/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "codegen_x86.h" #include "dex/compiler_internals.h" #include "dex/quick/mir_to_lir-inl.h" #include "dex/reg_storage_eq.h" #include "mirror/array.h" #include "mirror/string.h" #include "x86_lir.h" namespace art { static constexpr RegStorage core_regs_arr_32[] = { rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, }; static constexpr RegStorage core_regs_arr_64[] = { rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15 }; static constexpr RegStorage core_regs_arr_64q[] = { rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q, rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q }; static constexpr RegStorage sp_regs_arr_32[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, }; static constexpr RegStorage sp_regs_arr_64[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 }; static constexpr RegStorage dp_regs_arr_32[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, }; static constexpr RegStorage dp_regs_arr_64[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 }; static constexpr RegStorage xp_regs_arr_32[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, }; static constexpr RegStorage xp_regs_arr_64[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15 }; static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32}; static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32}; static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64}; static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX}; static constexpr RegStorage core_temps_arr_64[] = { rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI, rs_r8, rs_r9, rs_r10, rs_r11 }; // How to add register to be available for promotion: // 1) Remove register from array defining temp // 2) Update ClobberCallerSave // 3) Update JNI compiler ABI: // 3.1) add reg in JniCallingConvention method // 3.2) update CoreSpillMask/FpSpillMask // 4) Update entrypoints // 4.1) Update constants in asm_support_x86_64.h for new frame size // 4.2) Remove entry in SmashCallerSaves // 4.3) Update jni_entrypoints to spill/unspill new callee save reg // 4.4) Update quick_entrypoints to spill/unspill new callee save reg // 5) Update runtime ABI // 5.1) Update quick_method_frame_info with new required spills // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms // Note that you cannot use register corresponding to incoming args // according to ABI and QCG needs one additional XMM temp for // bulk copy in preparation to call. static constexpr RegStorage core_temps_arr_64q[] = { rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q, rs_r8q, rs_r9q, rs_r10q, rs_r11q }; static constexpr RegStorage sp_temps_arr_32[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, }; static constexpr RegStorage sp_temps_arr_64[] = { rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10, rs_fr11 }; static constexpr RegStorage dp_temps_arr_32[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, }; static constexpr RegStorage dp_temps_arr_64[] = { rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, rs_dr8, rs_dr9, rs_dr10, rs_dr11 }; static constexpr RegStorage xp_temps_arr_32[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, }; static constexpr RegStorage xp_temps_arr_64[] = { rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, rs_xr8, rs_xr9, rs_xr10, rs_xr11 }; static constexpr ArrayRef empty_pool; static constexpr ArrayRef core_regs_32(core_regs_arr_32); static constexpr ArrayRef core_regs_64(core_regs_arr_64); static constexpr ArrayRef core_regs_64q(core_regs_arr_64q); static constexpr ArrayRef sp_regs_32(sp_regs_arr_32); static constexpr ArrayRef sp_regs_64(sp_regs_arr_64); static constexpr ArrayRef dp_regs_32(dp_regs_arr_32); static constexpr