1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define TRACE_TAG SYSDEPS
18
19 #include "sysdeps.h"
20
21 #include <lmcons.h>
22 #include <windows.h>
23 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
24
25 #include <errno.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28
29 #include <algorithm>
30 #include <memory>
31 #include <mutex>
32 #include <string>
33 #include <string_view>
34 #include <unordered_map>
35 #include <vector>
36
37 #include <cutils/sockets.h>
38
39 #include <android-base/errors.h>
40 #include <android-base/file.h>
41 #include <android-base/logging.h>
42 #include <android-base/macros.h>
43 #include <android-base/stringprintf.h>
44 #include <android-base/strings.h>
45 #include <android-base/utf8.h>
46
47 #include "adb.h"
48 #include "adb_utils.h"
49
50 #include "sysdeps/uio.h"
51
52 /* forward declarations */
53
54 typedef const struct FHClassRec_* FHClass;
55 typedef struct FHRec_* FH;
56
57 typedef struct FHClassRec_ {
58 void (*_fh_init)(FH);
59 int (*_fh_close)(FH);
60 int64_t (*_fh_lseek)(FH, int64_t, int);
61 int (*_fh_read)(FH, void*, int);
62 int (*_fh_write)(FH, const void*, int);
63 int (*_fh_writev)(FH, const adb_iovec*, int);
64 intptr_t (*_fh_get_os_handle)(FH);
65 } FHClassRec;
66
67 static void _fh_file_init(FH);
68 static int _fh_file_close(FH);
69 static int64_t _fh_file_lseek(FH, int64_t, int);
70 static int _fh_file_read(FH, void*, int);
71 static int _fh_file_write(FH, const void*, int);
72 static int _fh_file_writev(FH, const adb_iovec*, int);
73 static intptr_t _fh_file_get_os_handle(FH f);
74
75 static const FHClassRec _fh_file_class = {
76 _fh_file_init, _fh_file_close, _fh_file_lseek, _fh_file_read,
77 _fh_file_write, _fh_file_writev, _fh_file_get_os_handle,
78 };
79
80 static void _fh_socket_init(FH);
81 static int _fh_socket_close(FH);
82 static int64_t _fh_socket_lseek(FH, int64_t, int);
83 static int _fh_socket_read(FH, void*, int);
84 static int _fh_socket_write(FH, const void*, int);
85 static int _fh_socket_writev(FH, const adb_iovec*, int);
86 static intptr_t _fh_socket_get_os_handle(FH f);
87
88 static const FHClassRec _fh_socket_class = {
89 _fh_socket_init, _fh_socket_close, _fh_socket_lseek, _fh_socket_read,
90 _fh_socket_write, _fh_socket_writev, _fh_socket_get_os_handle,
91 };
92
93 #if defined(assert)
94 #undef assert
95 #endif
96
operator ()(HANDLE h)97 void handle_deleter::operator()(HANDLE h) {
98 // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
99 // implying that NULL is a valid handle, but this is probably impossible.
100 // Other APIs like CreateEvent() are documented to return NULL on error,
101 // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
102 // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
103 // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
104 // only need to check for INVALID_HANDLE_VALUE.
105 if (h != INVALID_HANDLE_VALUE) {
106 if (!CloseHandle(h)) {
107 D("CloseHandle(%p) failed: %s", h,
108 android::base::SystemErrorCodeToString(GetLastError()).c_str());
109 }
110 }
111 }
112
113 /**************************************************************************/
114 /**************************************************************************/
115 /***** *****/
116 /***** common file descriptor handling *****/
117 /***** *****/
118 /**************************************************************************/
119 /**************************************************************************/
120
121 typedef struct FHRec_
122 {
123 FHClass clazz;
124 int used;
125 int eof;
126 union {
127 HANDLE handle;
128 SOCKET socket;
129 } u;
130
131 char name[32];
132 } FHRec;
133
134 #define fh_handle u.handle
135 #define fh_socket u.socket
136
137 #define WIN32_FH_BASE 2048
138 #define WIN32_MAX_FHS 2048
139
140 static std::mutex& _win32_lock = *new std::mutex();
141 static FHRec _win32_fhs[ WIN32_MAX_FHS ];
142 static int _win32_fh_next; // where to start search for free FHRec
143
_fh_from_int(borrowed_fd bfd,const char * func)144 static FH _fh_from_int(borrowed_fd bfd, const char* func) {
145 FH f;
146
147 int fd = bfd.get();
148 fd -= WIN32_FH_BASE;
149
150 if (fd < 0 || fd >= WIN32_MAX_FHS) {
151 D("_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, func);
152 errno = EBADF;
153 return nullptr;
154 }
155
156 f = &_win32_fhs[fd];
157
158 if (f->used == 0) {
159 D("_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, func);
160 errno = EBADF;
161 return nullptr;
162 }
163
164 return f;
165 }
166
_fh_to_int(FH f)167 static int _fh_to_int(FH f) {
168 if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
169 return (int)(f - _win32_fhs) + WIN32_FH_BASE;
170
171 return -1;
172 }
173
_fh_alloc(FHClass clazz)174 static FH _fh_alloc(FHClass clazz) {
175 FH f = nullptr;
176
177 std::lock_guard<std::mutex> lock(_win32_lock);
178
179 for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
180 if (_win32_fhs[i].clazz == nullptr) {
181 f = &_win32_fhs[i];
182 _win32_fh_next = i + 1;
183 f->clazz = clazz;
184 f->used = 1;
185 f->eof = 0;
186 f->name[0] = '\0';
187 clazz->_fh_init(f);
188 return f;
189 }
190 }
191
192 D("_fh_alloc: no more free file descriptors");
193 errno = EMFILE; // Too many open files
194 return nullptr;
195 }
196
_fh_close(FH f)197 static int _fh_close(FH f) {
198 // Use lock so that closing only happens once and so that _fh_alloc can't
199 // allocate a FH that we're in the middle of closing.
200 std::lock_guard<std::mutex> lock(_win32_lock);
201
202 int offset = f - _win32_fhs;
203 if (_win32_fh_next > offset) {
204 _win32_fh_next = offset;
205 }
206
207 if (f->used) {
208 f->clazz->_fh_close( f );
209 f->name[0] = '\0';
210 f->eof = 0;
211 f->used = 0;
212 f->clazz = nullptr;
213 }
214 return 0;
215 }
216
217 // Deleter for unique_fh.
218 class fh_deleter {
219 public:
operator ()(struct FHRec_ * fh)220 void operator()(struct FHRec_* fh) {
221 // We're called from a destructor and destructors should not overwrite
222 // errno because callers may do:
223 // errno = EBLAH;
224 // return -1; // calls destructor, which should not overwrite errno
225 const int saved_errno = errno;
226 _fh_close(fh);
227 errno = saved_errno;
228 }
229 };
230
231 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
232 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
233
234 /**************************************************************************/
235 /**************************************************************************/
236 /***** *****/
237 /***** file-based descriptor handling *****/
238 /***** *****/
239 /**************************************************************************/
240 /**************************************************************************/
241
_fh_file_init(FH f)242 static void _fh_file_init(FH f) {
243 f->fh_handle = INVALID_HANDLE_VALUE;
244 }
245
_fh_file_close(FH f)246 static int _fh_file_close(FH f) {
247 CloseHandle(f->fh_handle);
248 f->fh_handle = INVALID_HANDLE_VALUE;
249 return 0;
250 }
251
_fh_file_read(FH f,void * buf,int len)252 static int _fh_file_read(FH f, void* buf, int len) {
253 DWORD read_bytes;
254
255 if (!ReadFile(f->fh_handle, buf, (DWORD)len, &read_bytes, nullptr)) {
256 D("adb_read: could not read %d bytes from %s", len, f->name);
257 errno = EIO;
258 return -1;
259 } else if (read_bytes < (DWORD)len) {
260 f->eof = 1;
261 }
262 return read_bytes;
263 }
264
_fh_file_write(FH f,const void * buf,int len)265 static int _fh_file_write(FH f, const void* buf, int len) {
266 DWORD wrote_bytes;
267
268 if (!WriteFile(f->fh_handle, buf, (DWORD)len, &wrote_bytes, nullptr)) {
269 D("adb_file_write: could not write %d bytes from %s", len, f->name);
270 errno = EIO;
271 return -1;
272 } else if (wrote_bytes < (DWORD)len) {
273 f->eof = 1;
274 }
275 return wrote_bytes;
276 }
277
_fh_file_writev(FH f,const adb_iovec * iov,int iovcnt)278 static int _fh_file_writev(FH f, const adb_iovec* iov, int iovcnt) {
279 if (iovcnt <= 0) {
280 errno = EINVAL;
281 return -1;
282 }
283
284 DWORD wrote_bytes = 0;
285
286 for (int i = 0; i < iovcnt; ++i) {
287 ssize_t rc = _fh_file_write(f, iov[i].iov_base, iov[i].iov_len);
288 if (rc == -1) {
289 return wrote_bytes > 0 ? wrote_bytes : -1;
290 } else if (rc == 0) {
291 return wrote_bytes;
292 }
293
294 wrote_bytes += rc;
295
296 if (static_cast<size_t>(rc) < iov[i].iov_len) {
297 return wrote_bytes;
298 }
299 }
300
301 return wrote_bytes;
302 }
303
_fh_file_lseek(FH f,int64_t pos,int origin)304 static int64_t _fh_file_lseek(FH f, int64_t pos, int origin) {
305 DWORD method;
306 switch (origin) {
307 case SEEK_SET:
308 method = FILE_BEGIN;
309 break;
310 case SEEK_CUR:
311 method = FILE_CURRENT;
312 break;
313 case SEEK_END:
314 method = FILE_END;
315 break;
316 default:
317 errno = EINVAL;
318 return -1;
319 }
320
321 LARGE_INTEGER li = {.QuadPart = pos};
322 if (!SetFilePointerEx(f->fh_handle, li, &li, method)) {
323 errno = EIO;
324 return -1;
325 }
326 f->eof = 0;
327 return li.QuadPart;
328 }
329
_fh_file_get_os_handle(FH f)330 static intptr_t _fh_file_get_os_handle(FH f) {
331 return reinterpret_cast<intptr_t>(f->u.handle);
332 }
333
334 /**************************************************************************/
335 /**************************************************************************/
336 /***** *****/
337 /***** file-based descriptor handling *****/
338 /***** *****/
339 /**************************************************************************/
340 /**************************************************************************/
341
adb_open(const char * path,int options)342 int adb_open(const char* path, int options) {
343 FH f;
344
345 DWORD desiredAccess = 0;
346 DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
347
348 // CreateFileW is inherently O_CLOEXEC by default.
