1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <linux/ioctl.h>
23 #include <memory.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/capability.h>
29 #include <sys/epoll.h>
30 #include <sys/inotify.h>
31 #include <sys/ioctl.h>
32 #include <sys/stat.h>
33 #include <sys/sysmacros.h>
34 #include <unistd.h>
35
36 #define LOG_TAG "EventHub"
37
38 // #define LOG_NDEBUG 0
39 #include <android-base/file.h>
40 #include <android-base/stringprintf.h>
41 #include <android-base/strings.h>
42 #include <cutils/properties.h>
43 #include <ftl/enum.h>
44 #include <input/KeyCharacterMap.h>
45 #include <input/KeyLayoutMap.h>
46 #include <input/PrintTools.h>
47 #include <input/VirtualKeyMap.h>
48 #include <openssl/sha.h>
49 #include <statslog.h>
50 #include <utils/Errors.h>
51 #include <utils/Log.h>
52 #include <utils/Timers.h>
53
54 #include <filesystem>
55 #include <optional>
56 #include <regex>
57 #include <utility>
58
59 #include "EventHub.h"
60
61 #include "KeyCodeClassifications.h"
62
63 #define INDENT " "
64 #define INDENT2 " "
65 #define INDENT3 " "
66
67 using android::base::StringPrintf;
68
69 namespace android {
70
71 using namespace ftl::flag_operators;
72
73 static const char* DEVICE_INPUT_PATH = "/dev/input";
74 // v4l2 devices go directly into /dev
75 static const char* DEVICE_PATH = "/dev";
76
77 static constexpr size_t OBFUSCATED_LENGTH = 8;
78
79 static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
80 static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
81
82 static constexpr size_t EVENT_BUFFER_SIZE = 256;
83
84 // Mapping for input battery class node IDs lookup.
85 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
86 static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
87 {{"capacity", InputBatteryClass::CAPACITY},
88 {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
89 {"status", InputBatteryClass::STATUS}};
90
91 // Mapping for input battery class node names lookup.
92 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
93 static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
94 {{InputBatteryClass::CAPACITY, "capacity"},
95 {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
96 {InputBatteryClass::STATUS, "status"}};
97
98 // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
99 static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
100 {{"Unknown", BATTERY_STATUS_UNKNOWN},
101 {"Charging", BATTERY_STATUS_CHARGING},
102 {"Discharging", BATTERY_STATUS_DISCHARGING},
103 {"Not charging", BATTERY_STATUS_NOT_CHARGING},
104 {"Full", BATTERY_STATUS_FULL}};
105
106 // Mapping taken from
107 // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
108 static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
109 {"Low", 10},
110 {"Normal", 55},
111 {"High", 70},
112 {"Full", 100},
113 {"Unknown", 50}};
114
115 // Mapping for input led class node names lookup.
116 // https://www.kernel.org/doc/html/latest/leds/leds-class.html
117 static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
118 {{"red", InputLightClass::RED},
119 {"green", InputLightClass::GREEN},
120 {"blue", InputLightClass::BLUE},
121 {"global", InputLightClass::GLOBAL},
122 {"brightness", InputLightClass::BRIGHTNESS},
123 {"multi_index", InputLightClass::MULTI_INDEX},
124 {"multi_intensity", InputLightClass::MULTI_INTENSITY},
125 {"max_brightness", InputLightClass::MAX_BRIGHTNESS},
126 {"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT},
127 {"mic_mute", InputLightClass::KEYBOARD_MIC_MUTE}};
128
129 // Mapping for input multicolor led class node names.
130 // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
131 static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
132 {{InputLightClass::BRIGHTNESS, "brightness"},
133 {InputLightClass::MULTI_INDEX, "multi_index"},
134 {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
135
136 // Mapping for light color name and the light color
137 const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
138 {"green", LightColor::GREEN},
139 {"blue", LightColor::BLUE}};
140
141 // Mapping for country code to Layout info.
142 // See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf.
143 const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS =
144 {{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // NOT_SUPPORTED
145 {1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}}, // ARABIC
146 {2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}}, // BELGIAN
147 {3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_BILINGUAL
148 {4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_FRENCH
149 {5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}}, // CZECH_REPUBLIC
150 {6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}}, // DANISH
151 {7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}}, // FINNISH
152 {8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}}, // FRENCH
153 {9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}}, // GERMAN
154 {10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}}, // GREEK
155 {11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}}, // HEBREW
156 {12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}}, // HUNGARY
157 {13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}}, // INTERNATIONAL (ISO)
158 {14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}}, // ITALIAN
159 {15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}}, // JAPAN
160 {16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}}, // KOREAN
161 {17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}}, // LATIN_AMERICA
162 {18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}}, // DUTCH
163 {19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}}, // NORWEGIAN
164 {20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}}, // PERSIAN
165 {21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}}, // POLAND
166 {22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}}, // PORTUGUESE
167 {23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}}, // RUSSIA
168 {24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}}, // SLOVAKIA
169 {25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}}, // SPANISH
170 {26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}}, // SWEDISH
171 {27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}}, // SWISS_FRENCH
172 {28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWISS_GERMAN
173 {29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWITZERLAND
174 {30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}}, // TAIWAN
175 {31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q
176 {32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}}, // UK
177 {33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}}, // US
178 {34, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // YUGOSLAVIA
179 {35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F
180
sha1(const std::string & in)181 static std::string sha1(const std::string& in) {
182 SHA_CTX ctx;
183 SHA1_Init(&ctx);
184 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
185 u_char digest[SHA_DIGEST_LENGTH];
186 SHA1_Final(digest, &ctx);
187
188 std::string out;
189 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
190 out += StringPrintf("%02x", digest[i]);
191 }
192 return out;
193 }
194
195 /**
196 * Return true if name matches "v4l-touch*"
197 */
isV4lTouchNode(std::string name)198 static bool isV4lTouchNode(std::string name) {
199 return name.find("v4l-touch") != std::string::npos;
200 }
201
202 /**
203 * Returns true if V4L devices should be scanned.
204 *
205 * The system property ro.input.video_enabled can be used to control whether
206 * EventHub scans and opens V4L devices. As V4L does not support multiple
207 * clients, EventHub effectively blocks access to these devices when it opens
208 * them.
209 *
210 * Setting this to "false" would prevent any video devices from being discovered and
211 * associated with input devices.
212 *
213 * This property can be used as follows:
214 * 1. To turn off features that are dependent on video device presence.
215 * 2. During testing and development, to allow other clients to read video devices
216 * directly from /dev.
217 */
isV4lScanningEnabled()218 static bool isV4lScanningEnabled() {
219 return property_get_bool("ro.input.video_enabled", /*default_value=*/true);
220 }
221
processEventTimestamp(const struct input_event & event)222 static nsecs_t processEventTimestamp(const struct input_event& event) {
223 // Use the time specified in the event instead of the current time
224 // so that downstream code can get more accurate estimates of
225 // event dispatch latency from the time the event is enqueued onto
226 // the evdev client buffer.
227 //
228 // The event's timestamp fortuitously uses the same monotonic clock
229 // time base as the rest of Android. The kernel event device driver
230 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
231 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
232 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
233 // system call that also queries ktime_get_ts().
234
235 const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) +
236 microseconds_to_nanoseconds(event.input_event_usec);
237 return inputEventTime;
238 }
239
240 /**
241 * Returns the sysfs root path of the input device.
242 */
getSysfsRootPath(const char * devicePath)243 static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
244 std::error_code errorCode;
245
246 // Stat the device path to get the major and minor number of the character file
247 struct stat statbuf;
248 if (stat(devicePath, &statbuf) == -1) {
249 ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
250 return std::nullopt;
251 }
252
253 unsigned int major_num = major(statbuf.st_rdev);
254 unsigned int minor_num = minor(statbuf.st_rdev);
255
256 // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
257 auto sysfsPath = std::filesystem::path("/sys/dev/char/");
258 sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
259 sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
260
261 // Make sure nothing went wrong in call to canonical()
262 if (errorCode) {
263 ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
264 errorCode.message().c_str());
265 return std::nullopt;
266 }
267
268 // Continue to go up a directory until we reach a directory named "input"
269 while (sysfsPath != "/" && sysfsPath.filename() != "input") {
270 sysfsPath = sysfsPath.parent_path();
271 }
272
273 // Then go up one more and you will be at the sysfs root of the device
274 sysfsPath = sysfsPath.parent_path();
275
276 // Make sure we didn't reach root path and that directory actually exists
277 if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
278 if (errorCode) {
279 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
280 errorCode.message().c_str());
281 }
282
283 // Not found
284 return std::nullopt;
285 }
286
287 return sysfsPath;
288 }
289
290 /**
291 * Returns the list of files under a specified path.
292 */
allFilesInPath(const std::filesystem::path & path)293 static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
294 std::vector<std::filesystem::path> nodes;
295 std::error_code errorCode;
296 auto iter = std::filesystem::directory_iterator(path, errorCode);
297 while (!errorCode && iter != std::filesystem::directory_iterator()) {
298 nodes.push_back(iter->path());
299 iter++;
300 }
301 return nodes;
302 }
303
304 /**
305 * Returns the list of files under a specified directory in a sysfs path.
306 * Example:
307 * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
308 * in the sysfs path.
309 */
findSysfsNodes(const std::filesystem::path & sysfsRoot,SysfsClass clazz)310 static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
311 SysfsClass clazz) {
312 std::string nodeStr = ftl::enum_string(clazz);
313 std::for_each(nodeStr.begin(), nodeStr.end(),
314 [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
315 std::vector<std::filesystem::path> nodes;
316 for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
317 nodes = allFilesInPath(path / nodeStr);
318 }
319 return nodes;
320 }
321
getColorIndexArray(std::filesystem::path path)322 static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
323 std::filesystem::path path) {
324 std::string indexStr;
325 if (!base::ReadFileToString(path, &indexStr)) {
326 return std::nullopt;
327 }
328
329 // Parse the multi color LED index file, refer to kernel docs
330 // leds/leds-class-multicolor.html
331 std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
332 std::smatch results;
333 std::array<LightColor, COLOR_NUM> colors;
334 if (!std::regex_match(indexStr, results, indexPattern)) {
335 return std::nullopt;
336 }
337
338 for (size_t i = 1; i < results.size(); i++) {
339 const auto it = LIGHT_COLORS.find(results[i].str());
340 if (it != LIGHT_COLORS.end()) {
341 // intensities.emplace(it->second, 0);
342 colors[i - 1] = it->second;
343 }
344 }
345 return colors;
346 }
347
348 /**
349 * Read country code information exposed through the sysfs path and convert it to Layout info.
350 */
readLayoutConfiguration(const std::filesystem::path & sysfsRootPath)351 static std::optional<RawLayoutInfo> readLayoutConfiguration(
352 const std::filesystem::path& sysfsRootPath) {
353 // Check the sysfs root path
354 int32_t hidCountryCode = -1;
355 std::string str;
356 if (base::ReadFileToString(sysfsRootPath / "country", &str)) {
357 hidCountryCode = std::stoi(str, nullptr, 16);
358 // Update this condition if new supported country codes are added to HID spec.
359 if (hidCountryCode > 35 || hidCountryCode < 0) {
360 ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d",
361 sysfsRootPath.c_str(), hidCountryCode);
362 }
363 }
364 const auto it = LAYOUT_INFOS.find(hidCountryCode);
365 if (it != LAYOUT_INFOS.end()) {
366 return it->second;
367 }
368
369 return std::nullopt;
370 }
371
372 /**
373 * Read information about batteries exposed through the sysfs path.
374 */
readBatteryConfiguration(const std::filesystem::path & sysfsRootPath)375 static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration(
376 const std::filesystem::path& sysfsRootPath) {
377 std::unordered_map<int32_t, RawBatteryInfo> batteryInfos;
378 int32_t nextBatteryId = 0;
379 // Check if device has any battery.
380 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
381 for (const auto& nodePath : paths) {
382 RawBatteryInfo info;
383 info.id = ++nextBatteryId;
384 info.path = nodePath;
385 info.name = nodePath.filename();
386
387 // Scan the path for all the files
388 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
389 const auto& files = allFilesInPath(nodePath);
390 for (const auto& file : files) {
391 const auto it = BATTERY_CLASSES.find(file.filename().string());
392 if (it != BATTERY_CLASSES.end()) {
393 info.flags |= it->second;
394 }
395 }
396 batteryInfos.insert_or_assign(info.id, info);
397 ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
398 }
399 return batteryInfos;
400 }
401
402 /**
403 * Read information about lights exposed through the sysfs path.