ArrayRef dp_regs_64(dp_regs_arr_64); static constexpr ArrayRef xp_regs_32(xp_regs_arr_32); static constexpr ArrayRef xp_regs_64(xp_regs_arr_64); static constexpr ArrayRef reserved_regs_32(reserved_regs_arr_32); static constexpr ArrayRef reserved_regs_64(reserved_regs_arr_64); static constexpr ArrayRef reserved_regs_64q(reserved_regs_arr_64q); static constexpr ArrayRef core_temps_32(core_temps_arr_32); static constexpr ArrayRef core_temps_64(core_temps_arr_64); static constexpr ArrayRef core_temps_64q(core_temps_arr_64q); static constexpr ArrayRef sp_temps_32(sp_temps_arr_32); static constexpr ArrayRef sp_temps_64(sp_temps_arr_64); static constexpr ArrayRef dp_temps_32(dp_temps_arr_32); static constexpr ArrayRef dp_temps_64(dp_temps_arr_64); static constexpr ArrayRef xp_temps_32(xp_temps_arr_32); static constexpr ArrayRef xp_temps_64(xp_temps_arr_64); RegStorage rs_rX86_SP; X86NativeRegisterPool rX86_ARG0; X86NativeRegisterPool rX86_ARG1; X86NativeRegisterPool rX86_ARG2; X86NativeRegisterPool rX86_ARG3; X86NativeRegisterPool rX86_ARG4; X86NativeRegisterPool rX86_ARG5; X86NativeRegisterPool rX86_FARG0; X86NativeRegisterPool rX86_FARG1; X86NativeRegisterPool rX86_FARG2; X86NativeRegisterPool rX86_FARG3; X86NativeRegisterPool rX86_FARG4; X86NativeRegisterPool rX86_FARG5; X86NativeRegisterPool rX86_FARG6; X86NativeRegisterPool rX86_FARG7; X86NativeRegisterPool rX86_RET0; X86NativeRegisterPool rX86_RET1; X86NativeRegisterPool rX86_INVOKE_TGT; X86NativeRegisterPool rX86_COUNT; RegStorage rs_rX86_ARG0; RegStorage rs_rX86_ARG1; RegStorage rs_rX86_ARG2; RegStorage rs_rX86_ARG3; RegStorage rs_rX86_ARG4; RegStorage rs_rX86_ARG5; RegStorage rs_rX86_FARG0; RegStorage rs_rX86_FARG1; RegStorage rs_rX86_FARG2; RegStorage rs_rX86_FARG3; RegStorage rs_rX86_FARG4; RegStorage rs_rX86_FARG5; RegStorage rs_rX86_FARG6; RegStorage rs_rX86_FARG7; RegStorage rs_rX86_RET0; RegStorage rs_rX86_RET1; RegStorage rs_rX86_INVOKE_TGT; RegStorage rs_rX86_COUNT; RegLocation X86Mir2Lir::LocCReturn() { return x86_loc_c_return; } RegLocation X86Mir2Lir::LocCReturnRef() { return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref; } RegLocation X86Mir2Lir::LocCReturnWide() { return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide; } RegLocation X86Mir2Lir::LocCReturnFloat() { return x86_loc_c_return_float; } RegLocation X86Mir2Lir::LocCReturnDouble() { return x86_loc_c_return_double; } // Return a target-dependent special register for 32-bit. RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) { RegStorage res_reg = RegStorage::InvalidReg(); switch (reg) { case kSelf: res_reg = RegStorage::InvalidReg(); break; case kSuspend: res_reg = RegStorage::InvalidReg(); break; case kLr: res_reg = RegStorage::InvalidReg(); break; case kPc: res_reg = RegStorage::InvalidReg(); break; case kSp: res_reg = rs_rX86_SP_32; break; // This must be the concrete one, as _SP is target- // specific size. case kArg0: res_reg = rs_rX86_ARG0; break; case kArg1: res_reg = rs_rX86_ARG1; break; case kArg2: res_reg = rs_rX86_ARG2; break; case kArg3: res_reg = rs_rX86_ARG3; break; case kArg4: res_reg = rs_rX86_ARG4; break; case kArg5: res_reg = rs_rX86_ARG5; break; case kFArg0: res_reg = rs_rX86_FARG0; break; case kFArg1: res_reg = rs_rX86_FARG1; break; case kFArg2: res_reg = rs_rX86_FARG2; break; case kFArg3: res_reg = rs_rX86_FARG3; break; case kFArg4: res_reg = rs_rX86_FARG4; break; case kFArg5: res_reg = rs_rX86_FARG5; break; case kFArg6: res_reg = rs_rX86_FARG6; break; case kFArg7: res_reg = rs_rX86_FARG7; break; case kRet0: res_reg = rs_rX86_RET0; break; case kRet1: res_reg = rs_rX86_RET1; break; case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break; case kHiddenArg: res_reg = rs_rAX; break; case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break; case kCount: res_reg = rs_rX86_COUNT; break; default: res_reg = RegStorage::InvalidReg(); } return res_reg; } RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { LOG(FATAL) << "Do not use this function!!!"; return RegStorage::InvalidReg(); } /* * Decode the register id. */ ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const { /* Double registers in x86 are just a single FP register. This is always just a single bit. */ return ResourceMask::Bit( /* FP register starts at bit position 16 */ ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum()); } ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const { return kEncodeNone; } void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags, ResourceMask* use_mask, ResourceMask* def_mask) { DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); DCHECK(!lir->flags.use_def_invalid); // X86-specific resource map setup here. if (flags & REG_USE_SP) { use_mask->SetBit(kX86RegSP); } if (flags & REG_DEF_SP) { def_mask->SetBit(kX86RegSP); } if (flags & REG_DEFA) { SetupRegMask(def_mask, rs_rAX.GetReg()); } if (flags & REG_DEFD) { SetupRegMask(def_mask, rs_rDX.GetReg()); } if (flags & REG_USEA) { SetupRegMask(use_mask, rs_rAX.GetReg()); } if (flags & REG_USEC) { SetupRegMask(use_mask, rs_rCX.GetReg()); } if (flags & REG_USED) { SetupRegMask(use_mask, rs_rDX.GetReg()); } if (flags & REG_USEB) { SetupRegMask(use_mask, rs_rBX.GetReg()); } // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI. if (lir->opcode == kX86RepneScasw) { SetupRegMask(use_mask, rs_rAX.GetReg()); SetupRegMask(use_mask, rs_rCX.GetReg()); SetupRegMask(use_mask, rs_rDI.GetReg()); SetupRegMask(def_mask, rs_rDI.GetReg()); } if (flags & USE_FP_STACK) { use_mask->SetBit(kX86FPStack); def_mask->SetBit(kX86FPStack); } } /* For dumping instructions */ static const char* x86RegName[] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }; static const char* x86CondName[] = { "O", "NO", "B/NAE/C", "NB/AE/NC", "Z/EQ", "NZ/NE", "BE/NA", "NBE/A", "S", "NS", "P/PE", "NP/PO", "L/NGE", "NL/GE", "LE/NG", "NLE/G" }; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.cc. */ std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { std::string buf; size_t i = 0; size_t fmt_len = strlen(fmt); while (i < fmt_len) { if (fmt[i] != '!') { buf += fmt[i]; i++; } else { i++; DCHECK_LT(i, fmt_len); char operand_number_ch = fmt[i]; i++; if (operand_number_ch == '!') { buf += "!"; } else { int operand_number = operand_number_ch - '0'; DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. DCHECK_LT(i, fmt_len); int operand = lir->operands[operand_number]; switch (fmt[i]) { case 'c': DCHECK_LT(static_cast(operand), sizeof(x86CondName)); buf += x86CondName[operand]; break; case 'd': buf += StringPrintf("%d", operand); break; case 'q': { int64_t value = static_cast(static_cast(operand) << 32 | static_cast(lir->operands[operand_number+1])); buf +=StringPrintf("%" PRId64, value); } case 'p': { EmbeddedData *tab_rec = reinterpret_cast(UnwrapPointer(operand)); buf += StringPrintf("0x%08x", tab_rec->offset); break; } case 'r': if (RegStorage::IsFloat(operand)) { int fp_reg = RegStorage::RegNum(operand); buf += StringPrintf("xmm%d", fp_reg); } else { int reg_num = RegStorage::RegNum(operand); DCHECK_LT(static_cast(reg_num), sizeof(x86RegName)); buf += x86RegName[reg_num]; } break; case 't': buf += StringPrintf("0x%08" PRIxPTR " (L%p)", reinterpret_cast(base_addr) + lir->offset + operand, lir->target); break; default: buf += StringPrintf("DecodeError '%c'", fmt[i]); break; } i++; } } } return buf; } void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) { char buf[256]; buf[0] = 0; if (mask.Equals(kEncodeAll)) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kX86RegEnd; i++) { if (mask.HasBit(i)) { snprintf(num, arraysize(num), "%d ", i); strcat(buf, num); } } if (mask.HasBit(ResourceMask::kCCode)) { strcat(buf, "cc "); } /* Memory bits */ if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) { snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info), (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : ""); } if (mask.HasBit(ResourceMask::kLiteral)) { strcat(buf, "lit "); } if (mask.HasBit(ResourceMask::kHeapRef)) { strcat(buf, "heap "); } if (mask.HasBit(ResourceMask::kMustNotAlias)) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } void X86Mir2Lir::AdjustSpillMask() { // Adjustment for LR spilling, x86 has no LR so nothing to do here core_spill_mask_ |= (1 << rs_rRET.GetRegNum()); num_core_spills_++; } RegStorage X86Mir2Lir::AllocateByteRegister() { RegStorage reg = AllocTypedTemp(false, kCoreReg); if (!cu_->target64) { DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum()); } return reg; } RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) { return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg(); } bool X86Mir2Lir::IsByteRegister(RegStorage reg) { return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum(); } /* Clobber all regs that might be used by an external C call */ void X86Mir2Lir::ClobberCallerSave() { if (cu_->target64) { Clobber(rs_rAX); Clobber(rs_rCX); Clobber(rs_rDX); Clobber(rs_rSI); Clobber(rs_rDI); Clobber(rs_r8); Clobber(rs_r9); Clobber(rs_r10); Clobber(rs_r11); Clobber(rs_fr8); Clobber(rs_fr9); Clobber(rs_fr10); Clobber(rs_fr11); } else { Clobber(rs_rAX); Clobber(rs_rCX); Clobber(rs_rDX); Clobber(rs_rBX); } Clobber(rs_fr0); Clobber(rs_fr1); Clobber(rs_fr2); Clobber(rs_fr3); Clobber(rs_fr4); Clobber(rs_fr5); Clobber(rs_fr6); Clobber(rs_fr7); } RegLocation X86Mir2Lir::GetReturnWideAlt() { RegLocation res = LocCReturnWide(); DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg()); DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg()); Clobber(rs_rAX); Clobber(rs_rDX); MarkInUse(rs_rAX); MarkInUse(rs_rDX); MarkWide(res.reg); return res; } RegLocation X86Mir2Lir::GetReturnAlt() { RegLocation res = LocCReturn(); res.reg.SetReg(rs_rDX.GetReg()); Clobber(rs_rDX); MarkInUse(rs_rDX); return res; } /* To be used when explicitly managing register use */ void X86Mir2Lir::LockCallTemps() { LockTemp(rs_rX86_ARG0); LockTemp(rs_rX86_ARG1); LockTemp(rs_rX86_ARG2); LockTemp(rs_rX86_ARG3); if (cu_->target64) { LockTemp(rs_rX86_ARG4); LockTemp(rs_rX86_ARG5); LockTemp(rs_rX86_FARG0); LockTemp(rs_rX86_FARG1); LockTemp(rs_rX86_FARG2); LockTemp(rs_rX86_FARG3); LockTemp(rs_rX86_FARG4); LockTemp(rs_rX86_FARG5); LockTemp(rs_rX86_FARG6); LockTemp(rs_rX86_FARG7); } } /* To be used when explicitly managing register use */ void X86Mir2Lir::FreeCallTemps() { FreeTemp(rs_rX86_ARG0); FreeTemp(rs_rX86_ARG1); FreeTemp(rs_rX86_ARG2); FreeTemp(rs_rX86_ARG3); FreeTemp(TargetReg32(kHiddenArg)); if (cu_->target64) { FreeTemp(rs_rX86_ARG4); FreeTemp(rs_rX86_ARG5); FreeTemp(rs_rX86_FARG0); FreeTemp(rs_rX86_FARG1); FreeTemp(rs_rX86_FARG2); FreeTemp(rs_rX86_FARG3); FreeTemp(rs_rX86_FARG4); FreeTemp(rs_rX86_FARG5); FreeTemp(rs_rX86_FARG6); FreeTemp(rs_rX86_FARG7); } } bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) { switch (opcode) { case kX86LockCmpxchgMR: case kX86LockCmpxchgAR: case kX86LockCmpxchg64M: case kX86LockCmpxchg64A: case kX86XchgMR: case kX86Mfence: // Atomic memory instructions provide full barrier. return true; default: break; } // Conservative if cannot prove it provides full barrier. return false; } bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { #if ANDROID_SMP != 0 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it. LIR* mem_barrier = last_lir_insn_; bool