349 options &= ~O_CLOEXEC;
350
351 switch (options) {
352 case O_RDONLY:
353 desiredAccess = GENERIC_READ;
354 break;
355 case O_WRONLY:
356 desiredAccess = GENERIC_WRITE;
357 break;
358 case O_RDWR:
359 desiredAccess = GENERIC_READ | GENERIC_WRITE;
360 break;
361 default:
362 D("adb_open: invalid options (0x%0x)", options);
363 errno = EINVAL;
364 return -1;
365 }
366
367 f = _fh_alloc(&_fh_file_class);
368 if (!f) {
369 return -1;
370 }
371
372 std::wstring path_wide;
373 if (!android::base::UTF8ToWide(path, &path_wide)) {
374 return -1;
375 }
376 f->fh_handle =
377 CreateFileW(path_wide.c_str(), desiredAccess, shareMode, nullptr, OPEN_EXISTING, 0, nullptr);
378
379 if (f->fh_handle == INVALID_HANDLE_VALUE) {
380 const DWORD err = GetLastError();
381 _fh_close(f);
382 D("adb_open: could not open '%s': ", path);
383 switch (err) {
384 case ERROR_FILE_NOT_FOUND:
385 D("file not found");
386 errno = ENOENT;
387 return -1;
388
389 case ERROR_PATH_NOT_FOUND:
390 D("path not found");
391 errno = ENOTDIR;
392 return -1;
393
394 default:
395 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
396 errno = ENOENT;
397 return -1;
398 }
399 }
400
401 snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
402 D("adb_open: '%s' => fd %d", path, _fh_to_int(f));
403 return _fh_to_int(f);
404 }
405
406 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)407 int adb_creat(const char* path, int mode) {
408 FH f;
409
410 f = _fh_alloc(&_fh_file_class);
411 if (!f) {
412 return -1;
413 }
414
415 std::wstring path_wide;
416 if (!android::base::UTF8ToWide(path, &path_wide)) {
417 return -1;
418 }
419 f->fh_handle = CreateFileW(path_wide.c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
420 nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr);
421
422 if (f->fh_handle == INVALID_HANDLE_VALUE) {
423 const DWORD err = GetLastError();
424 _fh_close(f);
425 D("adb_creat: could not open '%s': ", path);
426 switch (err) {
427 case ERROR_FILE_NOT_FOUND:
428 D("file not found");
429 errno = ENOENT;
430 return -1;
431
432 case ERROR_PATH_NOT_FOUND:
433 D("path not found");
434 errno = ENOTDIR;
435 return -1;
436
437 default:
438 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
439 errno = ENOENT;
440 return -1;
441 }
442 }
443 snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
444 D("adb_creat: '%s' => fd %d", path, _fh_to_int(f));
445 return _fh_to_int(f);
446 }
447
adb_read(borrowed_fd fd,void * buf,int len)448 int adb_read(borrowed_fd fd, void* buf, int len) {
449 FH f = _fh_from_int(fd, __func__);
450
451 if (f == nullptr) {
452 errno = EBADF;
453 return -1;
454 }
455
456 return f->clazz->_fh_read(f, buf, len);
457 }
458
adb_pread(borrowed_fd fd,void * buf,int len,off64_t offset)459 int adb_pread(borrowed_fd fd, void* buf, int len, off64_t offset) {
460 OVERLAPPED overlapped = {};
461 overlapped.Offset = static_cast<DWORD>(offset);
462 overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
463 DWORD bytes_read;
464 if (!::ReadFile(adb_get_os_handle(fd), buf, static_cast<DWORD>(len), &bytes_read,
465 &overlapped)) {
466 D("adb_pread: could not read %d bytes from FD %d", len, fd.get());
467 switch (::GetLastError()) {
468 case ERROR_IO_PENDING:
469 errno = EAGAIN;
470 return -1;
471 default:
472 errno = EINVAL;
473 return -1;
474 }
475 }
476 return static_cast<int>(bytes_read);
477 }
478
adb_write(borrowed_fd fd,const void * buf,int len)479 int adb_write(borrowed_fd fd, const void* buf, int len) {
480 FH f = _fh_from_int(fd, __func__);
481
482 if (f == nullptr) {
483 errno = EBADF;
484 return -1;
485 }
486
487 return f->clazz->_fh_write(f, buf, len);
488 }
489
adb_writev(borrowed_fd fd,const adb_iovec * iov,int iovcnt)490 ssize_t adb_writev(borrowed_fd fd, const adb_iovec* iov, int iovcnt) {
491 FH f = _fh_from_int(fd, __func__);
492
493 if (f == nullptr) {
494 errno = EBADF;
495 return -1;
496 }
497
498 return f->clazz->_fh_writev(f, iov, iovcnt);
499 }
500
adb_pwrite(borrowed_fd fd,const void * buf,int len,off64_t offset)501 int adb_pwrite(borrowed_fd fd, const void* buf, int len, off64_t offset) {
502 OVERLAPPED params = {};
503 params.Offset = static_cast<DWORD>(offset);
504 params.OffsetHigh = static_cast<DWORD>(offset >> 32);
505 DWORD bytes_written = 0;
506 if (!::WriteFile(adb_get_os_handle(fd), buf, len, &bytes_written, ¶ms)) {
507 D("adb_pwrite: could not write %d bytes to FD %d", len, fd.get());
508 switch (::GetLastError()) {
509 case ERROR_IO_PENDING:
510 errno = EAGAIN;
511 return -1;
512 default:
513 errno = EINVAL;
514 return -1;
515 }
516 }
517 return static_cast<int>(bytes_written);
518 }
519
adb_lseek(borrowed_fd fd,int64_t pos,int where)520 int64_t adb_lseek(borrowed_fd fd, int64_t pos, int where) {
521 FH f = _fh_from_int(fd, __func__);
522 if (!f) {
523 errno = EBADF;
524 return -1;
525 }
526 return f->clazz->_fh_lseek(f, pos, where);
527 }
528
adb_close(int fd)529 int adb_close(int fd) {
530 FH f = _fh_from_int(fd, __func__);
531
532 if (!f) {
533 errno = EBADF;
534 return -1;
535 }
536
537 D("adb_close: %s", f->name);
538 _fh_close(f);
539 return 0;
540 }
541
adb_get_os_handle(borrowed_fd fd)542 HANDLE adb_get_os_handle(borrowed_fd fd) {
543 FH f = _fh_from_int(fd, __func__);
544
545 if (!f) {
546 errno = EBADF;
547 return nullptr;
548 }
549
550 D("adb_get_os_handle: %s", f->name);
551 const intptr_t intptr_handle = f->clazz->_fh_get_os_handle(f);
552 const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
553 return handle;
554 }
555
556 /**************************************************************************/
557 /**************************************************************************/
558 /***** *****/
559 /***** socket-based file descriptors *****/
560 /***** *****/
561 /**************************************************************************/
562 /**************************************************************************/
563
564 #undef setsockopt
565
_socket_set_errno(const DWORD err)566 static void _socket_set_errno( const DWORD err ) {
567 // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
568 // lot of POSIX and socket error codes, some of the resulting error codes
569 // are mapped to strings by adb_strerror().
570 switch ( err ) {
571 case 0: errno = 0; break;
572 // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
573 // case WSAEINTR: errno = EINTR; break;
574 case WSAEFAULT: errno = EFAULT; break;
575 case WSAEINVAL: errno = EINVAL; break;
576 case WSAEMFILE: errno = EMFILE; break;
577 // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
578 // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
579 // callers check specifically for EAGAIN.
580 case WSAEWOULDBLOCK: errno = EAGAIN; break;
581 case WSAENOTSOCK: errno = ENOTSOCK; break;
582 case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
583 case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break;
584 case WSAENETDOWN: errno = ENETDOWN; break;
585 case WSAENETRESET: errno = ENETRESET; break;
586 // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
587 // to use EPIPE for these situations and there are some callers that look
588 // for EPIPE.
589 case WSAECONNABORTED: errno = EPIPE; break;
590 case WSAECONNRESET: errno = ECONNRESET; break;
591 case WSAENOBUFS: errno = ENOBUFS; break;
592 case WSAENOTCONN: errno = ENOTCONN; break;
593 // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
594 // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
595 // considerations: Reportedly send() can return zero on timeout, and POSIX
596 // code may expect EAGAIN instead of ETIMEDOUT on timeout.
597 // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
598 case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
599 default:
600 errno = EINVAL;
601 D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
602 err, errno );
603 }
604 }
605
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)606 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
607 // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
608 int skipped = 0;
609 std::vector<WSAPOLLFD> sockets;
610 std::vector<adb_pollfd*> original;
611
612 for (size_t i = 0; i < nfds; ++i) {
613 FH fh = _fh_from_int(fds[i].fd, __func__);
614 if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
615 D("adb_poll received bad FD %d", fds[i].fd);
616 fds[i].revents = POLLNVAL;
617 ++skipped;
618 } else {
619 WSAPOLLFD wsapollfd = {
620 .fd = fh->u.socket,
621 .events = static_cast<short>(fds[i].events)
622 };
623 sockets.push_back(wsapollfd);
624 original.push_back(&fds[i]);
625 }
626 }
627
628 if (sockets.empty()) {
629 return skipped;
630 }
631
632 // If we have any invalid FDs in our FD set, make sure to return immediately.
633 if (skipped > 0) {
634 timeout = 0;
635 }
636
637 int result = WSAPoll(sockets.data(), sockets.size(), timeout);
638 if (result == SOCKET_ERROR) {
639 _socket_set_errno(WSAGetLastError());
640 return -1;
641 }
642
643 // Map the results back onto the original set.
644 for (size_t i = 0; i < sockets.size(); ++i) {
645 original[i]->revents = sockets[i].revents;
646 }
647
648 // WSAPoll appears to return the number of unique FDs with available events, instead of how many
649 // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
650 // to do. Ignore its result and calculate the proper return value.
651 result = 0;
652 for (size_t i = 0; i < nfds; ++i) {
653 if (fds[i].revents != 0) {
654 ++result;
655 }
656 }
657 return result;
658 }
659
_fh_socket_init(FH f)660 static void _fh_socket_init(FH f) {
661 f->fh_socket = INVALID_SOCKET;
662 }
663
_fh_socket_close(FH f)664 static int _fh_socket_close(FH f) {
665 if (f->fh_socket != INVALID_SOCKET) {
666 if (closesocket(f->fh_socket) == SOCKET_ERROR) {
667 // Don't set errno here, since adb_close will ignore it.
668 const DWORD err = WSAGetLastError();
669 D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
670 }
671 f->fh_socket = INVALID_SOCKET;
672 }
673 return 0;
674 }
675
_fh_socket_lseek(FH f,int64_t pos,int origin)676 static int64_t _fh_socket_lseek(FH f, int64_t pos, int origin) {
677 errno = EPIPE;
678 return -1;
679 }
680
_fh_socket_read(FH f,void * buf,int len)681 static int _fh_socket_read(FH f, void* buf, int len) {
682 int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
683 if (result == SOCKET_ERROR) {
684 const DWORD err = WSAGetLastError();
685 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
686 // that to reduce spam and confusion.
687 if (err != WSAEWOULDBLOCK) {
688 D("recv fd %d failed: %s", _fh_to_int(f),
689 android::base::SystemErrorCodeToString(err).c_str());
690 }
691 _socket_set_errno(err);
692 result = -1;
693 }
694 return result;
695 }
696
_fh_socket_write(FH f,const void * buf,int len)697 static int _fh_socket_write(FH f, const void* buf, int len) {
698 int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
699 if (result == SOCKET_ERROR) {
700 const DWORD err = WSAGetLastError();
701 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
702 // that to reduce spam and confusion.
703 if (err != WSAEWOULDBLOCK) {
704 D("send fd %d failed: %s", _fh_to_int(f),
705 android::base::SystemErrorCodeToString(err).c_str());
706 }
707 _socket_set_errno(err);
708 result = -1;
709 } else {
710 // According to https://code.google.com/p/chromium/issues/detail?id=27870
711 // Winsock Layered Service Providers may cause this.
712 CHECK_LE(result, len) << "Tried to write " << len << " bytes to " << f->name << ", but "
713 << result << " bytes reportedly written";
714 }
715 return result;
716 }
717
718 // Make sure that adb_iovec is compatible with WSABUF.
719 static_assert(sizeof(adb_iovec) == sizeof(WSABUF), "");
720 static_assert(SIZEOF_MEMBER(adb_iovec, iov_len) == SIZEOF_MEMBER(WSABUF, len), "");
721 static_assert(offsetof(adb_iovec, iov_len) == offsetof(WSABUF, len), "");
722
723 static_assert(SIZEOF_MEMBER(adb_iovec, iov_base) == SIZEOF_MEMBER(WSABUF, buf), "");
724 static_assert(offsetof(adb_iovec, iov_base) == offsetof(WSABUF, buf), "");
725
_fh_socket_writev(FH f,const adb_iovec * iov,int iovcnt)726 static int _fh_socket_writev(FH f, const adb_iovec* iov, int iovcnt) {
727 if (iovcnt <= 0) {
728 errno = EINVAL;
729 return -1;
730 }
731
732 WSABUF* wsabuf = reinterpret_cast<WSABUF*>(const_cast<adb_iovec*>(iov));
733 DWORD bytes_written = 0;
734 int result = WSASend(f->fh_socket, wsabuf, iovcnt, &bytes_written, 0, nullptr, nullptr);
735 if (result == SOCKET_ERROR) {
736 const DWORD err = WSAGetLastError();
737 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
738 // that to reduce spam and confusion.
739 if (err != WSAEWOULDBLOCK) {
740 D("send fd %d failed: %s", _fh_to_int(f),
741 android::base::SystemErrorCodeToString(err).c_str());
742 }
743 _socket_set_errno(err);
744 return -1;
745 }
746 CHECK_GE(static_cast<DWORD>(std::numeric_limits<int>::max()), bytes_written);
747 return static_cast<int>(bytes_written);
748 }
749
_fh_socket_get_os_handle(FH f)750 static intptr_t _fh_socket_get_os_handle(FH f) {
751 return f->u.socket;
752 }
753
754 /**************************************************************************/
755 /**************************************************************************/
756 /***** *****/
757 /***** replacement for libs/cutils/socket_xxxx.c *****/
758 /***** *****/
759 /**************************************************************************/
760 /**************************************************************************/
761
_init_winsock()762 static void _init_winsock() {
763 static std::once_flag once;
764 std::call_once(once, []() {
765 WSADATA wsaData;
766 int rc = WSAStartup(MAKEWORD(2, 2), &wsaData);
767 if (rc != 0) {
768 LOG(FATAL) << "could not initialize Winsock: "
769 << android::base::SystemErrorCodeToString(rc);
770 }
771
772 // Note that we do not call atexit() to register WSACleanup to be called
773 // at normal process termination because:
774 // 1) When exit() is called, there are still threads actively using
775 // Winsock because we don't cleanly shutdown all threads, so it
776 // doesn't make sense to call WSACleanup() and may cause problems
777 // with those threads.
778 // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
779 // calls WSACleanup() which tries to unload a DLL, which tries to
780 // grab the LoaderLock. This conflicts with the device_poll_thread
781 // which holds the LoaderLock because AdbWinApi.dll calls
782 // setupapi.dll which tries to load wintrust.dll which tries to load
783 // crypt32.dll which calls atexit() which tries to acquire the C
784 // Runtime lock that the other thread holds.
785 });
786 }
787
788 // Map a socket type to an explicit socket protocol instead of using the socket
789 // protocol of 0. Explicit socket protocols are used by most apps and we should
790 // do the same to reduce the chance of exercising uncommon code-paths that might
791 // have problems or that might load different Winsock service providers that
792 // have problems.
