/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_internals.h" #include "dex/dataflow_iterator-inl.h" #include "dex/quick/dex_file_method_inliner.h" #include "mir_to_lir-inl.h" #include "thread-inl.h" namespace art { RegisterClass Mir2Lir::ShortyToRegClass(char shorty_type) { RegisterClass res; switch (shorty_type) { case 'L': res = kRefReg; break; case 'F': // Expected fallthrough. case 'D': res = kFPReg; break; default: res = kCoreReg; } return res; } RegisterClass Mir2Lir::LocToRegClass(RegLocation loc) { RegisterClass res; if (loc.fp) { DCHECK(!loc.ref) << "At most, one of ref/fp may be set"; res = kFPReg; } else if (loc.ref) { res = kRefReg; } else { res = kCoreReg; } return res; } void Mir2Lir::LockArg(int in_position, bool wide) { RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position); RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) : RegStorage::InvalidReg(); if (reg_arg_low.Valid()) { LockTemp(reg_arg_low); } if (reg_arg_high.Valid() && reg_arg_low.NotExactlyEquals(reg_arg_high)) { LockTemp(reg_arg_high); } } // TODO: simplify when 32-bit targets go hard-float. RegStorage Mir2Lir::LoadArg(int in_position, RegisterClass reg_class, bool wide) { ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set); if (cu_->instruction_set == kX86) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 4 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint32_t); } if (cu_->instruction_set == kX86_64) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 8 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint64_t); } if (cu_->target64) { RegStorage reg_arg = GetArgMappingToPhysicalReg(in_position); if (!reg_arg.Valid()) { RegStorage new_reg = wide ? AllocTypedTempWide(false, reg_class) : AllocTypedTemp(false, reg_class); LoadBaseDisp(TargetPtrReg(kSp), offset, new_reg, wide ? k64 : k32, kNotVolatile); return new_reg; } else { // Check if we need to copy the arg to a different reg_class. if (!RegClassMatches(reg_class, reg_arg)) { if (wide) { RegStorage new_reg = AllocTypedTempWide(false, reg_class); OpRegCopyWide(new_reg, reg_arg); reg_arg = new_reg; } else { RegStorage new_reg = AllocTypedTemp(false, reg_class); OpRegCopy(new_reg, reg_arg); reg_arg = new_reg; } } } return reg_arg; } RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position); RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) : RegStorage::InvalidReg(); // If the VR is wide and there is no register for high part, we need to load it. if (wide && !reg_arg_high.Valid()) { // If the low part is not in a reg, we allocate a pair. Otherwise, we just load to high reg. if (!reg_arg_low.Valid()) { RegStorage new_regs = AllocTypedTempWide(false, reg_class); LoadBaseDisp(TargetPtrReg(kSp), offset, new_regs, k64, kNotVolatile); return new_regs; // The reg_class is OK, we can return. } else { // Assume that no ABI allows splitting a wide fp reg between a narrow fp reg and memory, // i.e. the low part is in a core reg. Load the second part in a core reg as well for now. DCHECK(!reg_arg_low.IsFloat()); reg_arg_high = AllocTemp(); int offset_high = offset + sizeof(uint32_t); Load32Disp(TargetPtrReg(kSp), offset_high, reg_arg_high); // Continue below to check the reg_class. } } // If the low part is not in a register yet, we need to load it. if (!reg_arg_low.Valid()) { // Assume that if the low part of a wide arg is passed in memory, so is the high part, // thus we don't get here for wide args as it's handled above. Big-endian ABIs could // conceivably break this assumption but Android supports only little-endian architectures. DCHECK(!wide); reg_arg_low = AllocTypedTemp(false, reg_class); Load32Disp(TargetPtrReg(kSp), offset, reg_arg_low); return reg_arg_low; // The reg_class is OK, we can return. } RegStorage reg_arg = wide ? RegStorage::MakeRegPair(reg_arg_low, reg_arg_high) : reg_arg_low; // Check if we need to copy the arg to a different reg_class. if (!RegClassMatches(reg_class, reg_arg)) { if (wide) { RegStorage new_regs = AllocTypedTempWide(false, reg_class); OpRegCopyWide(new_regs, reg_arg); reg_arg = new_regs; } else { RegStorage new_reg = AllocTypedTemp(false, reg_class); OpRegCopy(new_reg, reg_arg); reg_arg = new_reg; } } return reg_arg; } // TODO: simpilfy when 32-bit targets go hard float. void Mir2Lir::LoadArgDirect(int in_position, RegLocation rl_dest) { ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set); if (cu_->instruction_set == kX86) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 4 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint32_t); } if (cu_->instruction_set == kX86_64) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 8 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint64_t); } if (!rl_dest.wide) { RegStorage reg = GetArgMappingToPhysicalReg(in_position); if (reg.Valid()) { OpRegCopy(rl_dest.reg, reg); } else { Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg); } } else { if (cu_->target64) { RegStorage reg = GetArgMappingToPhysicalReg(in_position); if (reg.Valid()) { OpRegCopy(rl_dest.reg, reg); } else { LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile); } return; } RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position); RegStorage reg_arg_high = GetArgMappingToPhysicalReg(in_position + 1); if (cu_->instruction_set == kX86) { // Can't handle double split between reg & memory. Flush reg half to memory. if (rl_dest.reg.IsDouble() && (reg_arg_low.Valid() != reg_arg_high.Valid())) { DCHECK(reg_arg_low.Valid()); DCHECK(!reg_arg_high.Valid()); Store32Disp(TargetPtrReg(kSp), offset, reg_arg_low); reg_arg_low = RegStorage::InvalidReg(); } } if (reg_arg_low.Valid() && reg_arg_high.Valid()) { OpRegCopyWide(rl_dest.reg, RegStorage::MakeRegPair(reg_arg_low, reg_arg_high)); } else if (reg_arg_low.Valid() && !reg_arg_high.Valid()) { OpRegCopy(rl_dest.reg, reg_arg_low); int offset_high = offset + sizeof(uint32_t); Load32Disp(TargetPtrReg(kSp), offset_high, rl_dest.reg.GetHigh()); } else if (!reg_arg_low.Valid() && reg_arg_high.Valid()) { OpRegCopy(rl_dest.reg.GetHigh(), reg_arg_high); Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg.GetLow()); } else { LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile); } } } bool Mir2Lir::GenSpecialIGet(MIR* mir, const InlineMethod& special) { // FastInstance() already checked by DexFileMethodInliner. const InlineIGetIPutData& data = special.d.ifield_data; if (data.method_is_static != 0u || data.object_arg != 0u) { // The object is not "this" and has to be null-checked. return false; } bool wide = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE)); bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT)); OpSize size = LoadStoreOpSize(wide, ref); // Point of no return - no aborts after this GenPrintLabel(mir); LockArg(data.object_arg); RegStorage reg_obj = LoadArg(data.object_arg, kRefReg); RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile); RegisterClass ret_reg_class = ShortyToRegClass(cu_->shorty[0]); RegLocation rl_dest = wide ? GetReturnWide(ret_reg_class) : GetReturn(ret_reg_class); RegStorage r_result = rl_dest.reg; if (!RegClassMatches(reg_class, r_result)) { r_result = wide ? AllocTypedTempWide(rl_dest.fp, reg_class) : AllocTypedTemp(rl_dest.fp, reg_class); } if (ref) { LoadRefDisp(reg_obj, data.field_offset, r_result, data.is_volatile ? kVolatile : kNotVolatile); } else { LoadBaseDisp(reg_obj, data.field_offset, r_result, size, data.is_volatile ? kVolatile : kNotVolatile); } if (r_result.NotExactlyEquals(rl_dest.reg)) { if (wide) { OpRegCopyWide(rl_dest.reg, r_result); } else { OpRegCopy(rl_dest.reg, r_result); } } return true; } bool Mir2Lir::GenSpecialIPut(MIR* mir, const InlineMethod& special) { // FastInstance() already checked by DexFileMethodInliner. const InlineIGetIPutData& data = special.d.ifield_data; if (data.method_is_static != 0u || data.object_arg != 0u) { // The object is not "this" and has to be null-checked. return false; } if (data.return_arg_plus1 != 0u) { // The setter returns a method argument which we don't support here. return false; } bool wide = (data.op_variant == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE)); bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT)); OpSize size = LoadStoreOpSize(wide, ref); // Point of no return - no aborts after this GenPrintLabel(mir); LockArg(data.object_arg); LockArg(data.src_arg, wide); RegStorage