ret = false; /* * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. * For those cases, all we need to ensure is that there is a scheduling barrier in place. */ if (barrier_kind == kAnyAny) { // If no LIR exists already that can be used a barrier, then generate an mfence. if (mem_barrier == nullptr) { mem_barrier = NewLIR0(kX86Mfence); ret = true; } // If last instruction does not provide full barrier, then insert an mfence. if (ProvidesFullMemoryBarrier(static_cast(mem_barrier->opcode)) == false) { mem_barrier = NewLIR0(kX86Mfence); ret = true; } } // Now ensure that a scheduling barrier is in place. if (mem_barrier == nullptr) { GenBarrier(); } else { // Mark as a scheduling barrier. DCHECK(!mem_barrier->flags.use_def_invalid); mem_barrier->u.m.def_mask = &kEncodeAll; } return ret; #else return false; #endif } void X86Mir2Lir::CompilerInitializeRegAlloc() { if (cu_->target64) { reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64, dp_regs_64, reserved_regs_64, reserved_regs_64q, core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64); } else { reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32, dp_regs_32, reserved_regs_32, empty_pool, core_temps_32, empty_pool, sp_temps_32, dp_temps_32); } // Target-specific adjustments. // Add in XMM registers. const ArrayRef *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32; for (RegStorage reg : *xp_regs) { RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg)); reginfo_map_.Put(reg.GetReg(), info); } const ArrayRef *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32; for (RegStorage reg : *xp_temps) { RegisterInfo* xp_reg_info = GetRegInfo(reg); xp_reg_info->SetIsTemp(true); } // Alias single precision xmm to double xmms. // TODO: as needed, add larger vector sizes - alias all to the largest. GrowableArray::Iterator it(®_pool_->sp_regs_); for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) { int sp_reg_num = info->GetReg().GetRegNum(); RegStorage xp_reg = RegStorage::Solo128(sp_reg_num); RegisterInfo* xp_reg_info = GetRegInfo(xp_reg); // 128-bit xmm vector register's master storage should refer to itself. DCHECK_EQ(xp_reg_info, xp_reg_info->Master()); // Redirect 32-bit vector's master storage to 128-bit vector. info->SetMaster(xp_reg_info); RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num); RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); // Redirect 64-bit vector's master storage to 128-bit vector. dp_reg_info->SetMaster(xp_reg_info); // Singles should show a single 32-bit mask bit, at first referring to the low half. DCHECK_EQ(info->StorageMask(), 0x1U); } if (cu_->target64) { // Alias 32bit W registers to corresponding 64bit X registers. GrowableArray::Iterator w_it(®_pool_->core_regs_); for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) { int x_reg_num = info->GetReg().GetRegNum(); RegStorage x_reg = RegStorage::Solo64(x_reg_num); RegisterInfo* x_reg_info = GetRegInfo(x_reg); // 64bit X register's master storage should refer to itself. DCHECK_EQ(x_reg_info, x_reg_info->Master()); // Redirect 32bit W master storage to 64bit X. info->SetMaster(x_reg_info); // 32bit W should show a single 32-bit mask bit, at first referring to the low half. DCHECK_EQ(info->StorageMask(), 0x1U); } } // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. // TODO: adjust for x86/hard float calling convention. reg_pool_->next_core_reg_ = 2; reg_pool_->next_sp_reg_ = 2; reg_pool_->next_dp_reg_ = 1; } int X86Mir2Lir::VectorRegisterSize() { return 128; } int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) { return fp_used ? 