
8717                 }
8718 
8719                 if (activeTrack->isDirect()) {
8720                     // No RecordBufferConverter used for direct streams. Pass
8721                     // straight from RecordThread buffer to RecordTrack buffer.
8722                     AudioBufferProvider::Buffer buffer;
8723                     buffer.frameCount = framesOut;
8724                     const status_t getNextBufferStatus =
8725                             activeTrack->resamplerBufferProvider()->getNextBuffer(&buffer);
8726                     if (getNextBufferStatus == OK && buffer.frameCount != 0) {
8727                         ALOGV_IF(buffer.frameCount != framesOut,
8728                                 "%s() read less than expected (%zu vs %zu)",
8729                                 __func__, buffer.frameCount, framesOut);
8730                         framesOut = buffer.frameCount;
8731                         memcpy(activeTrack->sinkBuffer().raw,
8732                                 buffer.raw, buffer.frameCount * mFrameSize);
8733                         activeTrack->resamplerBufferProvider()->releaseBuffer(&buffer);
8734                     } else {
8735                         framesOut = 0;
8736                         ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
8737                             __func__, getNextBufferStatus, buffer.frameCount);
8738                     }
8739                 } else {
8740                     // process frames from the RecordThread buffer provider to the RecordTrack
8741                     // buffer
8742                     framesOut = activeTrack->recordBufferConverter()->convert(
8743                             activeTrack->sinkBuffer().raw,
8744                             activeTrack->resamplerBufferProvider(),
8745                             framesOut);
8746                 }
8747 
8748                 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
8749                     overrun = OVERRUN_FALSE;
8750                 }
8751 
8752                 // MediaSyncEvent handling: Synchronize AudioRecord to AudioTrack completion.
8753                 const ssize_t framesToDrop =
8754                         activeTrack->synchronizedRecordState().updateRecordFrames(framesOut);
8755                 if (framesToDrop == 0) {
8756                     // no sync event, process normally, otherwise ignore.
8757                     if (framesOut > 0) {
8758                         activeTrack->sinkBuffer().frameCount = framesOut;
8759                         // Sanitize before releasing if the track has no access to the source data
8760                         // An idle UID receives silence from non virtual devices until active
8761                         if (activeTrack->isSilenced()) {
8762                             memset(activeTrack->sinkBuffer().raw,
8763                                     0, framesOut * activeTrack->frameSize());
8764                         }
8765                         activeTrack->releaseBuffer(&activeTrack->sinkBuffer());
8766                     }
8767                 }
8768                 if (framesOut == 0) {
8769                     break;
8770                 }
8771             }
8772 
8773             switch (overrun) {
8774             case OVERRUN_TRUE:
8775                 // client isn't retrieving buffers fast enough
8776                 if (!activeTrack->setOverflow()) {
8777                     nsecs_t now = systemTime();
8778                     // FIXME should lastWarning per track?
8779                     if ((now - lastWarning) > kWarningThrottleNs) {
8780                         ALOGW("RecordThread: buffer overflow");
8781                         lastWarning = now;
8782                     }
8783                 }
8784                 break;
8785             case OVERRUN_FALSE:
8786                 activeTrack->clearOverflow();
8787                 break;
8788             case OVERRUN_UNKNOWN:
8789                 break;
8790             }
8791 
8792             // update frame information and push timestamp out
8793             activeTrack->updateTrackFrameInfo(
8794                     activeTrack->serverProxy()->framesReleased(),
8795                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
8796                     mSampleRate, mTimestamp);
8797         }
8798 
8799 unlock:
8800         // enable changes in effect chain
8801         unlockEffectChains(effectChains);
8802         // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
8803         if (audio_has_proportional_frames(mFormat)
8804             && loopCount == lastLoopCountRead + 1) {
8805             const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
8806             const double jitterMs =
8807                 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
8808                     {framesRead, readPeriodNs},
8809                     {0, 0} /* lastTimestamp */, mSampleRate);
8810             const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
8811 
8812             audio_utils::lock_guard _l(mutex());
8813             mIoJitterMs.add(jitterMs);
8814             mProcessTimeMs.add(processMs);
8815         }
8816         // update timing info.
8817         mLastIoBeginNs = lastIoBeginNs;
8818         mLastIoEndNs = lastIoEndNs;
8819         lastLoopCountRead = loopCount;
8820     }
8821 
8822     standbyIfNotAlreadyInStandby();
8823 
8824     {
8825         audio_utils::lock_guard _l(mutex());
8826         for (size_t i = 0; i < mTracks.size(); i++) {
8827             sp<IAfRecordTrack> track = mTracks[i];
8828             track->invalidate();
8829         }
8830         mActiveTracks.clear();
8831         mStartStopCV.notify_all();
8832     }
8833 
8834     releaseWakeLock();
8835 
8836     ALOGV("RecordThread %p exiting", this);
8837     return false;
8838 }
8839 
standbyIfNotAlreadyInStandby()8840 void RecordThread::standbyIfNotAlreadyInStandby()
8841 {
8842     if (!mStandby) {
8843         inputStandBy();
8844         mThreadMetrics.logEndInterval();
8845         mThreadSnapshot.onEnd();
8846         mStandby = true;
8847     }
8848 }
8849 
inputStandBy()8850 void RecordThread::inputStandBy()
8851 {
8852     // Idle the fast capture if it's currently running
8853     if (mFastCapture != 0) {
8854         FastCaptureStateQueue *sq = mFastCapture->sq();
8855         FastCaptureState *state = sq->begin();
8856         if (!(state->mCommand & FastCaptureState::IDLE)) {
8857             state->mCommand = FastCaptureState::COLD_IDLE;
8858             state->mColdFutexAddr = &mFastCaptureFutex;
8859             state->mColdGen++;
8860             mFastCaptureFutex = 0;
8861             sq->end();
8862             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
8863             sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
8864 #if 0
8865             if (kUseFastCapture == FastCapture_Dynamic) {
8866                 // FIXME
8867             }
8868 #endif
8869 #ifdef AUDIO_WATCHDOG
8870             // FIXME
8871 #endif
8872         } else {
8873             sq->end(false /*didModify*/);
8874         }
8875     }
8876     status_t result = mSource->standby();
8877     ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
8878 
8879     // If going into standby, flush the pipe source.
8880     if (mPipeSource.get() != nullptr) {
8881         const ssize_t flushed = mPipeSource->flush();
8882         if (flushed > 0) {
8883             ALOGV("Input standby flushed PipeSource %zd frames", flushed);
8884             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
8885             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
8886         }
8887     }
8888 }
8889 
8890 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mutex() held
createRecordTrack_l(const sp<Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,const AttributionSourceState & attributionSource,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,int32_t maxSharedAudioHistoryMs)8891 sp<IAfRecordTrack> RecordThread::createRecordTrack_l(
8892         const sp<Client>& client,
8893         const audio_attributes_t& attr,
8894         uint32_t *pSampleRate,
8895         audio_format_t format,
8896         audio_channel_mask_t channelMask,
8897         size_t *pFrameCount,
8898         audio_session_t sessionId,
8899         size_t *pNotificationFrameCount,
8900         pid_t creatorPid,
8901         const AttributionSourceState& attributionSource,
8902         audio_input_flags_t *flags,
8903         pid_t tid,
8904         status_t *status,
8905         audio_port_handle_t portId,
8906         int32_t maxSharedAudioHistoryMs)
8907 {
8908     size_t frameCount = *pFrameCount;
8909     size_t notificationFrameCount = *pNotificationFrameCount;
8910     sp<IAfRecordTrack> track;
8911     status_t lStatus;
8912     audio_input_flags_t inputFlags = mInput->flags;
8913     audio_input_flags_t requestedFlags = *flags;
8914     uint32_t sampleRate;
8915 
8916     lStatus = initCheck();
8917     if (lStatus != NO_ERROR) {
8918         ALOGE("createRecordTrack_l() audio driver not initialized");
8919         goto Exit;
8920     }
8921 
8922     if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
8923         ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
8924         lStatus = BAD_VALUE;
8925         goto Exit;
8926     }
8927 
8928     if (maxSharedAudioHistoryMs != 0) {
8929         if (!captureHotwordAllowed(attributionSource)) {
8930             lStatus = PERMISSION_DENIED;
8931             goto Exit;
8932         }
8933         if (maxSharedAudioHistoryMs < 0
8934                 || maxSharedAudioHistoryMs > kMaxSharedAudioHistoryMs) {
8935             lStatus = BAD_VALUE;
8936             goto Exit;
8937         }
8938     }
8939     if (*pSampleRate == 0) {
8940         *pSampleRate = mSampleRate;
8941     }
8942     sampleRate = *pSampleRate;
8943 
8944     // special case for FAST flag considered OK if fast capture is present and access to
8945     // audio history is not required
8946     if (hasFastCapture() && mMaxSharedAudioHistoryMs == 0) {
8947         inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
8948     }
8949 
8950     // Check if requested flags are compatible with input stream flags
8951     if ((*flags & inputFlags) != *flags) {
8952         ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
8953                 " input flags (%08x)",
8954               *flags, inputFlags);
8955         *flags = (audio_input_flags_t)(*flags & inputFlags);
8956     }
8957 
8958     // client expresses a preference for FAST and no access to audio history,
8959     // but we get the final say
8960     if (*flags & AUDIO_INPUT_FLAG_FAST && maxSharedAudioHistoryMs == 0) {
8961       if (
8962             // we formerly checked for a callback handler (non-0 tid),
8963             // but that is no longer required for TRANSFER_OBTAIN mode
8964             // No need to match hardware format, format conversion will be done in client side.
8965             //
8966             // Frame count is not specified (0), or is less than or equal the pipe depth.
8967             // It is OK to provide a higher capacity than requested.
8968             // We will force it to mPipeFramesP2 below.
8969             (frameCount <= mPipeFramesP2) &&
8970             // PCM data
8971             audio_is_linear_pcm(format) &&
8972             // hardware channel mask
8973             (channelMask == mChannelMask) &&
8974             // hardware sample rate
8975             (sampleRate == mSampleRate) &&
8976             // record thread has an associated fast capture
8977             hasFastCapture() &&
8978             // there are sufficient fast track slots available
8979             mFastTrackAvail
8980         ) {
8981           // check compatibility with audio effects.
8982           audio_utils::lock_guard _l(mutex());
8983           // Do not accept FAST flag if the session has software effects
8984           sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
8985           if (chain != 0) {
8986               audio_input_flags_t old = *flags;
8987               chain->checkInputFlagCompatibility(flags);
8988               if (old != *flags) {
8989                   ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
8990                           this, (int)old, (int)*flags);
8991               }
8992           }
8993           ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
8994                    "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
8995                    this, frameCount, mFrameCount);
8996       } else {
8997         ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
8998                 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
8999                 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
9000                 this, frameCount, mFrameCount, mPipeFramesP2,
9001                 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
9002                 hasFastCapture(), tid, mFastTrackAvail);
9003         *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
9004       }
9005     }
9006 
9007     // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
9008     if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
9009             (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
9010         *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
9011         lStatus = BAD_TYPE;
9012         goto Exit;
9013     }
9014 
9015     // compute track buffer size in frames, and suggest the notification frame count
9016     if (*flags & AUDIO_INPUT_FLAG_FAST) {
9017         // fast track: frame count is exactly the pipe depth
9018         frameCount = mPipeFramesP2;
9019         // ignore requested notificationFrames, and always notify exactly once every HAL buffer
9020         notificationFrameCount = mFrameCount;
9021     } else {
9022         // not fast track: max notification period is resampled equivalent of one HAL buffer time
9023         //                 or 20 ms if there is a fast capture
9024         // TODO This could be a roundupRatio inline, and const
9025         size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
9026                 * sampleRate + mSampleRate - 1) / mSampleRate;
9027         // minimum number of notification periods is at least kMinNotifications,
9028         // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
9029         static const size_t kMinNotifications = 3;
9030         static const uint32_t kMinMs = 30;
9031         // TODO This could be a roundupRatio inline
9032         const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
9033         // TODO This could be a roundupRatio inline
9034         const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
9035                 maxNotificationFrames;
9036         const size_t minFrameCount = maxNotificationFrames *
9037                 max(kMinNotifications, minNotificationsByMs);
9038         frameCount = max(frameCount, minFrameCount);
9039         if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
9040             notificationFrameCount = maxNotificationFrames;
9041         }
9042     }
9043     *pFrameCount = frameCount;
9044     *pNotificationFrameCount = notificationFrameCount;
9045 
9046     { // scope for mutex()
9047         audio_utils::lock_guard _l(mutex());
9048         int32_t startFrames = -1;
9049         if (!mSharedAudioPackageName.empty()
9050                 && mSharedAudioPackageName == attributionSource.packageName
9051                 && mSharedAudioSessionId == sessionId
9052                 && captureHotwordAllowed(attributionSource)) {
9053             startFrames = mSharedAudioStartFrames;
9054         }
9055 
9056         track = IAfRecordTrack::create(this, client, attr, sampleRate,
9057                       format, channelMask, frameCount,
9058                       nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid,
9059                       attributionSource, *flags, IAfTrackBase::TYPE_DEFAULT, portId,
9060                       startFrames);
9061 
9062         lStatus = track->initCheck();
9063         if (lStatus != NO_ERROR) {
9064             ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
9065             // track must be cleared from the caller as the caller has the AF lock
9066             goto Exit;
9067         }
9068         mTracks.add(track);
9069 
9070         if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
9071             pid_t callingPid = IPCThreadState::self()->getCallingPid();
9072             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
9073             // so ask activity manager to do this on our behalf
9074             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
9075         }
9076 
9077         if (maxSharedAudioHistoryMs != 0) {
9078             sendResizeBufferConfigEvent_l(maxSharedAudioHistoryMs);
9079         }
9080     }
9081 
9082     lStatus = NO_ERROR;
9083 
9084 Exit:
9085     *status = lStatus;
9086     return track;
9087 }
9088 
start(IAfRecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)9089 status_t RecordThread::start(IAfRecordTrack* recordTrack,
9090                                            AudioSystem::sync_event_t event,
9091                                            audio_session_t triggerSession)
9092 {
9093     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
9094     sp<ThreadBase> strongMe = this;
9095     status_t status = NO_ERROR;
9096 
9097     if (event == AudioSystem::SYNC_EVENT_NONE) {
9098         recordTrack->clearSyncStartEvent();
9099     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
9100         recordTrack->synchronizedRecordState().startRecording(
9101                 mAfThreadCallback->createSyncEvent(
9102                         event, triggerSession,
9103                         recordTrack->sessionId(), syncStartEventCallback, recordTrack));
9104     }
9105 
9106     {
9107         // This section is a rendezvous between binder thread executing start() and RecordThread
9108          audio_utils::lock_guard lock(mutex());
9109         if (recordTrack->isInvalid()) {
9110             recordTrack->clearSyncStartEvent();
9111             ALOGW("%s track %d: invalidated before startInput", __func__, recordTrack->portId());
9112             return DEAD_OBJECT;
9113         }
9114         if (mActiveTracks.indexOf(recordTrack) >= 0) {
9115             if (recordTrack->state() == IAfTrackBase::PAUSING) {
9116                 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
9117                 // so no need to startInput().