reg_obj = LoadArg(data.object_arg, kRefReg); RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile); RegStorage reg_src = LoadArg(data.src_arg, reg_class, wide); if (ref) { StoreRefDisp(reg_obj, data.field_offset, reg_src, data.is_volatile ? kVolatile : kNotVolatile); } else { StoreBaseDisp(reg_obj, data.field_offset, reg_src, size, data.is_volatile ? kVolatile : kNotVolatile); } if (ref) { MarkGCCard(reg_src, reg_obj); } return true; } bool Mir2Lir::GenSpecialIdentity(MIR* mir, const InlineMethod& special) { const InlineReturnArgData& data = special.d.return_data; bool wide = (data.is_wide != 0u); // Point of no return - no aborts after this GenPrintLabel(mir); LockArg(data.arg, wide); RegisterClass reg_class = ShortyToRegClass(cu_->shorty[0]); RegLocation rl_dest = wide ? GetReturnWide(reg_class) : GetReturn(reg_class); LoadArgDirect(data.arg, rl_dest); return true; } /* * Special-case code generation for simple non-throwing leaf methods. */ bool Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) { DCHECK(special.flags & kInlineSpecial); current_dalvik_offset_ = mir->offset; MIR* return_mir = nullptr; bool successful = false; switch (special.opcode) { case kInlineOpNop: successful = true; DCHECK_EQ(mir->dalvikInsn.opcode, Instruction::RETURN_VOID); return_mir = mir; break; case kInlineOpNonWideConst: { successful = true; RegLocation rl_dest = GetReturn(ShortyToRegClass(cu_->shorty[0])); GenPrintLabel(mir); LoadConstant(rl_dest.reg, static_cast<int>(special.d.data)); return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir); break; } case kInlineOpReturnArg: successful = GenSpecialIdentity(mir, special); return_mir = mir; break; case kInlineOpIGet: successful = GenSpecialIGet(mir, special); return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir); break; case kInlineOpIPut: successful = GenSpecialIPut(mir, special); return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir); break; default: break; } if (successful) { if (kIsDebugBuild) { // Clear unreachable catch entries. mir_graph_->catches_.clear(); } // Handle verbosity for return MIR. if (return_mir != nullptr) { current_dalvik_offset_ = return_mir->offset; // Not handling special identity case because it already generated code as part // of the return. The label should have been added before any code was generated. if (special.opcode != kInlineOpReturnArg) { GenPrintLabel(return_mir); } } GenSpecialExitSequence(); core_spill_mask_ = 0; num_core_spills_ = 0; fp_spill_mask_ = 0; num_fp_spills_ = 0; frame_size_ = 0; core_vmap_table_.clear(); fp_vmap_table_.clear(); } return successful; } /* * Target-independent code generation. Use only high-level * load/store utilities here, or target-dependent genXX() handlers * when necessary. */ void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) { RegLocation rl_src[3]; RegLocation rl_dest = mir_graph_->GetBadLoc(); RegLocation rl_result = mir_graph_->GetBadLoc(); Instruction::Code opcode = mir->dalvikInsn.opcode; int opt_flags = mir->optimization_flags; uint32_t vB = mir->dalvikInsn.vB; uint32_t vC = mir->dalvikInsn.vC; DCHECK(CheckCorePoolSanity()) << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " @ 0x:" << std::hex << current_dalvik_offset_; // Prep Src and Dest locations. int next_sreg = 0; int next_loc = 0; uint64_t attrs = MIRGraph::GetDataFlowAttributes(opcode); rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc(); if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); next_sreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); next_sreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); } } if (attrs & DF_DA) { if (attrs & DF_A_WIDE) { rl_dest = mir_graph_->GetDestWide(mir); } else { rl_dest = mir_graph_->GetDest(mir); } } switch (opcode) { case Instruction::NOP: break; case Instruction::MOVE_EXCEPTION: GenMoveException(rl_dest); break; case Instruction::RETURN_VOID: if (((cu_->access_flags & kAccConstructor) != 0) && cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file, cu_->class_def_idx)) { GenMemBarrier(kStoreStore); } if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } break; case Instruction::RETURN_OBJECT: DCHECK(rl_src[0].ref); // Intentional fallthrough. case Instruction::RETURN: if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0])); StoreValue(GetReturn(LocToRegClass(rl_src[0])), rl_src[0]); break; case Instruction::RETURN_WIDE: if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0])); StoreValueWide(GetReturnWide(LocToRegClass(rl_src[0])), rl_src[0]); break; case Instruction::MOVE_RESULT_WIDE: if ((opt_flags & MIR_INLINED) != 0) { break; // Nop - combined w/ previous invoke. } StoreValueWide(rl_dest, GetReturnWide(LocToRegClass(rl_dest))); break; case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: if ((opt_flags & MIR_INLINED) != 0) { break; // Nop - combined w/ previous invoke. } StoreValue(rl_dest, GetReturn(LocToRegClass(rl_dest))); break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_FROM16: case Instruction::MOVE_OBJECT_FROM16: StoreValue(rl_dest, rl_src[0]); break; case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: StoreValueWide(rl_dest, rl_src[0]); break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: GenConst(rl_dest, vB); break; case Instruction::CONST_HIGH16: GenConst(rl_dest, vB << 16); break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: GenConstWide(rl_dest, static_cast<int64_t>(static_cast<int32_t>(vB))); break; case Instruction::CONST_WIDE: GenConstWide(rl_dest, mir->dalvikInsn.vB_wide); break; case Instruction::CONST_WIDE_HIGH16: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantWide(rl_result.reg, static_cast<int64_t>(vB) << 48); StoreValueWide(rl_dest, rl_result); break; case Instruction::MONITOR_ENTER: GenMonitorEnter(opt_flags, rl_src[0]); break; case Instruction::MONITOR_EXIT: GenMonitorExit(opt_flags, rl_src[0]); break; case Instruction::CHECK_CAST: { GenCheckCast(mir->offset, vB, rl_src[0]); break; } case Instruction::INSTANCE_OF: GenInstanceof(vC, rl_dest, rl_src[0]); break; case Instruction::NEW_INSTANCE: GenNewInstance(vB, rl_dest); break; case Instruction::THROW: GenThrow(rl_src[0]); break; case Instruction::ARRAY_LENGTH: int len_offset; len_offset = mirror::Array::LengthOffset().Int32Value(); rl_src[0] = LoadValue(rl_src[0], kRefReg); GenNullCheck(rl_src[0].reg, opt_flags); rl_result = EvalLoc(rl_dest, kCoreReg, true); Load32Disp(rl_src[0].reg, len_offset, rl_result.reg); MarkPossibleNullPointerException(opt_flags); StoreValue(rl_dest, rl_result); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: GenConstString(vB, rl_dest); break; case Instruction::CONST_CLASS: GenConstClass(vB, rl_dest); break; case Instruction::FILL_ARRAY_DATA: GenFillArrayData(vB, rl_src[0]); break; case Instruction::FILLED_NEW_ARRAY: GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false /* not range */)); break; case Instruction::FILLED_NEW_ARRAY_RANGE: GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true /* range */)); break; case Instruction::NEW_ARRAY: GenNewArray(vC, rl_dest, rl_src[0]); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: if (mir_graph_->IsBackedge(bb, bb->taken) && (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken))) { GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken]); } else { OpUnconditionalBranch(&label_list[bb->taken]); } break; case Instruction::PACKED_SWITCH: GenPackedSwitch(mir, vB, rl_src[0]); break; case Instruction::SPARSE_SWITCH: GenSparseSwitch(mir, vB, rl_src[0]); break; case Instruction::CMPL_FLOAT: case Instruction::CMPG_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMP_LONG: GenCmpLong(rl_dest, rl_src[0], rl_src[1]); break; case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: { LIR* taken = &label_list[bb->taken]; LIR* fall_through = &label_list[bb->fall_through]; // Result known at compile time? if (rl_src[0].is_const && rl_src[1].is_const) { bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), mir_graph_->ConstantValue(rl_src[1].orig_sreg)); BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through; if (mir_graph_->IsBackedge(bb, target_id) && (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) { GenSuspendTest(opt_flags); } OpUnconditionalBranch(&label_list[target_id]); } else { if (mir_graph_->IsBackwardsBranch(bb) && (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) || !mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) { GenSuspendTest(opt_flags); } GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken, fall_through); } break; } case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: { LIR* taken = &label_list[bb->taken]; LIR* fall_through = &label_list[bb->fall_through]; // Result known at compile time? if (rl_src[0].is_const) { bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0); BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through; if (mir_graph_->IsBackedge(bb, target_id) && (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) { GenSuspendTest(opt_flags); } OpUnconditionalBranch(&label_list[target_id]); } else { if (mir_graph_->IsBackwardsBranch(bb) && (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) || !mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) { GenSuspendTest(opt_flags); } GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through); } break; } case Instruction::AGET_WIDE: GenArrayGet(opt_flags, k64, rl_src[0], rl_src[1], rl_dest, 3); break; case Instruction::AGET_OBJECT: GenArrayGet(opt_flags, kReference, rl_src[0], rl_src[1], rl_dest, 2); break; case Instruction::AGET: GenArrayGet(opt_flags, k32, rl_src[0], rl_src[1], rl_dest, 2); break; case Instruction::AGET_BOOLEAN: GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0); break; case Instruction::AGET_BYTE: GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0); break; case Instruction::AGET_CHAR: GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1); break; case Instruction::AGET_SHORT: GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1); break; case Instruction::APUT_WIDE: GenArrayPut(opt_flags, k64, rl_src[1], rl_src[2], rl_src[0], 3, false); break; case Instruction::APUT: GenArrayPut(opt_flags, k32, rl_src[1], rl_src[2], rl_src[0], 2, false); break; case Instruction::APUT_OBJECT: { bool is_null = mir_graph_->IsConstantNullRef(rl_src[0]); bool is_safe = is_null; // Always safe to store null. if (!is_safe) { // Check safety from verifier type information. const DexCompilationUnit* unit = mir_graph_->GetCurrentDexCompilationUnit(); is_safe = cu_->compiler_driver->IsSafeCast(unit, mir->offset); } if (is_null || is_safe) { // Store of constant null doesn't require an assignability test and can be generated inline // without fixed register usage or a card mark. GenArrayPut(opt_flags, kReference, rl_src[1], rl_src[2], rl_src[0], 2, !is_null); } else { GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0]); } break; } case Instruction::APUT_SHORT: case Instruction::APUT_CHAR: GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1, false); break; case Instruction::APUT_BYTE: case Instruction::APUT_BOOLEAN: GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2], rl_src[0], 0, false); break; case Instruction::IGET_OBJECT: GenIGet(mir, opt_flags, kReference, rl_dest, rl_src[0], false, true); break; case Instruction::IGET_WIDE: GenIGet(mir, opt_flags, k64, rl_dest, rl_src[0], true, false); break; case Instruction::IGET: GenIGet(mir, opt_flags, k32, rl_dest, rl_src[0], false, false); break; case Instruction::IGET_CHAR: GenIGet(mir, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false); break; case Instruction::IGET_SHORT: GenIGet(mir, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false); break; case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: GenIGet(mir, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false); break; case Instruction::IPUT_WIDE: GenIPut(mir, opt_flags, k64, rl_src[0], rl_src[1], true, false); break; case Instruction::IPUT_OBJECT: GenIPut(mir, opt_flags, kReference, rl_src[0], rl_src[1], false, true); break; case Instruction::IPUT: GenIPut(mir, opt_flags, k32, rl_src[0], rl_src[1], false, false); break; case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: GenIPut(mir, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false); break; case Instruction::IPUT_CHAR: GenIPut(mir, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false); break; case Instruction::IPUT_SHORT: GenIPut(mir, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false); break; case Instruction::SGET_OBJECT: GenSget(mir, rl_dest, false, true); break; case Instruction::SGET: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: GenSget(mir, rl_dest, false, false); break; case Instruction::SGET_WIDE: GenSget(mir, rl_dest, true, false); break; case Instruction::SPUT_OBJECT: GenSput(mir, rl_src[0], false, true); break; case Instruction::SPUT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: GenSput(mir, rl_src[0], false, false); break; case Instruction::SPUT_WIDE: GenSput(mir, rl_src[0], true, false); break; case Instruction::INVOKE_STATIC_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { // If the invocation is not inlined, we can assume there is already a // suspend check at the return site mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_STATIC: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_DIRECT: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_DIRECT_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_VIRTUAL: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_VIRTUAL_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_SUPER: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_SUPER_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_INTERFACE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::INVOKE_INTERFACE_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true)); if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) { mir_graph_->AppendGenSuspendTestList(bb); } break; case Instruction::NEG_INT: case Instruction::NOT_INT: GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_LONG: case Instruction::NOT_LONG: GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_FLOAT: GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_DOUBLE: GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::INT_TO_LONG: GenIntToLong(rl_dest, rl_src[0]); break; case Instruction::LONG_TO_INT: rl_src[0] = UpdateLocWide(rl_src[0]); rl_src[0] = NarrowRegLoc(rl_src[0]); StoreValue(rl_dest, rl_src[0]); break; case Instruction::INT_TO_BYTE: case Instruction::INT_TO_SHORT: case Instruction::INT_TO_CHAR: GenIntNarrowing(opcode, rl_dest, rl_src[0]); break; case Instruction::INT_TO_FLOAT: case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_DOUBLE: case Instruction::FLOAT_TO_INT: case Instruction::FLOAT_TO_LONG: case Instruction::FLOAT_TO_DOUBLE: case Instruction::DOUBLE_TO_INT: case Instruction::DOUBLE_TO_LONG: case Instruction::DOUBLE_TO_FLOAT: GenConversion(opcode, rl_dest, rl_src[0]); break; case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: if (rl_src[0].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]), opcode)) { GenArithOpIntLit(opcode, rl_dest, rl_src[1], mir_graph_->ConstantValue(rl_src[0].orig_sreg)); } else if (rl_src[1].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) { GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1].orig_sreg)); } else { GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: if (rl_src[1].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) { GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1])); } else { GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::ADD_LONG: case Instruction::SUB_LONG: case Instruction::AND_LONG: case Instruction::OR_LONG: case Instruction::XOR_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::SUB_LONG_2ADDR: case Instruction::AND_LONG_2ADDR: case Instruction::OR_LONG_2ADDR: case Instruction::XOR_LONG_2ADDR: if (rl_src[0].is_const || rl_src[1].is_const) { GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); break; } // Note: intentional fallthrough. case Instruction::MUL_LONG: case Instruction::DIV_LONG: case Instruction::REM_LONG: case Instruction::MUL_LONG_2ADDR: case Instruction::DIV_LONG_2ADDR: case Instruction::REM_LONG_2ADDR: GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SHL_LONG: case Instruction::SHR_LONG: case Instruction::USHR_LONG: case Instruction::SHL_LONG_2ADDR: case Instruction::SHR_LONG_2ADDR: case Instruction::USHR_LONG_2ADDR: if (rl_src[1].is_const) { GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); } else { GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::ADD_FLOAT: case Instruction::SUB_FLOAT: case Instruction::MUL_FLOAT: case Instruction::DIV_FLOAT: case Instruction::REM_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::SUB_FLOAT_2ADDR: case Instruction::MUL_FLOAT_2ADDR: case Instruction::DIV_FLOAT_2ADDR: case Instruction::REM_FLOAT_2ADDR: GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::DIV_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::RSUB_INT: case Instruction::ADD_INT_LIT16: case Instruction::MUL_INT_LIT16: case Instruction::DIV_INT_LIT16: case Instruction::REM_INT_LIT16: case Instruction::AND_INT_LIT16: case Instruction::OR_INT_LIT16: case Instruction::XOR_INT_LIT16: case Instruction::ADD_INT_LIT8: case Instruction::RSUB_INT_LIT8: case Instruction::MUL_INT_LIT8: case Instruction::DIV_INT_LIT8: case Instruction::REM_INT_LIT8: case Instruction::AND_INT_LIT8: case Instruction::OR_INT_LIT8: case Instruction::XOR_INT_LIT8: case Instruction::SHL_INT_LIT8: case Instruction::SHR_INT_LIT8: case Instruction::USHR_INT_LIT8: GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC); break; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } DCHECK(CheckCorePoolSanity()); } // NOLINT(readability/fn_size) // Process extended MIR instructions void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) { switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { case kMirOpCopy: { RegLocation rl_src = mir_graph_->GetSrc(mir, 0); RegLocation rl_dest = mir_graph_->GetDest(mir); StoreValue(rl_dest, rl_src); break; } case kMirOpFusedCmplFloat: GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/); break; case kMirOpFusedCmpgFloat: GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/); break; case kMirOpFusedCmplDouble: GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/); break; case kMirOpFusedCmpgDouble: GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/); break; case kMirOpFusedCmpLong: GenFusedLongCmpBranch(bb, mir); break; case kMirOpSelect: GenSelect(bb, mir); break; case kMirOpPhi: case kMirOpNop: case kMirOpNullCheck: case kMirOpRangeCheck: case kMirOpDivZeroCheck: case kMirOpCheck: case kMirOpCheckPart2: // Ignore these known opcodes break; default: // Give the backends a chance to handle unknown extended MIR opcodes. GenMachineSpecificExtendedMethodMIR(bb, mir); break; } } void Mir2Lir::GenPrintLabel(MIR* mir) { // Mark the beginning of a Dalvik instruction for line tracking. if (cu_->verbose) { char* inst_str = mir_graph_->GetDalvikDisassembly(mir); MarkBoundary(mir->offset, inst_str); } } // Handle the content in each basic block. bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) { if (bb->block_type == kDead) return false; current_dalvik_offset_ = bb->start_offset; MIR* mir; int block_id = bb->id; block_label_list_[block_id].operands[0] = bb->start_offset; // Insert the block label. block_label_list_[block_id].opcode = kPseudoNormalBlockLabel; block_label_list_[block_id].flags.fixup = kFixupLabel; AppendLIR(&block_label_list_[block_id]); LIR* head_lir = NULL; // If this is a catch block, export the start address. if (bb->catch_entry) { head_lir = NewLIR0(kPseudoExportedPC); } // Free temp registers and reset redundant store tracking. ClobberAllTemps(); if (bb->block_type == kEntryBlock) { ResetRegPool(); int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; GenEntrySequence(&mir_graph_->reg_location_[start_vreg], mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]); } else if (bb->block_type == kExitBlock) { ResetRegPool(); GenExitSequence(); } for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { ResetRegPool(); if (cu_->disable_opt & (1 << kTrackLiveTemps)) { ClobberAllTemps(); // Reset temp allocation to minimize differences when A/B testing. reg_pool_->ResetNextTemp(); } if (cu_->disable_opt & (1 << kSuppressLoads)) { ResetDefTracking(); } // Reset temp tracking sanity check. if (kIsDebugBuild) { live_sreg_ = INVALID_SREG; } current_dalvik_offset_ = mir->offset; int opcode = mir->dalvikInsn.opcode; GenPrintLabel(mir); // Remember the first LIR for this block. if (head_lir == NULL) { head_lir = &block_label_list_[bb->id]; // Set the first label as a scheduling barrier. DCHECK(!head_lir->flags.use_def_invalid); head_lir->u.m.def_mask = &kEncodeAll; } if (opcode == kMirOpCheck) { // Combine check and work halves of throwing instruction. MIR* work_half = mir->meta.throw_insn; mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode; mir->meta = work_half->meta; // Whatever the work_half had, we need to copy it. opcode = work_half->dalvikInsn.opcode; SSARepresentation* ssa_rep = work_half->ssa_rep; work_half->ssa_rep = mir->ssa_rep; mir->ssa_rep = ssa_rep; work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2); work_half->meta.throw_insn = mir; } if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) { HandleExtendedMethodMIR(bb, mir); continue; } CompileDalvikInstruction(mir, bb, block_label_list_); } if (head_lir) { // Eliminate redundant loads/stores and delay stores into later slots. ApplyLocalOptimizations(head_lir, last_lir_insn_); } return false; } bool Mir2Lir::SpecialMIR2LIR(const InlineMethod& special) { cu_->NewTimingSplit("SpecialMIR2LIR"); // Find the first DalvikByteCode block. int num_reachable_blocks = mir_graph_->GetNumReachableBlocks(); BasicBlock*bb = NULL; for (int idx = 0; idx < num_reachable_blocks; idx++) { // TODO: no direct access of growable lists. int dfs_index = mir_graph_->GetDfsOrder()->Get(idx); bb = mir_graph_->GetBasicBlock(dfs_index); if (bb->block_type == kDalvikByteCode) { break; } } if (bb == NULL) { return false; } DCHECK_EQ(bb->start_offset, 0); DCHECK(bb->first_mir_insn != NULL); // Get the first instruction. MIR* mir = bb->first_mir_insn; // Free temp registers and reset redundant store tracking. ResetRegPool(); ResetDefTracking(); ClobberAllTemps(); return GenSpecialCase(bb, mir, special); } void Mir2Lir::MethodMIR2LIR() { cu_->NewTimingSplit("MIR2LIR"); // Hold the labels of each block. block_label_list_ = static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(), kArenaAllocLIR)); PreOrderDfsIterator iter(mir_graph_); BasicBlock* curr_bb = iter.Next(); BasicBlock* next_bb = iter.Next(); while (curr_bb != NULL) { MethodBlockCodeGen(curr_bb); // If the fall_through block is no longer laid out consecutively, drop in a branch. BasicBlock* curr_bb_fall_through = mir_graph_->GetBasicBlock(curr_bb->fall_through); if ((curr_bb_fall_through != NULL) && (curr_bb_fall_through != next_bb)) { OpUnconditionalBranch(&block_label_list_[curr_bb->fall_through]); } curr_bb = next_bb; do { next_bb = iter.Next(); } while ((next_bb != NULL) && (next_bb->block_type == kDead)); } HandleSlowPaths(); } // // LIR Slow Path // LIR* Mir2Lir::LIRSlowPath::GenerateTargetLabel(int opcode) { m2l_->SetCurrentDexPc(current_dex_pc_); LIR* target = m2l_->NewLIR0(opcode); fromfast_->target = target; return target; } void Mir2Lir::CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail, bool report) const { if (rs.Valid()) { if (ref == RefCheck::kCheckRef) { if (cu_->target64 && !rs.Is64Bit()) { if (fail) { CHECK(false) << "Reg storage not 64b for ref."; } else if (report) { LOG(WARNING) << "Reg storage not 64b for ref."; } } } if (wide == WidenessCheck::kCheckWide) { if (!rs.Is64Bit()) { if (fail) { CHECK(false) << "Reg storage not 64b for wide."; } else if (report) { LOG(WARNING) << "Reg storage not 64b for wide."; } } } // A tighter check would be nice, but for now soft-float will not check float at all. if (fp == FPCheck::kCheckFP && cu_->instruction_set != kArm) { if (!rs.IsFloat()) { if (fail) { CHECK(false) << "Reg storage not float for fp."; } else if (report) { LOG(WARNING) << "Reg storage not float for fp."; } } } else if (fp == FPCheck::kCheckNotFP) { if (rs.IsFloat()) { if (fail) { CHECK(false) << "Reg storage float for not-fp."; } else if (report) { LOG(WARNING) << "Reg storage float for not-fp."; } } } } } void Mir2Lir::CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const { // Regrettably can't use the fp part of rl, as that is not really indicative of where a value // will be stored. CheckRegStorageImpl(rl.reg, rl.wide ? WidenessCheck::kCheckWide : WidenessCheck::kCheckNotWide, rl.ref ? RefCheck::kCheckRef : RefCheck::kCheckNotRef, FPCheck::kIgnoreFP, fail, report); } size_t Mir2Lir::GetInstructionOffset(LIR* lir) { UNIMPLEMENTED(FATAL) << "Unsuppored GetInstructionOffset()"; return 0; } } // namespace art