404 */
readLightsConfiguration(const std::filesystem::path & sysfsRootPath)405 static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration(
406 const std::filesystem::path& sysfsRootPath) {
407 std::unordered_map<int32_t, RawLightInfo> lightInfos;
408 int32_t nextLightId = 0;
409 // Check if device has any lights.
410 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
411 for (const auto& nodePath : paths) {
412 RawLightInfo info;
413 info.id = ++nextLightId;
414 info.path = nodePath;
415 info.name = nodePath.filename();
416 info.maxBrightness = std::nullopt;
417
418 // Light name should follow the naming pattern <name>:<color>:<function>
419 // Refer kernel docs /leds/leds-class.html for valid supported LED names.
420 std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)");
421 std::smatch results;
422
423 if (std::regex_match(info.name, results, indexPattern)) {
424 // regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo
425 // we only care about sections <color> and <function> which will be at index 2 and 3.
426 for (int i = 2; i <= 3; i++) {
427 const auto it = LIGHT_CLASSES.find(results.str(i));
428 if (it != LIGHT_CLASSES.end()) {
429 info.flags |= it->second;
430 }
431 }
432
433 // Set name of the raw light to <function> which represents playerIDs for LEDs that
434 // turn on/off based on the current player ID (Refer to PeripheralController.cpp for
435 // player ID logic)
436 info.name = results.str(3);
437 }
438 // Scan the path for all the files
439 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
440 const auto& files = allFilesInPath(nodePath);
441 for (const auto& file : files) {
442 const auto it = LIGHT_CLASSES.find(file.filename().string());
443 if (it != LIGHT_CLASSES.end()) {
444 info.flags |= it->second;
445 // If the node has maximum brightness, read it
446 if (it->second == InputLightClass::MAX_BRIGHTNESS) {
447 std::string str;
448 if (base::ReadFileToString(file, &str)) {
449 info.maxBrightness = std::stoi(str);
450 }
451 }
452 }
453 }
454 lightInfos.insert_or_assign(info.id, info);
455 ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
456 }
457 return lightInfos;
458 }
459
460 // --- Global Functions ---
461
getAbsAxisUsage(int32_t axis,ftl::Flags<InputDeviceClass> deviceClasses)462 ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis,
463 ftl::Flags<InputDeviceClass> deviceClasses) {
464 // Touch devices get dibs on touch-related axes.
465 if (deviceClasses.test(InputDeviceClass::TOUCH)) {
466 switch (axis) {
467 case ABS_X:
468 case ABS_Y:
469 case ABS_PRESSURE:
470 case ABS_TOOL_WIDTH:
471 case ABS_DISTANCE:
472 case ABS_TILT_X:
473 case ABS_TILT_Y:
474 case ABS_MT_SLOT:
475 case ABS_MT_TOUCH_MAJOR:
476 case ABS_MT_TOUCH_MINOR:
477 case ABS_MT_WIDTH_MAJOR:
478 case ABS_MT_WIDTH_MINOR:
479 case ABS_MT_ORIENTATION:
480 case ABS_MT_POSITION_X:
481 case ABS_MT_POSITION_Y:
482 case ABS_MT_TOOL_TYPE:
483 case ABS_MT_BLOB_ID:
484 case ABS_MT_TRACKING_ID:
485 case ABS_MT_PRESSURE:
486 case ABS_MT_DISTANCE:
487 return InputDeviceClass::TOUCH;
488 }
489 }
490
491 if (deviceClasses.test(InputDeviceClass::SENSOR)) {
492 switch (axis) {
493 case ABS_X:
494 case ABS_Y:
495 case ABS_Z:
496 case ABS_RX:
497 case ABS_RY:
498 case ABS_RZ:
499 return InputDeviceClass::SENSOR;
500 }
501 }
502
503 // External stylus gets the pressure axis
504 if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
505 if (axis == ABS_PRESSURE) {
506 return InputDeviceClass::EXTERNAL_STYLUS;
507 }
508 }
509
510 // Joystick devices get the rest.
511 return deviceClasses & InputDeviceClass::JOYSTICK;
512 }
513
514 // --- RawAbsoluteAxisInfo ---
515
operator <<(std::ostream & out,const RawAbsoluteAxisInfo & info)516 std::ostream& operator<<(std::ostream& out, const RawAbsoluteAxisInfo& info) {
517 if (info.valid) {
518 out << "min=" << info.minValue << ", max=" << info.maxValue << ", flat=" << info.flat
519 << ", fuzz=" << info.fuzz << ", resolution=" << info.resolution;
520 } else {
521 out << "unknown range";
522 }
523 return out;
524 }
525
526 // --- EventHub::Device ---
527
Device(int fd,int32_t id,std::string path,InputDeviceIdentifier identifier,std::shared_ptr<const AssociatedDevice> assocDev)528 EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier,
529 std::shared_ptr<const AssociatedDevice> assocDev)
530 : fd(fd),
531 id(id),
532 path(std::move(path)),
533 identifier(std::move(identifier)),
534 classes(0),
535 configuration(nullptr),
536 virtualKeyMap(nullptr),
537 ffEffectPlaying(false),
538 ffEffectId(-1),
539 associatedDevice(std::move(assocDev)),
540 controllerNumber(0),
541 enabled(true),
542 isVirtual(fd < 0),
543 currentFrameDropped(false) {}
544
~Device()545 EventHub::Device::~Device() {
546 close();
547 }
548
close()549 void EventHub::Device::close() {
550 if (fd >= 0) {
551 ::close(fd);
552 fd = -1;
553 }
554 }
555
enable()556 status_t EventHub::Device::enable() {
557 fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
558 if (fd < 0) {
559 ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
560 return -errno;
561 }
562 enabled = true;
563 return OK;
564 }
565
disable()566 status_t EventHub::Device::disable() {
567 close();
568 enabled = false;
569 return OK;
570 }
571
hasValidFd() const572 bool EventHub::Device::hasValidFd() const {
573 return !isVirtual && enabled;
574 }
575
getKeyCharacterMap() const576 const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
577 return keyMap.keyCharacterMap;
578 }
579
580 template <std::size_t N>
readDeviceBitMask(unsigned long ioctlCode,BitArray<N> & bitArray)581 status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
582 if (!hasValidFd()) {
583 return BAD_VALUE;
584 }
585 if ((_IOC_SIZE(ioctlCode) == 0)) {
586 ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
587 }
588
589 typename BitArray<N>::Buffer buffer;
590 status_t ret = ioctl(fd, ioctlCode, buffer.data());
591 bitArray.loadFromBuffer(buffer);
592 return ret;
593 }
594
configureFd()595 void EventHub::Device::configureFd() {
596 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
597 if (classes.test(InputDeviceClass::KEYBOARD)) {
598 // Disable kernel key repeat since we handle it ourselves
599 unsigned int repeatRate[] = {0, 0};
600 if (ioctl(fd, EVIOCSREP, repeatRate)) {
601 ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
602 }
603 }
604
605 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
606 // associated with input events. This is important because the input system
607 // uses the timestamps extensively and assumes they were recorded using the monotonic
608 // clock.
609 int clockId = CLOCK_MONOTONIC;
610 if (classes.test(InputDeviceClass::SENSOR)) {
611 // Each new sensor event should use the same time base as
612 // SystemClock.elapsedRealtimeNanos().
613 clockId = CLOCK_BOOTTIME;
614 }
615 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
616 ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
617
618 // Query the initial state of keys and switches, which is tracked by EventHub.
619 readDeviceState();
620 }
621
readDeviceState()622 void EventHub::Device::readDeviceState() {
623 if (readDeviceBitMask(EVIOCGKEY(0), keyState) < 0) {
624 ALOGD("Unable to query the global key state for %s: %s", path.c_str(), strerror(errno));
625 }
626 if (readDeviceBitMask(EVIOCGSW(0), swState) < 0) {
627 ALOGD("Unable to query the global switch state for %s: %s", path.c_str(), strerror(errno));
628 }
629
630 // Read absolute axis info and values for all available axes for the device.
631 populateAbsoluteAxisStates();
632 }
633
populateAbsoluteAxisStates()634 void EventHub::Device::populateAbsoluteAxisStates() {
635 absState.clear();
636
637 for (int axis = 0; axis <= ABS_MAX; axis++) {
638 if (!absBitmask.test(axis)) {
639 continue;
640 }
641 struct input_absinfo info {};
642 if (ioctl(fd, EVIOCGABS(axis), &info)) {
643 ALOGE("Error reading absolute controller %d for device %s fd %d: %s", axis,
644 identifier.name.c_str(), fd, strerror(errno));
645 continue;
646 }
647 auto& [axisInfo, value] = absState[axis];
648 axisInfo.valid = true;
649 axisInfo.minValue = info.minimum;
650 axisInfo.maxValue = info.maximum;
651 axisInfo.flat = info.flat;
652 axisInfo.fuzz = info.fuzz;
653 axisInfo.resolution = info.resolution;
654 value = info.value;
655 }
656 }
657
hasKeycodeLocked(int keycode) const658 bool EventHub::Device::hasKeycodeLocked(int keycode) const {
659 if (!keyMap.haveKeyLayout()) {
660 return false;
661 }
662
663 std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode);
664 const size_t N = scanCodes.size();
665 for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
666 int32_t sc = scanCodes[i];
667 if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
668 return true;
669 }
670 }
671
672 std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode);
673 if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) {
674 return true;
675 }
676
677 return false;
678 }
679
loadConfigurationLocked()680 void EventHub::Device::loadConfigurationLocked() {
681 configurationFile =
682 getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
683 InputDeviceConfigurationFileType::
684 CONFIGURATION);
685 if (configurationFile.empty()) {
686 ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
687 } else {
688 android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
689 PropertyMap::load(configurationFile.c_str());
690 if (!propertyMap.ok()) {
691 ALOGE("Error loading input device configuration file for device '%s'. "
692 "Using default configuration.",
693 identifier.name.c_str());
694 } else {
695 configuration = std::move(*propertyMap);
696 }
697 }
698 }
699
loadVirtualKeyMapLocked()700 bool EventHub::Device::loadVirtualKeyMapLocked() {
701 // The virtual key map is supplied by the kernel as a system board property file.
702 std::string propPath = "/sys/board_properties/virtualkeys.";
703 propPath += identifier.getCanonicalName();
704 if (access(propPath.c_str(), R_OK)) {
705 return false;
706 }
707 virtualKeyMap = VirtualKeyMap::load(propPath);
708 return virtualKeyMap != nullptr;
709 }
710
loadKeyMapLocked()711 status_t EventHub::Device::loadKeyMapLocked() {
712 return keyMap.load(identifier, configuration.get());
713 }
714
isExternalDeviceLocked()715 bool EventHub::Device::isExternalDeviceLocked() {
716 if (configuration) {
717 std::optional<bool> isInternal = configuration->getBool("device.internal");
718 if (isInternal.has_value()) {
719 return !isInternal.value();
720 }
721 }
722 return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
723 }
724
deviceHasMicLocked()725 bool EventHub::Device::deviceHasMicLocked() {
726 if (configuration) {
727 std::optional<bool> hasMic = configuration->getBool("audio.mic");
728 if (hasMic.has_value()) {
729 return hasMic.value();
730 }
731 }
732 return false;
733 }
734
setLedStateLocked(int32_t led,bool on)735 void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
736 int32_t sc;
737 if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
738 struct input_event ev;
739 ev.input_event_sec = 0;
740 ev.input_event_usec = 0;
741 ev.type = EV_LED;
742 ev.code = sc;
743 ev.value = on ? 1 : 0;
744
745 ssize_t nWrite;
746 do {
747 nWrite = write(fd, &ev, sizeof(struct input_event));
748 } while (nWrite == -1 && errno == EINTR);
749 }
750 }
751
setLedForControllerLocked()752 void EventHub::Device::setLedForControllerLocked() {
753 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
754 setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
755 }
756 }
757
mapLed(int32_t led,int32_t * outScanCode) const758 status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
759 if (!keyMap.haveKeyLayout()) {
760 return NAME_NOT_FOUND;
761 }
762
763 std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led);
764 if (scanCode.has_value()) {
765 if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) {
766 *outScanCode = *scanCode;
767 return NO_ERROR;
768 }
769 }
770 return NAME_NOT_FOUND;
771 }
772
trackInputEvent(const struct input_event & event)773 void EventHub::Device::trackInputEvent(const struct input_event& event) {
774 switch (event.type) {
775 case EV_KEY: {
776 LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
777 !keyState.set(static_cast<size_t>(event.code),
778 event.value != 0),
779 "%s: device '%s' received invalid EV_KEY event code: %s value: %d",
780 __func__, identifier.name.c_str(),
781 InputEventLookup::getLinuxEvdevLabel(EV_KEY, event.code, 1)
782 .code.c_str(),
783 event.value);
784 break;
785 }
786 case EV_SW: {
787 LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
788 !swState.set(static_cast<size_t>(event.code),
789 event.value != 0),
790 "%s: device '%s' received invalid EV_SW event code: %s value: %d",
791 __func__, identifier.name.c_str(),
792 InputEventLookup::getLinuxEvdevLabel(EV_SW, event.code, 1)
793 .code.c_str(),
794 event.value);
795 break;
796 }
797 case EV_ABS: {
798 if (currentFrameDropped) {
799 break;
800 }
801 auto it = absState.find(event.code);
802 LOG_ALWAYS_FATAL_IF(it == absState.end(),
803 "%s: device '%s' received invalid EV_ABS event code: %s value: %d",
804 __func__, identifier.name.c_str(),
805 InputEventLookup::getLinuxEvdevLabel(EV_ABS, event.code, 0)
806 .code.c_str(),
807 event.value);
808 it->second.value = event.value;
809 break;
810 }
811 case EV_SYN: {
812 switch (event.code) {
813 case SYN_REPORT:
814 if (currentFrameDropped) {
815 // To recover after a SYN_DROPPED, we need to query the state of the device
816 // to synchronize our device state with the kernel's to account for the
817 // dropped events on receiving the next SYN_REPORT.