9118                 ALOGV("active record track PAUSING -> ACTIVE");
9119                 recordTrack->setState(IAfTrackBase::ACTIVE);
9120             } else {
9121                 ALOGV("active record track state %d", (int)recordTrack->state());
9122             }
9123             return status;
9124         }
9125 
9126         // TODO consider other ways of handling this, such as changing the state to :STARTING and
9127         //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
9128         //      or using a separate command thread
9129         recordTrack->setState(IAfTrackBase::STARTING_1);
9130         mActiveTracks.add(recordTrack);
9131         if (recordTrack->isExternalTrack()) {
9132             mutex().unlock();
9133             status = AudioSystem::startInput(recordTrack->portId());
9134             mutex().lock();
9135             if (recordTrack->isInvalid()) {
9136                 recordTrack->clearSyncStartEvent();
9137                 if (status == NO_ERROR && recordTrack->state() == IAfTrackBase::STARTING_1) {
9138                     recordTrack->setState(IAfTrackBase::STARTING_2);
9139                     // STARTING_2 forces destroy to call stopInput.
9140                 }
9141                 ALOGW("%s track %d: invalidated after startInput", __func__, recordTrack->portId());
9142                 return DEAD_OBJECT;
9143             }
9144             if (recordTrack->state() != IAfTrackBase::STARTING_1) {
9145                 ALOGW("%s(%d): unsynchronized mState:%d change",
9146                     __func__, recordTrack->id(), (int)recordTrack->state());
9147                 // Someone else has changed state, let them take over,
9148                 // leave mState in the new state.
9149                 recordTrack->clearSyncStartEvent();
9150                 return INVALID_OPERATION;
9151             }
9152             // we're ok, but perhaps startInput has failed
9153             if (status != NO_ERROR) {
9154                 ALOGW("%s(%d): startInput failed, status %d",
9155                     __func__, recordTrack->id(), status);
9156                 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
9157                 // leave in STARTING_1, so destroy() will not call stopInput.
9158                 mActiveTracks.remove(recordTrack);
9159                 recordTrack->clearSyncStartEvent();
9160                 return status;
9161             }
9162             sendIoConfigEvent_l(
9163                 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
9164         }
9165 
9166         recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics
9167 
9168         // Catch up with current buffer indices if thread is already running.
9169         // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
9170         // was initialized to some value closer to the thread's mRsmpInFront, then the track could
9171         // see previously buffered data before it called start(), but with greater risk of overrun.
9172 
9173         recordTrack->resamplerBufferProvider()->reset();
9174         if (!recordTrack->isDirect()) {
9175             // clear any converter state as new data will be discontinuous
9176             recordTrack->recordBufferConverter()->reset();
9177         }
9178         recordTrack->setState(IAfTrackBase::STARTING_2);
9179         // signal thread to start
9180         mWaitWorkCV.notify_all();
9181         return status;
9182     }
9183 }
9184 
syncStartEventCallback(const wp<SyncEvent> & event)9185 void RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
9186 {
9187     const sp<SyncEvent> strongEvent = event.promote();
9188 
9189     if (strongEvent != 0) {
9190         sp<IAfTrackBase> ptr =
9191                 std::any_cast<const wp<IAfTrackBase>>(strongEvent->cookie()).promote();
9192         if (ptr != nullptr) {
9193             // TODO(b/291317898) handleSyncStartEvent is in IAfTrackBase not IAfRecordTrack.
9194             ptr->handleSyncStartEvent(strongEvent);
9195         }
9196     }
9197 }
9198 
stop(IAfRecordTrack * recordTrack)9199 bool RecordThread::stop(IAfRecordTrack* recordTrack) {
9200     ALOGV("RecordThread::stop");
9201     audio_utils::unique_lock _l(mutex());
9202     // if we're invalid, we can't be on the ActiveTracks.
9203     if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->state() == IAfTrackBase::PAUSING) {
9204         return false;
9205     }
9206     // note that threadLoop may still be processing the track at this point [without lock]
9207     recordTrack->setState(IAfTrackBase::PAUSING);
9208 
9209     // NOTE: Waiting here is important to keep stop synchronous.
9210     // This is needed for proper patchRecord peer release.
9211     while (recordTrack->state() == IAfTrackBase::PAUSING && !recordTrack->isInvalid()) {
9212         mWaitWorkCV.notify_all(); // signal thread to stop
9213         mStartStopCV.wait(_l, getTid());
9214     }
9215 
9216     if (recordTrack->state() == IAfTrackBase::PAUSED) { // successful stop
9217         ALOGV("Record stopped OK");
9218         return true;
9219     }
9220 
9221     // don't handle anything - we've been invalidated or restarted and in a different state
9222     ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
9223             __func__, recordTrack->id(), recordTrack->state());
9224     return false;
9225 }
9226 
isValidSyncEvent(const sp<SyncEvent> &) const9227 bool RecordThread::isValidSyncEvent(const sp<SyncEvent>& /* event */) const
9228 {
9229     return false;
9230 }
9231 
setSyncEvent(const sp<SyncEvent> &)9232 status_t RecordThread::setSyncEvent(const sp<SyncEvent>& /* event */)
9233 {
9234 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
9235     if (!isValidSyncEvent(event)) {
9236         return BAD_VALUE;
9237     }
9238 
9239     audio_session_t eventSession = event->triggerSession();
9240     status_t ret = NAME_NOT_FOUND;
9241 
9242     audio_utils::lock_guard _l(mutex());
9243 
9244     for (size_t i = 0; i < mTracks.size(); i++) {
9245         sp<IAfRecordTrack> track = mTracks[i];
9246         if (eventSession == track->sessionId()) {
9247             (void) track->setSyncEvent(event);
9248             ret = NO_ERROR;
9249         }
9250     }
9251     return ret;
9252 #else
9253     return BAD_VALUE;
9254 #endif
9255 }
9256 
getActiveMicrophones(std::vector<media::MicrophoneInfoFw> * activeMicrophones) const9257 status_t RecordThread::getActiveMicrophones(
9258         std::vector<media::MicrophoneInfoFw>* activeMicrophones) const
9259 {
9260     ALOGV("RecordThread::getActiveMicrophones");
9261      audio_utils::lock_guard _l(mutex());
9262     if (!isStreamInitialized()) {
9263         return NO_INIT;
9264     }
9265     status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
9266     return status;
9267 }
9268 
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)9269 status_t RecordThread::setPreferredMicrophoneDirection(
9270             audio_microphone_direction_t direction)
9271 {
9272     ALOGV("setPreferredMicrophoneDirection(%d)", direction);
9273      audio_utils::lock_guard _l(mutex());
9274     if (!isStreamInitialized()) {
9275         return NO_INIT;
9276     }
9277     return mInput->stream->setPreferredMicrophoneDirection(direction);
9278 }
9279 
setPreferredMicrophoneFieldDimension(float zoom)9280 status_t RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
9281 {
9282     ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
9283      audio_utils::lock_guard _l(mutex());
9284     if (!isStreamInitialized()) {
9285         return NO_INIT;
9286     }
9287     return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
9288 }
9289 
shareAudioHistory(const std::string & sharedAudioPackageName,audio_session_t sharedSessionId,int64_t sharedAudioStartMs)9290 status_t RecordThread::shareAudioHistory(
9291         const std::string& sharedAudioPackageName, audio_session_t sharedSessionId,
9292         int64_t sharedAudioStartMs) {
9293      audio_utils::lock_guard _l(mutex());
9294     return shareAudioHistory_l(sharedAudioPackageName, sharedSessionId, sharedAudioStartMs);
9295 }
9296 
shareAudioHistory_l(const std::string & sharedAudioPackageName,audio_session_t sharedSessionId,int64_t sharedAudioStartMs)9297 status_t RecordThread::shareAudioHistory_l(
9298         const std::string& sharedAudioPackageName, audio_session_t sharedSessionId,
9299         int64_t sharedAudioStartMs) {
9300 
9301     if ((hasAudioSession_l(sharedSessionId) & ThreadBase::TRACK_SESSION) == 0) {
9302         return BAD_VALUE;
9303     }
9304 
9305     if (sharedAudioStartMs < 0
9306         || sharedAudioStartMs > INT64_MAX / mSampleRate) {
9307         return BAD_VALUE;
9308     }
9309 
9310     // Current implementation of the input resampling buffer wraps around indexes at 32 bit.
9311     // As we cannot detect more than one wraparound, only accept values up current write position
9312     // after one wraparound
9313     // We assume recent wraparounds on mRsmpInRear only given it is unlikely that the requesting
9314     // app waits several hours after the start time was computed.
9315     int64_t sharedAudioStartFrames = sharedAudioStartMs * mSampleRate / 1000;
9316     const int32_t sharedOffset = audio_utils::safe_sub_overflow(mRsmpInRear,
9317           (int32_t)sharedAudioStartFrames);
9318     // Bring the start frame position within the input buffer to match the documented
9319     // "best effort" behavior of the API.
9320     if (sharedOffset < 0) {
9321         sharedAudioStartFrames = mRsmpInRear;
9322     } else if (sharedOffset > static_cast<signed>(mRsmpInFrames)) {
9323         sharedAudioStartFrames =
9324                 audio_utils::safe_sub_overflow(mRsmpInRear, (int32_t)mRsmpInFrames);
9325     }
9326 
9327     mSharedAudioPackageName = sharedAudioPackageName;
9328     if (mSharedAudioPackageName.empty()) {
9329         resetAudioHistory_l();
9330     } else {
9331         mSharedAudioSessionId = sharedSessionId;
9332         mSharedAudioStartFrames = (int32_t)sharedAudioStartFrames;
9333     }
9334     return NO_ERROR;
9335 }
9336 
resetAudioHistory_l()9337 void RecordThread::resetAudioHistory_l() {
9338     mSharedAudioSessionId = AUDIO_SESSION_NONE;
9339     mSharedAudioStartFrames = -1;
9340     mSharedAudioPackageName = "";
9341 }
9342 
updateMetadata_l()9343 ThreadBase::MetadataUpdate RecordThread::updateMetadata_l()
9344 {
9345     if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
9346         return {}; // nothing to do
9347     }
9348     StreamInHalInterface::SinkMetadata metadata;
9349     auto backInserter = std::back_inserter(metadata.tracks);
9350     for (const sp<IAfRecordTrack>& track : mActiveTracks) {
9351         track->copyMetadataTo(backInserter);
9352     }
9353     mInput->stream->updateSinkMetadata(metadata);
9354     MetadataUpdate change;
9355     change.recordMetadataUpdate = metadata.tracks;
9356     return change;
9357 }
9358 
9359 // destroyTrack_l() must be called with ThreadBase::mutex() held
destroyTrack_l(const sp<IAfRecordTrack> & track)9360 void RecordThread::destroyTrack_l(const sp<IAfRecordTrack>& track)
9361 {
9362     track->terminate();
9363     track->setState(IAfTrackBase::STOPPED);
9364 
9365     // active tracks are removed by threadLoop()
9366     if (mActiveTracks.indexOf(track) < 0) {
9367         removeTrack_l(track);
9368     }
9369 }
9370 
removeTrack_l(const sp<IAfRecordTrack> & track)9371 void RecordThread::removeTrack_l(const sp<IAfRecordTrack>& track)
9372 {
9373     String8 result;
9374     track->appendDump(result, false /* active */);
9375     mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.c_str());
9376 
9377     mTracks.remove(track);
9378     // need anything related to effects here?