GetSocketProtocolFromSocketType(int type)793 static int GetSocketProtocolFromSocketType(int type) {
794 switch (type) {
795 case SOCK_STREAM:
796 return IPPROTO_TCP;
797 case SOCK_DGRAM:
798 return IPPROTO_UDP;
799 default:
800 LOG(FATAL) << "Unknown socket type: " << type;
801 return 0;
802 }
803 }
804
adb_socket(int domain,int type,int protocol)805 int adb_socket(int domain, int type, int protocol) {
806 SOCKET s;
807
808 unique_fh f(_fh_alloc(&_fh_socket_class));
809 if (!f) {
810 return -1;
811 }
812
813 s = socket(domain, type, GetSocketProtocolFromSocketType(type));
814 if (s == INVALID_SOCKET) {
815 const DWORD err = WSAGetLastError();
816 const auto error = android::base::StringPrintf(
817 "cannot create socket: %s", android::base::SystemErrorCodeToString(err).c_str());
818 D("%s", error.c_str());
819 _socket_set_errno(err);
820 return -1;
821 }
822 f->fh_socket = s;
823
824 const int fd = _fh_to_int(f.get());
825 f.release();
826 return fd;
827 }
828
adb_bind(borrowed_fd fd,const sockaddr * addr,socklen_t addrlen)829 int adb_bind(borrowed_fd fd, const sockaddr* addr, socklen_t addrlen) {
830 FH fh = _fh_from_int(fd, __func__);
831
832 if (!fh || fh->clazz != &_fh_socket_class) {
833 D("adb_bind: invalid fd %d", fd.get());
834 errno = EBADF;
835 return -1;
836 }
837
838 if (bind(fh->fh_socket, addr, addrlen) == SOCKET_ERROR) {
839 const DWORD err = WSAGetLastError();
840 LOG(ERROR) << "adb_bind: bind on fd " << fd.get()
841 << " failed: " + android::base::SystemErrorCodeToString(err);
842 _socket_set_errno(err);
843 return -1;
844 }
845
846 return 0;
847 }
848
to_WSAMSG(const struct adb_msghdr * msg,WSAMSG * wmsg)849 static void to_WSAMSG(const struct adb_msghdr* msg, WSAMSG* wmsg) {
850 WSABUF* msgbuf = reinterpret_cast<WSABUF*>(msg->msg_iov);
851
852 memset(wmsg, 0, sizeof(decltype(*wmsg)));
853 wmsg->name = (struct sockaddr*)msg->msg_name;
854 char ipaddr[1024];
855 switch (wmsg->name->sa_family) {
856 case AF_INET: {
857 auto* sin = reinterpret_cast<struct sockaddr_in*>(wmsg->name);
858 inet_ntop(sin->sin_family, &sin->sin_addr, ipaddr, 1024);
859 break;
860 }
861 case AF_INET6: {
862 auto* sin = reinterpret_cast<struct sockaddr_in6*>(wmsg->name);
863 inet_ntop(sin->sin6_family, &sin->sin6_addr, ipaddr, 1024);
864 break;
865 }
866 default:
867 // Address may be unset when receiving messages, which is fine.
868 break;
869 }
870 wmsg->namelen = msg->msg_namelen;
871 wmsg->lpBuffers = msgbuf;
872 wmsg->dwBufferCount = msg->msg_iovlen;
873 wmsg->Control.len = msg->msg_controllen;
874 wmsg->Control.buf = (char*)msg->msg_control;
875 wmsg->dwFlags = msg->msg_flags;
876 }
877
adb_sendmsg(borrowed_fd fd,const struct adb_msghdr * msg,int flags)878 ssize_t adb_sendmsg(borrowed_fd fd, const struct adb_msghdr* msg, int flags) {
879 FH fh = _fh_from_int(fd, __func__);
880
881 if (!fh || fh->clazz != &_fh_socket_class) {
882 D("adb_sendmsg: invalid fd %d", fd.get());
883 errno = EBADF;
884 return -1;
885 }
886
887 WSAMSG wmsg;
888 to_WSAMSG(msg, &wmsg);
889
890 DWORD num_bytes = 0;
891
892 // TODO: WSASendMsg doesn't work when setting the source address to INADDR_ANY. Posix sendmsg()
893 // works though. Need to figure out what to do when we get a wildcard address.
894 auto ret = WSASendMsg(fh->fh_socket, &wmsg, 0, &num_bytes, NULL, NULL);
895 if (ret == SOCKET_ERROR) {
896 const DWORD err = WSAGetLastError();
897 LOG(ERROR) << "WSASendMsg() failed " << android::base::SystemErrorCodeToString(err);
898 _socket_set_errno(err);
899 return -1;
900 }
901
902 return num_bytes;
903 }
904
905 // WSARecvMsg() function pointer must be obtained at runtime.
GetWSARecvMsgFunc(borrowed_fd fd)906 static LPFN_WSARECVMSG GetWSARecvMsgFunc(borrowed_fd fd) {
907 FH fh = _fh_from_int(fd, __func__);
908
909 if (!fh || fh->clazz != &_fh_socket_class) {
910 D("%s(%d) failed: invalid fd", __func__, fd.get());
911 errno = EBADF;
912 return nullptr;
913 }
914
915 LPFN_WSARECVMSG func = nullptr;
916 GUID guid = WSAID_WSARECVMSG;
917 DWORD bytes_returned = 0;
918
919 if (WSAIoctl(fh->fh_socket, SIO_GET_EXTENSION_FUNCTION_POINTER, &guid, sizeof(guid), &func,
920 sizeof(func), &bytes_returned, nullptr, nullptr) != 0) {
921 const DWORD err = WSAGetLastError();
922 D("%s(%d) failed: %s", __func__, fd.get(),
923 android::base::SystemErrorCodeToString(err).c_str());
924 _socket_set_errno(err);
925 return nullptr;
926 }
927
928 return func;
929 }
930
adb_recvmsg(borrowed_fd fd,struct adb_msghdr * msg,int flags)931 ssize_t adb_recvmsg(borrowed_fd fd, struct adb_msghdr* msg, int flags) {
932 FH fh = _fh_from_int(fd, __func__);
933
934 if (!fh || fh->clazz != &_fh_socket_class) {
935 D("adb_recvmsg: invalid fd %d", fd.get());
936 errno = EBADF;
937 return -1;
938 }
939
940 auto WSARecvMsgFunc = GetWSARecvMsgFunc(fd);
941 if (!WSARecvMsgFunc) {
942 errno = ENOSYS;
943 return -1;
944 }
945
946 WSAMSG wmsg;
947 to_WSAMSG(msg, &wmsg);
948
949 DWORD num_bytes = 0;
950 CHECK_EQ(wmsg.dwBufferCount, 1U);
951 char* orig = wmsg.lpBuffers[0].buf;
952 auto orig_len = wmsg.lpBuffers[0].len;
953 auto bytes_remaining = orig_len;
954 auto orig_flags = wmsg.dwFlags;
955 while (bytes_remaining > 0) {
956 const auto ret = WSARecvMsgFunc(fh->fh_socket, &wmsg, &num_bytes, NULL, NULL);
957 if (ret == SOCKET_ERROR) {
958 const DWORD err = WSAGetLastError();
959 LOG(ERROR) << "WSARecvMsg() failed " << android::base::SystemErrorCodeToString(err);
960 _socket_set_errno(err);
961 return -1;
962 }
963
964 bytes_remaining -= num_bytes;
965
966 if (bytes_remaining > 0) {
967 wmsg.lpBuffers[0].buf = orig + (orig_len - bytes_remaining);
968 wmsg.lpBuffers[0].len = bytes_remaining;
969 // WSARecvMsg will change dwFlags, which will make subsequent calls to WSARecvMsg fail
970 // with invalid operation error.
971 wmsg.dwFlags = orig_flags;
972 }
973 }
974
975 wmsg.lpBuffers[0].buf = orig;
976 wmsg.lpBuffers[0].len = orig_len;
977
978 return orig_len;
979 }
980
adb_CMSG_FIRSTHDR(adb_msghdr * msgh)981 adb_cmsghdr* adb_CMSG_FIRSTHDR(adb_msghdr* msgh) {
982 WSAMSG wmsg;
983 to_WSAMSG(msgh, &wmsg);
984
985 return WSA_CMSG_FIRSTHDR(&wmsg);
986 }
987
adb_CMSG_NXTHDR(adb_msghdr * msgh,adb_cmsghdr * cmsg)988 adb_cmsghdr* adb_CMSG_NXTHDR(adb_msghdr* msgh, adb_cmsghdr* cmsg) {
989 WSAMSG wmsg;
990 to_WSAMSG(msgh, &wmsg);
991
992 return WSA_CMSG_NXTHDR(&wmsg, cmsg);
993 }
994
adb_CMSG_DATA(adb_cmsghdr * cmsg)995 unsigned char* adb_CMSG_DATA(adb_cmsghdr* cmsg) {
996 return WSA_CMSG_DATA(cmsg);
997 }
998
network_loopback_client(int port,int type,std::string * error)999 int network_loopback_client(int port, int type, std::string* error) {
1000 struct sockaddr_in addr;
1001 SOCKET s;
1002
1003 unique_fh f(_fh_alloc(&_fh_socket_class));
1004 if (!f) {
1005 *error = strerror(errno);
1006 return -1;
1007 }
1008
1009 memset(&addr, 0, sizeof(addr));
1010 addr.sin_family = AF_INET;
1011 addr.sin_port = htons(port);
1012 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1013
1014 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
1015 if (s == INVALID_SOCKET) {
1016 const DWORD err = WSAGetLastError();
1017 *error = android::base::StringPrintf("cannot create socket: %s",
1018 android::base::SystemErrorCodeToString(err).c_str());
1019 D("%s", error->c_str());
1020 _socket_set_errno(err);
1021 return -1;
1022 }
1023 f->fh_socket = s;
1024
1025 if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
1026 // Save err just in case inet_ntoa() or ntohs() changes the last error.
1027 const DWORD err = WSAGetLastError();
1028 *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
1029 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
1030 android::base::SystemErrorCodeToString(err).c_str());
1031 D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
1032 error->c_str());
1033 _socket_set_errno(err);
1034 return -1;
1035 }
1036
1037 const int fd = _fh_to_int(f.get());
1038 snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
1039 port);
1040 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
1041 f.release();
1042 return fd;
1043 }
1044
1045 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)1046 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
1047 struct sockaddr_in addr;
1048 SOCKET s;
1049 int n;
1050
1051 unique_fh f(_fh_alloc(&_fh_socket_class));
1052 if (!f) {
1053 *error = strerror(errno);
1054 return -1;
1055 }
1056
1057 memset(&addr, 0, sizeof(addr));
1058 addr.sin_family = AF_INET;
1059 addr.sin_port = htons(port);
1060 addr.sin_addr.s_addr = htonl(interface_address);
1061
1062 // TODO: Consider using dual-stack socket that can simultaneously listen on
1063 // IPv4 and IPv6.
1064 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
1065 if (s == INVALID_SOCKET) {
1066 const DWORD err = WSAGetLastError();
1067 *error = android::base::StringPrintf("cannot create socket: %s",
1068 android::base::SystemErrorCodeToString(err).c_str());
1069 D("%s", error->c_str());
1070 _socket_set_errno(err);
1071 return -1;
1072 }
1073
1074 f->fh_socket = s;
1075
1076 // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
1077 // same port, so instead use SO_EXCLUSIVEADDRUSE.
1078 n = 1;
1079 if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
1080 const DWORD err = WSAGetLastError();
1081 *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
1082 android::base::SystemErrorCodeToString(err).c_str());
1083 D("%s", error->c_str());
1084 _socket_set_errno(err);
1085 return -1;
1086 }
1087
1088 if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
1089 // Save err just in case inet_ntoa() or ntohs() changes the last error.
1090 const DWORD err = WSAGetLastError();
1091 *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
1092 ntohs(addr.sin_port),
1093 android::base::SystemErrorCodeToString(err).c_str());
1094 D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
1095 _socket_set_errno(err);
1096 return -1;
1097 }
1098 if (type == SOCK_STREAM) {
1099 if (listen(s, SOMAXCONN) == SOCKET_ERROR) {
1100 const DWORD err = WSAGetLastError();
1101 *error = android::base::StringPrintf(
1102 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
1103 D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
1104 error->c_str());
1105 _socket_set_errno(err);
1106 return -1;
1107 }
1108 }
1109 const int fd = _fh_to_int(f.get());
1110 snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
1111 interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
1112 port);
1113 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
1114 f.release();
1115 return fd;
1116 }
1117
network_loopback_server(int port,int type,std::string * error,bool prefer_ipv4)1118 int network_loopback_server(int port, int type, std::string* error, bool prefer_ipv4) {
1119 // TODO implement IPv6 support on windows
1120 return _network_server(port, type, INADDR_LOOPBACK, error);
1121 }
1122
network_inaddr_any_server(int port,int type,std::string * error)1123 int network_inaddr_any_server(int port, int type, std::string* error) {
1124 return _network_server(port, type, INADDR_ANY, error);
1125 }
1126
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)1127 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
1128 unique_fh f(_fh_alloc(&_fh_socket_class));
1129 if (!f) {
1130 *error = strerror(errno);
1131 return -1;
1132 }
1133
1134 struct addrinfo hints;
1135 memset(&hints, 0, sizeof(hints));
1136 hints.ai_family = AF_UNSPEC;
1137 hints.ai_socktype = type;
1138 hints.ai_protocol = GetSocketProtocolFromSocketType(type);
1139
1140 char port_str[16];
1141 snprintf(port_str, sizeof(port_str), "%d", port);
1142
1143 struct addrinfo* addrinfo_ptr = nullptr;
1144
1145 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
1146 // TODO: When the Android SDK tools increases the Windows system
1147 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
1148 #else
1149 // Otherwise, keep using getaddrinfo(), or do runtime API detection
1150 // with GetProcAddress("GetAddrInfoW").
1151 #endif
1152 if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
1153 const DWORD err = WSAGetLastError();
1154 *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
1155 host.c_str(), port_str,
1156 android::base::SystemErrorCodeToString(err).c_str());
1157
1158 D("%s", error->c_str());
1159 _socket_set_errno(err);
1160 return -1;
1161 }
1162 std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
1163 addrinfo_ptr = nullptr;
1164
1165 // TODO: Try all the addresses if there's more than one? This just uses
1166 // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
1167 // which tries all addresses, takes a timeout and more.