818 // Note we don't drop the SYN_REPORT at this point but it is used by the
819 // InputDevice to reset and repopulate mapper state
820 readDeviceState();
821 currentFrameDropped = false;
822 }
823 break;
824 case SYN_DROPPED:
825 // When we receive SYN_DROPPED, all events in the current frame should be
826 // dropped up to and including next SYN_REPORT
827 currentFrameDropped = true;
828 break;
829 default:
830 break;
831 }
832 break;
833 }
834 default:
835 break;
836 }
837 }
838
839 /**
840 * Get the capabilities for the current process.
841 * Crashes the system if unable to create / check / destroy the capabilities object.
842 */
843 class Capabilities final {
844 public:
Capabilities()845 explicit Capabilities() {
846 mCaps = cap_get_proc();
847 LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
848 }
849
850 /**
851 * Check whether the current process has a specific capability
852 * in the set of effective capabilities.
853 * Return CAP_SET if the process has the requested capability
854 * Return CAP_CLEAR otherwise.
855 */
checkEffectiveCapability(cap_value_t capability)856 cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
857 cap_flag_value_t value;
858 const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
859 LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
860 return value;
861 }
862
~Capabilities()863 ~Capabilities() {
864 const int result = cap_free(mCaps);
865 LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
866 }
867
868 private:
869 cap_t mCaps;
870 };
871
ensureProcessCanBlockSuspend()872 static void ensureProcessCanBlockSuspend() {
873 Capabilities capabilities;
874 const bool canBlockSuspend =
875 capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
876 LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
877 "Input must be able to block suspend to properly process events");
878 }
879
880 // --- EventHub ---
881
882 const int EventHub::EPOLL_MAX_EVENTS;
883
EventHub(void)884 EventHub::EventHub(void)
885 : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
886 mNextDeviceId(1),
887 mControllerNumbers(),
888 mNeedToSendFinishedDeviceScan(false),
889 mNeedToReopenDevices(false),
890 mNeedToScanDevices(true),
891 mPendingEventCount(0),
892 mPendingEventIndex(0),
893 mPendingINotify(false) {
894 ensureProcessCanBlockSuspend();
895
896 mEpollFd = epoll_create1(EPOLL_CLOEXEC);
897 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
898
899 mINotifyFd = inotify_init1(IN_CLOEXEC);
900 LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno));
901
902 std::error_code errorCode;
903 bool isDeviceInotifyAdded = false;
904 if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
905 addDeviceInputInotify();
906 } else {
907 addDeviceInotify();
908 isDeviceInotifyAdded = true;
909 if (errorCode) {
910 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
911 errorCode.message().c_str());
912 }
913 }
914
915 if (isV4lScanningEnabled() && !isDeviceInotifyAdded) {
916 addDeviceInotify();
917 } else {
918 ALOGI("Video device scanning disabled");
919 }
920
921 struct epoll_event eventItem = {};
922 eventItem.events = EPOLLIN | EPOLLWAKEUP;
923 eventItem.data.fd = mINotifyFd;
924 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
925 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
926
927 int wakeFds[2];
928 result = pipe2(wakeFds, O_CLOEXEC);
929 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
930
931 mWakeReadPipeFd = wakeFds[0];
932 mWakeWritePipeFd = wakeFds[1];
933
934 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
935 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
936 errno);
937
938 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
939 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
940 errno);
941
942 eventItem.data.fd = mWakeReadPipeFd;
943 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
944 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
945 errno);
946 }
947
~EventHub(void)948 EventHub::~EventHub(void) {
949 closeAllDevicesLocked();
950
951 ::close(mEpollFd);
952 ::close(mINotifyFd);
953 ::close(mWakeReadPipeFd);
954 ::close(mWakeWritePipeFd);
955 }
956
957 /**
958 * On devices that don't have any input devices (like some development boards), the /dev/input
959 * directory will be absent. However, the user may still plug in an input device at a later time.
960 * Add watch for contents of /dev/input only when /dev/input appears.
961 */
addDeviceInputInotify()962 void EventHub::addDeviceInputInotify() {
963 mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE);
964 LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s",
965 DEVICE_INPUT_PATH, strerror(errno));
966 }
967
addDeviceInotify()968 void EventHub::addDeviceInotify() {
969 mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
970 LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
971 strerror(errno));
972 }
973
getDeviceIdentifier(int32_t deviceId) const974 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
975 std::scoped_lock _l(mLock);
976 Device* device = getDeviceLocked(deviceId);
977 return device != nullptr ? device->identifier : InputDeviceIdentifier();
978 }
979
getDeviceClasses(int32_t deviceId) const980 ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
981 std::scoped_lock _l(mLock);
982 Device* device = getDeviceLocked(deviceId);
983 return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0);
984 }
985
getDeviceControllerNumber(int32_t deviceId) const986 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
987 std::scoped_lock _l(mLock);
988 Device* device = getDeviceLocked(deviceId);
989 return device != nullptr ? device->controllerNumber : 0;
990 }
991
getConfiguration(int32_t deviceId) const992 std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const {
993 std::scoped_lock _l(mLock);
994 Device* device = getDeviceLocked(deviceId);
995 if (device == nullptr || device->configuration == nullptr) {
996 return {};
997 }
998 return *device->configuration;
999 }
1000
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const1001 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
1002 RawAbsoluteAxisInfo* outAxisInfo) const {
1003 outAxisInfo->clear();
1004 if (axis < 0 || axis > ABS_MAX) {
1005 return NAME_NOT_FOUND;
1006 }
1007 std::scoped_lock _l(mLock);
1008 const Device* device = getDeviceLocked(deviceId);
1009 if (device == nullptr) {
1010 return NAME_NOT_FOUND;
1011 }
1012 // We can read the RawAbsoluteAxisInfo even if the device is disabled and doesn't have a valid
1013 // fd, because the info is populated once when the device is first opened, and it doesn't change
1014 // throughout the device lifecycle.
1015 auto it = device->absState.find(axis);
1016 if (it == device->absState.end()) {
1017 return NAME_NOT_FOUND;
1018 }
1019 *outAxisInfo = it->second.info;
1020 return OK;
1021 }
1022
hasRelativeAxis(int32_t deviceId,int axis) const1023 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
1024 if (axis >= 0 && axis <= REL_MAX) {
1025 std::scoped_lock _l(mLock);
1026 Device* device = getDeviceLocked(deviceId);
1027 return device != nullptr ? device->relBitmask.test(axis) : false;
1028 }
1029 return false;
1030 }
1031
hasInputProperty(int32_t deviceId,int property) const1032 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
1033 std::scoped_lock _l(mLock);
1034
1035 Device* device = getDeviceLocked(deviceId);
1036 return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
1037 ? device->propBitmask.test(property)
1038 : false;
1039 }
1040
hasMscEvent(int32_t deviceId,int mscEvent) const1041 bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
1042 std::scoped_lock _l(mLock);
1043
1044 Device* device = getDeviceLocked(deviceId);
1045 return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
1046 ? device->mscBitmask.test(mscEvent)
1047 : false;
1048 }
1049
getScanCodeState(int32_t deviceId,int32_t scanCode) const1050 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
1051 if (scanCode < 0 || scanCode > KEY_MAX) {
1052 return AKEY_STATE_UNKNOWN;
1053 }
1054 std::scoped_lock _l(mLock);
1055 const Device* device = getDeviceLocked(deviceId);
1056 if (device == nullptr || !device->hasValidFd() || !device->keyBitmask.test(scanCode)) {
1057 return AKEY_STATE_UNKNOWN;
1058 }
1059 return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1060 }
1061
getKeyCodeState(int32_t deviceId,int32_t keyCode) const1062 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
1063 std::scoped_lock _l(mLock);
1064 const Device* device = getDeviceLocked(deviceId);
1065 if (device == nullptr || !device->hasValidFd() || !device->keyMap.haveKeyLayout()) {
1066 return AKEY_STATE_UNKNOWN;
1067 }
1068 const std::vector<int32_t> scanCodes =
1069 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode);
1070 if (scanCodes.empty()) {
1071 return AKEY_STATE_UNKNOWN;
1072 }
1073 return std::any_of(scanCodes.begin(), scanCodes.end(),
1074 [&device](const int32_t sc) {
1075 return sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc);
1076 })
1077 ? AKEY_STATE_DOWN
1078 : AKEY_STATE_UP;
1079 }
1080
getKeyCodeForKeyLocation(int32_t deviceId,int32_t locationKeyCode) const1081 int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
1082 std::scoped_lock _l(mLock);
1083
1084 Device* device = getDeviceLocked(deviceId);
1085 if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr ||
1086 device->keyMap.keyLayoutMap == nullptr) {
1087 return AKEYCODE_UNKNOWN;
1088 }
1089 std::vector<int32_t> scanCodes =
1090 device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode);
1091 if (scanCodes.empty()) {
1092 ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input"
1093 "device %d",
1094 locationKeyCode, deviceId);
1095 return AKEYCODE_UNKNOWN;
1096 }
1097 if (scanCodes.size() > 1) {
1098 ALOGW("Multiple scan codes map to the same key code %d, returning only the first match",
1099 locationKeyCode);
1100 }
1101 int32_t outKeyCode;
1102 status_t mapKeyRes =
1103 device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode);
1104 switch (mapKeyRes) {
1105 case OK:
1106 break;
1107 case NAME_NOT_FOUND:
1108 // key character map doesn't re-map this scanCode, hence the keyCode remains the same
1109 outKeyCode = locationKeyCode;
1110 break;
1111 default:
1112 ALOGW("Failed to get key code for key location: Key character map returned error %s",
1113 statusToString(mapKeyRes).c_str());
1114 outKeyCode = AKEYCODE_UNKNOWN;
1115 break;
1116 }
1117 // Remap if there is a Key remapping added to the KCM and return the remapped key
1118 return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode);
1119 }
1120
getSwitchState(int32_t deviceId,int32_t sw) const1121 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
1122 if (sw < 0 || sw > SW_MAX) {
1123 return AKEY_STATE_UNKNOWN;
1124 }
1125 std::scoped_lock _l(mLock);
1126 const Device* device = getDeviceLocked(deviceId);
1127 if (device == nullptr || !device->hasValidFd() || !device->swBitmask.test(sw)) {
1128 return AKEY_STATE_UNKNOWN;
1129 }
1130 return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1131 }
1132
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const1133 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
1134 *outValue = 0;
1135 if (axis < 0 || axis > ABS_MAX) {
1136 return NAME_NOT_FOUND;
1137 }
1138 std::scoped_lock _l(mLock);
1139 const Device* device = getDeviceLocked(deviceId);
1140 if (device == nullptr || !device->hasValidFd()) {
1141 return NAME_NOT_FOUND;
1142 }
1143 const auto it = device->absState.find(axis);
1144 if (it == device->absState.end()) {
1145 return NAME_NOT_FOUND;
1146 }
1147 *outValue = it->second.value;
1148 return OK;
1149 }
1150
getMtSlotValues(int32_t deviceId,int32_t axis,size_t slotCount) const1151 base::Result<std::vector<int32_t>> EventHub::getMtSlotValues(int32_t deviceId, int32_t axis,
1152 size_t slotCount) const {
1153 std::scoped_lock _l(mLock);
1154 const Device* device = getDeviceLocked(deviceId);
1155 if (device == nullptr || !device->hasValidFd() || !device->absBitmask.test(axis)) {
1156 return base::ResultError("device problem or axis not supported", NAME_NOT_FOUND);
1157 }
1158 std::vector<int32_t> outValues(slotCount + 1);
1159 outValues[0] = axis;
1160 const size_t bufferSize = outValues.size() * sizeof(int32_t);
1161 if (ioctl(device->fd, EVIOCGMTSLOTS(bufferSize), outValues.data()) != OK) {
1162 return base::ErrnoError();
1163 }
1164 return std::move(outValues);
1165 }
1166
markSupportedKeyCodes(int32_t deviceId,const std::vector<int32_t> & keyCodes,uint8_t * outFlags) const1167 bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
1168 uint8_t* outFlags) const {
1169 std::scoped_lock _l(mLock);
1170
1171 Device* device = getDeviceLocked(deviceId);
1172 if (device != nullptr && device->keyMap.haveKeyLayout()) {
1173 for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) {
1174 if (device->hasKeycodeLocked(keyCodes[codeIndex])) {
1175 outFlags[codeIndex] = 1;
1176 }
1177 }
1178 return true;
1179 }
1180 return false;
1181 }
1182
addKeyRemapping(int32_t deviceId,int32_t fromKeyCode,int32_t toKeyCode) const1183 void EventHub::addKeyRemapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) const {
1184 std::scoped_lock _l(mLock);
1185 Device* device = getDeviceLocked(deviceId);
1186 if (device == nullptr) {
1187 return;
1188 }
1189 const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1190 if (kcm) {
1191 kcm->addKeyRemapping(fromKeyCode, toKeyCode);
1192 }
1193 }
1194
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const1195 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
1196 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
1197 std::scoped_lock _l(mLock);
1198 Device* device = getDeviceLocked(deviceId);
1199 status_t status = NAME_NOT_FOUND;
1200
1201 if (device != nullptr) {
1202 // Check the key character map first.