9379     if (track->isFastTrack()) {
9380         ALOG_ASSERT(!mFastTrackAvail);
9381         mFastTrackAvail = true;
9382     }
9383 }
9384 
dumpInternals_l(int fd,const Vector<String16> &)9385 void RecordThread::dumpInternals_l(int fd, const Vector<String16>& /* args */)
9386 {
9387     AudioStreamIn *input = mInput;
9388     audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
9389     dprintf(fd, "  AudioStreamIn: %p flags %#x (%s)\n",
9390             input, flags, toString(flags).c_str());
9391     dprintf(fd, "  Frames read: %lld\n", (long long)mFramesRead);
9392     if (mActiveTracks.isEmpty()) {
9393         dprintf(fd, "  No active record clients\n");
9394     }
9395 
9396     if (input != nullptr) {
9397         dprintf(fd, "  Hal stream dump:\n");
9398         (void)input->stream->dump(fd);
9399     }
9400 
9401     dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
9402     dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
9403 
9404     // Make a non-atomic copy of fast capture dump state so it won't change underneath us
9405     // while we are dumping it.  It may be inconsistent, but it won't mutate!
9406     // This is a large object so we place it on the heap.
9407     // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
9408     const std::unique_ptr<FastCaptureDumpState> copy =
9409             std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
9410     copy->dump(fd);
9411 }
9412 
dumpTracks_l(int fd,const Vector<String16> &)9413 void RecordThread::dumpTracks_l(int fd, const Vector<String16>& /* args */)
9414 {
9415     String8 result;
9416     size_t numtracks = mTracks.size();
9417     size_t numactive = mActiveTracks.size();
9418     size_t numactiveseen = 0;
9419     dprintf(fd, "  %zu Tracks", numtracks);
9420     const char *prefix = "    ";
9421     if (numtracks) {
9422         dprintf(fd, " of which %zu are active\n", numactive);
9423         result.append(prefix);
9424         mTracks[0]->appendDumpHeader(result);
9425         for (size_t i = 0; i < numtracks ; ++i) {
9426             sp<IAfRecordTrack> track = mTracks[i];
9427             if (track != 0) {
9428                 bool active = mActiveTracks.indexOf(track) >= 0;
9429                 if (active) {
9430                     numactiveseen++;
9431                 }
9432                 result.append(prefix);
9433                 track->appendDump(result, active);
9434             }
9435         }
9436     } else {
9437         dprintf(fd, "\n");
9438     }
9439 
9440     if (numactiveseen != numactive) {
9441         result.append("  The following tracks are in the active list but"
9442                 " not in the track list\n");
9443         result.append(prefix);
9444         mActiveTracks[0]->appendDumpHeader(result);
9445         for (size_t i = 0; i < numactive; ++i) {
9446             sp<IAfRecordTrack> track = mActiveTracks[i];
9447             if (mTracks.indexOf(track) < 0) {
9448                 result.append(prefix);
9449                 track->appendDump(result, true /* active */);
9450             }
9451         }
9452 
9453     }
9454     write(fd, result.c_str(), result.size());
9455 }
9456 
setRecordSilenced(audio_port_handle_t portId,bool silenced)9457 void RecordThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
9458 {
9459     audio_utils::lock_guard _l(mutex());
9460     for (size_t i = 0; i < mTracks.size() ; i++) {
9461         sp<IAfRecordTrack> track = mTracks[i];
9462         if (track != 0 && track->portId() == portId) {
9463             track->setSilenced(silenced);
9464         }
9465     }
9466 }
9467 
reset()9468 void ResamplerBufferProvider::reset()
9469 {
9470     const auto threadBase = mRecordTrack->thread().promote();
9471     auto* const recordThread = static_cast<RecordThread *>(threadBase->asIAfRecordThread().get());
9472     mRsmpInUnrel = 0;
9473     const int32_t rear = recordThread->mRsmpInRear;
9474     ssize_t deltaFrames = 0;
9475     if (mRecordTrack->startFrames() >= 0) {
9476         int32_t startFrames = mRecordTrack->startFrames();
9477         // Accept a recent wraparound of mRsmpInRear
9478         if (startFrames <= rear) {
9479             deltaFrames = rear - startFrames;
9480         } else {
9481             deltaFrames = (int32_t)((int64_t)rear + UINT32_MAX + 1 - startFrames);
9482         }
9483         // start frame cannot be further in the past than start of resampling buffer
9484         if ((size_t) deltaFrames > recordThread->mRsmpInFrames) {
9485             deltaFrames = recordThread->mRsmpInFrames;
9486         }
9487     }
9488     mRsmpInFront = audio_utils::safe_sub_overflow(rear, static_cast<int32_t>(deltaFrames));
9489 }
9490 
sync(size_t * framesAvailable,bool * hasOverrun)9491 void ResamplerBufferProvider::sync(
9492         size_t *framesAvailable, bool *hasOverrun)
9493 {
9494     const auto threadBase = mRecordTrack->thread().promote();
9495     auto* const recordThread = static_cast<RecordThread *>(threadBase->asIAfRecordThread().get());
9496     const int32_t rear = recordThread->mRsmpInRear;
9497     const int32_t front = mRsmpInFront;
9498     const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
9499 
9500     size_t framesIn;
9501     bool overrun = false;
9502     if (filled < 0) {
9503         // should not happen, but treat like a massive overrun and re-sync
9504         framesIn = 0;
9505         mRsmpInFront = rear;
9506         overrun = true;
9507     } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
9508         framesIn = (size_t) filled;
9509     } else {
9510         // client is not keeping up with server, but give it latest data
9511         framesIn = recordThread->mRsmpInFrames;
9512         mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
9513                 rear, static_cast<int32_t>(framesIn));
9514         overrun = true;
9515     }
9516     if (framesAvailable != NULL) {
9517         *framesAvailable = framesIn;
9518     }
9519     if (hasOverrun != NULL) {
9520         *hasOverrun = overrun;
9521     }
9522 }
9523 
9524 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)9525 status_t ResamplerBufferProvider::getNextBuffer(
9526         AudioBufferProvider::Buffer* buffer)
9527 {
9528     const auto threadBase = mRecordTrack->thread().promote();
9529     if (threadBase == 0) {
9530         buffer->frameCount = 0;
9531         buffer->raw = NULL;
9532         return NOT_ENOUGH_DATA;
9533     }
9534     auto* const recordThread = static_cast<RecordThread *>(threadBase->asIAfRecordThread().get());
9535     int32_t rear = recordThread->mRsmpInRear;
9536     int32_t front = mRsmpInFront;
9537     ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
9538     // FIXME should not be P2 (don't want to increase latency)
9539     // FIXME if client not keeping up, discard
9540     LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
9541     // 'filled' may be non-contiguous, so return only the first contiguous chunk
9542 
9543     front &= recordThread->mRsmpInFramesP2 - 1;
9544     size_t part1 = recordThread->mRsmpInFramesP2 - front;
9545     if (part1 > (size_t) filled) {
9546         part1 = filled;
9547     }
9548     size_t ask = buffer->frameCount;
9549     ALOG_ASSERT(ask > 0);
9550     if (part1 > ask) {
9551         part1 = ask;
9552     }
9553     if (part1 == 0) {
9554         // out of data is fine since the resampler will return a short-count.
9555         buffer->raw = NULL;
9556         buffer->frameCount = 0;
9557         mRsmpInUnrel = 0;
9558         return NOT_ENOUGH_DATA;
9559     }
9560 
9561     buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
9562     buffer->frameCount = part1;
9563     mRsmpInUnrel = part1;
9564     return NO_ERROR;
9565 }
9566 
9567 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)9568 void ResamplerBufferProvider::releaseBuffer(
9569         AudioBufferProvider::Buffer* buffer)
9570 {
9571     int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
9572     if (stepCount == 0) {
9573         return;
9574     }
9575     ALOG_ASSERT(stepCount <= (int32_t)mRsmpInUnrel);
9576     mRsmpInUnrel -= stepCount;
9577     mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
9578     buffer->raw = NULL;
9579     buffer->frameCount = 0;
9580 }
9581 
checkBtNrec()9582 void RecordThread::checkBtNrec()
9583 {
9584     audio_utils::lock_guard _l(mutex());
9585     checkBtNrec_l();
9586 }
9587 
checkBtNrec_l()9588 void RecordThread::checkBtNrec_l()
9589 {
9590     // disable AEC and NS if the device is a BT SCO headset supporting those
9591     // pre processings
9592     bool suspend = audio_is_bluetooth_sco_device(inDeviceType_l()) &&
9593                         mAfThreadCallback->btNrecIsOff();
9594     if (mBtNrecSuspended.exchange(suspend) != suspend) {
9595         for (size_t i = 0; i < mEffectChains.size(); i++) {
9596             setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
9597             setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
9598         }
9599     }
9600 }
9601 
9602 
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)9603 bool RecordThread::checkForNewParameter_l(const String8& keyValuePair,
9604                                                         status_t& status)
9605 {
9606     bool reconfig = false;
9607 
9608     status = NO_ERROR;
9609 
9610     audio_format_t reqFormat = mFormat;
9611     uint32_t samplingRate = mSampleRate;
9612     // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
9613     [[maybe_unused]] audio_channel_mask_t channelMask =
9614                                 audio_channel_in_mask_from_count(mChannelCount);
9615 
9616     AudioParameter param = AudioParameter(keyValuePair);
9617     int value;
9618 
9619     // scope for AutoPark extends to end of method
9620     AutoPark<FastCapture> park(mFastCapture);
9621 
9622     // TODO Investigate when this code runs. Check with audio policy when a sample rate and
9623     //      channel count change can be requested. Do we mandate the first client defines the
9624     //      HAL sampling rate and channel count or do we allow changes on the fly?
9625     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
9626         samplingRate = value;
9627         reconfig = true;
9628     }
9629     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
9630         if (!audio_is_linear_pcm((audio_format_t) value)) {
9631             status = BAD_VALUE;
9632         } else {
9633             reqFormat = (audio_format_t) value;
9634             reconfig = true;
9635         }
9636     }
9637     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
9638         audio_channel_mask_t mask = (audio_channel_mask_t) value;
9639         if (!audio_is_input_channel(mask) ||
9640                 audio_channel_count_from_in_mask(mask) > FCC_LIMIT) {
9641             status = BAD_VALUE;
9642         } else {
9643             channelMask = mask;
9644             reconfig = true;
9645         }
9646     }
9647     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
9648         // do not accept frame count changes if tracks are open as the track buffer
9649         // size depends on frame count and correct behavior would not be guaranteed
9650         // if frame count is changed after track creation
9651         if (mActiveTracks.size() > 0) {
9652             status = INVALID_OPERATION;
9653         } else {
9654             reconfig = true;
9655         }
9656     }
9657     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
9658         LOG_FATAL("Should not set routing device in RecordThread");
9659     }
9660     if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
9661             mAudioSource != (audio_source_t)value) {
9662         LOG_FATAL("Should not set audio source in RecordThread");
9663     }
9664 
9665     if (status == NO_ERROR) {
9666         status = mInput->stream->setParameters(keyValuePair);
9667         if (status == INVALID_OPERATION) {
9668             inputStandBy();
9669             status = mInput->stream->setParameters(keyValuePair);
9670         }
9671         if (reconfig) {
9672             if (status == BAD_VALUE) {
9673                 audio_config_base_t config = AUDIO_CONFIG_BASE_INITIALIZER;
9674                 if (mInput->stream->getAudioProperties(&config) == OK &&
9675                         audio_is_linear_pcm(config.format) && audio_is_linear_pcm(reqFormat) &&
9676                         config.sample_rate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
9677                         audio_channel_count_from_in_mask(config.channel_mask) <= FCC_LIMIT) {
9678                     status = NO_ERROR;
9679                 }
9680             }
9681             if (status == NO_ERROR) {
9682                 readInputParameters_l();
9683                 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9684             }
9685         }
9686     }
9687 
9688     return reconfig;
9689 }
9690 
getParameters(const String8 & keys)9691 String8 RecordThread::getParameters(const String8& keys)
9692 {
9693     audio_utils::lock_guard _l(mutex());
9694     if (initCheck() == NO_ERROR) {
9695         String8 out_s8;
9696         if (mInput->stream->getParameters(keys, &out_s8) == OK) {
9697             return out_s8;
9698         }
9699     }
9700     return {};
9701 }
9702 
ioConfigChanged_l(audio_io_config_event_t event,pid_t pid,audio_port_handle_t portId)9703 void RecordThread::ioConfigChanged_l(audio_io_config_event_t event, pid_t pid,
9704                                                  audio_port_handle_t portId) {
9705     sp<AudioIoDescriptor> desc;
9706     switch (event) {
9707     case AUDIO_INPUT_OPENED:
9708     case AUDIO_INPUT_REGISTERED:
9709     case AUDIO_INPUT_CONFIG_CHANGED:
9710         desc = sp<AudioIoDescriptor>::make(mId, mPatch, true /*isInput*/,
9711                 mSampleRate, mFormat, mChannelMask, mFrameCount, mFrameCount);
9712         break;
9713     case AUDIO_CLIENT_STARTED:
9714         desc = sp<AudioIoDescriptor>::make(mId, mPatch, portId);
9715         break;
9716     case AUDIO_INPUT_CLOSED:
9717     default:
9718         desc = sp<AudioIoDescriptor>::make(mId);
9719         break;
9720     }
9721     mAfThreadCallback->ioConfigChanged_l(event, desc, pid);
9722 }
9723 
readInputParameters_l()9724 void RecordThread::readInputParameters_l()
9725 {
9726     const audio_config_base_t audioConfig = mInput->getAudioProperties();
9727     mSampleRate = audioConfig.sample_rate;
9728     mChannelMask = audioConfig.channel_mask;
9729     if (!audio_is_input_channel(mChannelMask)) {
9730         LOG_ALWAYS_FATAL("Channel mask %#x not valid for input", mChannelMask);
9731     }
9732 
9733     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
9734 
9735     // Get actual HAL format.