1168 SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
1169 if (s == INVALID_SOCKET) {
1170 const DWORD err = WSAGetLastError();
1171 *error = android::base::StringPrintf("cannot create socket: %s",
1172 android::base::SystemErrorCodeToString(err).c_str());
1173 D("%s", error->c_str());
1174 _socket_set_errno(err);
1175 return -1;
1176 }
1177 f->fh_socket = s;
1178
1179 // TODO: Implement timeouts for Windows. Seems like the default in theory
1180 // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
1181 if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
1182 // TODO: Use WSAAddressToString or inet_ntop on address.
1183 const DWORD err = WSAGetLastError();
1184 *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
1185 android::base::SystemErrorCodeToString(err).c_str());
1186 D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
1187 port_str, error->c_str());
1188 _socket_set_errno(err);
1189 return -1;
1190 }
1191
1192 const int fd = _fh_to_int(f.get());
1193 snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
1194 port);
1195 D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
1196 fd);
1197 f.release();
1198 return fd;
1199 }
1200
network_peek(borrowed_fd fd)1201 std::optional<ssize_t> network_peek(borrowed_fd fd) {
1202 FH fh = _fh_from_int(fd, __func__);
1203
1204 if (!fh || fh->clazz != &_fh_socket_class) {
1205 D("network_peek: invalid fd %d", fd.get());
1206 errno = EBADF;
1207 return std::nullopt;
1208 }
1209
1210 unsigned long sz_bytes = -1;
1211 if (ioctlsocket(fh->fh_socket, FIONREAD, &sz_bytes) != 0) {
1212 const DWORD err = WSAGetLastError();
1213 LOG(ERROR) << "ioctlsocket() failed " << android::base::SystemErrorCodeToString(err);
1214 _socket_set_errno(err);
1215 return std::nullopt;
1216 }
1217
1218 return sz_bytes;
1219 }
1220
adb_register_socket(SOCKET s)1221 int adb_register_socket(SOCKET s) {
1222 FH f = _fh_alloc(&_fh_socket_class);
1223 f->fh_socket = s;
1224 return _fh_to_int(f);
1225 }
1226
1227 #undef accept
adb_socket_accept(borrowed_fd serverfd,struct sockaddr * addr,socklen_t * addrlen)1228 int adb_socket_accept(borrowed_fd serverfd, struct sockaddr* addr, socklen_t* addrlen) {
1229 FH serverfh = _fh_from_int(serverfd, __func__);
1230
1231 if (!serverfh || serverfh->clazz != &_fh_socket_class) {
1232 D("adb_socket_accept: invalid fd %d", serverfd.get());
1233 errno = EBADF;
1234 return -1;
1235 }
1236
1237 unique_fh fh(_fh_alloc(&_fh_socket_class));
1238 if (!fh) {
1239 PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
1240 "descriptor";
1241 return -1;
1242 }
1243
1244 fh->fh_socket = accept(serverfh->fh_socket, addr, addrlen);
1245 if (fh->fh_socket == INVALID_SOCKET) {
1246 const DWORD err = WSAGetLastError();
1247 LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd.get()
1248 << " failed: " + android::base::SystemErrorCodeToString(err);
1249 _socket_set_errno(err);
1250 return -1;
1251 }
1252
1253 const int fd = _fh_to_int(fh.get());
1254 snprintf(fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name);
1255 D("adb_socket_accept on fd %d returns fd %d", serverfd.get(), fd);
1256 fh.release();
1257 return fd;
1258 }
1259
adb_setsockopt(borrowed_fd fd,int level,int optname,const void * optval,socklen_t optlen)1260 int adb_setsockopt(borrowed_fd fd, int level, int optname, const void* optval, socklen_t optlen) {
1261 FH fh = _fh_from_int(fd, __func__);
1262
1263 if (!fh || fh->clazz != &_fh_socket_class) {
1264 D("adb_setsockopt: invalid fd %d", fd.get());
1265 errno = EBADF;
1266 return -1;
1267 }
1268
1269 // TODO: Once we can assume Windows Vista or later, if the caller is trying
1270 // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
1271 // auto-tuning.
1272
1273 int result =
1274 setsockopt(fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen);
1275 if (result == SOCKET_ERROR) {
1276 const DWORD err = WSAGetLastError();
1277 D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", fd.get(), level,
1278 optname, android::base::SystemErrorCodeToString(err).c_str());
1279 _socket_set_errno(err);
1280 result = -1;
1281 }
1282 return result;
1283 }
1284
adb_getsockname(borrowed_fd fd,struct sockaddr * sockaddr,socklen_t * optlen)1285 int adb_getsockname(borrowed_fd fd, struct sockaddr* sockaddr, socklen_t* optlen) {
1286 FH fh = _fh_from_int(fd, __func__);
1287
1288 if (!fh || fh->clazz != &_fh_socket_class) {
1289 D("adb_getsockname: invalid fd %d", fd.get());
1290 errno = EBADF;
1291 return -1;
1292 }
1293
1294 int result = getsockname(fh->fh_socket, sockaddr, optlen);
1295 if (result == SOCKET_ERROR) {
1296 const DWORD err = WSAGetLastError();
1297 D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd.get(),
1298 android::base::SystemErrorCodeToString(err).c_str());
1299 _socket_set_errno(err);
1300 result = -1;
1301 }
1302 return result;
1303 }
1304
adb_socket_get_local_port(borrowed_fd fd)1305 int adb_socket_get_local_port(borrowed_fd fd) {
1306 sockaddr_storage addr_storage;
1307 socklen_t addr_len = sizeof(addr_storage);
1308
1309 if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1310 D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
1311 return -1;
1312 }
1313
1314 if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
1315 D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
1316 errno = ECONNABORTED;
1317 return -1;
1318 }
1319
1320 return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
1321 }
1322
adb_shutdown(borrowed_fd fd,int direction)1323 int adb_shutdown(borrowed_fd fd, int direction) {
1324 FH f = _fh_from_int(fd, __func__);
1325
1326 if (!f || f->clazz != &_fh_socket_class) {
1327 D("adb_shutdown: invalid fd %d", fd.get());
1328 errno = EBADF;
1329 return -1;
1330 }
1331
1332 D("adb_shutdown: %s", f->name);
1333 if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) {
1334 const DWORD err = WSAGetLastError();
1335 D("socket shutdown fd %d failed: %s", fd.get(),
1336 android::base::SystemErrorCodeToString(err).c_str());
1337 _socket_set_errno(err);
1338 return -1;
1339 }
1340 return 0;
1341 }
1342
1343 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1344 int adb_socketpair(int sv[2]) {
1345 int server = -1;
1346 int client = -1;
1347 int accepted = -1;
1348 int local_port = -1;
1349 std::string error;
1350
1351 server = network_loopback_server(0, SOCK_STREAM, &error, true);
1352 if (server < 0) {
1353 D("adb_socketpair: failed to create server: %s", error.c_str());
1354 goto fail;
1355 }
1356
1357 local_port = adb_socket_get_local_port(server);
1358 if (local_port < 0) {
1359 D("adb_socketpair: failed to get server port number: %s", error.c_str());
1360 goto fail;
1361 }
1362 D("adb_socketpair: bound on port %d", local_port);
1363
1364 client = network_loopback_client(local_port, SOCK_STREAM, &error);
1365 if (client < 0) {
1366 D("adb_socketpair: failed to connect client: %s", error.c_str());
1367 goto fail;
1368 }
1369
1370 accepted = adb_socket_accept(server, nullptr, nullptr);
1371 if (accepted < 0) {
1372 D("adb_socketpair: failed to accept: %s", strerror(errno));
1373 goto fail;
1374 }
1375 adb_close(server);
1376 sv[0] = client;
1377 sv[1] = accepted;
1378 return 0;
1379
1380 fail:
1381 if (server >= 0) {
1382 adb_close(server);
1383 }
1384 if (client >= 0) {
1385 adb_close(client);
1386 }
1387 if (accepted >= 0) {
1388 adb_close(accepted);
1389 }
1390 return -1;
1391 }
1392
set_file_block_mode(borrowed_fd fd,bool block)1393 bool set_file_block_mode(borrowed_fd fd, bool block) {
1394 FH fh = _fh_from_int(fd, __func__);
1395
1396 if (!fh || !fh->used) {
1397 errno = EBADF;
1398 D("Setting nonblocking on bad file descriptor %d", fd.get());
1399 return false;
1400 }
1401
1402 if (fh->clazz == &_fh_socket_class) {
1403 u_long x = !block;
1404 if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1405 int error = WSAGetLastError();
1406 _socket_set_errno(error);
1407 D("Setting %d nonblocking failed (%d)", fd.get(), error);
1408 return false;
1409 }
1410 return true;
1411 } else {
1412 errno = ENOTSOCK;
1413 D("Setting nonblocking on non-socket %d", fd.get());
1414 return false;
1415 }
1416 }
1417
set_tcp_keepalive(borrowed_fd fd,int interval_sec)1418 bool set_tcp_keepalive(borrowed_fd fd, int interval_sec) {
1419 FH fh = _fh_from_int(fd, __func__);
1420
1421 if (!fh || fh->clazz != &_fh_socket_class) {
1422 D("set_tcp_keepalive(%d) failed: invalid fd", fd.get());
1423 errno = EBADF;
1424 return false;
1425 }
1426
1427 tcp_keepalive keepalive;
1428 keepalive.onoff = (interval_sec > 0);
1429 keepalive.keepalivetime = interval_sec * 1000;
1430 keepalive.keepaliveinterval = interval_sec * 1000;
1431
1432 DWORD bytes_returned = 0;
1433 if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1434 &bytes_returned, nullptr, nullptr) != 0) {
1435 const DWORD err = WSAGetLastError();
1436 D("set_tcp_keepalive(%d) failed: %s", fd.get(),
1437 android::base::SystemErrorCodeToString(err).c_str());
1438 _socket_set_errno(err);
1439 return false;
1440 }
1441
1442 return true;
1443 }
1444
1445 /**************************************************************************/
1446 /**************************************************************************/
1447 /***** *****/
1448 /***** Console Window Terminal Emulation *****/
1449 /***** *****/
1450 /**************************************************************************/
1451 /**************************************************************************/
1452
1453 // This reads input from a Win32 console window and translates it into Unix
1454 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1455 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1456 // is emulated instead of xterm because it is probably more popular than xterm:
1457 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1458 // supports modern fonts, etc. It seems best to emulate the terminal that most
1459 // Android developers use because they'll fix apps (the shell, etc.) to keep
1460 // working with that terminal's emulation.
1461 //
1462 // The point of this emulation is not to be perfect or to solve all issues with
1463 // console windows on Windows, but to be better than the original code which
1464 // just called read() (which called ReadFile(), which called ReadConsoleA())
1465 // which did not support Ctrl-C, tab completion, shell input line editing
1466 // keys, server echo, and more.
1467 //
1468 // This implementation reconfigures the console with SetConsoleMode(), then
1469 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1470 // terminal-style sequences which is returned via unix_read() which is used
1471 // by the 'adb shell' command.
1472 //
1473 // Code organization:
1474 //
1475 // * _get_console_handle() and unix_isatty() provide console information.
1476 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1477 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1478 // * _console_read() is the main code of the emulation.
1479
1480 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1481 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1482 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(borrowed_fd fd,DWORD * mode=nullptr)1483 static HANDLE _get_console_handle(borrowed_fd fd, DWORD* mode = nullptr) {
1484 // First check isatty(); this is very fast and eliminates most non-console
1485 // FDs, but returns 1 for both consoles and character devices like NUL.
1486 #pragma push_macro("isatty")
1487 #undef isatty
1488 if (!isatty(fd.get())) {
1489 return nullptr;
1490 }
1491 #pragma pop_macro("isatty")
1492
1493 // To differentiate between character devices and consoles we need to get
1494 // the underlying HANDLE and use GetConsoleMode(), which is what requires
1495 // GENERIC_READ permissions.
1496 const intptr_t intptr_handle = _get_osfhandle(fd.get());
1497 if (intptr_handle == -1) {
1498 return nullptr;
1499 }
1500 const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1501 DWORD temp_mode = 0;
1502 if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1503 return nullptr;
1504 }
1505
1506 return handle;
1507 }
1508
1509 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1510 static HANDLE _get_console_handle(FILE* const stream) {
1511 // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1512 android::base::ErrnoRestorer er;
1513 const int fd = fileno(stream);
1514 if (fd < 0) {
1515 return nullptr;
1516 }
1517 return _get_console_handle(fd);
1518 }
1519
unix_isatty(borrowed_fd fd)1520 int unix_isatty(borrowed_fd fd) {
1521 return _get_console_handle(fd) ? 1 : 0;
1522 }
1523
1524 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1525 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1526 for (;;) {
1527 DWORD read_count = 0;
1528 memset(input_record, 0, sizeof(*input_record));
1529 if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1530 D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1531 android::base::SystemErrorCodeToString(GetLastError()).c_str());
1532 errno = EIO;
1533 return false;
1534 }
1535
1536 if (read_count == 0) { // should be impossible
1537 LOG(FATAL) << "ReadConsoleInputA returned 0";
1538 }
1539
1540 if (read_count != 1) { // should be impossible
1541 LOG(FATAL) << "ReadConsoleInputA did not return one input record";
1542 }
1543
1544 // If the console window is resized, emulate SIGWINCH by breaking out
1545 // of read() with errno == EINTR. Note that there is no event on
1546 // vertical resize because we don't give the console our own custom
1547 // screen buffer (with CreateConsoleScreenBuffer() +
1548 // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1549 // supports scrollback, but doesn't seem to raise an event for vertical
1550 // window resize.