1203 const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1204 if (kcm) {
1205 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
1206 *outFlags = 0;
1207 status = NO_ERROR;
1208 }
1209 }
1210
1211 // Check the key layout next.
1212 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
1213 if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
1214 status = NO_ERROR;
1215 }
1216 }
1217
1218 if (status == NO_ERROR) {
1219 if (kcm) {
1220 // Remap keys based on user-defined key remappings and key behavior defined in the
1221 // corresponding kcm file
1222 *outKeycode = kcm->applyKeyRemapping(*outKeycode);
1223
1224 // Remap keys based on Key behavior defined in KCM file
1225 std::tie(*outKeycode, *outMetaState) =
1226 kcm->applyKeyBehavior(*outKeycode, metaState);
1227 } else {
1228 *outMetaState = metaState;
1229 }
1230 }
1231 }
1232
1233 if (status != NO_ERROR) {
1234 *outKeycode = 0;
1235 *outFlags = 0;
1236 *outMetaState = metaState;
1237 }
1238
1239 return status;
1240 }
1241
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const1242 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
1243 std::scoped_lock _l(mLock);
1244 Device* device = getDeviceLocked(deviceId);
1245
1246 if (device == nullptr || !device->keyMap.haveKeyLayout()) {
1247 return NAME_NOT_FOUND;
1248 }
1249 std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode);
1250 if (!info.has_value()) {
1251 return NAME_NOT_FOUND;
1252 }
1253 *outAxisInfo = *info;
1254 return NO_ERROR;
1255 }
1256
mapSensor(int32_t deviceId,int32_t absCode) const1257 base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
1258 int32_t absCode) const {
1259 std::scoped_lock _l(mLock);
1260 Device* device = getDeviceLocked(deviceId);
1261
1262 if (device != nullptr && device->keyMap.haveKeyLayout()) {
1263 return device->keyMap.keyLayoutMap->mapSensor(absCode);
1264 }
1265 return Errorf("Device not found or device has no key layout.");
1266 }
1267
1268 // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
1269 // associated with the device ID. Returns an empty map if no miscellaneous device found.
getBatteryInfoLocked(int32_t deviceId) const1270 const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
1271 int32_t deviceId) const {
1272 static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
1273 Device* device = getDeviceLocked(deviceId);
1274 if (device == nullptr || !device->associatedDevice) {
1275 return EMPTY_BATTERY_INFO;
1276 }
1277 return device->associatedDevice->batteryInfos;
1278 }
1279
getRawBatteryIds(int32_t deviceId) const1280 std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const {
1281 std::scoped_lock _l(mLock);
1282 std::vector<int32_t> batteryIds;
1283
1284 for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) {
1285 batteryIds.push_back(id);
1286 }
1287
1288 return batteryIds;
1289 }
1290
getRawBatteryInfo(int32_t deviceId,int32_t batteryId) const1291 std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId,
1292 int32_t batteryId) const {
1293 std::scoped_lock _l(mLock);
1294
1295 const auto infos = getBatteryInfoLocked(deviceId);
1296
1297 auto it = infos.find(batteryId);
1298 if (it != infos.end()) {
1299 return it->second;
1300 }
1301
1302 return std::nullopt;
1303 }
1304
1305 // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
1306 // with the device ID. Returns an empty map if no miscellaneous device found.
getLightInfoLocked(int32_t deviceId) const1307 const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
1308 int32_t deviceId) const {
1309 static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
1310 Device* device = getDeviceLocked(deviceId);
1311 if (device == nullptr || !device->associatedDevice) {
1312 return EMPTY_LIGHT_INFO;
1313 }
1314 return device->associatedDevice->lightInfos;
1315 }
1316
getRawLightIds(int32_t deviceId) const1317 std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const {
1318 std::scoped_lock _l(mLock);
1319 std::vector<int32_t> lightIds;
1320
1321 for (const auto& [id, info] : getLightInfoLocked(deviceId)) {
1322 lightIds.push_back(id);
1323 }
1324
1325 return lightIds;
1326 }
1327
getRawLightInfo(int32_t deviceId,int32_t lightId) const1328 std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
1329 std::scoped_lock _l(mLock);
1330
1331 const auto infos = getLightInfoLocked(deviceId);
1332
1333 auto it = infos.find(lightId);
1334 if (it != infos.end()) {
1335 return it->second;
1336 }
1337
1338 return std::nullopt;
1339 }
1340
getLightBrightness(int32_t deviceId,int32_t lightId) const1341 std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
1342 std::scoped_lock _l(mLock);
1343
1344 const auto infos = getLightInfoLocked(deviceId);
1345 auto it = infos.find(lightId);
1346 if (it == infos.end()) {
1347 return std::nullopt;
1348 }
1349 std::string buffer;
1350 if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
1351 &buffer)) {
1352 return std::nullopt;
1353 }
1354 return std::stoi(buffer);
1355 }
1356
getLightIntensities(int32_t deviceId,int32_t lightId) const1357 std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
1358 int32_t deviceId, int32_t lightId) const {
1359 std::scoped_lock _l(mLock);
1360
1361 const auto infos = getLightInfoLocked(deviceId);
1362 auto lightIt = infos.find(lightId);
1363 if (lightIt == infos.end()) {
1364 return std::nullopt;
1365 }
1366
1367 auto ret =
1368 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1369
1370 if (!ret.has_value()) {
1371 return std::nullopt;
1372 }
1373 std::array<LightColor, COLOR_NUM> colors = ret.value();
1374
1375 std::string intensityStr;
1376 if (!base::ReadFileToString(lightIt->second.path /
1377 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
1378 &intensityStr)) {
1379 return std::nullopt;
1380 }
1381
1382 // Intensity node outputs 3 color values
1383 std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
1384 std::smatch results;
1385
1386 if (!std::regex_match(intensityStr, results, intensityPattern)) {
1387 return std::nullopt;
1388 }
1389 std::unordered_map<LightColor, int32_t> intensities;
1390 for (size_t i = 1; i < results.size(); i++) {
1391 int value = std::stoi(results[i].str());
1392 intensities.emplace(colors[i - 1], value);
1393 }
1394 return intensities;
1395 }
1396
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)1397 void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
1398 std::scoped_lock _l(mLock);
1399
1400 const auto infos = getLightInfoLocked(deviceId);
1401 auto lightIt = infos.find(lightId);
1402 if (lightIt == infos.end()) {
1403 ALOGE("%s lightId %d not found ", __func__, lightId);
1404 return;
1405 }
1406
1407 if (!base::WriteStringToFile(std::to_string(brightness),
1408 lightIt->second.path /
1409 LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
1410 ALOGE("Can not write to file, error: %s", strerror(errno));
1411 }
1412 }
1413
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)1414 void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
1415 std::unordered_map<LightColor, int32_t> intensities) {
1416 std::scoped_lock _l(mLock);
1417
1418 const auto infos = getLightInfoLocked(deviceId);
1419 auto lightIt = infos.find(lightId);
1420 if (lightIt == infos.end()) {
1421 ALOGE("Light Id %d does not exist.", lightId);
1422 return;
1423 }
1424
1425 auto ret =
1426 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1427
1428 if (!ret.has_value()) {
1429 return;
1430 }
1431 std::array<LightColor, COLOR_NUM> colors = ret.value();
1432
1433 std::string rgbStr;
1434 for (size_t i = 0; i < COLOR_NUM; i++) {
1435 auto it = intensities.find(colors[i]);
1436 if (it != intensities.end()) {
1437 rgbStr += std::to_string(it->second);
1438 // Insert space between colors
1439 if (i < COLOR_NUM - 1) {
1440 rgbStr += " ";
1441 }
1442 }
1443 }
1444 // Append new line
1445 rgbStr += "\n";
1446
1447 if (!base::WriteStringToFile(rgbStr,
1448 lightIt->second.path /
1449 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
1450 ALOGE("Can not write to file, error: %s", strerror(errno));
1451 }
1452 }
1453
getRawLayoutInfo(int32_t deviceId) const1454 std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const {
1455 std::scoped_lock _l(mLock);
1456 Device* device = getDeviceLocked(deviceId);
1457 if (device == nullptr || !device->associatedDevice) {
1458 return std::nullopt;
1459 }
1460 return device->associatedDevice->layoutInfo;
1461 }
1462
setExcludedDevices(const std::vector<std::string> & devices)1463 void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
1464 std::scoped_lock _l(mLock);
1465
1466 mExcludedDevices = devices;
1467 }
1468
hasScanCode(int32_t deviceId,int32_t scanCode) const1469 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
1470 std::scoped_lock _l(mLock);
1471 Device* device = getDeviceLocked(deviceId);
1472 if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
1473 return device->keyBitmask.test(scanCode);
1474 }
1475 return false;
1476 }
1477
hasKeyCode(int32_t deviceId,int32_t keyCode) const1478 bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
1479 std::scoped_lock _l(mLock);
1480 Device* device = getDeviceLocked(deviceId);
1481 if (device != nullptr) {
1482 return device->hasKeycodeLocked(keyCode);
1483 }
1484 return false;
1485 }
1486
hasLed(int32_t deviceId,int32_t led) const1487 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
1488 std::scoped_lock _l(mLock);
1489 Device* device = getDeviceLocked(deviceId);
1490 int32_t sc;
1491 if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
1492 return device->ledBitmask.test(sc);
1493 }
1494 return false;
1495 }
1496
setLedState(int32_t deviceId,int32_t led,bool on)1497 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
1498 std::scoped_lock _l(mLock);
1499 Device* device = getDeviceLocked(deviceId);
1500 if (device != nullptr && device->hasValidFd()) {
1501 device->setLedStateLocked(led, on);
1502 }
1503 }
1504
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const1505 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
1506 std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
1507 outVirtualKeys.clear();
1508
1509 std::scoped_lock _l(mLock);
1510 Device* device = getDeviceLocked(deviceId);
1511 if (device != nullptr && device->virtualKeyMap) {
1512 const std::vector<VirtualKeyDefinition> virtualKeys =
1513 device->virtualKeyMap->getVirtualKeys();
1514 outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
1515 }
1516 }
1517
getKeyCharacterMap(int32_t deviceId) const1518 const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
1519 std::scoped_lock _l(mLock);
1520 Device* device = getDeviceLocked(deviceId);
1521 if (device != nullptr) {
1522 return device->getKeyCharacterMap();
1523 }
1524 return nullptr;
1525 }
1526
1527 // If provided map is null, it will reset key character map to default KCM.