9736     status_t result = mInput->stream->getAudioProperties(nullptr, nullptr, &mHALFormat);
9737     LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving input stream format: %d", result);
9738     // Get format from the shim, which will be different than the HAL format
9739     // if recording compressed audio from IEC61937 wrapped sources.
9740     mFormat = audioConfig.format;
9741     if (!audio_is_valid_format(mFormat)) {
9742         LOG_ALWAYS_FATAL("Format %#x not valid for input", mFormat);
9743     }
9744     if (audio_is_linear_pcm(mFormat)) {
9745         LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_LIMIT, "HAL channel count %d > %d",
9746                 mChannelCount, FCC_LIMIT);
9747     } else {
9748         // Can have more that FCC_LIMIT channels in encoded streams.
9749         ALOGI("HAL format %#x is not linear pcm", mFormat);
9750     }
9751     mFrameSize = mInput->getFrameSize();
9752     LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
9753             mFrameSize);
9754     result = mInput->stream->getBufferSize(&mBufferSize);
9755     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
9756     mFrameCount = mBufferSize / mFrameSize;
9757     ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
9758             "mBufferSize=%zu, mFrameCount=%zu",
9759             this, mChannelCount, mFormat, mFrameSize, mBufferSize, mFrameCount);
9760 
9761     // mRsmpInFrames must be 0 before calling resizeInputBuffer_l for the first time
9762     mRsmpInFrames = 0;
9763     resizeInputBuffer_l(0 /*maxSharedAudioHistoryMs*/);
9764 
9765     // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
9766     // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
9767 
9768     audio_input_flags_t flags = mInput->flags;
9769     mediametrics::LogItem item(mThreadMetrics.getMetricsId());
9770     item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
9771         .set(AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mFormat).c_str())
9772         .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
9773         .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
9774         .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
9775         .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
9776         .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
9777         .record();
9778 }
9779 
getInputFramesLost() const9780 uint32_t RecordThread::getInputFramesLost() const
9781 {
9782     audio_utils::lock_guard _l(mutex());
9783     uint32_t result;
9784     if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
9785         return result;
9786     }
9787     return 0;
9788 }
9789 
sessionIds() const9790 KeyedVector<audio_session_t, bool> RecordThread::sessionIds() const
9791 {
9792     KeyedVector<audio_session_t, bool> ids;
9793     audio_utils::lock_guard _l(mutex());
9794     for (size_t j = 0; j < mTracks.size(); ++j) {
9795         sp<IAfRecordTrack> track = mTracks[j];
9796         audio_session_t sessionId = track->sessionId();
9797         if (ids.indexOfKey(sessionId) < 0) {
9798             ids.add(sessionId, true);
9799         }
9800     }
9801     return ids;
9802 }
9803 
clearInput()9804 AudioStreamIn* RecordThread::clearInput()
9805 {
9806     audio_utils::lock_guard _l(mutex());
9807     AudioStreamIn *input = mInput;
9808     mInput = NULL;
9809     mInputSource.clear();
9810     return input;
9811 }
9812 
9813 // this method must always be called either with ThreadBase mutex() held or inside the thread loop
stream() const9814 sp<StreamHalInterface> RecordThread::stream() const
9815 {
9816     if (mInput == NULL) {
9817         return NULL;
9818     }
9819     return mInput->stream;
9820 }
9821 
addEffectChain_l(const sp<IAfEffectChain> & chain)9822 status_t RecordThread::addEffectChain_l(const sp<IAfEffectChain>& chain)
9823 {
9824     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
9825     chain->setThread(this);
9826     chain->setInBuffer(NULL);
9827     chain->setOutBuffer(NULL);
9828 
9829     checkSuspendOnAddEffectChain_l(chain);
9830 
9831     // make sure enabled pre processing effects state is communicated to the HAL as we
9832     // just moved them to a new input stream.
9833     chain->syncHalEffectsState_l();
9834 
9835     mEffectChains.add(chain);
9836 
9837     return NO_ERROR;
9838 }
9839 
removeEffectChain_l(const sp<IAfEffectChain> & chain)9840 size_t RecordThread::removeEffectChain_l(const sp<IAfEffectChain>& chain)
9841 {
9842     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
9843 
9844     for (size_t i = 0; i < mEffectChains.size(); i++) {
9845         if (chain == mEffectChains[i]) {
9846             mEffectChains.removeAt(i);
9847             break;
9848         }
9849     }
9850     return mEffectChains.size();
9851 }
9852 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)9853 status_t RecordThread::createAudioPatch_l(const struct audio_patch* patch,
9854                                                           audio_patch_handle_t *handle)
9855 {
9856     status_t status = NO_ERROR;
9857 
9858     // store new device and send to effects
9859     mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
9860     mInDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address);
9861     audio_port_handle_t deviceId = patch->sources[0].id;
9862     for (size_t i = 0; i < mEffectChains.size(); i++) {
9863         mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr());
9864     }
9865 
9866     checkBtNrec_l();
9867 
9868     // store new source and send to effects
9869     if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
9870         mAudioSource = patch->sinks[0].ext.mix.usecase.source;
9871         for (size_t i = 0; i < mEffectChains.size(); i++) {
9872             mEffectChains[i]->setAudioSource_l(mAudioSource);
9873         }
9874     }
9875 
9876     if (mInput->audioHwDev->supportsAudioPatches()) {
9877         sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
9878         status = hwDevice->createAudioPatch(patch->num_sources,
9879                                             patch->sources,
9880                                             patch->num_sinks,
9881                                             patch->sinks,
9882                                             handle);
9883     } else {
9884         status = mInput->stream->legacyCreateAudioPatch(patch->sources[0],
9885                                                         patch->sinks[0].ext.mix.usecase.source,
9886                                                         patch->sources[0].ext.device.type);
9887         *handle = AUDIO_PATCH_HANDLE_NONE;
9888     }
9889 
9890     if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) {
9891         sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9892         mPatch = *patch;
9893     }
9894 
9895     const std::string pathSourcesAsString = patchSourcesToString(patch);
9896     mThreadMetrics.logEndInterval();
9897     mThreadMetrics.logCreatePatch(pathSourcesAsString, /* outDevices */ {});
9898     mThreadMetrics.logBeginInterval();
9899     // also dispatch to active AudioRecords
9900     for (const auto &track : mActiveTracks) {
9901         track->logEndInterval();
9902         track->logBeginInterval(pathSourcesAsString);
9903     }
9904     // Force meteadata update after a route change
9905     mActiveTracks.setHasChanged();
9906 
9907     return status;
9908 }
9909 
releaseAudioPatch_l(const audio_patch_handle_t handle)9910 status_t RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9911 {
9912     status_t status = NO_ERROR;
9913 
9914     mPatch = audio_patch{};
9915     mInDeviceTypeAddr.reset();
9916 
9917     if (mInput->audioHwDev->supportsAudioPatches()) {
9918         sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
9919         status = hwDevice->releaseAudioPatch(handle);
9920     } else {
9921         status = mInput->stream->legacyReleaseAudioPatch();
9922     }
9923     // Force meteadata update after a route change
9924     mActiveTracks.setHasChanged();
9925 
9926     return status;
9927 }
9928 
updateOutDevices(const DeviceDescriptorBaseVector & outDevices)9929 void RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices)
9930 {
9931     audio_utils::lock_guard _l(mutex());
9932     mOutDevices = outDevices;
9933     mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices);
9934     for (size_t i = 0; i < mEffectChains.size(); i++) {
9935         mEffectChains[i]->setDevices_l(outDeviceTypeAddrs());
9936     }
9937 }
9938 
getOldestFront_l()9939 int32_t RecordThread::getOldestFront_l()
9940 {
9941     if (mTracks.size() == 0) {
9942         return mRsmpInRear;
9943     }
9944     int32_t oldestFront = mRsmpInRear;
9945     int32_t maxFilled = 0;
9946     for (size_t i = 0; i < mTracks.size(); i++) {
9947         int32_t front = mTracks[i]->resamplerBufferProvider()->getFront();
9948         int32_t filled;
9949         (void)__builtin_sub_overflow(mRsmpInRear, front, &filled);
9950         if (filled > maxFilled) {
9951             oldestFront = front;
9952             maxFilled = filled;
9953         }
9954     }
9955     if (maxFilled > static_cast<signed>(mRsmpInFrames)) {
9956         (void)__builtin_sub_overflow(mRsmpInRear, mRsmpInFrames, &oldestFront);
9957     }
9958     return oldestFront;
9959 }
9960 
updateFronts_l(int32_t offset)9961 void RecordThread::updateFronts_l(int32_t offset)
9962 {
9963     if (offset == 0) {
9964         return;
9965     }
9966     for (size_t i = 0; i < mTracks.size(); i++) {
9967         int32_t front = mTracks[i]->resamplerBufferProvider()->getFront();
9968         front = audio_utils::safe_sub_overflow(front, offset);
9969         mTracks[i]->resamplerBufferProvider()->setFront(front);
9970     }
9971 }
9972 
resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs)9973 void RecordThread::resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs)
9974 {
9975     // This is the formula for calculating the temporary buffer size.
9976     // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
9977     // 1 full output buffer, regardless of the alignment of the available input.
9978     // The value is somewhat arbitrary, and could probably be even larger.
9979     // A larger value should allow more old data to be read after a track calls start(),
9980     // without increasing latency.
9981     //
9982     // Note this is independent of the maximum downsampling ratio permitted for capture.
9983     size_t minRsmpInFrames = mFrameCount * 7;
9984 
9985     // maxSharedAudioHistoryMs != 0 indicates a request to possibly make some part of the audio
9986     // capture history available to another client using the same session ID:
9987     // dimension the resampler input buffer accordingly.
9988 
9989     // Get oldest client read position:  getOldestFront_l() must be called before altering
9990     // mRsmpInRear, or mRsmpInFrames
9991     int32_t previousFront = getOldestFront_l();
9992     size_t previousRsmpInFramesP2 = mRsmpInFramesP2;
9993     int32_t previousRear = mRsmpInRear;
9994     mRsmpInRear = 0;
9995 
9996     ALOG_ASSERT(maxSharedAudioHistoryMs >= 0
9997             && maxSharedAudioHistoryMs <= kMaxSharedAudioHistoryMs,
9998             "resizeInputBuffer_l() called with invalid max shared history %d",
9999             maxSharedAudioHistoryMs);
10000     if (maxSharedAudioHistoryMs != 0) {
10001         // resizeInputBuffer_l should never be called with a non zero shared history if the
10002         // buffer was not already allocated
10003         ALOG_ASSERT(mRsmpInBuffer != nullptr && mRsmpInFrames != 0,
10004                 "resizeInputBuffer_l() called with shared history and unallocated buffer");
10005         size_t rsmpInFrames = (size_t)maxSharedAudioHistoryMs * mSampleRate / 1000;
10006         // never reduce resampler input buffer size
10007         if (rsmpInFrames <= mRsmpInFrames) {
10008             return;
10009         }
10010         mRsmpInFrames = rsmpInFrames;
10011     }
10012     mMaxSharedAudioHistoryMs = maxSharedAudioHistoryMs;
10013     // Note: mRsmpInFrames is 0 when called with maxSharedAudioHistoryMs equals to 0 so it is always
10014     // initialized
10015     if (mRsmpInFrames < minRsmpInFrames) {
10016         mRsmpInFrames = minRsmpInFrames;
10017     }
10018     mRsmpInFramesP2 = roundup(mRsmpInFrames);
10019 
10020     // TODO optimize audio capture buffer sizes ...
10021     // Here we calculate the size of the sliding buffer used as a source
10022     // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
10023     // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
10024     // be better to have it derived from the pipe depth in the long term.
10025     // The current value is higher than necessary.  However it should not add to latency.
10026 
10027     // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
10028     mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
10029 
10030     void *rsmpInBuffer;
10031     (void)posix_memalign(&rsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
10032     // if posix_memalign fails, will segv here.
10033     memset(rsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
10034 
10035     // Copy audio history if any from old buffer before freeing it
10036     if (previousRear != 0) {
10037         ALOG_ASSERT(mRsmpInBuffer != nullptr,
10038                 "resizeInputBuffer_l() called with null buffer but frames already read from HAL");
10039 
10040         ssize_t unread = audio_utils::safe_sub_overflow(previousRear, previousFront);
10041         previousFront &= previousRsmpInFramesP2 - 1;
10042         size_t part1 = previousRsmpInFramesP2 - previousFront;
10043         if (part1 > (size_t) unread) {
10044             part1 = unread;
10045         }
10046         if (part1 != 0) {
10047             memcpy(rsmpInBuffer, (const uint8_t*)mRsmpInBuffer + previousFront * mFrameSize,
10048                    part1 * mFrameSize);
10049             mRsmpInRear = part1;
10050             part1 = unread - part1;
10051             if (part1 != 0) {
10052                 memcpy((uint8_t*)rsmpInBuffer + mRsmpInRear * mFrameSize,
10053                        (const uint8_t*)mRsmpInBuffer, part1 * mFrameSize);
10054                 mRsmpInRear += part1;
10055             }
10056         }
10057         // Update front for all clients according to new rear
10058         updateFronts_l(audio_utils::safe_sub_overflow(previousRear, mRsmpInRear));
10059     } else {
10060         mRsmpInRear = 0;
10061     }
10062     free(mRsmpInBuffer);
10063     mRsmpInBuffer = rsmpInBuffer;
10064 }
10065 
addPatchTrack(const sp<IAfPatchRecord> & record)10066 void RecordThread::addPatchTrack(const sp<IAfPatchRecord>& record)
10067 {
10068     audio_utils::lock_guard _l(mutex());
10069     mTracks.add(record);
10070     if (record->getSource()) {
10071         mSource = record->getSource();
10072     }
10073 }
10074 
deletePatchTrack(const sp<IAfPatchRecord> & record)10075 void RecordThread::deletePatchTrack(const sp<IAfPatchRecord>& record)
10076 {
10077     audio_utils::lock_guard _l(mutex());
10078     if (mSource == record->getSource()) {
10079         mSource = mInput;
10080     }
10081     destroyTrack_l(record);
10082 }
10083 
toAudioPortConfig(struct audio_port_config * config)10084 void RecordThread::toAudioPortConfig(struct audio_port_config* config)
10085 {
10086     ThreadBase::toAudioPortConfig(config);
10087     config->role = AUDIO_PORT_ROLE_SINK;
10088     config->ext.mix.hw_module = mInput->audioHwDev->handle();
10089     config->ext.mix.usecase.source = mAudioSource;
10090     if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
10091         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
10092         config->flags.input = mInput->flags;
10093     }
10094 }
10095 
10096 // ----------------------------------------------------------------------------
10097 //      Mmap
10098 // ----------------------------------------------------------------------------
10099 
10100 // Mmap stream control interface implementation. Each MmapThreadHandle controls one
10101 // MmapPlaybackThread or MmapCaptureThread instance.