1551 if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1552 errno = EINTR;
1553 return false;
1554 }
1555
1556 if ((input_record->EventType == KEY_EVENT) &&
1557 (input_record->Event.KeyEvent.bKeyDown)) {
1558 if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1559 LOG(FATAL) << "ReadConsoleInputA returned a key event with zero repeat count";
1560 }
1561
1562 // Got an interesting INPUT_RECORD, so return
1563 return true;
1564 }
1565 }
1566 }
1567
_is_shift_pressed(const DWORD control_key_state)1568 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1569 return (control_key_state & SHIFT_PRESSED) != 0;
1570 }
1571
_is_ctrl_pressed(const DWORD control_key_state)1572 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1573 return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1574 }
1575
_is_alt_pressed(const DWORD control_key_state)1576 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1577 return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1578 }
1579
_is_numlock_on(const DWORD control_key_state)1580 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1581 return (control_key_state & NUMLOCK_ON) != 0;
1582 }
1583
_is_capslock_on(const DWORD control_key_state)1584 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1585 return (control_key_state & CAPSLOCK_ON) != 0;
1586 }
1587
_is_enhanced_key(const DWORD control_key_state)1588 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1589 return (control_key_state & ENHANCED_KEY) != 0;
1590 }
1591
1592 // Constants from MSDN for ToAscii().
1593 static const BYTE TOASCII_KEY_OFF = 0x00;
1594 static const BYTE TOASCII_KEY_DOWN = 0x80;
1595 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
1596
1597 // Given a key event, ignore a modifier key and return the character that was
1598 // entered without the modifier. Writes to *ch and returns the number of bytes
1599 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1600 static size_t _get_char_ignoring_modifier(char* const ch,
1601 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1602 const WORD modifier) {
1603 // If there is no character from Windows, try ignoring the specified
1604 // modifier and look for a character. Note that if AltGr is being used,
1605 // there will be a character from Windows.
1606 if (key_event->uChar.AsciiChar == '\0') {
1607 // Note that we read the control key state from the passed in argument
1608 // instead of from key_event since the argument has been normalized.
1609 if (((modifier == VK_SHIFT) &&
1610 _is_shift_pressed(control_key_state)) ||
1611 ((modifier == VK_CONTROL) &&
1612 _is_ctrl_pressed(control_key_state)) ||
1613 ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
1614
1615 BYTE key_state[256] = {0};
1616 key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
1617 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1618 key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
1619 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1620 key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
1621 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1622 key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
1623 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1624
1625 // cause this modifier to be ignored
1626 key_state[modifier] = TOASCII_KEY_OFF;
1627
1628 WORD translated = 0;
1629 if (ToAscii(key_event->wVirtualKeyCode,
1630 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1631 // Ignoring the modifier, we found a character.
1632 *ch = (CHAR)translated;
1633 return 1;
1634 }
1635 }
1636 }
1637
1638 // Just use whatever Windows told us originally.
1639 *ch = key_event->uChar.AsciiChar;
1640
1641 // If the character from Windows is NULL, return a size of zero.
1642 return (*ch == '\0') ? 0 : 1;
1643 }
1644
1645 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1646 // but taking into account the shift key. This is because for a sequence like
1647 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1648 // we want to find the character ')'.
1649 //
1650 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1651 // because it is the default key-sequence to switch the input language.
1652 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1653 static __inline__ size_t _get_non_control_char(char* const ch,
1654 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1655 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1656 VK_CONTROL);
1657 }
1658
1659 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1660 static __inline__ size_t _get_non_alt_char(char* const ch,
1661 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1662 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1663 VK_MENU);
1664 }
1665
1666 // Ignore the control key, find the character from Windows, and apply any
1667 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1668 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1669 static size_t _get_control_character(char* const pch,
1670 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1671 const size_t len = _get_non_control_char(pch, key_event,
1672 control_key_state);
1673
1674 if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1675 char ch = *pch;
1676 switch (ch) {
1677 case '2':
1678 case '@':
1679 case '`':
1680 ch = '\0';
1681 break;
1682 case '3':
1683 case '[':
1684 case '{':
1685 ch = '\x1b';
1686 break;
1687 case '4':
1688 case '\\':
1689 case '|':
1690 ch = '\x1c';
1691 break;
1692 case '5':
1693 case ']':
1694 case '}':
1695 ch = '\x1d';
1696 break;
1697 case '6':
1698 case '^':
1699 case '~':
1700 ch = '\x1e';
1701 break;
1702 case '7':
1703 case '-':
1704 case '_':
1705 ch = '\x1f';
1706 break;
1707 case '8':
1708 ch = '\x7f';
1709 break;
1710 case '/':
1711 if (!_is_alt_pressed(control_key_state)) {
1712 ch = '\x1f';
1713 }
1714 break;
1715 case '?':
1716 if (!_is_alt_pressed(control_key_state)) {
1717 ch = '\x7f';
1718 }
1719 break;
1720 }
1721 *pch = ch;
1722 }
1723
1724 return len;
1725 }
1726
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1727 static DWORD _normalize_altgr_control_key_state(
1728 const KEY_EVENT_RECORD* const key_event) {
1729 DWORD control_key_state = key_event->dwControlKeyState;
1730
1731 // If we're in an AltGr situation where the AltGr key is down (depending on
1732 // the keyboard layout, that might be the physical right alt key which
1733 // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1734 // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1735 // a character (which indicates that there was an AltGr mapping), then act
1736 // as if alt and control are not really down for the purposes of modifiers.
1737 // This makes it so that if the user with, say, a German keyboard layout
1738 // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1739 // output the key and we don't see the Alt and Ctrl keys.
1740 if (_is_ctrl_pressed(control_key_state) &&
1741 _is_alt_pressed(control_key_state)
1742 && (key_event->uChar.AsciiChar != '\0')) {
1743 // Try to remove as few bits as possible to improve our chances of
1744 // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1745 // Left-Alt + Right-Ctrl + AltGr.
1746 if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1747 // Remove Right-Alt.
1748 control_key_state &= ~RIGHT_ALT_PRESSED;
1749 // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1750 // pressed, Left-Ctrl is almost always set, except if the user
1751 // presses Right-Ctrl, then AltGr (in that specific order) for
1752 // whatever reason. At any rate, make sure the bit is not set.
1753 control_key_state &= ~LEFT_CTRL_PRESSED;
1754 } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1755 // Remove Left-Alt.
1756 control_key_state &= ~LEFT_ALT_PRESSED;
1757 // Whichever Ctrl key is down, remove it from the state. We only
1758 // remove one key, to improve our chances of detecting the
1759 // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1760 if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1761 // Remove Left-Ctrl.
1762 control_key_state &= ~LEFT_CTRL_PRESSED;
1763 } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1764 // Remove Right-Ctrl.
1765 control_key_state &= ~RIGHT_CTRL_PRESSED;
1766 }
1767 }
1768
1769 // Note that this logic isn't 100% perfect because Windows doesn't
1770 // allow us to detect all combinations because a physical AltGr key
1771 // press shows up as two bits, plus some combinations are ambiguous
1772 // about what is actually physically pressed.
1773 }
1774
1775 return control_key_state;
1776 }
1777
1778 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1779 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1780 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1781 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1782 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1783 const DWORD control_key_state) {
1784 if (!_is_numlock_on(control_key_state)) {
1785 return control_key_state;
1786 }
1787 if (!_is_enhanced_key(control_key_state)) {
1788 switch (vk) {
1789 case VK_INSERT: // 0
1790 case VK_DELETE: // .
1791 case VK_END: // 1
1792 case VK_DOWN: // 2
1793 case VK_NEXT: // 3
1794 case VK_LEFT: // 4
1795 case VK_CLEAR: // 5
1796 case VK_RIGHT: // 6
1797 case VK_HOME: // 7
1798 case VK_UP: // 8
1799 case VK_PRIOR: // 9
1800 return control_key_state | SHIFT_PRESSED;
1801 }
1802 }
1803
1804 return control_key_state;
1805 }
1806
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1807 static const char* _get_keypad_sequence(const DWORD control_key_state,
1808 const char* const normal, const char* const shifted) {
1809 if (_is_shift_pressed(control_key_state)) {
1810 // Shift is pressed and NumLock is off
1811 return shifted;
1812 } else {
1813 // Shift is not pressed and NumLock is off, or,
1814 // Shift is pressed and NumLock is on, in which case we want the
1815 // NumLock and Shift to neutralize each other, thus, we want the normal
1816 // sequence.
1817 return normal;
1818 }
1819 // If Shift is not pressed and NumLock is on, a different virtual key code
1820 // is returned by Windows, which can be taken care of by a different case
1821 // statement in _console_read().
1822 }
1823
1824 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1825 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1826 DWORD control_key_state, const char* const normal) {
1827 // Copy the base sequence into buf.
1828 const size_t len = strlen(normal);
1829 memcpy(buf, normal, len);
1830
1831 int code = 0;
1832
1833 control_key_state = _normalize_keypad_control_key_state(vk,
1834 control_key_state);
1835
1836 if (_is_shift_pressed(control_key_state)) {
1837 code |= 0x1;
1838 }
1839 if (_is_alt_pressed(control_key_state)) { // any alt key pressed
1840 code |= 0x2;
1841 }
1842 if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
1843 code |= 0x4;
1844 }
1845 // If some modifier was held down, then we need to insert the modifier code
1846 if (code != 0) {
1847 if (len == 0) {
1848 // Should be impossible because caller should pass a string of
1849 // non-zero length.
1850 return 0;
1851 }
1852 size_t index = len - 1;
1853 const char lastChar = buf[index];
1854 if (lastChar != '~') {
1855 buf[index++] = '1';
1856 }
1857 buf[index++] = ';'; // modifier separator
1858 // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1859 // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1860 buf[index++] = '1' + code;
1861 buf[index++] = lastChar; // move ~ (or other last char) to the end
1862 return index;
1863 }
1864 return len;
1865 }
1866
1867 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1868 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1869 const DWORD control_key_state, const char* const normal,
1870 const char shifted) {
1871 if (_is_shift_pressed(control_key_state)) {
1872 // Shift is pressed and NumLock is off
1873 if (shifted != '\0') {
1874 buf[0] = shifted;
1875 return sizeof(buf[0]);
1876 } else {
1877 return 0;
1878 }
1879 } else {
1880 // Shift is not pressed and NumLock is off, or,
1881 // Shift is pressed and NumLock is on, in which case we want the
1882 // NumLock and Shift to neutralize each other, thus, we want the normal
1883 // sequence.
1884 return _get_modifier_sequence(buf, vk, control_key_state, normal);
1885 }
1886 // If Shift is not pressed and NumLock is on, a different virtual key code
1887 // is returned by Windows, which can be taken care of by a different case
1888 // statement in _console_read().
1889 }
1890
1891 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1892 // Standard German. Figure this out at runtime so we know what to output for
1893 // Shift-VK_DELETE.
_get_decimal_char()1894 static char _get_decimal_char() {
1895 return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1896 }
1897
1898 // Prefix the len bytes in buf with the escape character, and then return the
1899 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1900 static size_t _escape_prefix(char* const buf, const size_t len) {
1901 // If nothing to prefix, don't do anything. We might be called with
1902 // len == 0, if alt was held down with a dead key which produced nothing.
1903 if (len == 0) {
1904 return 0;
1905 }
1906
1907 memmove(&buf[1], buf, len);
1908 buf[0] = '\x1b';
1909 return len + 1;
1910 }
1911
1912 // Internal buffer to satisfy future _console_read() calls.
1913 static auto& g_console_input_buffer = *new std::vector<char>();
1914
1915 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1916 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1917 static int _console_read(const HANDLE console, void* buf, size_t len) {
1918 for (;;) {
1919 // Read of zero bytes should not block waiting for something from the console.
1920 if (len == 0) {
1921 return 0;
1922 }
1923
1924 // Flush as much as possible from input buffer.
1925 if (!g_console_input_buffer.empty()) {
1926 const int bytes_read = std::min(len, g_console_input_buffer.size());
1927 memcpy(buf, g_console_input_buffer.data(), bytes_read);
1928 const auto begin = g_console_input_buffer.begin();
1929 g_console_input_buffer.erase(begin, begin + bytes_read);
1930 return bytes_read;
1931 }
1932
1933 // Read from the actual console. This may block until input.
1934 INPUT_RECORD input_record;
1935 if (!_get_key_event_record(console, &input_record)) {
1936 return -1;
1937 }
1938
1939 KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1940 const WORD vk = key_event->wVirtualKeyCode;
1941 const CHAR ch = key_event->uChar.AsciiChar;
1942 const DWORD control_key_state = _normalize_altgr_control_key_state(
1943 key_event);
1944
1945 // The following emulation code should write the output sequence to
1946 // either seqstr or to seqbuf and seqbuflen.
1947 const char* seqstr = nullptr; // NULL terminated C-string
1948 // Enough space for max sequence string below, plus modifiers and/or
1949 // escape prefix.
1950 char seqbuf[16];
1951 size_t seqbuflen = 0; // Space used in seqbuf.
1952
1953 #define MATCH(vk, normal) \
1954 case (vk): \
1955 { \
1956 seqstr = (normal); \
1957 } \
1958 break;
1959
1960 // Modifier keys should affect the output sequence.
1961 #define MATCH_MODIFIER(vk, normal) \
1962 case (vk): \
1963 { \
1964 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1965 control_key_state, (normal)); \
1966 } \
1967 break;
1968
1969 // The shift key should affect the output sequence.
1970 #define MATCH_KEYPAD(vk, normal, shifted) \
1971 case (vk): \
1972 { \
1973 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1974 (shifted)); \
1975 } \
1976 break;
1977
1978 // The shift key and other modifier keys should affect the output
1979 // sequence.