setKeyboardLayoutOverlay(int32_t deviceId,std::shared_ptr<KeyCharacterMap> map)1528 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
1529 std::scoped_lock _l(mLock);
1530 Device* device = getDeviceLocked(deviceId);
1531 if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) {
1532 return false;
1533 }
1534 if (map == nullptr) {
1535 device->keyMap.keyCharacterMap->clearLayoutOverlay();
1536 return true;
1537 }
1538 device->keyMap.keyCharacterMap->combine(*map);
1539 return true;
1540 }
1541
generateDescriptor(InputDeviceIdentifier & identifier)1542 static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
1543 std::string rawDescriptor;
1544 rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
1545 // TODO add handling for USB devices to not uniqueify kbs that show up twice
1546 if (!identifier.uniqueId.empty()) {
1547 rawDescriptor += "uniqueId:";
1548 rawDescriptor += identifier.uniqueId;
1549 }
1550 if (identifier.nonce != 0) {
1551 rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
1552 }
1553
1554 if (identifier.vendor == 0 && identifier.product == 0) {
1555 // If we don't know the vendor and product id, then the device is probably
1556 // built-in so we need to rely on other information to uniquely identify
1557 // the input device. Usually we try to avoid relying on the device name or
1558 // location but for built-in input device, they are unlikely to ever change.
1559 if (!identifier.name.empty()) {
1560 rawDescriptor += "name:";
1561 rawDescriptor += identifier.name;
1562 } else if (!identifier.location.empty()) {
1563 rawDescriptor += "location:";
1564 rawDescriptor += identifier.location;
1565 }
1566 }
1567 identifier.descriptor = sha1(rawDescriptor);
1568 return rawDescriptor;
1569 }
1570
assignDescriptorLocked(InputDeviceIdentifier & identifier)1571 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
1572 // Compute a device descriptor that uniquely identifies the device.
1573 // The descriptor is assumed to be a stable identifier. Its value should not
1574 // change between reboots, reconnections, firmware updates or new releases
1575 // of Android. In practice we sometimes get devices that cannot be uniquely
1576 // identified. In this case we enforce uniqueness between connected devices.
1577 // Ideally, we also want the descriptor to be short and relatively opaque.
1578 // Note that we explicitly do not use the path or location for external devices
1579 // as their path or location will change as they are plugged/unplugged or moved
1580 // to different ports. We do fallback to using name and location in the case of
1581 // internal devices which are detected by the vendor and product being 0 in
1582 // generateDescriptor. If two identical descriptors are detected we will fallback
1583 // to using a 'nonce' and incrementing it until the new descriptor no longer has
1584 // a match with any existing descriptors.
1585
1586 identifier.nonce = 0;
1587 std::string rawDescriptor = generateDescriptor(identifier);
1588 // Enforce that the generated descriptor is unique.
1589 while (hasDeviceWithDescriptorLocked(identifier.descriptor)) {
1590 identifier.nonce++;
1591 rawDescriptor = generateDescriptor(identifier);
1592 }
1593 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
1594 identifier.descriptor.c_str());
1595 }
1596
obtainAssociatedDeviceLocked(const std::filesystem::path & devicePath) const1597 std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked(
1598 const std::filesystem::path& devicePath) const {
1599 const std::optional<std::filesystem::path> sysfsRootPathOpt =
1600 getSysfsRootPath(devicePath.c_str());
1601 if (!sysfsRootPathOpt) {
1602 return nullptr;
1603 }
1604
1605 const auto& path = *sysfsRootPathOpt;
1606
1607 std::shared_ptr<const AssociatedDevice> associatedDevice = std::make_shared<AssociatedDevice>(
1608 AssociatedDevice{.sysfsRootPath = path,
1609 .batteryInfos = readBatteryConfiguration(path),
1610 .lightInfos = readLightsConfiguration(path),
1611 .layoutInfo = readLayoutConfiguration(path)});
1612
1613 bool associatedDeviceChanged = false;
1614 for (const auto& [id, dev] : mDevices) {
1615 if (dev->associatedDevice && dev->associatedDevice->sysfsRootPath == path) {
1616 if (*associatedDevice != *dev->associatedDevice) {
1617 associatedDeviceChanged = true;
1618 dev->associatedDevice = associatedDevice;
1619 }
1620 associatedDevice = dev->associatedDevice;
1621 }
1622 }
1623 ALOGI_IF(associatedDeviceChanged,
1624 "The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s",
1625 path.c_str(), associatedDevice->dump().c_str());
1626
1627 return associatedDevice;
1628 }
1629
isChanged() const1630 bool EventHub::AssociatedDevice::isChanged() const {
1631 std::unordered_map<int32_t, RawBatteryInfo> newBatteryInfos =
1632 readBatteryConfiguration(sysfsRootPath);
1633 std::unordered_map<int32_t, RawLightInfo> newLightInfos =
1634 readLightsConfiguration(sysfsRootPath);
1635 std::optional<RawLayoutInfo> newLayoutInfo = readLayoutConfiguration(sysfsRootPath);
1636
1637 if (newBatteryInfos == batteryInfos && newLightInfos == lightInfos &&
1638 newLayoutInfo == layoutInfo) {
1639 return false;
1640 }
1641 return true;
1642 }
1643
vibrate(int32_t deviceId,const VibrationElement & element)1644 void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
1645 std::scoped_lock _l(mLock);
1646 Device* device = getDeviceLocked(deviceId);
1647 if (device != nullptr && device->hasValidFd()) {
1648 ff_effect effect;
1649 memset(&effect, 0, sizeof(effect));
1650 effect.type = FF_RUMBLE;
1651 effect.id = device->ffEffectId;
1652 // evdev FF_RUMBLE effect only supports two channels of vibration.
1653 effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1654 effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1655 effect.replay.length = element.duration.count();
1656 effect.replay.delay = 0;
1657 if (ioctl(device->fd, EVIOCSFF, &effect)) {
1658 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
1659 device->identifier.name.c_str(), errno);
1660 return;
1661 }
1662 device->ffEffectId = effect.id;
1663
1664 struct input_event ev;
1665 ev.input_event_sec = 0;
1666 ev.input_event_usec = 0;
1667 ev.type = EV_FF;
1668 ev.code = device->ffEffectId;
1669 ev.value = 1;
1670 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1671 ALOGW("Could not start force feedback effect on device %s due to error %d.",
1672 device->identifier.name.c_str(), errno);
1673 return;
1674 }
1675 device->ffEffectPlaying = true;
1676 }
1677 }
1678
cancelVibrate(int32_t deviceId)1679 void EventHub::cancelVibrate(int32_t deviceId) {
1680 std::scoped_lock _l(mLock);
1681 Device* device = getDeviceLocked(deviceId);
1682 if (device != nullptr && device->hasValidFd()) {
1683 if (device->ffEffectPlaying) {
1684 device->ffEffectPlaying = false;
1685
1686 struct input_event ev;
1687 ev.input_event_sec = 0;
1688 ev.input_event_usec = 0;
1689 ev.type = EV_FF;
1690 ev.code = device->ffEffectId;
1691 ev.value = 0;
1692 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1693 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
1694 device->identifier.name.c_str(), errno);
1695 return;
1696 }
1697 }
1698 }
1699 }
1700
getVibratorIds(int32_t deviceId) const1701 std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const {
1702 std::scoped_lock _l(mLock);
1703 std::vector<int32_t> vibrators;
1704 Device* device = getDeviceLocked(deviceId);
1705 if (device != nullptr && device->hasValidFd() &&
1706 device->classes.test(InputDeviceClass::VIBRATOR)) {
1707 vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1708 vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1709 }
1710 return vibrators;
1711 }
1712
1713 /**
1714 * Checks both mDevices and mOpeningDevices for a device with the descriptor passed.
1715 */
hasDeviceWithDescriptorLocked(const std::string & descriptor) const1716 bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const {
1717 for (const auto& device : mOpeningDevices) {
1718 if (descriptor == device->identifier.descriptor) {
1719 return true;
1720 }
1721 }
1722
1723 for (const auto& [id, device] : mDevices) {
1724 if (descriptor == device->identifier.descriptor) {
1725 return true;
1726 }
1727 }
1728 return false;
1729 }
1730
getDeviceLocked(int32_t deviceId) const1731 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
1732 if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
1733 deviceId = mBuiltInKeyboardId;
1734 }
1735 const auto& it = mDevices.find(deviceId);
1736 return it != mDevices.end() ? it->second.get() : nullptr;
1737 }
1738
getDeviceByPathLocked(const std::string & devicePath) const1739 EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
1740 for (const auto& [id, device] : mDevices) {
1741 if (device->path == devicePath) {
1742 return device.get();
1743 }
1744 }
1745 return nullptr;
1746 }
1747
1748 /**
1749 * The file descriptor could be either input device, or a video device (associated with a
1750 * specific input device). Check both cases here, and return the device that this event
1751 * belongs to. Caller can compare the fd's once more to determine event type.
1752 * Looks through all input devices, and only attached video devices. Unattached video
1753 * devices are ignored.
1754 */
getDeviceByFdLocked(int fd) const1755 EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
1756 for (const auto& [id, device] : mDevices) {
1757 if (device->fd == fd) {
1758 // This is an input device event
1759 return device.get();
1760 }
1761 if (device->videoDevice && device->videoDevice->getFd() == fd) {
1762 // This is a video device event
1763 return device.get();
1764 }
1765 }
1766 // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
1767 // and therefore should never be looked up by fd.
1768 return nullptr;
1769 }
1770
getBatteryCapacity(int32_t deviceId,int32_t batteryId) const1771 std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
1772 std::filesystem::path batteryPath;
1773 {
1774 // Do not read the sysfs node to get the battery state while holding
1775 // the EventHub lock. For some peripheral devices, reading battery state
1776 // can be broken and take 5+ seconds. Holding the lock in this case would
1777 // block all other event processing during this time. For now, we assume this
1778 // call never happens on the InputReader thread and read the sysfs node outside
1779 // the lock to prevent event processing from being blocked by this call.
1780 std::scoped_lock _l(mLock);
1781
1782 const auto& infos = getBatteryInfoLocked(deviceId);
1783 auto it = infos.find(batteryId);
1784 if (it == infos.end()) {
1785 return std::nullopt;
1786 }
1787 batteryPath = it->second.path;
1788 } // release lock
1789
1790 std::string buffer;
1791
1792 // Some devices report battery capacity as an integer through the "capacity" file
1793 if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
1794 &buffer)) {
1795 return std::stoi(base::Trim(buffer));
1796 }
1797
1798 // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
1799 // These values are taken from kernel source code include/linux/power_supply.h
1800 if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
1801 &buffer)) {
1802 // Remove any white space such as trailing new line
1803 const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
1804 if (levelIt != BATTERY_LEVEL.end()) {
1805 return levelIt->second;
1806 }
1807 }
1808
1809 return std::nullopt;
1810 }
1811
getBatteryStatus(int32_t deviceId,int32_t batteryId) const1812 std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
1813 std::filesystem::path batteryPath;
1814 {
1815 // Do not read the sysfs node to get the battery state while holding
1816 // the EventHub lock. For some peripheral devices, reading battery state
1817 // can be broken and take 5+ seconds. Holding the lock in this case would
1818 // block all other event processing during this time. For now, we assume this
1819 // call never happens on the InputReader thread and read the sysfs node outside
1820 // the lock to prevent event processing from being blocked by this call.