10102 class MmapThreadHandle : public MmapStreamInterface {
10103 public:
10104     explicit MmapThreadHandle(const sp<IAfMmapThread>& thread);
10105     ~MmapThreadHandle() override;
10106 
10107     // MmapStreamInterface virtuals
10108     status_t createMmapBuffer(int32_t minSizeFrames,
10109         struct audio_mmap_buffer_info* info) final;
10110     status_t getMmapPosition(struct audio_mmap_position* position) final;
10111     status_t getExternalPosition(uint64_t* position, int64_t* timeNanos) final;
10112     status_t start(const AudioClient& client,
10113            const audio_attributes_t* attr, audio_port_handle_t* handle) final;
10114     status_t stop(audio_port_handle_t handle) final;
10115     status_t standby() final;
10116     status_t reportData(const void* buffer, size_t frameCount) final;
10117 private:
10118     const sp<IAfMmapThread> mThread;
10119 };
10120 
10121 /* static */
createMmapStreamInterfaceAdapter(const sp<IAfMmapThread> & mmapThread)10122 sp<MmapStreamInterface> IAfMmapThread::createMmapStreamInterfaceAdapter(
10123         const sp<IAfMmapThread>& mmapThread) {
10124     return sp<MmapThreadHandle>::make(mmapThread);
10125 }
10126 
MmapThreadHandle(const sp<IAfMmapThread> & thread)10127 MmapThreadHandle::MmapThreadHandle(const sp<IAfMmapThread>& thread)
10128     : mThread(thread)
10129 {
10130     assert(thread != 0); // thread must start non-null and stay non-null
10131 }
10132 
10133 // MmapStreamInterface could be directly implemented by MmapThread excepting this
10134 // special handling on adapter dtor.
~MmapThreadHandle()10135 MmapThreadHandle::~MmapThreadHandle()
10136 {
10137     mThread->disconnect();
10138 }
10139 
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)10140 status_t MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
10141                                   struct audio_mmap_buffer_info *info)
10142 {
10143     return mThread->createMmapBuffer(minSizeFrames, info);
10144 }
10145 
getMmapPosition(struct audio_mmap_position * position)10146 status_t MmapThreadHandle::getMmapPosition(struct audio_mmap_position* position)
10147 {
10148     return mThread->getMmapPosition(position);
10149 }
10150 
getExternalPosition(uint64_t * position,int64_t * timeNanos)10151 status_t MmapThreadHandle::getExternalPosition(uint64_t* position,
10152                                                              int64_t *timeNanos) {
10153     return mThread->getExternalPosition(position, timeNanos);
10154 }
10155 
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)10156 status_t MmapThreadHandle::start(const AudioClient& client,
10157         const audio_attributes_t *attr, audio_port_handle_t *handle)
10158 {
10159     return mThread->start(client, attr, handle);
10160 }
10161 
stop(audio_port_handle_t handle)10162 status_t MmapThreadHandle::stop(audio_port_handle_t handle)
10163 {
10164     return mThread->stop(handle);
10165 }
10166 
standby()10167 status_t MmapThreadHandle::standby()
10168 {
10169     return mThread->standby();
10170 }
10171 
reportData(const void * buffer,size_t frameCount)10172 status_t MmapThreadHandle::reportData(const void* buffer, size_t frameCount)
10173 {
10174     return mThread->reportData(buffer, frameCount);
10175 }
10176 
10177 
MmapThread(const sp<IAfThreadCallback> & afThreadCallback,audio_io_handle_t id,AudioHwDevice * hwDev,const sp<StreamHalInterface> & stream,bool systemReady,bool isOut)10178 MmapThread::MmapThread(
10179         const sp<IAfThreadCallback>& afThreadCallback, audio_io_handle_t id,
10180         AudioHwDevice *hwDev, const sp<StreamHalInterface>& stream, bool systemReady, bool isOut)
10181     : ThreadBase(afThreadCallback, id, (isOut ? MMAP_PLAYBACK : MMAP_CAPTURE), systemReady, isOut),
10182       mSessionId(AUDIO_SESSION_NONE),
10183       mPortId(AUDIO_PORT_HANDLE_NONE),
10184       mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
10185       mActiveTracks(&this->mLocalLog),
10186       mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
10187       mNoCallbackWarningCount(0)
10188 {
10189     mStandby = true;
10190     readHalParameters_l();
10191 }
10192 
onFirstRef()10193 void MmapThread::onFirstRef()
10194 {
10195     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
10196 }
10197 
disconnect()10198 void MmapThread::disconnect()
10199 {
10200     ActiveTracks<IAfMmapTrack> activeTracks;
10201     audio_port_handle_t localPortId;
10202     {
10203         audio_utils::lock_guard _l(mutex());
10204         for (const sp<IAfMmapTrack>& t : mActiveTracks) {
10205             activeTracks.add(t);
10206         }
10207         localPortId = mPortId;
10208     }
10209     for (const sp<IAfMmapTrack>& t : activeTracks) {
10210         stop(t->portId());
10211     }
10212     // This will decrement references and may cause the destruction of this thread.
10213     if (isOutput()) {
10214         AudioSystem::releaseOutput(localPortId);
10215     } else {
10216         AudioSystem::releaseInput(localPortId);
10217     }
10218 }
10219 
10220 
configure_l(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)10221 void MmapThread::configure_l(const audio_attributes_t* attr,
10222                                                 audio_stream_type_t streamType __unused,
10223                                                 audio_session_t sessionId,
10224                                                 const sp<MmapStreamCallback>& callback,
10225                                                 audio_port_handle_t deviceId,
10226                                                 audio_port_handle_t portId)
10227 {
10228     mAttr = *attr;
10229     mSessionId = sessionId;
10230     mCallback = callback;
10231     mDeviceId = deviceId;
10232     mPortId = portId;
10233 }
10234 
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)10235 status_t MmapThread::createMmapBuffer(int32_t minSizeFrames,
10236                                   struct audio_mmap_buffer_info *info)
10237 {
10238     audio_utils::lock_guard l(mutex());
10239     if (mHalStream == 0) {
10240         return NO_INIT;
10241     }
10242     mStandby = true;
10243     return mHalStream->createMmapBuffer(minSizeFrames, info);
10244 }
10245 
getMmapPosition(struct audio_mmap_position * position) const10246 status_t MmapThread::getMmapPosition(struct audio_mmap_position* position) const
10247 {
10248     audio_utils::lock_guard l(mutex());
10249     if (mHalStream == 0) {
10250         return NO_INIT;
10251     }
10252     return mHalStream->getMmapPosition(position);
10253 }
10254 
exitStandby_l()10255 status_t MmapThread::exitStandby_l()
10256 {
10257     // The HAL must receive track metadata before starting the stream
10258     updateMetadata_l();
10259     status_t ret = mHalStream->start();
10260     if (ret != NO_ERROR) {
10261         ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
10262         return ret;
10263     }
10264     if (mStandby) {
10265         mThreadMetrics.logBeginInterval();
10266         mThreadSnapshot.onBegin();
10267         mStandby = false;
10268     }
10269     return NO_ERROR;
10270 }
10271 
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)10272 status_t MmapThread::start(const AudioClient& client,
10273                                          const audio_attributes_t *attr,
10274                                          audio_port_handle_t *handle)
10275 {
10276     audio_utils::lock_guard l(mutex());
10277     ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
10278           client.attributionSource.uid, mStandby, mPortId, *handle);
10279     if (mHalStream == 0) {
10280         return NO_INIT;
10281     }
10282 
10283     status_t ret;
10284 
10285     // For the first track, reuse portId and session allocated when the stream was opened.
10286     if (*handle == mPortId) {
10287         acquireWakeLock_l();
10288         return NO_ERROR;
10289     }
10290 
10291     audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
10292 
10293     audio_io_handle_t io = mId;
10294     const AttributionSourceState adjAttributionSource = afutils::checkAttributionSourcePackage(
10295             client.attributionSource);
10296 
10297     const auto localSessionId = mSessionId;
10298     auto localAttr = mAttr;
10299     if (isOutput()) {
10300         audio_config_t config = AUDIO_CONFIG_INITIALIZER;
10301         config.sample_rate = mSampleRate;
10302         config.channel_mask = mChannelMask;
10303         config.format = mFormat;
10304         audio_stream_type_t stream = streamType_l();
10305         audio_output_flags_t flags =
10306                 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
10307         audio_port_handle_t deviceId = mDeviceId;
10308         std::vector<audio_io_handle_t> secondaryOutputs;
10309         bool isSpatialized;
10310         bool isBitPerfect;
10311         mutex().unlock();
10312         ret = AudioSystem::getOutputForAttr(&localAttr, &io,
10313                                             localSessionId,
10314                                             &stream,
10315                                             adjAttributionSource,
10316                                             &config,
10317                                             flags,
10318                                             &deviceId,
10319                                             &portId,
10320                                             &secondaryOutputs,
10321                                             &isSpatialized,
10322                                             &isBitPerfect);
10323         mutex().lock();
10324         mAttr = localAttr;
10325         ALOGD_IF(!secondaryOutputs.empty(),
10326                  "MmapThread::start does not support secondary outputs, ignoring them");
10327     } else {
10328         audio_config_base_t config;
10329         config.sample_rate = mSampleRate;
10330         config.channel_mask = mChannelMask;
10331         config.format = mFormat;
10332         audio_port_handle_t deviceId = mDeviceId;
10333         mutex().unlock();
10334         ret = AudioSystem::getInputForAttr(&localAttr, &io,
10335                                               RECORD_RIID_INVALID,
10336                                               localSessionId,
10337                                               adjAttributionSource,
10338                                               &config,
10339                                               AUDIO_INPUT_FLAG_MMAP_NOIRQ,
10340                                               &deviceId,
10341                                               &portId);
10342         mutex().lock();
10343         // localAttr is const for getInputForAttr.
10344     }
10345     // APM should not chose a different input or output stream for the same set of attributes
10346     // and audo configuration
10347     if (ret != NO_ERROR || io != mId) {
10348         ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
10349               __FUNCTION__, ret, io, mId);
10350         return BAD_VALUE;
10351     }
10352 
10353     if (isOutput()) {
10354         mutex().unlock();
10355         ret = AudioSystem::startOutput(portId);
10356         mutex().lock();
10357     } else {
10358         {
10359             // Add the track record before starting input so that the silent status for the
10360             // client can be cached.