1980 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1981 case (vk): \
1982 { \
1983 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1984 control_key_state, (normal), (shifted)); \
1985 } \
1986 break;
1987
1988 #define ESC "\x1b"
1989 #define CSI ESC "["
1990 #define SS3 ESC "O"
1991
1992 // Only support normal mode, not application mode.
1993
1994 // Enhanced keys:
1995 // * 6-pack: insert, delete, home, end, page up, page down
1996 // * cursor keys: up, down, right, left
1997 // * keypad: divide, enter
1998 // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1999 // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
2000 if (_is_enhanced_key(control_key_state)) {
2001 switch (vk) {
2002 case VK_RETURN: // Enter key on keypad
2003 if (_is_ctrl_pressed(control_key_state)) {
2004 seqstr = "\n";
2005 } else {
2006 seqstr = "\r";
2007 }
2008 break;
2009
2010 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
2011 MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
2012
2013 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
2014 // will be fixed soon to match xterm which sends CSI "F" and
2015 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
2016 MATCH(VK_END, CSI "F");
2017 MATCH(VK_HOME, CSI "H");
2018
2019 MATCH_MODIFIER(VK_LEFT, CSI "D");
2020 MATCH_MODIFIER(VK_UP, CSI "A");
2021 MATCH_MODIFIER(VK_RIGHT, CSI "C");
2022 MATCH_MODIFIER(VK_DOWN, CSI "B");
2023
2024 MATCH_MODIFIER(VK_INSERT, CSI "2~");
2025 MATCH_MODIFIER(VK_DELETE, CSI "3~");
2026
2027 MATCH(VK_DIVIDE, "/");
2028 }
2029 } else { // Non-enhanced keys:
2030 switch (vk) {
2031 case VK_BACK: // backspace
2032 if (_is_alt_pressed(control_key_state)) {
2033 seqstr = ESC "\x7f";
2034 } else {
2035 seqstr = "\x7f";
2036 }
2037 break;
2038
2039 case VK_TAB:
2040 if (_is_shift_pressed(control_key_state)) {
2041 seqstr = CSI "Z";
2042 } else {
2043 seqstr = "\t";
2044 }
2045 break;
2046
2047 // Number 5 key in keypad when NumLock is off, or if NumLock is
2048 // on and Shift is down.
2049 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
2050
2051 case VK_RETURN: // Enter key on main keyboard
2052 if (_is_alt_pressed(control_key_state)) {
2053 seqstr = ESC "\n";
2054 } else if (_is_ctrl_pressed(control_key_state)) {
2055 seqstr = "\n";
2056 } else {
2057 seqstr = "\r";
2058 }
2059 break;
2060
2061 // VK_ESCAPE: Don't do any special handling. The OS uses many
2062 // of the sequences with Escape and many of the remaining
2063 // sequences don't produce bKeyDown messages, only !bKeyDown
2064 // for whatever reason.
2065
2066 case VK_SPACE:
2067 if (_is_alt_pressed(control_key_state)) {
2068 seqstr = ESC " ";
2069 } else if (_is_ctrl_pressed(control_key_state)) {
2070 seqbuf[0] = '\0'; // NULL char
2071 seqbuflen = 1;
2072 } else {
2073 seqstr = " ";
2074 }
2075 break;
2076
2077 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
2078 MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
2079
2080 MATCH_KEYPAD(VK_END, CSI "4~", "1");
2081 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
2082
2083 MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
2084 MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
2085 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
2086 MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
2087
2088 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
2089 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
2090 _get_decimal_char());
2091
2092 case 0x30: // 0
2093 case 0x31: // 1
2094 case 0x39: // 9
2095 case VK_OEM_1: // ;:
2096 case VK_OEM_PLUS: // =+
2097 case VK_OEM_COMMA: // ,<
2098 case VK_OEM_PERIOD: // .>
2099 case VK_OEM_7: // '"
2100 case VK_OEM_102: // depends on keyboard, could be <> or \|
2101 case VK_OEM_2: // /?
2102 case VK_OEM_3: // `~
2103 case VK_OEM_4: // [{
2104 case VK_OEM_5: // \|
2105 case VK_OEM_6: // ]}
2106 {
2107 seqbuflen = _get_control_character(seqbuf, key_event,
2108 control_key_state);
2109
2110 if (_is_alt_pressed(control_key_state)) {
2111 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2112 }
2113 }
2114 break;
2115
2116 case 0x32: // 2
2117 case 0x33: // 3
2118 case 0x34: // 4
2119 case 0x35: // 5
2120 case 0x36: // 6
2121 case 0x37: // 7
2122 case 0x38: // 8
2123 case VK_OEM_MINUS: // -_
2124 {
2125 seqbuflen = _get_control_character(seqbuf, key_event,
2126 control_key_state);
2127
2128 // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
2129 // prefix with escape.
2130 if (_is_alt_pressed(control_key_state) &&
2131 !(_is_ctrl_pressed(control_key_state) &&
2132 !_is_shift_pressed(control_key_state))) {
2133 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2134 }
2135 }
2136 break;
2137
2138 case 0x41: // a
2139 case 0x42: // b
2140 case 0x43: // c
2141 case 0x44: // d
2142 case 0x45: // e
2143 case 0x46: // f
2144 case 0x47: // g
2145 case 0x48: // h
2146 case 0x49: // i
2147 case 0x4a: // j
2148 case 0x4b: // k
2149 case 0x4c: // l
2150 case 0x4d: // m
2151 case 0x4e: // n
2152 case 0x4f: // o
2153 case 0x50: // p
2154 case 0x51: // q
2155 case 0x52: // r
2156 case 0x53: // s
2157 case 0x54: // t
2158 case 0x55: // u
2159 case 0x56: // v
2160 case 0x57: // w
2161 case 0x58: // x
2162 case 0x59: // y
2163 case 0x5a: // z
2164 {
2165 seqbuflen = _get_non_alt_char(seqbuf, key_event,
2166 control_key_state);
2167
2168 // If Alt is pressed, then prefix with escape.
2169 if (_is_alt_pressed(control_key_state)) {
2170 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2171 }
2172 }
2173 break;
2174
2175 // These virtual key codes are generated by the keys on the
2176 // keypad *when NumLock is on* and *Shift is up*.
2177 MATCH(VK_NUMPAD0, "0");
2178 MATCH(VK_NUMPAD1, "1");
2179 MATCH(VK_NUMPAD2, "2");
2180 MATCH(VK_NUMPAD3, "3");
2181 MATCH(VK_NUMPAD4, "4");
2182 MATCH(VK_NUMPAD5, "5");
2183 MATCH(VK_NUMPAD6, "6");
2184 MATCH(VK_NUMPAD7, "7");
2185 MATCH(VK_NUMPAD8, "8");
2186 MATCH(VK_NUMPAD9, "9");
2187
2188 MATCH(VK_MULTIPLY, "*");
2189 MATCH(VK_ADD, "+");
2190 MATCH(VK_SUBTRACT, "-");
2191 // VK_DECIMAL is generated by the . key on the keypad *when
2192 // NumLock is on* and *Shift is up* and the sequence is not
2193 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
2194 // Windows Security screen to come up).
2195 case VK_DECIMAL:
2196 // U.S. English uses '.', Germany German uses ','.
2197 seqbuflen = _get_non_control_char(seqbuf, key_event,
2198 control_key_state);
2199 break;
2200
2201 MATCH_MODIFIER(VK_F1, SS3 "P");
2202 MATCH_MODIFIER(VK_F2, SS3 "Q");
2203 MATCH_MODIFIER(VK_F3, SS3 "R");
2204 MATCH_MODIFIER(VK_F4, SS3 "S");
2205 MATCH_MODIFIER(VK_F5, CSI "15~");
2206 MATCH_MODIFIER(VK_F6, CSI "17~");
2207 MATCH_MODIFIER(VK_F7, CSI "18~");
2208 MATCH_MODIFIER(VK_F8, CSI "19~");
2209 MATCH_MODIFIER(VK_F9, CSI "20~");
2210 MATCH_MODIFIER(VK_F10, CSI "21~");
2211 MATCH_MODIFIER(VK_F11, CSI "23~");
2212 MATCH_MODIFIER(VK_F12, CSI "24~");
2213
2214 MATCH_MODIFIER(VK_F13, CSI "25~");
2215 MATCH_MODIFIER(VK_F14, CSI "26~");
2216 MATCH_MODIFIER(VK_F15, CSI "28~");
2217 MATCH_MODIFIER(VK_F16, CSI "29~");
2218 MATCH_MODIFIER(VK_F17, CSI "31~");
2219 MATCH_MODIFIER(VK_F18, CSI "32~");
2220 MATCH_MODIFIER(VK_F19, CSI "33~");
2221 MATCH_MODIFIER(VK_F20, CSI "34~");
2222
2223 // MATCH_MODIFIER(VK_F21, ???);
2224 // MATCH_MODIFIER(VK_F22, ???);
2225 // MATCH_MODIFIER(VK_F23, ???);
2226 // MATCH_MODIFIER(VK_F24, ???);
2227 }
2228 }
2229
2230 #undef MATCH
2231 #undef MATCH_MODIFIER
2232 #undef MATCH_KEYPAD
2233 #undef MATCH_MODIFIER_KEYPAD
2234 #undef ESC
2235 #undef CSI
2236 #undef SS3
2237
2238 const char* out;
2239 size_t outlen;
2240
2241 // Check for output in any of:
2242 // * seqstr is set (and strlen can be used to determine the length).
2243 // * seqbuf and seqbuflen are set
2244 // Fallback to ch from Windows.
2245 if (seqstr != nullptr) {
2246 out = seqstr;
2247 outlen = strlen(seqstr);
2248 } else if (seqbuflen > 0) {
2249 out = seqbuf;
2250 outlen = seqbuflen;
2251 } else if (ch != '\0') {
2252 // Use whatever Windows told us it is.
2253 seqbuf[0] = ch;
2254 seqbuflen = 1;
2255 out = seqbuf;
2256 outlen = seqbuflen;
2257 } else {
2258 // No special handling for the virtual key code and Windows isn't
2259 // telling us a character code, then we don't know how to translate
2260 // the key press.
2261 //
2262 // Consume the input and 'continue' to cause us to get a new key
2263 // event.
2264 D("_console_read: unknown virtual key code: %d, enhanced: %s",
2265 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2266 continue;
2267 }
2268
2269 // put output wRepeatCount times into g_console_input_buffer
2270 while (key_event->wRepeatCount-- > 0) {
2271 g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
2272 }
2273
2274 // Loop around and try to flush g_console_input_buffer
2275 }
2276 }
2277
2278 static DWORD _old_console_mode; // previous GetConsoleMode() result
2279 static HANDLE _console_handle; // when set, console mode should be restored
2280
stdin_raw_init()2281 void stdin_raw_init() {
2282 const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
2283 if (in == nullptr) {
2284 return;
2285 }
2286
2287 // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
2288 // calling the process Ctrl-C routine (configured by
2289 // SetConsoleCtrlHandler()).
2290 // Disable ENABLE_LINE_INPUT so that input is immediately sent.
2291 // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
2292 // flag also seems necessary to have proper line-ending processing.
2293 DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
2294 ENABLE_LINE_INPUT |
2295 ENABLE_ECHO_INPUT);
2296 // Enable ENABLE_WINDOW_INPUT to get window resizes.
2297 new_console_mode |= ENABLE_WINDOW_INPUT;
2298
2299 if (!SetConsoleMode(in, new_console_mode)) {
2300 // This really should not fail.
2301 D("stdin_raw_init: SetConsoleMode() failed: %s",
2302 android::base::SystemErrorCodeToString(GetLastError()).c_str());
2303 }
2304
2305 // Once this is set, it means that stdin has been configured for
2306 // reading from and that the old console mode should be restored later.
2307 _console_handle = in;
2308
2309 // Note that we don't need to configure C Runtime line-ending
2310 // translation because _console_read() does not call the C Runtime to
2311 // read from the console.
2312 }
2313
stdin_raw_restore()2314 void stdin_raw_restore() {
2315 if (_console_handle != nullptr) {
2316 const HANDLE in = _console_handle;
2317 _console_handle = nullptr; // clear state
2318
2319 if (!SetConsoleMode(in, _old_console_mode)) {
2320 // This really should not fail.
2321 D("stdin_raw_restore: SetConsoleMode() failed: %s",
2322 android::base::SystemErrorCodeToString(GetLastError()).c_str());
2323 }
2324 }
2325 }
2326
2327 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(borrowed_fd fd,void * buf,size_t len)2328 int unix_read_interruptible(borrowed_fd fd, void* buf, size_t len) {
2329 if ((fd == STDIN_FILENO) && (_console_handle != nullptr)) {
2330 // If it is a request to read from stdin, and stdin_raw_init() has been
2331 // called, and it successfully configured the console, then read from
2332 // the console using Win32 console APIs and partially emulate a unix
2333 // terminal.
2334 return _console_read(_console_handle, buf, len);
2335 } else {
2336 // On older versions of Windows (definitely 7, definitely not 10),
2337 // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2338 // we need to limit the read size.
2339 if (len > 4096 && unix_isatty(fd)) {
2340 len = 4096;
2341 }
2342 // Just call into C Runtime which can read from pipes/files and which
2343 // can do LF/CR translation (which is overridable with _setmode()).
2344 // Undefine the macro that is set in sysdeps.h which bans calls to
2345 // plain read() in favor of unix_read() or adb_read().