1821 std::scoped_lock _l(mLock);
1822
1823 const auto& infos = getBatteryInfoLocked(deviceId);
1824 auto it = infos.find(batteryId);
1825 if (it == infos.end()) {
1826 return std::nullopt;
1827 }
1828 batteryPath = it->second.path;
1829 } // release lock
1830
1831 std::string buffer;
1832
1833 if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS),
1834 &buffer)) {
1835 ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
1836 return std::nullopt;
1837 }
1838
1839 // Remove white space like trailing new line
1840 const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
1841 if (statusIt != BATTERY_STATUS.end()) {
1842 return statusIt->second;
1843 }
1844
1845 return std::nullopt;
1846 }
1847
getEvents(int timeoutMillis)1848 std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) {
1849 std::scoped_lock _l(mLock);
1850
1851 std::array<input_event, EVENT_BUFFER_SIZE> readBuffer;
1852
1853 std::vector<RawEvent> events;
1854 bool awoken = false;
1855 for (;;) {
1856 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1857
1858 // Reopen input devices if needed.
1859 if (mNeedToReopenDevices) {
1860 mNeedToReopenDevices = false;
1861
1862 ALOGI("Reopening all input devices due to a configuration change.");
1863
1864 closeAllDevicesLocked();
1865 mNeedToScanDevices = true;
1866 break; // return to the caller before we actually rescan
1867 }
1868
1869 // Report any devices that had last been added/removed.
1870 for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
1871 std::unique_ptr<Device> device = std::move(*it);
1872 ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
1873 const int32_t deviceId = (device->id == mBuiltInKeyboardId)
1874 ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
1875 : device->id;
1876 events.push_back({
1877 .when = now,
1878 .deviceId = deviceId,
1879 .type = DEVICE_REMOVED,
1880 });
1881 it = mClosingDevices.erase(it);
1882 mNeedToSendFinishedDeviceScan = true;
1883 if (events.size() == EVENT_BUFFER_SIZE) {
1884 break;
1885 }
1886 }
1887
1888 if (mNeedToScanDevices) {
1889 mNeedToScanDevices = false;
1890 scanDevicesLocked();
1891 mNeedToSendFinishedDeviceScan = true;
1892 }
1893
1894 while (!mOpeningDevices.empty()) {
1895 std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
1896 mOpeningDevices.pop_back();
1897 ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
1898 const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1899 events.push_back({
1900 .when = now,
1901 .deviceId = deviceId,
1902 .type = DEVICE_ADDED,
1903 });
1904
1905 // Try to find a matching video device by comparing device names
1906 for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
1907 it++) {
1908 std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
1909 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
1910 // videoDevice was transferred to 'device'
1911 it = mUnattachedVideoDevices.erase(it);
1912 break;
1913 }
1914 }
1915
1916 auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
1917 if (!inserted) {
1918 ALOGW("Device id %d exists, replaced.", device->id);
1919 }
1920 mNeedToSendFinishedDeviceScan = true;
1921 if (events.size() == EVENT_BUFFER_SIZE) {
1922 break;
1923 }
1924 }
1925
1926 if (mNeedToSendFinishedDeviceScan) {
1927 mNeedToSendFinishedDeviceScan = false;
1928 events.push_back({
1929 .when = now,
1930 .type = FINISHED_DEVICE_SCAN,
1931 });
1932 if (events.size() == EVENT_BUFFER_SIZE) {
1933 break;
1934 }
1935 }
1936
1937 // Grab the next input event.
1938 bool deviceChanged = false;
1939 while (mPendingEventIndex < mPendingEventCount) {
1940 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
1941 if (eventItem.data.fd == mINotifyFd) {
1942 if (eventItem.events & EPOLLIN) {
1943 mPendingINotify = true;
1944 } else {
1945 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
1946 }
1947 continue;
1948 }
1949
1950 if (eventItem.data.fd == mWakeReadPipeFd) {
1951 if (eventItem.events & EPOLLIN) {
1952 ALOGV("awoken after wake()");
1953 awoken = true;
1954 char wakeReadBuffer[16];
1955 ssize_t nRead;
1956 do {
1957 nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
1958 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
1959 } else {
1960 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
1961 eventItem.events);
1962 }
1963 continue;
1964 }
1965
1966 Device* device = getDeviceByFdLocked(eventItem.data.fd);
1967 if (device == nullptr) {
1968 ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
1969 eventItem.data.fd);
1970 ALOG_ASSERT(!DEBUG);
1971 continue;
1972 }
1973 if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
1974 if (eventItem.events & EPOLLIN) {
1975 size_t numFrames = device->videoDevice->readAndQueueFrames();
1976 if (numFrames == 0) {
1977 ALOGE("Received epoll event for video device %s, but could not read frame",
1978 device->videoDevice->getName().c_str());
1979 }
1980 } else if (eventItem.events & EPOLLHUP) {
1981 // TODO(b/121395353) - consider adding EPOLLRDHUP
1982 ALOGI("Removing video device %s due to epoll hang-up event.",
1983 device->videoDevice->getName().c_str());
1984 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
1985 device->videoDevice = nullptr;
1986 } else {
1987 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1988 device->videoDevice->getName().c_str());
1989 ALOG_ASSERT(!DEBUG);
1990 }
1991 continue;
1992 }
1993 // This must be an input event
1994 if (eventItem.events & EPOLLIN) {
1995 int32_t readSize =
1996 read(device->fd, readBuffer.data(),
1997 sizeof(decltype(readBuffer)::value_type) * readBuffer.size());
1998 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
1999 // Device was removed before INotify noticed.
2000 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
2001 " capacity: %zu errno: %d)\n",
2002 device->fd, readSize, readBuffer.size(), errno);
2003 deviceChanged = true;
2004 closeDeviceLocked(*device);
2005 } else if (readSize < 0) {
2006 if (errno != EAGAIN && errno != EINTR) {
2007 ALOGW("could not get event (errno=%d)", errno);
2008 }
2009 } else if ((readSize % sizeof(struct input_event)) != 0) {
2010 ALOGE("could not get event (wrong size: %d)", readSize);
2011 } else {
2012 const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
2013
2014 const size_t count = size_t(readSize) / sizeof(struct input_event);
2015 for (size_t i = 0; i < count; i++) {
2016 struct input_event& iev = readBuffer[i];
2017 device->trackInputEvent(iev);
2018 events.push_back({
2019 .when = processEventTimestamp(iev),
2020 .readTime = systemTime(SYSTEM_TIME_MONOTONIC),
2021 .deviceId = deviceId,
2022 .type = iev.type,
2023 .code = iev.code,
2024 .value = iev.value,
2025 });
2026 }
2027 if (events.size() >= EVENT_BUFFER_SIZE) {
2028 // The result buffer is full. Reset the pending event index
2029 // so we will try to read the device again on the next iteration.
2030 mPendingEventIndex -= 1;
2031 break;
2032 }
2033 }
2034 } else if (eventItem.events & EPOLLHUP) {
2035 ALOGI("Removing device %s due to epoll hang-up event.",
2036 device->identifier.name.c_str());
2037 deviceChanged = true;
2038 closeDeviceLocked(*device);
2039 } else {
2040 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
2041 device->identifier.name.c_str());
2042 }
2043 }
2044
2045 // readNotify() will modify the list of devices so this must be done after
2046 // processing all other events to ensure that we read all remaining events
2047 // before closing the devices.
2048 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
2049 mPendingINotify = false;
2050 const auto res = readNotifyLocked();
2051 if (!res.ok()) {
2052 ALOGW("Failed to read from inotify: %s", res.error().message().c_str());
2053 }
2054 deviceChanged = true;
2055 }
2056
2057 // Report added or removed devices immediately.
2058 if (deviceChanged) {
2059 continue;
2060 }
2061
2062 // Return now if we have collected any events or if we were explicitly awoken.
2063 if (!events.empty() || awoken) {
2064 break;
2065 }
2066
2067 // Poll for events.
2068 // When a device driver has pending (unread) events, it acquires
2069 // a kernel wake lock. Once the last pending event has been read, the device
2070 // driver will release the kernel wake lock, but the epoll will hold the wakelock,
2071 // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
2072 // is called again for the same fd that produced the event.
2073 // Thus the system can only sleep if there are no events pending or
2074 // currently being processed.
2075 //
2076 // The timeout is advisory only. If the device is asleep, it will not wake just to
2077 // service the timeout.
2078 mPendingEventIndex = 0;
2079
2080 mLock.unlock(); // release lock before poll
2081
2082 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
2083
2084 mLock.lock(); // reacquire lock after poll
2085
2086 if (pollResult == 0) {
2087 // Timed out.
2088 mPendingEventCount = 0;
2089 break;
2090 }
2091
2092 if (pollResult < 0) {
2093 // An error occurred.
2094 mPendingEventCount = 0;
2095
2096 // Sleep after errors to avoid locking up the system.
2097 // Hopefully the error is transient.
2098 if (errno != EINTR) {
2099 ALOGW("poll failed (errno=%d)\n", errno);
2100 usleep(100000);
2101 }
2102 } else {
2103 // Some events occurred.
2104 mPendingEventCount = size_t(pollResult);
2105 }
2106 }
2107
2108 // All done, return the number of events we read.
2109 return events;
2110 }
2111
getVideoFrames(int32_t deviceId)2112 std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
2113 std::scoped_lock _l(mLock);
2114
2115 Device* device = getDeviceLocked(deviceId);
2116 if (device == nullptr || !device->videoDevice) {
2117 return {};
2118 }
2119 return device->videoDevice->consumeFrames();
2120 }
2121
wake()2122 void EventHub::wake() {
2123 ALOGV("wake() called");
2124
2125 ssize_t nWrite;
2126 do {
2127 nWrite = write(mWakeWritePipeFd, "W", 1);
2128 } while (nWrite == -1 && errno == EINTR);
2129
2130 if (nWrite != 1 && errno != EAGAIN) {
2131 ALOGW("Could not write wake signal: %s", strerror(errno));
2132 }
2133 }
2134
scanDevicesLocked()2135 void EventHub::scanDevicesLocked() {
2136 status_t result;
2137 std::error_code errorCode;
2138
2139 if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
2140 result = scanDirLocked(DEVICE_INPUT_PATH);
2141 if (result < 0) {
2142 ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH);
2143 }
2144 } else {
2145 if (errorCode) {
2146 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
2147 errorCode.message().c_str());
2148 }
2149 }
2150 if (isV4lScanningEnabled()) {
2151 result = scanVideoDirLocked(DEVICE_PATH);
2152 if (result != OK) {
2153 ALOGE("scan video dir failed for %s", DEVICE_PATH);
2154 }
2155 }
2156 if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
2157 createVirtualKeyboardLocked();
2158 }
2159 }
2160
2161 // ----------------------------------------------------------------------------
2162
registerFdForEpoll(int fd)2163 status_t EventHub::registerFdForEpoll(int fd) {
2164 // TODO(b/121395353) - consider adding EPOLLRDHUP
2165 struct epoll_event eventItem = {};
2166 eventItem.events = EPOLLIN | EPOLLWAKEUP;
2167 eventItem.data.fd = fd;
2168 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
2169 ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
2170 return -errno;
2171 }
2172 return OK;
2173 }
2174
unregisterFdFromEpoll(int fd)2175 status_t EventHub::unregisterFdFromEpoll(int fd) {
2176 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
2177 ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
2178 return -errno;
2179 }
2180 return OK;
2181 }
2182
registerDeviceForEpollLocked(Device & device)2183 status_t EventHub::registerDeviceForEpollLocked(Device& device) {
2184 status_t result = registerFdForEpoll(device.fd);
2185 if (result != OK) {
2186 ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
2187 return result;
2188 }
2189 if (device.videoDevice) {
2190 registerVideoDeviceForEpollLocked(*device.videoDevice);
2191 }
2192 return result;
2193 }
2194
registerVideoDeviceForEpollLocked(const TouchVideoDevice & videoDevice)2195 void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
2196 status_t result = registerFdForEpoll(videoDevice.getFd());
2197 if (result != OK) {
2198 ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
2199 }
2200 }
2201
unregisterDeviceFromEpollLocked(Device & device)2202 status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
2203 if (device.hasValidFd()) {
2204 status_t result = unregisterFdFromEpoll(device.fd);
2205 if (result != OK) {
2206 ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
2207 return result;
2208 }
2209 }
2210 if (device.videoDevice) {
2211 unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
2212 }
2213 return OK;
2214 }
2215
unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice & videoDevice)2216 void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
2217 if (videoDevice.hasValidFd()) {
2218 status_t result = unregisterFdFromEpoll(videoDevice.getFd());
2219 if (result != OK) {
2220 ALOGW("Could not remove video device fd from epoll for device: %s",
2221 videoDevice.getName().c_str());
2222 }
2223 }
2224 }
2225
reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier & identifier,ftl::Flags<InputDeviceClass> classes)2226 void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
2227 ftl::Flags<InputDeviceClass> classes) {
2228 SHA256_CTX ctx;
2229 SHA256_Init(&ctx);
2230 SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
2231 identifier.uniqueId.size());
2232 std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
2233 SHA256_Final(digest.data(), &ctx);
2234
2235 std::string obfuscatedId;
2236 for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
2237 obfuscatedId += StringPrintf("%02x", digest[i]);
2238 }
2239
2240 android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
2241 identifier.vendor, identifier.product, identifier.version,
2242 identifier.bus, obfuscatedId.c_str(), classes.get());
2243 }
2244
openDeviceLocked(const std::string & devicePath)2245 void EventHub::openDeviceLocked(const std::string& devicePath) {
2246 // If an input device happens to register around the time when EventHub's constructor runs, it
2247 // is possible that the same input event node (for example, /dev/input/event3) will be noticed
2248 // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
2249 // from getting registered, ensure that this path is not already covered by an existing device.