10361             setClientSilencedState_l(portId, false /*silenced*/);
10362         }
10363         mutex().unlock();
10364         ret = AudioSystem::startInput(portId);
10365         mutex().lock();
10366     }
10367 
10368     // abort if start is rejected by audio policy manager
10369     if (ret != NO_ERROR) {
10370         ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
10371         if (!mActiveTracks.isEmpty()) {
10372             mutex().unlock();
10373             if (isOutput()) {
10374                 AudioSystem::releaseOutput(portId);
10375             } else {
10376                 AudioSystem::releaseInput(portId);
10377             }
10378             mutex().lock();
10379         } else {
10380             mHalStream->stop();
10381         }
10382         eraseClientSilencedState_l(portId);
10383         return PERMISSION_DENIED;
10384     }
10385 
10386     // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
10387     sp<IAfMmapTrack> track = IAfMmapTrack::create(
10388             this, attr == nullptr ? mAttr : *attr, mSampleRate, mFormat,
10389                                         mChannelMask, mSessionId, isOutput(),
10390                                         client.attributionSource,
10391                                         IPCThreadState::self()->getCallingPid(), portId);
10392     if (!isOutput()) {
10393         track->setSilenced_l(isClientSilenced_l(portId));
10394     }
10395 
10396     if (isOutput()) {
10397         // force volume update when a new track is added
10398         mHalVolFloat = -1.0f;
10399     } else if (!track->isSilenced_l()) {
10400         for (const sp<IAfMmapTrack>& t : mActiveTracks) {
10401             if (t->isSilenced_l()
10402                     && t->uid() != static_cast<uid_t>(client.attributionSource.uid)) {
10403                 t->invalidate();
10404             }
10405         }
10406     }
10407 
10408     mActiveTracks.add(track);
10409     sp<IAfEffectChain> chain = getEffectChain_l(mSessionId);
10410     if (chain != 0) {
10411         chain->setStrategy(getStrategyForStream(streamType_l()));
10412         chain->incTrackCnt();
10413         chain->incActiveTrackCnt();
10414     }
10415 
10416     track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
10417     *handle = portId;
10418 
10419     if (mActiveTracks.size() == 1) {
10420         ret = exitStandby_l();
10421     }
10422 
10423     broadcast_l();
10424 
10425     ALOGV("%s DONE status %d handle %d stream %p", __FUNCTION__, ret, *handle, mHalStream.get());
10426 
10427     return ret;
10428 }
10429 
stop(audio_port_handle_t handle)10430 status_t MmapThread::stop(audio_port_handle_t handle)
10431 {
10432     ALOGV("%s handle %d", __FUNCTION__, handle);
10433     audio_utils::lock_guard l(mutex());
10434 
10435     if (mHalStream == 0) {
10436         return NO_INIT;
10437     }
10438 
10439     if (handle == mPortId) {
10440         releaseWakeLock_l();
10441         return NO_ERROR;
10442     }
10443 
10444     sp<IAfMmapTrack> track;
10445     for (const sp<IAfMmapTrack>& t : mActiveTracks) {
10446         if (handle == t->portId()) {
10447             track = t;
10448             break;
10449         }
10450     }
10451     if (track == 0) {
10452         return BAD_VALUE;
10453     }
10454 
10455     mActiveTracks.remove(track);
10456     eraseClientSilencedState_l(track->portId());
10457 
10458     mutex().unlock();
10459     if (isOutput()) {
10460         AudioSystem::stopOutput(track->portId());
10461         AudioSystem::releaseOutput(track->portId());
10462     } else {
10463         AudioSystem::stopInput(track->portId());
10464         AudioSystem::releaseInput(track->portId());
10465     }
10466     mutex().lock();
10467 
10468     sp<IAfEffectChain> chain = getEffectChain_l(track->sessionId());
10469     if (chain != 0) {
10470         chain->decActiveTrackCnt();
10471         chain->decTrackCnt();
10472     }
10473 
10474     if (mActiveTracks.isEmpty()) {
10475         mHalStream->stop();
10476     }
10477 
10478     broadcast_l();
10479 
10480     return NO_ERROR;
10481 }
10482 
standby()10483 status_t MmapThread::standby()
10484 NO_THREAD_SAFETY_ANALYSIS  // clang bug
10485 {
10486     ALOGV("%s", __FUNCTION__);
10487     audio_utils::lock_guard l_{mutex()};
10488 
10489     if (mHalStream == 0) {
10490         return NO_INIT;
10491     }
10492     if (!mActiveTracks.isEmpty()) {
10493         return INVALID_OPERATION;
10494     }
10495     mHalStream->standby();
10496     if (!mStandby) {
10497         mThreadMetrics.logEndInterval();
10498         mThreadSnapshot.onEnd();
10499         mStandby = true;
10500     }
10501     releaseWakeLock_l();
10502     return NO_ERROR;
10503 }
10504 
reportData(const void *,size_t)10505 status_t MmapThread::reportData(const void* /*buffer*/, size_t /*frameCount*/) {
10506     // This is a stub implementation. The MmapPlaybackThread overrides this function.
10507     return INVALID_OPERATION;
10508 }
10509 
readHalParameters_l()10510 void MmapThread::readHalParameters_l()
10511 {
10512     status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
10513     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
10514     mFormat = mHALFormat;
10515     LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
10516     result = mHalStream->getFrameSize(&mFrameSize);
10517     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
10518     LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
10519             mFrameSize);
10520     result = mHalStream->getBufferSize(&mBufferSize);
10521     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
10522     mFrameCount = mBufferSize / mFrameSize;
10523 
10524     // TODO: make a readHalParameters call?
10525     mediametrics::LogItem item(mThreadMetrics.getMetricsId());
10526     item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
10527         .set(AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mFormat).c_str())
10528         .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
10529         .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
10530         .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
10531         .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
10532         /*
10533         .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
10534         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
10535                 (int32_t)mHapticChannelMask)
10536         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
10537                 (int32_t)mHapticChannelCount)
10538         */
10539         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_ENCODING,
10540                 IAfThreadBase::formatToString(mHALFormat).c_str())
10541         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_FRAMECOUNT,
10542                 (int32_t)mFrameCount) // sic - added HAL
10543         .record();
10544 }
10545 
threadLoop()10546 bool MmapThread::threadLoop()
10547 {
10548     {
10549         audio_utils::unique_lock _l(mutex());
10550         checkSilentMode_l();
10551     }
10552 
10553     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
10554 
10555     while (!exitPending())
10556     {
10557         Vector<sp<IAfEffectChain>> effectChains;
10558 
10559         { // under Thread lock
10560         audio_utils::unique_lock _l(mutex());
10561 
10562         if (mSignalPending) {
10563             // A signal was raised while we were unlocked
10564             mSignalPending = false;
10565         } else {
10566             if (mConfigEvents.isEmpty()) {
10567                 // we're about to wait, flush the binder command buffer
10568                 IPCThreadState::self()->flushCommands();
10569 
10570                 if (exitPending()) {
10571                     break;
10572                 }
10573 
10574                 // wait until we have something to do...
10575                 ALOGV("%s going to sleep", myName.c_str());
10576                 mWaitWorkCV.wait(_l);
10577                 ALOGV("%s waking up", myName.c_str());
10578 
10579                 checkSilentMode_l();
10580 
10581                 continue;
10582             }
10583         }
10584 
10585         processConfigEvents_l();
10586 
10587         processVolume_l();
10588 
10589         checkInvalidTracks_l();
10590 
10591         mActiveTracks.updatePowerState_l(this);
10592 
10593         updateMetadata_l();
10594 
10595         lockEffectChains_l(effectChains);
10596         } // release Thread lock
10597 
10598         for (size_t i = 0; i < effectChains.size(); i ++) {
10599             effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
10600         }
10601 
10602         // enable changes in effect chain, including moving to another thread.
10603         unlockEffectChains(effectChains);
10604         // Effect chains will be actually deleted here if they were removed from
10605         // mEffectChains list during mixing or effects processing
10606     }
10607 
10608     threadLoop_exit();
10609 
10610     if (!mStandby) {
10611         threadLoop_standby();
10612         mStandby = true;
10613     }
10614 
10615     ALOGV("Thread %p type %d exiting", this, mType);
10616     return false;
10617 }
10618 
10619 // checkForNewParameter_l() must be called with ThreadBase::mutex() held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)10620 bool MmapThread::checkForNewParameter_l(const String8& keyValuePair,
10621                                                               status_t& status)
10622 {
10623     AudioParameter param = AudioParameter(keyValuePair);
10624     int value;
10625     bool sendToHal = true;
10626     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
10627         LOG_FATAL("Should not happen set routing device in MmapThread");
10628     }
10629     if (sendToHal) {
10630         status = mHalStream->setParameters(keyValuePair);
10631     } else {
10632         status = NO_ERROR;
10633     }
10634 
10635     return false;
10636 }
10637 
getParameters(const String8 & keys)10638 String8 MmapThread::getParameters(const String8& keys)
10639 {
10640     audio_utils::lock_guard _l(mutex());
10641     String8 out_s8;
10642     if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
10643         return out_s8;
10644     }
10645     return {};
10646 }
10647 
ioConfigChanged_l(audio_io_config_event_t event,pid_t pid,audio_port_handle_t portId __unused)10648 void MmapThread::ioConfigChanged_l(audio_io_config_event_t event, pid_t pid,
10649                                                audio_port_handle_t portId __unused) {
10650     sp<AudioIoDescriptor> desc;
10651     bool isInput = false;
10652     switch (event) {
10653     case AUDIO_INPUT_OPENED:
10654     case AUDIO_INPUT_REGISTERED:
10655     case AUDIO_INPUT_CONFIG_CHANGED:
10656         isInput = true;
10657         FALLTHROUGH_INTENDED;
10658     case AUDIO_OUTPUT_OPENED:
10659     case AUDIO_OUTPUT_REGISTERED:
10660     case AUDIO_OUTPUT_CONFIG_CHANGED:
10661         desc = sp<AudioIoDescriptor>::make(mId, mPatch, isInput,
10662                 mSampleRate, mFormat, mChannelMask, mFrameCount, mFrameCount);
10663         break;
10664     case AUDIO_INPUT_CLOSED:
10665     case AUDIO_OUTPUT_CLOSED:
10666     default:
10667         desc = sp<AudioIoDescriptor>::make(mId);
10668         break;
10669     }
10670     mAfThreadCallback->ioConfigChanged_l(event, desc, pid);
10671 }
10672 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)10673 status_t MmapThread::createAudioPatch_l(const struct audio_patch* patch,
10674                                                           audio_patch_handle_t *handle)
10675 NO_THREAD_SAFETY_ANALYSIS  // elease and re-acquire mutex()
10676 {
10677     status_t status = NO_ERROR;
10678 
10679     // store new device and send to effects
10680     audio_devices_t type = AUDIO_DEVICE_NONE;
10681     audio_port_handle_t deviceId;
10682     AudioDeviceTypeAddrVector sinkDeviceTypeAddrs;
10683     AudioDeviceTypeAddr sourceDeviceTypeAddr;
10684     uint32_t numDevices = 0;
10685     if (isOutput()) {
10686         for (unsigned int i = 0; i < patch->num_sinks; i++) {
10687             LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
10688                                 && !mAudioHwDev->supportsAudioPatches(),
10689                                 "Enumerated device type(%#x) must not be used "
10690                                 "as it does not support audio patches",
10691                                 patch->sinks[i].ext.device.type);
10692             type = static_cast<audio_devices_t>(type | patch->sinks[i].ext.device.type);
10693             sinkDeviceTypeAddrs.emplace_back(patch->sinks[i].ext.device.type,
10694                     patch->sinks[i].ext.device.address);
10695         }
10696         deviceId = patch->sinks[0].id;
10697         numDevices = mPatch.num_sinks;
10698     } else {
10699         type = patch->sources[0].ext.device.type;
10700         deviceId = patch->sources[0].id;
10701         numDevices = mPatch.num_sources;
10702         sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
10703         sourceDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address);
10704     }
10705 
10706     for (size_t i = 0; i < mEffectChains.size(); i++) {
10707         if (isOutput()) {
10708             mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs);
10709         } else {
10710             mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr);
10711         }
10712     }
10713 
10714     if (!isOutput()) {
10715         // store new source and send to effects
10716         if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
10717             mAudioSource = patch->sinks[0].ext.mix.usecase.source;
10718             for (size_t i = 0; i < mEffectChains.size(); i++) {
10719                 mEffectChains[i]->setAudioSource_l(mAudioSource);
10720             }
10721         }
10722     }
10723 
10724     // For mmap streams, once the routing has changed, they will be disconnected. It should be
10725     // okay to notify the client earlier before the new patch creation.
10726     if (mDeviceId != deviceId) {
10727         if (const sp<MmapStreamCallback> callback = mCallback.promote()) {
10728             // The aaudioservice handle the routing changed event asynchronously. In that case,
10729             // it is safe to hold the lock here.
10730             callback->onRoutingChanged(deviceId);
10731         }
10732     }
10733 
10734     if (mAudioHwDev->supportsAudioPatches()) {
10735         status = mHalDevice->createAudioPatch(patch->num_sources, patch->sources, patch->num_sinks,
10736                                               patch->sinks, handle);
10737     } else {
10738         audio_port_config port;
10739         std::optional<audio_source_t> source;
10740         if (isOutput()) {
10741             port = patch->sinks[0];
10742         } else {
10743             port = patch->sources[0];
10744             source = patch->sinks[0].ext.mix.usecase.source;
10745         }
10746         status = mHalStream->legacyCreateAudioPatch(port, source, type);
10747         *handle = AUDIO_PATCH_HANDLE_NONE;
10748     }
10749 
10750     if (numDevices == 0 || mDeviceId != deviceId) {
10751         if (isOutput()) {
10752             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
10753             mOutDeviceTypeAddrs = sinkDeviceTypeAddrs;
10754             checkSilentMode_l();
10755         } else {
10756             sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
10757             mInDeviceTypeAddr = sourceDeviceTypeAddr;
10758         }
10759         mPatch = *patch;
10760         mDeviceId = deviceId;
10761     }
10762     // Force meteadata update after a route change
10763     mActiveTracks.setHasChanged();
10764 
10765     return status;
10766 }
10767 
releaseAudioPatch_l(const audio_patch_handle_t handle)10768 status_t MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
10769 {
10770     status_t status = NO_ERROR;
10771 
10772     mPatch = audio_patch{};
10773     mOutDeviceTypeAddrs.clear();
10774     mInDeviceTypeAddr.reset();
10775 
10776     bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
10777                                         supportsAudioPatches : false;
10778 
10779     if (supportsAudioPatches) {
10780         status = mHalDevice->releaseAudioPatch(handle);
10781     } else {
10782         status = mHalStream->legacyReleaseAudioPatch();
10783     }
10784     // Force meteadata update after a route change
10785     mActiveTracks.setHasChanged();
10786 
10787     return status;
10788 }
10789 
toAudioPortConfig(struct audio_port_config * config)10790 void MmapThread::toAudioPortConfig(struct audio_port_config* config)
10791 NO_THREAD_SAFETY_ANALYSIS // mAudioHwDev handle access
10792 {
10793     ThreadBase::toAudioPortConfig(config);
10794     if (isOutput()) {
10795         config->role = AUDIO_PORT_ROLE_SOURCE;
10796         config->ext.mix.hw_module = mAudioHwDev->handle();
10797         config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
10798     } else {
10799         config->role = AUDIO_PORT_ROLE_SINK;
10800         config->ext.mix.hw_module = mAudioHwDev->handle();
10801         config->ext.mix.usecase.source = mAudioSource;
10802     }
10803 }
10804 
addEffectChain_l(const sp<IAfEffectChain> & chain)10805 status_t MmapThread::addEffectChain_l(const sp<IAfEffectChain>& chain)
10806 {
10807     audio_session_t session = chain->sessionId();
10808 
10809     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
10810     // Attach all tracks with same session ID to this chain.