2346 #pragma push_macro("read")
2347 #undef read
2348 return read(fd.get(), buf, len);
2349 #pragma pop_macro("read")
2350 }
2351 }
2352
2353 /**************************************************************************/
2354 /**************************************************************************/
2355 /***** *****/
2356 /***** Versioning support *****/
2357 /***** *****/
2358 /**************************************************************************/
2359 /**************************************************************************/
GetOSVersion()2360 std::string GetOSVersion() {
2361 // We also considered GetVersionInfoEx(), however the internal
2362 // API below is preferable since Windows-8 (and above) returns
2363 // the manifest windows data (as opposed to the actual version info).
2364 typedef FARPROC(WINAPI * RtlGetVersionPtr)(PRTL_OSVERSIONINFOW);
2365 RtlGetVersionPtr RtlGetVersionInternal = reinterpret_cast<RtlGetVersionPtr>(
2366 GetProcAddress(GetModuleHandleW(L"ntdll.dll"), "RtlGetVersion"));
2367
2368 if (!RtlGetVersionInternal) {
2369 return "<Could not get handle to RtlGetVersion in ntdll.dll>";
2370 }
2371
2372 OSVERSIONINFO version;
2373 version.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
2374
2375 RtlGetVersionInternal(static_cast<PRTL_OSVERSIONINFOW>(&version));
2376
2377 return android::base::StringPrintf("Windows %lu.%lu.%lu", version.dwMajorVersion,
2378 version.dwMinorVersion, version.dwBuildNumber);
2379 }
2380
2381 /**************************************************************************/
2382 /**************************************************************************/
2383 /***** *****/
2384 /***** Unicode support *****/
2385 /***** *****/
2386 /**************************************************************************/
2387 /**************************************************************************/
2388
2389 // This implements support for using files with Unicode filenames and for
2390 // outputting Unicode text to a Win32 console window. This is inspired from
2391 // http://utf8everywhere.org/.
2392 //
2393 // Background
2394 // ----------
2395 //
2396 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2397 // filenames to APIs such as open(). This works because filenames are largely
2398 // opaque 'cookies' (perhaps excluding path separators).
2399 //
2400 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2401 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2402 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2403 // CreateFile() API is really just a macro that adds the W/A based on whether
2404 // the UNICODE preprocessor symbol is defined).
2405 //
2406 // Options
2407 // -------
2408 //
2409 // Thus, to write a portable program, there are a few options:
2410 //
2411 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2412 // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2413 // that takes a wchar_t string, converts it to UTF-8 and then calls the real
2414 // open() API.
2415 //
2416 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2417 // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2418 // potentially touching a lot of code.
2419 //
2420 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2421 // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2422 // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2423 // or C Runtime API.
2424 //
2425 // The Choice
2426 // ----------
2427 //
2428 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2429 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2430 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2431 // args that are passed to main() at the beginning of program startup. We also use
2432 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2433 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2434 //
2435 // Unicode console output
2436 // ----------------------
2437 //
2438 // The way to output Unicode to a Win32 console window is to call
2439 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2440 // such as Lucida Console or Consolas, and in the case of East Asian languages
2441 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2442 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2443 // font to be used in console windows.)
2444 //
2445 // The problem is getting the C Runtime to make fprintf and related APIs call
2446 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2447 // promising, but the various modes have issues:
2448 //
2449 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2450 // UTF-16 do not display properly.
2451 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2452 // totally wrong.
2453 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2454 // handler to be called (upon a later I/O call), aborting the process.
2455 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2456 // to output nothing.
2457 //
2458 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2459 // to UTF-16 and then calls WriteConsoleW().
2460
2461
2462 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2463 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2464 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2465 narrow_args = new char*[argc + 1];
2466
2467 for (int i = 0; i < argc; ++i) {
2468 std::string arg_narrow;
2469 if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2470 PLOG(FATAL) << "cannot convert argument from UTF-16 to UTF-8";
2471 }
2472 narrow_args[i] = strdup(arg_narrow.c_str());
2473 }
2474 narrow_args[argc] = nullptr; // terminate
2475 }
2476
~NarrowArgs()2477 NarrowArgs::~NarrowArgs() {
2478 if (narrow_args != nullptr) {
2479 for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2480 free(*argp);
2481 }
2482 delete[] narrow_args;
2483 narrow_args = nullptr;
2484 }
2485 }
2486
unix_open(std::string_view path,int options,...)2487 int unix_open(std::string_view path, int options, ...) {
2488 std::wstring path_wide;
2489 if (!android::base::UTF8ToWide(path.data(), path.size(), &path_wide)) {
2490 return -1;
2491 }
2492 if ((options & O_CREAT) == 0) {
2493 return _wopen(path_wide.c_str(), options);
2494 } else {
2495 int mode;
2496 va_list args;
2497 va_start(args, options);
2498 mode = va_arg(args, int);
2499 va_end(args);
2500 return _wopen(path_wide.c_str(), options, mode);
2501 }
2502 }
2503
2504 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2505 DIR* adb_opendir(const char* path) {
2506 std::wstring path_wide;
2507 if (!android::base::UTF8ToWide(path, &path_wide)) {
2508 return nullptr;
2509 }
2510
2511 // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2512 // the fields, but right now all the callers treat the structure as
2513 // opaque.
2514 return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2515 }
2516
2517 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2518 struct dirent* adb_readdir(DIR* dir) {
2519 _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2520 struct _wdirent* const went = _wreaddir(wdir);
2521 if (went == nullptr) {
2522 return nullptr;
2523 }
2524
2525 // Convert from UTF-16 to UTF-8.
2526 std::string name_utf8;
2527 if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2528 return nullptr;
2529 }
2530
2531 // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2532 // space for UTF-16 wchar_t's) with UTF-8 char's.
2533 struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2534
2535 if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2536 // Name too big to fit in existing buffer.
2537 errno = ENOMEM;
2538 return nullptr;
2539 }
2540
2541 // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2542 // because _wdirent contains wchar_t instead of char. So even if name_utf8
2543 // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2544 // bigger than the caller expects because they expect a dirent structure
2545 // which has a smaller d_name field. Ignore this since the caller should be
2546 // resilient.
2547
2548 // Rewrite the UTF-16 d_name field to UTF-8.
2549 strcpy(ent->d_name, name_utf8.c_str());
2550
2551 return ent;
2552 }
2553
2554 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2555 int adb_closedir(DIR* dir) {
2556 return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2557 }
2558
2559 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2560 int adb_unlink(const char* path) {
2561 std::wstring wpath;
2562 if (!android::base::UTF8ToWide(path, &wpath)) {
2563 return -1;
2564 }
2565
2566 int rc = _wunlink(wpath.c_str());
2567
2568 if (rc == -1 && errno == EACCES) {
2569 /* unlink returns EACCES when the file is read-only, so we first */
2570 /* try to make it writable, then unlink again... */
2571 rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2572 if (rc == 0)
2573 rc = _wunlink(wpath.c_str());
2574 }
2575 return rc;
2576 }
2577
2578 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2579 int adb_mkdir(const std::string& path, int mode) {
2580 std::wstring path_wide;
2581 if (!android::base::UTF8ToWide(path, &path_wide)) {
2582 return -1;
2583 }
2584
2585 return _wmkdir(path_wide.c_str());
2586 }
2587
adb_rename(const char * oldpath,const char * newpath)2588 int adb_rename(const char* oldpath, const char* newpath) {
2589 std::wstring oldpath_wide, newpath_wide;
2590 if (!android::base::UTF8ToWide(oldpath, &oldpath_wide)) {
2591 return -1;
2592 }
2593 if (!android::base::UTF8ToWide(newpath, &newpath_wide)) {
2594 return -1;
2595 }
2596
2597 // MSDN just says the return value is non-zero on failure, make sure it
2598 // returns -1 on failure so that it behaves the same as other systems.
2599 return _wrename(oldpath_wide.c_str(), newpath_wide.c_str()) ? -1 : 0;
2600 }
2601
2602 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2603 int adb_utime(const char* path, struct utimbuf* u) {
2604 std::wstring path_wide;
2605 if (!android::base::UTF8ToWide(path, &path_wide)) {
2606 return -1;
2607 }
2608
2609 static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2610 "utimbuf and _utimbuf should be the same size because they both "
2611 "contain the same types, namely time_t");
2612 return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2613 }
2614
2615 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2616 int adb_chmod(const char* path, int mode) {
2617 std::wstring path_wide;
2618 if (!android::base::UTF8ToWide(path, &path_wide)) {
2619 return -1;
2620 }
2621
2622 return _wchmod(path_wide.c_str(), mode);
2623 }
2624
2625 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2626 static inline size_t utf8_codepoint_len(uint8_t ch) {
2627 return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2628 }
2629
2630 namespace internal {
2631
2632 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2633 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2634 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2635 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2636 std::vector<char>* const remaining_bytes) {
2637 // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2638 // Current_after points one byte past the current byte to be examined.
2639 for (const char* current_after = last; current_after != first; --current_after) {
2640 const char* const current = current_after - 1;
2641 const char ch = *current;
2642 const char kHighBit = 0x80u;
2643 const char kTwoHighestBits = 0xC0u;
2644 if ((ch & kHighBit) == 0) { // high bit not set
2645 // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2646 // bytes with no leading byte, so return the entire buffer.
2647 break;
2648 } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2649 // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2650 const size_t bytes_available = last - current;
2651 if (bytes_available < utf8_codepoint_len(ch)) {
2652 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2653 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2654 // to remaining_bytes.
2655 remaining_bytes->insert(remaining_bytes->end(), current, last);
2656 return current - first;
2657 } else {
2658 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2659 // trailing bytes with no lead byte, so return the entire buffer.
2660 break;
2661 }
2662 } else {
2663 // Trailing byte, so keep going backwards looking for the lead byte.
2664 }
2665 }
2666
2667 // Return the size of the entire buffer. It is possible that we walked backward past invalid
2668 // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2669 // so that they can be processed.
2670 return last - first;
2671 }
2672
2673 }
2674
2675 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2676 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2677 // This matches the behavior of Linux.
2678
2679 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2680 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2681 HANDLE console) {
2682 static std::mutex& console_output_buffer_lock = *new std::mutex();
2683 static auto& console_output_buffer = *new std::vector<char>();
2684
2685 const int saved_errno = errno;
2686 std::vector<char> combined_buffer;
2687
2688 // Complete UTF-8 sequences that should be immediately written to the console.
2689 const char* utf8;
2690 size_t utf8_size;
2691
2692 {
2693 std::lock_guard<std::mutex> lock(console_output_buffer_lock);
2694 if (console_output_buffer.empty()) {
2695 // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2696 // common case with plain ASCII), parse buf directly.
2697 utf8 = buf;
2698 utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
2699 } else {
2700 // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2701 // combined_buffer (and effectively clear console_output_buffer) and append buf to
2702 // combined_buffer, then parse it all together.
2703 combined_buffer.swap(console_output_buffer);
2704 combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2705
2706 utf8 = combined_buffer.data();
2707 utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2708 &console_output_buffer);
2709 }
2710 }
2711
2712 std::wstring utf16;
2713
2714 // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2715 // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2716 // random data, runs dmesg (which might have non-UTF-8), etc.
2717 // This could throw std::bad_alloc.
2718 (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2719
2720 // Note that this does not do \n => \r\n translation because that
2721 // doesn't seem necessary for the Windows console. For the Windows
2722 // console \r moves to the beginning of the line and \n moves to a new
2723 // line.
2724
2725 // Flush any stream buffering so that our output is afterwards which
2726 // makes sense because our call is afterwards.
2727 (void)fflush(stream);
2728
2729 // Write UTF-16 to the console.
2730 DWORD written = 0;
2731 if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, nullptr)) {
2732 errno = EIO;
2733 return -1;
2734 }
2735
2736 // Return the size of the original buffer passed in, signifying that we consumed it all, even
2737 // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2738 // matches the Linux behavior.
2739 errno = saved_errno;
2740 return buf_size;
2741 }
2742
2743 // Function prototype because attributes cannot be placed on func definitions.
2744 static int _console_vfprintf(const HANDLE console, FILE* stream, const char* format, va_list ap)
2745 __attribute__((__format__(__printf__, 3, 0)));
2746
2747 // Internal function to format a UTF-8 string and write it to a Win32 console.
2748 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2749 static int _console_vfprintf(const HANDLE console, FILE* stream,
2750 const char *format, va_list ap) {
2751 const int saved_errno = errno;
2752 std::string output_utf8;
2753
2754 // Format the string.
2755 // This could throw std::bad_alloc.
2756 android::base::StringAppendV(&output_utf8, format, ap);
2757
2758 const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2759 console);
2760 if (result != -1) {
2761 errno = saved_errno;
2762 } else {
2763 // If -1 was returned, errno has been set.
2764 }
2765 return result;
2766 }
2767
2768 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2769 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2770 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2771 const HANDLE console = _get_console_handle(stream);
2772
2773 // If there is an associated Win32 console, write to it specially,
2774 // otherwise defer to the regular C Runtime, passing it UTF-8.
2775 if (console != nullptr) {
2776 return _console_vfprintf(console, stream, format, ap);
2777 } else {
2778 // If vfprintf is a macro, undefine it, so we can call the real
2779 // C Runtime API.