2250 for (const auto& [deviceId, device] : mDevices) {
2251 if (device->path == devicePath) {
2252 return; // device was already registered
2253 }
2254 }
2255
2256 char buffer[80];
2257
2258 ALOGV("Opening device: %s", devicePath.c_str());
2259
2260 int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
2261 if (fd < 0) {
2262 ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
2263 return;
2264 }
2265
2266 InputDeviceIdentifier identifier;
2267
2268 // Get device name.
2269 if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
2270 ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
2271 } else {
2272 buffer[sizeof(buffer) - 1] = '\0';
2273 identifier.name = buffer;
2274 }
2275
2276 // Check to see if the device is on our excluded list
2277 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
2278 const std::string& item = mExcludedDevices[i];
2279 if (identifier.name == item) {
2280 ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
2281 close(fd);
2282 return;
2283 }
2284 }
2285
2286 // Get device driver version.
2287 int driverVersion;
2288 if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
2289 ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
2290 close(fd);
2291 return;
2292 }
2293
2294 // Get device identifier.
2295 struct input_id inputId;
2296 if (ioctl(fd, EVIOCGID, &inputId)) {
2297 ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
2298 close(fd);
2299 return;
2300 }
2301 identifier.bus = inputId.bustype;
2302 identifier.product = inputId.product;
2303 identifier.vendor = inputId.vendor;
2304 identifier.version = inputId.version;
2305
2306 // Get device physical location.
2307 if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
2308 // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
2309 } else {
2310 buffer[sizeof(buffer) - 1] = '\0';
2311 identifier.location = buffer;
2312 }
2313
2314 // Get device unique id.
2315 if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
2316 // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
2317 } else {
2318 buffer[sizeof(buffer) - 1] = '\0';
2319 identifier.uniqueId = buffer;
2320 }
2321
2322 // Attempt to get the bluetooth address of an input device from the uniqueId.
2323 if (identifier.bus == BUS_BLUETOOTH &&
2324 std::regex_match(identifier.uniqueId,
2325 std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) {
2326 identifier.bluetoothAddress = identifier.uniqueId;
2327 // The Bluetooth stack requires alphabetic characters to be uppercase in a valid address.
2328 for (auto& c : *identifier.bluetoothAddress) {
2329 c = ::toupper(c);
2330 }
2331 }
2332
2333 // Fill in the descriptor.
2334 assignDescriptorLocked(identifier);
2335
2336 // Allocate device. (The device object takes ownership of the fd at this point.)
2337 int32_t deviceId = mNextDeviceId++;
2338 std::unique_ptr<Device> device =
2339 std::make_unique<Device>(fd, deviceId, devicePath, identifier,
2340 obtainAssociatedDeviceLocked(devicePath));
2341
2342 ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
2343 ALOGV(" bus: %04x\n"
2344 " vendor %04x\n"
2345 " product %04x\n"
2346 " version %04x\n",
2347 identifier.bus, identifier.vendor, identifier.product, identifier.version);
2348 ALOGV(" name: \"%s\"\n", identifier.name.c_str());
2349 ALOGV(" location: \"%s\"\n", identifier.location.c_str());
2350 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
2351 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
2352 ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
2353 driverVersion & 0xff);
2354
2355 // Load the configuration file for the device.
2356 device->loadConfigurationLocked();
2357
2358 // Figure out the kinds of events the device reports.
2359 device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
2360 device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
2361 device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
2362 device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
2363 device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
2364 device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
2365 device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
2366 device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
2367
2368 // See if this is a device with keys. This could be full keyboard, or other devices like
2369 // gamepads, joysticks, and styluses with buttons that should generate key presses.
2370 bool haveKeyboardKeys =
2371 device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
2372 bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
2373 device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
2374 bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) ||
2375 device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3);
2376 if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) {
2377 device->classes |= InputDeviceClass::KEYBOARD;
2378 }
2379
2380 // See if this is a cursor device such as a trackball or mouse.
2381 if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
2382 device->relBitmask.test(REL_Y)) {
2383 device->classes |= InputDeviceClass::CURSOR;
2384 }
2385
2386 // See if the device is specially configured to be of a certain type.
2387 if (device->configuration) {
2388 std::string deviceType = device->configuration->getString("device.type").value_or("");
2389 if (deviceType == "rotaryEncoder") {
2390 device->classes |= InputDeviceClass::ROTARY_ENCODER;
2391 } else if (deviceType == "externalStylus") {
2392 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2393 }
2394 }
2395
2396 // See if this is a touch pad.
2397 // Is this a new modern multi-touch driver?
2398 if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
2399 // Some joysticks such as the PS3 controller report axes that conflict
2400 // with the ABS_MT range. Try to confirm that the device really is
2401 // a touch screen.
2402 if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
2403 device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
2404 if (device->propBitmask.test(INPUT_PROP_POINTER) &&
2405 !device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) {
2406 device->classes |= InputDeviceClass::TOUCHPAD;
2407 }
2408 }
2409 // Is this an old style single-touch driver?
2410 } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
2411 device->absBitmask.test(ABS_Y)) {
2412 device->classes |= InputDeviceClass::TOUCH;
2413 // Is this a stylus that reports contact/pressure independently of touch coordinates?
2414 } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
2415 !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
2416 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2417 }
2418
2419 // See if this device is a joystick.
2420 // Assumes that joysticks always have gamepad buttons in order to distinguish them
2421 // from other devices such as accelerometers that also have absolute axes.
2422 if (haveGamepadButtons) {
2423 auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
2424 for (int i = 0; i <= ABS_MAX; i++) {
2425 if (device->absBitmask.test(i) &&
2426 (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
2427 device->classes = assumedClasses;
2428 break;
2429 }
2430 }
2431 }
2432
2433 // Check whether this device is an accelerometer.
2434 if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
2435 device->classes |= InputDeviceClass::SENSOR;
2436 }
2437
2438 // Check whether this device has switches.
2439 for (int i = 0; i <= SW_MAX; i++) {
2440 if (device->swBitmask.test(i)) {
2441 device->classes |= InputDeviceClass::SWITCH;
2442 break;
2443 }
2444 }
2445
2446 // Check whether this device supports the vibrator.
2447 if (device->ffBitmask.test(FF_RUMBLE)) {
2448 device->classes |= InputDeviceClass::VIBRATOR;
2449 }
2450
2451 // Configure virtual keys.
2452 if ((device->classes.test(InputDeviceClass::TOUCH))) {
2453 // Load the virtual keys for the touch screen, if any.
2454 // We do this now so that we can make sure to load the keymap if necessary.
2455 bool success = device->loadVirtualKeyMapLocked();
2456 if (success) {
2457 device->classes |= InputDeviceClass::KEYBOARD;
2458 }
2459 }
2460
2461 // Load the key map.
2462 // We need to do this for joysticks too because the key layout may specify axes, and for
2463 // sensor as well because the key layout may specify the axes to sensor data mapping.
2464 status_t keyMapStatus = NAME_NOT_FOUND;
2465 if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
2466 InputDeviceClass::SENSOR)) {
2467 // Load the keymap for the device.
2468 keyMapStatus = device->loadKeyMapLocked();
2469 }
2470
2471 // Configure the keyboard, gamepad or virtual keyboard.
2472 if (device->classes.test(InputDeviceClass::KEYBOARD)) {
2473 // Register the keyboard as a built-in keyboard if it is eligible.
2474 if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
2475 isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
2476 &device->keyMap)) {
2477 mBuiltInKeyboardId = device->id;
2478 }
2479
2480 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
2481 if (device->hasKeycodeLocked(AKEYCODE_Q)) {
2482 device->classes |= InputDeviceClass::ALPHAKEY;
2483 }
2484
2485 // See if this device has a D-pad.
2486 if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(),
2487 [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2488 device->classes |= InputDeviceClass::DPAD;
2489 }
2490
2491 // See if this device has a gamepad.
2492 if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(),
2493 [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2494 device->classes |= InputDeviceClass::GAMEPAD;
2495 }
2496
2497 // See if this device has any stylus buttons that we would want to fuse with touch data.
2498 if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) &&
2499 !device->classes.any(InputDeviceClass::ALPHAKEY) &&
2500 std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(),
2501 [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2502 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2503 }
2504 }
2505
2506 // If the device isn't recognized as something we handle, don't monitor it.
2507 if (device->classes == ftl::Flags<InputDeviceClass>(0)) {
2508 ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
2509 device->identifier.name.c_str());
2510 return;
2511 }
2512
2513 // Classify InputDeviceClass::BATTERY.
2514 if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) {
2515 device->classes |= InputDeviceClass::BATTERY;
2516 }
2517
2518 // Classify InputDeviceClass::LIGHT.
2519 if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) {
2520 device->classes |= InputDeviceClass::LIGHT;
2521 }
2522
2523 // Determine whether the device has a mic.
2524 if (device->deviceHasMicLocked()) {
2525 device->classes |= InputDeviceClass::MIC;
2526 }
2527
2528 // Determine whether the device is external or internal.
2529 if (device->isExternalDeviceLocked()) {
2530 device->classes |= InputDeviceClass::EXTERNAL;
2531 }
2532
2533 if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
2534 device->classes.test(InputDeviceClass::GAMEPAD)) {
2535 device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
2536 device->setLedForControllerLocked();
2537 }
2538
2539 if (registerDeviceForEpollLocked(*device) != OK) {
2540 return;
2541 }
2542
2543 device->configureFd();
2544
2545 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
2546 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
2547 deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
2548 device->classes.string().c_str(), device->configurationFile.c_str(),
2549 device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
2550 toString(mBuiltInKeyboardId == deviceId));
2551
2552 addDeviceLocked(std::move(device));
2553 }
2554
openVideoDeviceLocked(const std::string & devicePath)2555 void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
2556 std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
2557 if (!videoDevice) {
2558 ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
2559 return;
2560 }
2561 // Transfer ownership of this video device to a matching input device
2562 for (const auto& [id, device] : mDevices) {
2563 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
2564 return; // 'device' now owns 'videoDevice'
2565 }
2566 }
2567
2568 // Couldn't find a matching input device, so just add it to a temporary holding queue.
2569 // A matching input device may appear later.