10811     // indicate all active tracks in the chain
10812     for (const sp<IAfMmapTrack>& track : mActiveTracks) {
10813         if (session == track->sessionId()) {
10814             chain->incTrackCnt();
10815             chain->incActiveTrackCnt();
10816         }
10817     }
10818 
10819     chain->setThread(this);
10820     chain->setInBuffer(nullptr);
10821     chain->setOutBuffer(nullptr);
10822     chain->syncHalEffectsState_l();
10823 
10824     mEffectChains.add(chain);
10825     checkSuspendOnAddEffectChain_l(chain);
10826     return NO_ERROR;
10827 }
10828 
removeEffectChain_l(const sp<IAfEffectChain> & chain)10829 size_t MmapThread::removeEffectChain_l(const sp<IAfEffectChain>& chain)
10830 {
10831     audio_session_t session = chain->sessionId();
10832 
10833     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
10834 
10835     for (size_t i = 0; i < mEffectChains.size(); i++) {
10836         if (chain == mEffectChains[i]) {
10837             mEffectChains.removeAt(i);
10838             // detach all active tracks from the chain
10839             // detach all tracks with same session ID from this chain
10840             for (const sp<IAfMmapTrack>& track : mActiveTracks) {
10841                 if (session == track->sessionId()) {
10842                     chain->decActiveTrackCnt();
10843                     chain->decTrackCnt();
10844                 }
10845             }
10846             break;
10847         }
10848     }
10849     return mEffectChains.size();
10850 }
10851 
threadLoop_standby()10852 void MmapThread::threadLoop_standby()
10853 {
10854     mHalStream->standby();
10855 }
10856 
threadLoop_exit()10857 void MmapThread::threadLoop_exit()
10858 {
10859     // Do not call callback->onTearDown() because it is redundant for thread exit
10860     // and because it can cause a recursive mutex lock on stop().
10861 }
10862 
setSyncEvent(const sp<SyncEvent> &)10863 status_t MmapThread::setSyncEvent(const sp<SyncEvent>& /* event */)
10864 {
10865     return BAD_VALUE;
10866 }
10867 
isValidSyncEvent(const sp<SyncEvent> &) const10868 bool MmapThread::isValidSyncEvent(
10869         const sp<SyncEvent>& /* event */) const
10870 {
10871     return false;
10872 }
10873 
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)10874 status_t MmapThread::checkEffectCompatibility_l(
10875         const effect_descriptor_t *desc, audio_session_t sessionId)
10876 {
10877     // No global effect sessions on mmap threads
10878     if (audio_is_global_session(sessionId)) {
10879         ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s",
10880                 desc->name, mThreadName);
10881         return BAD_VALUE;
10882     }
10883 
10884     if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
10885         ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
10886                 desc->name);
10887         return BAD_VALUE;
10888     }
10889     if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
10890         ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
10891               "thread", desc->name);
10892         return BAD_VALUE;
10893     }
10894 
10895     // Only allow effects without processing load or latency
10896     if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
10897         return BAD_VALUE;
10898     }
10899 
10900     if (IAfEffectModule::isHapticGenerator(&desc->type)) {
10901         ALOGE("%s(): HapticGenerator is not supported for MmapThread", __func__);
10902         return BAD_VALUE;
10903     }
10904 
10905     return NO_ERROR;
10906 }
10907 
checkInvalidTracks_l()10908 void MmapThread::checkInvalidTracks_l()
10909 {
10910     for (const sp<IAfMmapTrack>& track : mActiveTracks) {
10911         if (track->isInvalid()) {
10912             if (const sp<MmapStreamCallback> callback = mCallback.promote()) {
10913                 // The aaudioservice handle the routing changed event asynchronously. In that case,
10914                 // it is safe to hold the lock here.
10915                 callback->onRoutingChanged(AUDIO_PORT_HANDLE_NONE);
10916             } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
10917                 ALOGW("Could not notify MMAP stream tear down: no onRoutingChanged callback!");
10918                 mNoCallbackWarningCount++;
10919             }
10920             break;
10921         }
10922     }
10923 }
10924 
dumpInternals_l(int fd,const Vector<String16> &)10925 void MmapThread::dumpInternals_l(int fd, const Vector<String16>& /* args */)
10926 {
10927     dprintf(fd, "  Attributes: content type %d usage %d source %d\n",
10928             mAttr.content_type, mAttr.usage, mAttr.source);
10929     dprintf(fd, "  Session: %d port Id: %d\n", mSessionId, mPortId);
10930     if (mActiveTracks.isEmpty()) {
10931         dprintf(fd, "  No active clients\n");
10932     }
10933 }
10934 
dumpTracks_l(int fd,const Vector<String16> &)10935 void MmapThread::dumpTracks_l(int fd, const Vector<String16>& /* args */)
10936 {
10937     String8 result;
10938     size_t numtracks = mActiveTracks.size();
10939     dprintf(fd, "  %zu Tracks\n", numtracks);
10940     const char *prefix = "    ";
10941     if (numtracks) {
10942         result.append(prefix);
10943         mActiveTracks[0]->appendDumpHeader(result);
10944         for (size_t i = 0; i < numtracks ; ++i) {
10945             sp<IAfMmapTrack> track = mActiveTracks[i];
10946             result.append(prefix);
10947             track->appendDump(result, true /* active */);
10948         }
10949     } else {
10950         dprintf(fd, "\n");
10951     }
10952     write(fd, result.c_str(), result.size());
10953 }
10954 
10955 /* static */
create(const sp<IAfThreadCallback> & afThreadCallback,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)10956 sp<IAfMmapPlaybackThread> IAfMmapPlaybackThread::create(
10957         const sp<IAfThreadCallback>& afThreadCallback, audio_io_handle_t id,
10958         AudioHwDevice* hwDev,  AudioStreamOut* output, bool systemReady) {
10959     return sp<MmapPlaybackThread>::make(afThreadCallback, id, hwDev, output, systemReady);
10960 }
10961 
MmapPlaybackThread(const sp<IAfThreadCallback> & afThreadCallback,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)10962 MmapPlaybackThread::MmapPlaybackThread(
10963         const sp<IAfThreadCallback>& afThreadCallback, audio_io_handle_t id,
10964         AudioHwDevice *hwDev,  AudioStreamOut *output, bool systemReady)
10965     : MmapThread(afThreadCallback, id, hwDev, output->stream, systemReady, true /* isOut */),
10966       mStreamType(AUDIO_STREAM_MUSIC),
10967       mOutput(output)
10968 {
10969     snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
10970     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
10971     mMasterVolume = afThreadCallback->masterVolume_l();
10972     mMasterMute = afThreadCallback->masterMute_l();
10973 
10974     for (int i = AUDIO_STREAM_MIN; i < AUDIO_STREAM_FOR_POLICY_CNT; ++i) {
10975         const audio_stream_type_t stream{static_cast<audio_stream_type_t>(i)};
10976         mStreamTypes[stream].volume = 0.0f;
10977         mStreamTypes[stream].mute = mAfThreadCallback->streamMute_l(stream);
10978     }
10979     // Audio patch and call assistant volume are always max
10980     mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
10981     mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
10982     mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f;
10983     mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false;
10984 
10985     if (mAudioHwDev) {
10986         if (mAudioHwDev->canSetMasterVolume()) {
10987             mMasterVolume = 1.0;
10988         }
10989 
10990         if (mAudioHwDev->canSetMasterMute()) {
10991             mMasterMute = false;
10992         }
10993     }
10994 }
10995 
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)10996 void MmapPlaybackThread::configure(const audio_attributes_t* attr,
10997                                                 audio_stream_type_t streamType,
10998                                                 audio_session_t sessionId,
10999                                                 const sp<MmapStreamCallback>& callback,
11000                                                 audio_port_handle_t deviceId,
11001                                                 audio_port_handle_t portId)
11002 {
11003     audio_utils::lock_guard l(mutex());
11004     MmapThread::configure_l(attr, streamType, sessionId, callback, deviceId, portId);
11005     mStreamType = streamType;
11006 }
11007 
clearOutput()11008 AudioStreamOut* MmapPlaybackThread::clearOutput()
11009 {
11010     audio_utils::lock_guard _l(mutex());
11011     AudioStreamOut *output = mOutput;
11012     mOutput = NULL;
11013     return output;
11014 }
11015 
setMasterVolume(float value)11016 void MmapPlaybackThread::setMasterVolume(float value)
11017 {
11018     audio_utils::lock_guard _l(mutex());
11019     // Don't apply master volume in SW if our HAL can do it for us.
11020     if (mAudioHwDev &&
11021             mAudioHwDev->canSetMasterVolume()) {
11022         mMasterVolume = 1.0;
11023     } else {
11024         mMasterVolume = value;
11025     }
11026 }
11027 
setMasterMute(bool muted)11028 void MmapPlaybackThread::setMasterMute(bool muted)
11029 {
11030     audio_utils::lock_guard _l(mutex());
11031     // Don't apply master mute in SW if our HAL can do it for us.
11032     if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
11033         mMasterMute = false;
11034     } else {
11035         mMasterMute = muted;
11036     }
11037 }
11038 
setStreamVolume(audio_stream_type_t stream,float value)11039 void MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
11040 {
11041     audio_utils::lock_guard _l(mutex());
11042     mStreamTypes[stream].volume = value;
11043     if (stream == mStreamType) {
11044         broadcast_l();
11045     }
11046 }
11047 
streamVolume(audio_stream_type_t stream) const11048 float MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
11049 {
11050     audio_utils::lock_guard _l(mutex());
11051     return mStreamTypes[stream].volume;
11052 }
11053 
setStreamMute(audio_stream_type_t stream,bool muted)11054 void MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
11055 {
11056     audio_utils::lock_guard _l(mutex());
11057     mStreamTypes[stream].mute = muted;
11058     if (stream == mStreamType) {
11059         broadcast_l();
11060     }
11061 }
11062 
invalidateTracks(audio_stream_type_t streamType)11063 void MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
11064 {
11065     audio_utils::lock_guard _l(mutex());
11066     if (streamType == mStreamType) {
11067         for (const sp<IAfMmapTrack>& track : mActiveTracks) {
11068             track->invalidate();
11069         }
11070         broadcast_l();
11071     }
11072 }
11073 
invalidateTracks(std::set<audio_port_handle_t> & portIds)11074 void MmapPlaybackThread::invalidateTracks(std::set<audio_port_handle_t>& portIds)
11075 {
11076     audio_utils::lock_guard _l(mutex());
11077     bool trackMatch = false;
11078     for (const sp<IAfMmapTrack>& track : mActiveTracks) {
11079         if (portIds.find(track->portId()) != portIds.end()) {
11080             track->invalidate();
11081             trackMatch = true;
11082             portIds.erase(track->portId());
11083         }
11084         if (portIds.empty()) {
11085             break;
11086         }
11087     }
11088     if (trackMatch) {
11089         broadcast_l();
11090     }
11091 }
11092 
processVolume_l()11093 void MmapPlaybackThread::processVolume_l()
11094 NO_THREAD_SAFETY_ANALYSIS // access of track->processMuteEvent_l
11095 {
11096     float volume;
11097 
11098     if (mMasterMute || streamMuted_l()) {
11099         volume = 0;
11100     } else {
11101         volume = mMasterVolume * streamVolume_l();
11102     }
11103 
11104     if (volume != mHalVolFloat) {
11105         // Convert volumes from float to 8.24
11106         uint32_t vol = (uint32_t)(volume * (1 << 24));
11107 
11108         // Delegate volume control to effect in track effect chain if needed
11109         // only one effect chain can be present on DirectOutputThread, so if
11110         // there is one, the track is connected to it
11111         if (!mEffectChains.isEmpty()) {
11112             mEffectChains[0]->setVolume(&vol, &vol);
11113             volume = (float)vol / (1 << 24);
11114         }
11115         // Try to use HW volume control and fall back to SW control if not implemented
11116         if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
11117             mHalVolFloat = volume; // HW volume control worked, so update value.
11118             mNoCallbackWarningCount = 0;
11119         } else {
11120             sp<MmapStreamCallback> callback = mCallback.promote();
11121             if (callback != 0) {
11122                 mHalVolFloat = volume; // SW volume control worked, so update value.