2780 #pragma push_macro("vfprintf")
2781 #undef vfprintf
2782 return vfprintf(stream, format, ap);
2783 #pragma pop_macro("vfprintf")
2784 }
2785 }
2786
2787 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2788 int adb_vprintf(const char *format, va_list ap) {
2789 return adb_vfprintf(stdout, format, ap);
2790 }
2791
2792 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2793 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2794 int adb_fprintf(FILE *stream, const char *format, ...) {
2795 va_list ap;
2796 va_start(ap, format);
2797 const int result = adb_vfprintf(stream, format, ap);
2798 va_end(ap);
2799
2800 return result;
2801 }
2802
2803 // Version of printf() that takes UTF-8 and can write Unicode to a
2804 // Windows console.
adb_printf(const char * format,...)2805 int adb_printf(const char *format, ...) {
2806 va_list ap;
2807 va_start(ap, format);
2808 const int result = adb_vfprintf(stdout, format, ap);
2809 va_end(ap);
2810
2811 return result;
2812 }
2813
2814 // Version of fputs() that takes UTF-8 and can write Unicode to a
2815 // Windows console.
adb_fputs(const char * buf,FILE * stream)2816 int adb_fputs(const char* buf, FILE* stream) {
2817 // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2818 // which fputs (and hence adb_fputs) should return on error.
2819 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2820 return adb_fprintf(stream, "%s", buf);
2821 }
2822
2823 // Version of fputc() that takes UTF-8 and can write Unicode to a
2824 // Windows console.
adb_fputc(int ch,FILE * stream)2825 int adb_fputc(int ch, FILE* stream) {
2826 const int result = adb_fprintf(stream, "%c", ch);
2827 if (result == -1) {
2828 return EOF;
2829 }
2830 // For success, fputc returns the char, cast to unsigned char, then to int.
2831 return static_cast<unsigned char>(ch);
2832 }
2833
2834 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2835 int adb_putchar(int ch) {
2836 return adb_fputc(ch, stdout);
2837 }
2838
2839 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2840 int adb_puts(const char* buf) {
2841 // adb_printf returns -1 on error, which is conveniently the same as EOF
2842 // which puts (and hence adb_puts) should return on error.
2843 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2844 return adb_printf("%s\n", buf);
2845 }
2846
2847 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2848 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2849 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2850 FILE* stream, HANDLE console) {
2851 const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2852 console);
2853 if (result == -1) {
2854 return 0;
2855 }
2856 return result / size;
2857 }
2858
2859 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2860 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2861 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2862 const HANDLE console = _get_console_handle(stream);
2863
2864 // If there is an associated Win32 console, write to it specially,
2865 // otherwise defer to the regular C Runtime, passing it UTF-8.
2866 if (console != nullptr) {
2867 return _console_fwrite(ptr, size, nmemb, stream, console);
2868 } else {
2869 // If fwrite is a macro, undefine it, so we can call the real
2870 // C Runtime API.
2871 #pragma push_macro("fwrite")
2872 #undef fwrite
2873 return fwrite(ptr, size, nmemb, stream);
2874 #pragma pop_macro("fwrite")
2875 }
2876 }
2877
2878 // Version of fopen() that takes a UTF-8 filename and can access a file with
2879 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2880 FILE* adb_fopen(const char* path, const char* mode) {
2881 std::wstring path_wide;
2882 if (!android::base::UTF8ToWide(path, &path_wide)) {
2883 return nullptr;
2884 }
2885
2886 std::wstring mode_wide;
2887 if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2888 return nullptr;
2889 }
2890
2891 return _wfopen(path_wide.c_str(), mode_wide.c_str());
2892 }
2893
2894 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2895 // each byte which is not UTF-8 aware, and theoretically uses the current C
2896 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2897 // conversion).
ToLower(const std::string & anycase)2898 static std::string ToLower(const std::string& anycase) {
2899 // copy string
2900 std::string str(anycase);
2901 // transform the copy
2902 std::transform(str.begin(), str.end(), str.begin(), tolower);
2903 return str;
2904 }
2905
2906 extern "C" int main(int argc, char** argv);
2907
2908 // Link with -municode to cause this wmain() to be used as the program
2909 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2910 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2911 extern "C" int wmain(int argc, wchar_t **argv) {
2912 // Convert args from UTF-16 to UTF-8 and pass that to main().
2913 NarrowArgs narrow_args(argc, argv);
2914
2915 // Avoid destructing NarrowArgs: argv might have been mutated to point to string literals.
2916 _exit(main(argc, narrow_args.data()));
2917 }
2918
2919 // Shadow UTF-8 environment variable name/value pairs that are created from
2920 // _wenviron by _init_env(). Note that this is not currently updated if putenv, setenv, unsetenv are
2921 // called. Note that no thread synchronization is done, but we're called early enough in
2922 // single-threaded startup that things work ok.
2923 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2924
2925 // Setup shadow UTF-8 environment variables.
_init_env()2926 static void _init_env() {
2927 // If some name/value pairs exist, then we've already done the setup below.
2928 if (g_environ_utf8.size() != 0) {
2929 return;
2930 }
2931
2932 if (_wenviron == nullptr) {
2933 // If _wenviron is null, then -municode probably wasn't used. That
2934 // linker flag will cause the entry point to setup _wenviron. It will
2935 // also require an implementation of wmain() (which we provide above).
2936 LOG(FATAL) << "_wenviron is not set, did you link with -municode?";
2937 }
2938
2939 // Read name/value pairs from UTF-16 _wenviron and write new name/value
2940 // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2941 // to use the D() macro here because that tracing only works if the
2942 // ADB_TRACE environment variable is setup, but that env var can't be read
2943 // until this code completes.
2944 for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2945 wchar_t* const equal = wcschr(*env, L'=');
2946 if (equal == nullptr) {
2947 // Malformed environment variable with no equal sign. Shouldn't
2948 // really happen, but we should be resilient to this.
2949 continue;
2950 }
2951
2952 // If we encounter an error converting UTF-16, don't error-out on account of a single env
2953 // var because the program might never even read this particular variable.
2954 std::string name_utf8;
2955 if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2956 continue;
2957 }
2958
2959 // Store lowercase name so that we can do case-insensitive searches.
2960 name_utf8 = ToLower(name_utf8);
2961
2962 std::string value_utf8;
2963 if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2964 continue;
2965 }
2966
2967 char* const value_dup = strdup(value_utf8.c_str());
2968
2969 // Don't overwrite a previus env var with the same name. In reality,
2970 // the system probably won't let two env vars with the same name exist
2971 // in _wenviron.
2972 g_environ_utf8.insert({name_utf8, value_dup});
2973 }
2974 }
2975
2976 // Version of getenv() that takes a UTF-8 environment variable name and
2977 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2978 char* adb_getenv(const char* name) {
2979 // Case-insensitive search by searching for lowercase name in a map of
2980 // lowercase names.
2981 const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2982 if (it == g_environ_utf8.end()) {
2983 return nullptr;
2984 }
2985
2986 return it->second;
2987 }
2988
2989 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2990 char* adb_getcwd(char* buf, int size) {
2991 wchar_t* wbuf = _wgetcwd(nullptr, 0);
2992 if (wbuf == nullptr) {
2993 return nullptr;
2994 }
2995
2996 std::string buf_utf8;
2997 const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2998 free(wbuf);
2999 wbuf = nullptr;
3000
3001 if (!narrow_result) {
3002 return nullptr;
3003 }
3004
3005 // If size was specified, make sure all the chars will fit.
3006 if (size != 0) {
3007 if (size < static_cast<int>(buf_utf8.length() + 1)) {
3008 errno = ERANGE;
3009 return nullptr;
3010 }
3011 }
3012
3013 // If buf was not specified, allocate storage.
3014 if (buf == nullptr) {
3015 if (size == 0) {
3016 size = buf_utf8.length() + 1;
3017 }
3018 buf = reinterpret_cast<char*>(malloc(size));
3019 if (buf == nullptr) {
3020 return nullptr;
3021 }
3022 }
3023
3024 // Destination buffer was allocated with enough space, or we've already
3025 // checked an existing buffer size for enough space.
3026 strcpy(buf, buf_utf8.c_str());
3027
3028 return buf;
3029 }
3030
enable_inherit(borrowed_fd fd)3031 void enable_inherit(borrowed_fd fd) {
3032 auto osh = adb_get_os_handle(fd);
3033 const auto h = reinterpret_cast<HANDLE>(osh);
3034 ::SetHandleInformation(h, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT);
3035 }
3036
disable_inherit(borrowed_fd fd)3037 void disable_inherit(borrowed_fd fd) {
3038 auto osh = adb_get_os_handle(fd);
3039 const auto h = reinterpret_cast<HANDLE>(osh);
3040 ::SetHandleInformation(h, HANDLE_FLAG_INHERIT, 0);
3041 }
3042
adb_launch_process(std::string_view executable,std::vector<std::string> args,std::initializer_list<int> fds_to_inherit)3043 Process adb_launch_process(std::string_view executable, std::vector<std::string> args,
3044 std::initializer_list<int> fds_to_inherit) {
3045 std::wstring wexe;
3046 if (!android::base::UTF8ToWide(executable.data(), executable.size(), &wexe)) {
3047 return Process();
3048 }
3049
3050 std::wstring wargs = L"\"" + wexe + L"\"";
3051 std::wstring warg;
3052 for (auto arg : args) {
3053 warg.clear();
3054 if (!android::base::UTF8ToWide(arg.data(), arg.size(), &warg)) {
3055 return Process();
3056 }
3057 wargs += L" \"";
3058 wargs += warg;
3059 wargs += L'\"';
3060 }
3061
3062 STARTUPINFOW sinfo = {sizeof(sinfo)};
3063 PROCESS_INFORMATION pinfo = {};
3064
3065 // TODO: use the Vista+ API to pass the list of inherited handles explicitly;
3066 // see http://blogs.msdn.com/b/oldnewthing/archive/2011/12/16/10248328.aspx
3067 for (auto fd : fds_to_inherit) {
3068 enable_inherit(fd);
3069 }
3070 const auto created = CreateProcessW(wexe.c_str(), wargs.data(),
3071 nullptr, // process attributes
3072 nullptr, // thread attributes
3073 fds_to_inherit.size() > 0, // inherit any handles?
3074 0, // flags
3075 nullptr, // environment
3076 nullptr, // current directory
3077 &sinfo, // startup info
3078 &pinfo);
3079 for (auto fd : fds_to_inherit) {
3080 disable_inherit(fd);
3081 }
3082
3083 if (!created) {
3084 return Process();
3085 }
3086
3087 ::CloseHandle(pinfo.hThread);
3088 return Process(pinfo.hProcess);
3089 }
3090
3091 // The SetThreadDescription API was brought in version 1607 of Windows 10.
3092 // Based on PlatformThread::SetName() from
3093 // https://cs.chromium.org/chromium/src/base/threading/platform_thread_win.cc
adb_thread_setname(const std::string & name)3094 int adb_thread_setname(const std::string& name) {
3095 // The SetThreadDescription API works even if no debugger is attached.
3096 auto set_thread_description_func = reinterpret_cast<HRESULT(WINAPI *)(HANDLE, PCWSTR)>(
3097 ::GetProcAddress(::GetModuleHandleW(L"Kernel32.dll"), "SetThreadDescription"));
3098 if (set_thread_description_func) {
3099 std::wstring name_wide;
3100 if (!android::base::UTF8ToWide(name.c_str(), &name_wide)) {
3101 return errno;
3102 }
3103 set_thread_description_func(::GetCurrentThread(), name_wide.c_str());
3104 }
3105
3106 // Don't use the thread naming SEH exception because we're compiled with -fno-exceptions.
3107 // https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2017
3108
3109 return 0;
3110 }
3111
3112 #if !defined(ENABLE_VIRTUAL_TERMINAL_PROCESSING)
3113 #define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
3114 #endif
3115
3116 #if !defined(DISABLE_NEWLINE_AUTO_RETURN)
3117 #define DISABLE_NEWLINE_AUTO_RETURN 0x0008
3118 #endif
3119
_init_console()3120 static void _init_console() {
3121 DWORD old_out_console_mode;
3122
3123 const HANDLE out = _get_console_handle(STDOUT_FILENO, &old_out_console_mode);
3124 if (out == nullptr) {
3125 return;
3126 }
3127
3128 // Try to use ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output console to process virtual
3129 // terminal sequences on newer versions of Windows 10 and later.
3130 // https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
3131 // On older OSes that don't support the flag, SetConsoleMode() will return an error.
3132 // ENABLE_VIRTUAL_TERMINAL_PROCESSING also solves a problem where the last column of the
3133 // console cannot be overwritten.
3134 //
3135 // Note that we don't use DISABLE_NEWLINE_AUTO_RETURN because it doesn't seem to be necessary.
3136 // If we use DISABLE_NEWLINE_AUTO_RETURN, _console_write_utf8() would need to be modified to
3137 // translate \n to \r\n.
3138 if (!SetConsoleMode(out, old_out_console_mode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
3139 return;
3140 }
3141
3142 // If SetConsoleMode() succeeded, the console supports virtual terminal processing, so we
3143 // should set the TERM env var to match so that it will be propagated to adbd on devices.
3144 //
3145 // Below's direct manipulation of env vars and not g_environ_utf8 assumes that _init_env() has
3146 // not yet been called. If this fails, _init_env() should be called after _init_console().
3147 if (g_environ_utf8.size() > 0) {
3148 LOG(FATAL) << "environment variables have already been converted to UTF-8";
3149 }
3150
3151 #pragma push_macro("getenv")
3152 #undef getenv
3153 #pragma push_macro("putenv")
3154 #undef putenv
3155 if (getenv("TERM") == nullptr) {
3156 // This is the same TERM value used by Gnome Terminal and the version of ssh included with
3157 // Windows.
3158 putenv("TERM=xterm-256color");
3159 }
3160 #pragma pop_macro("putenv")
3161 #pragma pop_macro("getenv")
3162 }
3163
_init_sysdeps()3164 static bool _init_sysdeps() {
3165 // _init_console() depends on _init_env() not being called yet.
3166 _init_console();
3167 _init_env();
3168 _init_winsock();
3169 return true;
3170 }
3171
3172 static bool _sysdeps_init = _init_sysdeps();
3173