2570 ALOGI("Adding video device %s to list of unattached video devices",
2571 videoDevice->getName().c_str());
2572 mUnattachedVideoDevices.push_back(std::move(videoDevice));
2573 }
2574
tryAddVideoDeviceLocked(EventHub::Device & device,std::unique_ptr<TouchVideoDevice> & videoDevice)2575 bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
2576 std::unique_ptr<TouchVideoDevice>& videoDevice) {
2577 if (videoDevice->getName() != device.identifier.name) {
2578 return false;
2579 }
2580 device.videoDevice = std::move(videoDevice);
2581 if (device.enabled) {
2582 registerVideoDeviceForEpollLocked(*device.videoDevice);
2583 }
2584 return true;
2585 }
2586
isDeviceEnabled(int32_t deviceId) const2587 bool EventHub::isDeviceEnabled(int32_t deviceId) const {
2588 std::scoped_lock _l(mLock);
2589 Device* device = getDeviceLocked(deviceId);
2590 if (device == nullptr) {
2591 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2592 return false;
2593 }
2594 return device->enabled;
2595 }
2596
enableDevice(int32_t deviceId)2597 status_t EventHub::enableDevice(int32_t deviceId) {
2598 std::scoped_lock _l(mLock);
2599 Device* device = getDeviceLocked(deviceId);
2600 if (device == nullptr) {
2601 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2602 return BAD_VALUE;
2603 }
2604 if (device->enabled) {
2605 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
2606 return OK;
2607 }
2608 status_t result = device->enable();
2609 if (result != OK) {
2610 ALOGE("Failed to enable device %" PRId32, deviceId);
2611 return result;
2612 }
2613
2614 device->configureFd();
2615
2616 return registerDeviceForEpollLocked(*device);
2617 }
2618
disableDevice(int32_t deviceId)2619 status_t EventHub::disableDevice(int32_t deviceId) {
2620 std::scoped_lock _l(mLock);
2621 Device* device = getDeviceLocked(deviceId);
2622 if (device == nullptr) {
2623 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2624 return BAD_VALUE;
2625 }
2626 if (!device->enabled) {
2627 ALOGW("Duplicate call to %s, input device already disabled", __func__);
2628 return OK;
2629 }
2630 unregisterDeviceFromEpollLocked(*device);
2631 return device->disable();
2632 }
2633
2634 // TODO(b/274755573): Shift to uevent handling on native side and remove this method
2635 // Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a
2636 // NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to
2637 // directly observe UEvents instead of triggering from Java side.
sysfsNodeChanged(const std::string & sysfsNodePath)2638 void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) {
2639 std::scoped_lock _l(mLock);
2640
2641 // Check in opening devices
2642 for (auto it = mOpeningDevices.begin(); it != mOpeningDevices.end(); it++) {
2643 std::unique_ptr<Device>& device = *it;
2644 if (device->associatedDevice &&
2645 sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
2646 std::string::npos &&
2647 device->associatedDevice->isChanged()) {
2648 it = mOpeningDevices.erase(it);
2649 openDeviceLocked(device->path);
2650 }
2651 }
2652
2653 // Check in already added device
2654 std::vector<Device*> devicesToReopen;
2655 for (const auto& [id, device] : mDevices) {
2656 if (device->associatedDevice &&
2657 sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
2658 std::string::npos &&
2659 device->associatedDevice->isChanged()) {
2660 devicesToReopen.push_back(device.get());
2661 }
2662 }
2663 for (const auto& device : devicesToReopen) {
2664 closeDeviceLocked(*device);
2665 openDeviceLocked(device->path);
2666 }
2667 devicesToReopen.clear();
2668 }
2669
createVirtualKeyboardLocked()2670 void EventHub::createVirtualKeyboardLocked() {
2671 InputDeviceIdentifier identifier;
2672 identifier.name = "Virtual";
2673 identifier.uniqueId = "<virtual>";
2674 assignDescriptorLocked(identifier);
2675
2676 std::unique_ptr<Device> device =
2677 std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
2678 identifier, /*associatedDevice=*/nullptr);
2679 device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
2680 InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
2681 device->loadKeyMapLocked();
2682 addDeviceLocked(std::move(device));
2683 }
2684
addDeviceLocked(std::unique_ptr<Device> device)2685 void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
2686 reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
2687 mOpeningDevices.push_back(std::move(device));
2688 }
2689
getNextControllerNumberLocked(const std::string & name)2690 int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
2691 if (mControllerNumbers.isFull()) {
2692 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
2693 name.c_str());
2694 return 0;
2695 }
2696 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
2697 // one
2698 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
2699 }
2700
releaseControllerNumberLocked(int32_t num)2701 void EventHub::releaseControllerNumberLocked(int32_t num) {
2702 if (num > 0) {
2703 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
2704 }
2705 }
2706
closeDeviceByPathLocked(const std::string & devicePath)2707 void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
2708 Device* device = getDeviceByPathLocked(devicePath);
2709 if (device != nullptr) {
2710 closeDeviceLocked(*device);
2711 return;
2712 }
2713 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
2714 }
2715
2716 /**
2717 * Find the video device by filename, and close it.
2718 * The video device is closed by path during an inotify event, where we don't have the
2719 * additional context about the video device fd, or the associated input device.
2720 */
closeVideoDeviceByPathLocked(const std::string & devicePath)2721 void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
2722 // A video device may be owned by an existing input device, or it may be stored in
2723 // the mUnattachedVideoDevices queue. Check both locations.
2724 for (const auto& [id, device] : mDevices) {
2725 if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
2726 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2727 device->videoDevice = nullptr;
2728 return;
2729 }
2730 }
2731 std::erase_if(mUnattachedVideoDevices,
2732 [&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) {
2733 return videoDevice->getPath() == devicePath;
2734 });
2735 }
2736
closeAllDevicesLocked()2737 void EventHub::closeAllDevicesLocked() {
2738 mUnattachedVideoDevices.clear();
2739 while (!mDevices.empty()) {
2740 closeDeviceLocked(*(mDevices.begin()->second));
2741 }
2742 }
2743
closeDeviceLocked(Device & device)2744 void EventHub::closeDeviceLocked(Device& device) {
2745 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
2746 device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
2747
2748 if (device.id == mBuiltInKeyboardId) {
2749 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
2750 device.path.c_str(), mBuiltInKeyboardId);
2751 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
2752 }
2753
2754 unregisterDeviceFromEpollLocked(device);
2755 if (device.videoDevice) {
2756 // This must be done after the video device is removed from epoll
2757 mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
2758 }
2759
2760 releaseControllerNumberLocked(device.controllerNumber);
2761 device.controllerNumber = 0;
2762 device.close();
2763 mClosingDevices.push_back(std::move(mDevices[device.id]));
2764
2765 mDevices.erase(device.id);
2766 }
2767
readNotifyLocked()2768 base::Result<void> EventHub::readNotifyLocked() {
2769 static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event));
2770 uint8_t eventBuffer[512];
2771 ssize_t sizeRead;
2772
2773 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
2774 do {
2775 sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer));
2776 } while (sizeRead < 0 && errno == EINTR);
2777
2778 if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno));
2779
2780 for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) {
2781 const inotify_event* event;
2782 event = (const inotify_event*)(eventBuffer + eventPos);
2783 if (event->len == 0) continue;
2784
2785 handleNotifyEventLocked(*event);
2786
2787 const ssize_t eventSize = EVENT_SIZE + event->len;
2788 sizeRead -= eventSize;
2789 eventPos += eventSize;
2790 }
2791 return {};
2792 }
2793
handleNotifyEventLocked(const inotify_event & event)2794 void EventHub::handleNotifyEventLocked(const inotify_event& event) {
2795 if (event.wd == mDeviceInputWd) {
2796 std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name;
2797 if (event.mask & IN_CREATE) {
2798 openDeviceLocked(filename);
2799 } else {
2800 ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
2801 closeDeviceByPathLocked(filename);
2802 }
2803 } else if (event.wd == mDeviceWd) {
2804 if (isV4lTouchNode(event.name)) {
2805 std::string filename = std::string(DEVICE_PATH) + "/" + event.name;
2806 if (event.mask & IN_CREATE) {
2807 openVideoDeviceLocked(filename);
2808 } else {
2809 ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
2810 closeVideoDeviceByPathLocked(filename);
2811 }
2812 } else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) {
2813 addDeviceInputInotify();
2814 }
2815 } else {
2816 LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd);
2817 }
2818 }
2819
scanDirLocked(const std::string & dirname)2820 status_t EventHub::scanDirLocked(const std::string& dirname) {
2821 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2822 openDeviceLocked(entry.path());
2823 }
2824 return 0;
2825 }
2826
2827 /**
2828 * Look for all dirname/v4l-touch* devices, and open them.
2829 */
scanVideoDirLocked(const std::string & dirname)2830 status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
2831 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2832 if (isV4lTouchNode(entry.path())) {
2833 ALOGI("Found touch video device %s", entry.path().c_str());
2834 openVideoDeviceLocked(entry.path());
2835 }
2836 }
2837 return OK;
2838 }
2839
requestReopenDevices()2840 void EventHub::requestReopenDevices() {
2841 ALOGV("requestReopenDevices() called");
2842
2843 std::scoped_lock _l(mLock);
2844 mNeedToReopenDevices = true;
2845 }
2846
dump(std::string & dump) const2847 void EventHub::dump(std::string& dump) const {
2848 dump += "Event Hub State:\n";
2849
2850 { // acquire lock
2851 std::scoped_lock _l(mLock);
2852
2853 dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
2854
2855 dump += INDENT "Devices:\n";
2856
2857 for (const auto& [id, device] : mDevices) {
2858 if (mBuiltInKeyboardId == device->id) {
2859 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
2860 device->id, device->identifier.name.c_str());
2861 } else {
2862 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
2863 device->identifier.name.c_str());
2864 }
2865 dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
2866 dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
2867 dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
2868 dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
2869 dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
2870 dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
2871 dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
2872 dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
2873 "product=0x%04x, version=0x%04x, bluetoothAddress=%s\n",
2874 device->identifier.bus, device->identifier.vendor,
2875 device->identifier.product, device->identifier.version,
2876 toString(device->identifier.bluetoothAddress).c_str());
2877 dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
2878 device->keyMap.keyLayoutFile.c_str());
2879 dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
2880 device->keyMap.keyCharacterMapFile.c_str());
2881 if (device->associatedDevice && device->associatedDevice->layoutInfo) {
2882 dump += StringPrintf(INDENT3 "LanguageTag: %s\n",
2883 device->associatedDevice->layoutInfo->languageTag.c_str());
2884 dump += StringPrintf(INDENT3 "LayoutType: %s\n",
2885 device->associatedDevice->layoutInfo->layoutType.c_str());
2886 }
2887 dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
2888 device->configurationFile.c_str());
2889 dump += StringPrintf(INDENT3 "VideoDevice: %s\n",
2890 device->videoDevice ? device->videoDevice->dump().c_str()
2891 : "<none>");
2892 dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n",
2893 device->associatedDevice
2894 ? device->associatedDevice->sysfsRootPath.c_str()
2895 : "<none>");
2896 if (device->keyBitmask.any(0, KEY_MAX + 1)) {
2897 const auto pressedKeys = device->keyState.dumpSetIndices(", ", [](int i) {
2898 return InputEventLookup::getLinuxEvdevLabel(EV_KEY, i, 1).code;
2899 });
2900 dump += StringPrintf(INDENT3 "KeyState (pressed): %s\n", pressedKeys.c_str());
2901 }
2902 if (device->swBitmask.any(0, SW_MAX + 1)) {
2903 const auto pressedSwitches = device->swState.dumpSetIndices(", ", [](int i) {
2904 return InputEventLookup::getLinuxEvdevLabel(EV_SW, i, 1).code;
2905 });
2906 dump += StringPrintf(INDENT3 "SwState (pressed): %s\n", pressedSwitches.c_str());
2907 }
2908 if (!device->absState.empty()) {
2909 std::string axisValues;
2910 for (const auto& [axis, state] : device->absState) {
2911 if (!axisValues.empty()) {
2912 axisValues += ", ";
2913 }
2914 axisValues += StringPrintf("%s=%d",
2915 InputEventLookup::getLinuxEvdevLabel(EV_ABS, axis, 0)
2916 .code.c_str(),
2917 state.value);
2918 }
2919 dump += INDENT3 "AbsState: " + axisValues + "\n";
2920 }
2921 }
2922
2923 dump += INDENT "Unattached video devices:\n";
2924 for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
2925 dump += INDENT2 + videoDevice->dump() + "\n";
2926 }
2927 if (mUnattachedVideoDevices.empty()) {
2928 dump += INDENT2 "<none>\n";
2929 }
2930 } // release lock
2931 }
2932
monitor() const2933 void EventHub::monitor() const {
2934 // Acquire and release the lock to ensure that the event hub has not deadlocked.
2935 std::unique_lock<std::mutex> lock(mLock);
2936 }
2937
dump() const2938 std::string EventHub::AssociatedDevice::dump() const {
2939 return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(),
2940 batteryInfos.size(), lightInfos.size());
2941 }
2942
2943 } // namespace android
2944