11123                 mNoCallbackWarningCount = 0;
11124                 mutex().unlock();
11125                 callback->onVolumeChanged(volume);
11126                 mutex().lock();
11127             } else {
11128                 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
11129                     ALOGW("Could not set MMAP stream volume: no volume callback!");
11130                     mNoCallbackWarningCount++;
11131                 }
11132             }
11133         }
11134         for (const sp<IAfMmapTrack>& track : mActiveTracks) {
11135             track->setMetadataHasChanged();
11136             track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(),
11137                 /*muteState=*/{mMasterMute,
11138                                streamVolume_l() == 0.f,
11139                                streamMuted_l(),
11140                                // TODO(b/241533526): adjust logic to include mute from AppOps
11141                                false /*muteFromPlaybackRestricted*/,
11142                                false /*muteFromClientVolume*/,
11143                                false /*muteFromVolumeShaper*/});
11144         }
11145     }
11146 }
11147 
updateMetadata_l()11148 ThreadBase::MetadataUpdate MmapPlaybackThread::updateMetadata_l()
11149 {
11150     if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
11151         return {}; // nothing to do
11152     }
11153     StreamOutHalInterface::SourceMetadata metadata;
11154     for (const sp<IAfMmapTrack>& track : mActiveTracks) {
11155         // No track is invalid as this is called after prepareTrack_l in the same critical section
11156         playback_track_metadata_v7_t trackMetadata;
11157         trackMetadata.base = {
11158                 .usage = track->attributes().usage,
11159                 .content_type = track->attributes().content_type,
11160                 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
11161         };
11162         trackMetadata.channel_mask = track->channelMask(),
11163         strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
11164         metadata.tracks.push_back(trackMetadata);
11165     }
11166     mOutput->stream->updateSourceMetadata(metadata);
11167 
11168     MetadataUpdate change;
11169     change.playbackMetadataUpdate = metadata.tracks;
11170     return change;
11171 };
11172 
checkSilentMode_l()11173 void MmapPlaybackThread::checkSilentMode_l()
11174 {
11175     if (!mMasterMute) {
11176         char value[PROPERTY_VALUE_MAX];
11177         if (property_get("ro.audio.silent", value, "0") > 0) {
11178             char *endptr;
11179             unsigned long ul = strtoul(value, &endptr, 0);
11180             if (*endptr == '\0' && ul != 0) {
11181                 ALOGW("%s: mute from ro.audio.silent. Silence is golden", __func__);
11182                 // The setprop command will not allow a property to be changed after
11183                 // the first time it is set, so we don't have to worry about un-muting.
11184                 setMasterMute_l(true);
11185             }
11186         }
11187     }
11188 }
11189 
toAudioPortConfig(struct audio_port_config * config)11190 void MmapPlaybackThread::toAudioPortConfig(struct audio_port_config* config)
11191 {
11192     MmapThread::toAudioPortConfig(config);
11193     if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
11194         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
11195         config->flags.output = mOutput->flags;
11196     }
11197 }
11198 
getExternalPosition(uint64_t * position,int64_t * timeNanos) const11199 status_t MmapPlaybackThread::getExternalPosition(uint64_t* position,
11200         int64_t* timeNanos) const
11201 {
11202     if (mOutput == nullptr) {
11203         return NO_INIT;
11204     }
11205     struct timespec timestamp;
11206     status_t status = mOutput->getPresentationPosition(position, &timestamp);
11207     if (status == NO_ERROR) {
11208         *timeNanos = timestamp.tv_sec * NANOS_PER_SECOND + timestamp.tv_nsec;
11209     }
11210     return status;
11211 }
11212 
reportData(const void * buffer,size_t frameCount)11213 status_t MmapPlaybackThread::reportData(const void* buffer, size_t frameCount) {
11214     // Send to MelProcessor for sound dose measurement.
11215     auto processor = mMelProcessor.load();
11216     if (processor) {
11217         processor->process(buffer, frameCount * mFrameSize);
11218     }
11219 
11220     return NO_ERROR;
11221 }
11222 
11223 // startMelComputation_l() must be called with AudioFlinger::mutex() held
startMelComputation_l(const sp<audio_utils::MelProcessor> & processor)11224 void MmapPlaybackThread::startMelComputation_l(
11225         const sp<audio_utils::MelProcessor>& processor)
11226 {
11227     ALOGV("%s: starting mel processor for thread %d", __func__, id());
11228     mMelProcessor.store(processor);
11229     if (processor) {
11230         processor->resume();
11231     }
11232 
11233     // no need to update output format for MMapPlaybackThread since it is
11234     // assigned constant for each thread
11235 }
11236 
11237 // stopMelComputation_l() must be called with AudioFlinger::mutex() held
stopMelComputation_l()11238 void MmapPlaybackThread::stopMelComputation_l()
11239 {
11240     ALOGV("%s: pausing mel processor for thread %d", __func__, id());
11241     auto melProcessor = mMelProcessor.load();
11242     if (melProcessor != nullptr) {
11243         melProcessor->pause();
11244     }
11245 }
11246 
dumpInternals_l(int fd,const Vector<String16> & args)11247 void MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
11248 {
11249     MmapThread::dumpInternals_l(fd, args);
11250 
11251     dprintf(fd, "  Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
11252             mStreamType, streamVolume_l(), mHalVolFloat, streamMuted_l());
11253     dprintf(fd, "  Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
11254 }
11255 
11256 /* static */
create(const sp<IAfThreadCallback> & afThreadCallback,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)11257 sp<IAfMmapCaptureThread> IAfMmapCaptureThread::create(
11258         const sp<IAfThreadCallback>& afThreadCallback, audio_io_handle_t id,
11259         AudioHwDevice* hwDev,  AudioStreamIn* input, bool systemReady) {
11260     return sp<MmapCaptureThread>::make(afThreadCallback, id, hwDev, input, systemReady);
11261 }
11262 
MmapCaptureThread(const sp<IAfThreadCallback> & afThreadCallback,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)11263 MmapCaptureThread::MmapCaptureThread(
11264         const sp<IAfThreadCallback>& afThreadCallback, audio_io_handle_t id,
11265         AudioHwDevice *hwDev,  AudioStreamIn *input, bool systemReady)
11266     : MmapThread(afThreadCallback, id, hwDev, input->stream, systemReady, false /* isOut */),
11267       mInput(input)
11268 {
11269     snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
11270     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
11271 }
11272 
exitStandby_l()11273 status_t MmapCaptureThread::exitStandby_l()
11274 {
11275     {
11276         // mInput might have been cleared by clearInput()
11277         if (mInput != nullptr && mInput->stream != nullptr) {
11278             mInput->stream->setGain(1.0f);
11279         }
11280     }
11281     return MmapThread::exitStandby_l();
11282 }
11283 
clearInput()11284 AudioStreamIn* MmapCaptureThread::clearInput()
11285 {
11286     audio_utils::lock_guard _l(mutex());
11287     AudioStreamIn *input = mInput;
11288     mInput = NULL;
11289     return input;
11290 }
11291 
processVolume_l()11292 void MmapCaptureThread::processVolume_l()
11293 {
11294     bool changed = false;
11295     bool silenced = false;
11296 
11297     sp<MmapStreamCallback> callback = mCallback.promote();
11298     if (callback == 0) {
11299         if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
11300             ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
11301             mNoCallbackWarningCount++;
11302         }
11303     }
11304 
11305     // After a change occurred in track silenced state, mute capture in audio DSP if at least one
11306     // track is silenced and unmute otherwise
11307     for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
11308         if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
11309             changed = true;
11310             silenced = mActiveTracks[i]->isSilenced_l();
11311         }
11312     }
11313 
11314     if (changed) {
11315         mInput->stream->setGain(silenced ? 0.0f: 1.0f);
11316     }
11317 }
11318 
updateMetadata_l()11319 ThreadBase::MetadataUpdate MmapCaptureThread::updateMetadata_l()
11320 {
11321     if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
11322         return {}; // nothing to do
11323     }
11324     StreamInHalInterface::SinkMetadata metadata;
11325     for (const sp<IAfMmapTrack>& track : mActiveTracks) {
11326         // No track is invalid as this is called after prepareTrack_l in the same critical section
11327         record_track_metadata_v7_t trackMetadata;
11328         trackMetadata.base = {
11329                 .source = track->attributes().source,
11330                 .gain = 1, // capture tracks do not have volumes
11331         };
11332         trackMetadata.channel_mask = track->channelMask(),
11333         strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
11334         metadata.tracks.push_back(trackMetadata);
11335     }
11336     mInput->stream->updateSinkMetadata(metadata);
11337     MetadataUpdate change;
11338     change.recordMetadataUpdate = metadata.tracks;
11339     return change;
11340 }
11341 
setRecordSilenced(audio_port_handle_t portId,bool silenced)11342 void MmapCaptureThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
11343 {
11344     audio_utils::lock_guard _l(mutex());
11345     for (size_t i = 0; i < mActiveTracks.size() ; i++) {
11346         if (mActiveTracks[i]->portId() == portId) {
11347             mActiveTracks[i]->setSilenced_l(silenced);
11348             broadcast_l();
11349         }
11350     }
11351     setClientSilencedIfExists_l(portId, silenced);
11352 }
11353 
toAudioPortConfig(struct audio_port_config * config)11354 void MmapCaptureThread::toAudioPortConfig(struct audio_port_config* config)
11355 {
11356     MmapThread::toAudioPortConfig(config);
11357     if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
11358         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
11359         config->flags.input = mInput->flags;
11360     }
11361 }
11362 
getExternalPosition(uint64_t * position,int64_t * timeNanos) const11363 status_t MmapCaptureThread::getExternalPosition(
11364         uint64_t* position, int64_t* timeNanos) const
11365 {
11366     if (mInput == nullptr) {
11367         return NO_INIT;
11368     }
11369     return mInput->getCapturePosition((int64_t*)position, timeNanos);
11370 }
11371 
11372 // ----------------------------------------------------------------------------
11373 
11374 /* static */
createBitPerfectThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)11375 sp<IAfPlaybackThread> IAfPlaybackThread::createBitPerfectThread(
11376         const sp<IAfThreadCallback>& afThreadCallback,
11377         AudioStreamOut* output, audio_io_handle_t id, bool systemReady) {
11378     return sp<BitPerfectThread>::make(afThreadCallback, output, id, systemReady);
11379 }
11380 
BitPerfectThread(const sp<IAfThreadCallback> & afThreadCallback,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)11381 BitPerfectThread::BitPerfectThread(const sp<IAfThreadCallback> &afThreadCallback,
11382         AudioStreamOut *output, audio_io_handle_t id, bool systemReady)
11383         : MixerThread(afThreadCallback, output, id, systemReady, BIT_PERFECT) {}
11384 
prepareTracks_l(Vector<sp<IAfTrack>> * tracksToRemove)11385 PlaybackThread::mixer_state BitPerfectThread::prepareTracks_l(
11386         Vector<sp<IAfTrack>>* tracksToRemove) {
11387     mixer_state result = MixerThread::prepareTracks_l(tracksToRemove);
11388     // If there is only one active track and it is bit-perfect, enable tee buffer.
11389     float volumeLeft = 1.0f;
11390     float volumeRight = 1.0f;
11391     if (sp<IAfTrack> bitPerfectTrack = getTrackToStreamBitPerfectly_l();
11392         bitPerfectTrack != nullptr) {
11393         const int trackId = bitPerfectTrack->id();
11394         mAudioMixer->setParameter(
11395                     trackId, AudioMixer::TRACK, AudioMixer::TEE_BUFFER, (void *)mSinkBuffer);
11396         mAudioMixer->setParameter(
11397                     trackId, AudioMixer::TRACK, AudioMixer::TEE_BUFFER_FRAME_COUNT,
11398                     (void *)(uintptr_t)mNormalFrameCount);
11399         bitPerfectTrack->getFinalVolume(&volumeLeft, &volumeRight);
11400         mIsBitPerfect = true;
11401     } else {
11402         mIsBitPerfect = false;
11403         // No need to copy bit-perfect data directly to sink buffer given there are multiple tracks
11404         // active.
11405         for (const auto& track : mActiveTracks) {
11406             const int trackId = track->id();
11407             mAudioMixer->setParameter(
11408                         trackId, AudioMixer::TRACK, AudioMixer::TEE_BUFFER, nullptr);
11409         }
11410     }
11411     if (mVolumeLeft != volumeLeft || mVolumeRight != volumeRight) {
11412         mVolumeLeft = volumeLeft;
11413         mVolumeRight = volumeRight;
11414         setVolumeForOutput_l(volumeLeft, volumeRight);
11415     }
11416     return result;
11417 }
11418 
threadLoop_mix()11419 void BitPerfectThread::threadLoop_mix() {
11420     MixerThread::threadLoop_mix();
11421     mHasDataCopiedToSinkBuffer = mIsBitPerfect;
11422 }
11423 
setTracksInternalMute(std::map<audio_port_handle_t,bool> * tracksInternalMute)11424 void BitPerfectThread::setTracksInternalMute(
11425         std::map<audio_port_handle_t, bool>* tracksInternalMute) {
11426     for (auto& track : mTracks) {
11427         if (auto it = tracksInternalMute->find(track->portId()); it != tracksInternalMute->end()) {
11428             track->setInternalMute(it->second);
11429             tracksInternalMute->erase(it);
11430         }
11431     }
11432 }
11433 
getTrackToStreamBitPerfectly_l()11434 sp<IAfTrack> BitPerfectThread::getTrackToStreamBitPerfectly_l() {
11435     if (com::android::media::audioserver::
11436                 fix_concurrent_playback_behavior_with_bit_perfect_client()) {
11437         sp<IAfTrack> bitPerfectTrack = nullptr;
11438         bool allOtherTracksMuted = true;
11439         // Return the bit perfect track if all other tracks are muted
11440         for (const auto& track : mActiveTracks) {
11441             if (track->isBitPerfect()) {
11442                 bitPerfectTrack = track;
11443             } else if (track->getFinalVolume() != 0.f) {
11444                 allOtherTracksMuted = false;
11445                 if (bitPerfectTrack != nullptr) {
11446                     break;
11447                 }
11448             }
11449         }
11450         return allOtherTracksMuted ? bitPerfectTrack : nullptr;
11451     } else {
11452         if (mActiveTracks.size() == 1 && mActiveTracks[0]->isBitPerfect()) {
11453             return mActiveTracks[0];
11454         }
11455     }
11456     return nullptr;
11457 }
11458 
11459 } // namespace android
11460