5 : 7; } void X86Mir2Lir::SpillCoreRegs() { if (num_core_spills_ == 0) { return; } // Spill mask not including fake return address register uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); OpSize size = cu_->target64 ? k64 : k32; for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg), size, kNotVolatile); offset += GetInstructionSetPointerSize(cu_->instruction_set); } } } void X86Mir2Lir::UnSpillCoreRegs() { if (num_core_spills_ == 0) { return; } // Spill mask not including fake return address register uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); OpSize size = cu_->target64 ? k64 : k32; for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg), size, kNotVolatile); offset += GetInstructionSetPointerSize(cu_->instruction_set); } } } void X86Mir2Lir::SpillFPRegs() { if (num_fp_spills_ == 0) { return; } uint32_t mask = fp_spill_mask_; int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile); offset += sizeof(double); } } } void X86Mir2Lir::UnSpillFPRegs() { if (num_fp_spills_ == 0) { return; } uint32_t mask = fp_spill_mask_; int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_)); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile); offset += sizeof(double); } } } bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); } RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { // X86_64 can handle any size. if (cu_->target64) { if (size == kReference) { return kRefReg; } return kCoreReg; } if (UNLIKELY(is_volatile)) { // On x86, atomic 64-bit load/store requires an fp register. // Smaller aligned load/store is atomic for both core and fp registers. if (size == k64 || size == kDouble) { return kFPReg; } } return RegClassBySize(size); } X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Mir2Lir(cu, mir_graph, arena), base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false), method_address_insns_(arena, 100, kGrowableArrayMisc), class_type_address_insns_(arena, 100, kGrowableArrayMisc), call_method_insns_(arena, 100, kGrowableArrayMisc), stack_decrement_(nullptr), stack_increment_(nullptr), const_vectors_(nullptr) { store_method_addr_used_ = false; if (kIsDebugBuild) { for (int i = 0; i < kX86Last; i++) { if (X86Mir2Lir::EncodingMap[i].opcode != i) { LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name << " is wrong: expecting " << i << ", seeing " << static_cast(X86Mir2Lir::EncodingMap[i].opcode); } } } if (cu_->target64) { rs_rX86_SP = rs_rX86_SP_64; rs_rX86_ARG0 = rs_rDI; rs_rX86_ARG1 = rs_rSI; rs_rX86_ARG2 = rs_rDX; rs_rX86_ARG3 = rs_rCX; rs_rX86_ARG4 = rs_r8; rs_rX86_ARG5 = rs_r9; rs_rX86_FARG0 = rs_fr0; rs_rX86_FARG1 = rs_fr1; rs_rX86_FARG2 = rs_fr2; rs_rX86_FARG3 = rs_fr3; rs_rX86_FARG4 = rs_fr4; rs_rX86_FARG5 = rs_fr5; rs_rX86_FARG6 = rs_fr6; rs_rX86_FARG7 = rs_fr7; rX86_ARG0 = rDI; rX86_ARG1 = rSI; rX86_ARG2 = rDX; rX86_ARG3 = rCX; rX86_ARG4 = r8; rX86_ARG5 = r9; rX86_FARG0 = fr0; rX86_FARG1 = fr1; rX86_FARG2 = fr2; rX86_FARG3 = fr3; rX86_FARG4 = fr4; rX86_FARG5 = fr5; rX86_FARG6 = fr6; rX86_FARG7 = fr7; rs_rX86_INVOKE_TGT = rs_rDI; } else { rs_rX86_SP = rs_rX86_SP_32; rs_rX86_ARG0 = rs_rAX; rs_rX86_ARG1 = rs_rCX; rs_rX86_ARG2 = rs_rDX; rs_rX86_ARG3 = rs_rBX; rs_rX86_ARG4 = RegStorage::InvalidReg(); rs_rX86_ARG5 = RegStorage::InvalidReg(); rs_rX86_FARG0 = rs_rAX; rs_rX86_FARG1 = rs_rCX; rs_rX86_FARG2 = rs_rDX; rs_rX86_FARG3 = rs_rBX; rs_rX86_FARG4 = RegStorage::InvalidReg(); rs_rX86_FARG5 = RegStorage::InvalidReg(); rs_rX86_FARG6 = RegStorage::InvalidReg(); rs_rX86_FARG7 = RegStorage::InvalidReg(); rX86_ARG0 = rAX; rX86_ARG1 = rCX; rX86_ARG2 = rDX; rX86_ARG3 = rBX; rX86_FARG0 = rAX; rX86_FARG1 = rCX; rX86_FARG2 = rDX; rX86_FARG3 = rBX; rs_rX86_INVOKE_TGT = rs_rAX; // TODO(64): Initialize with invalid reg // rX86_ARG4 = RegStorage::InvalidReg(); // rX86_ARG5 = RegStorage::InvalidReg(); } rs_rX86_RET0 = rs_rAX; rs_rX86_RET1 = rs_rDX; rs_rX86_COUNT = rs_rCX; rX86_RET0 = rAX; rX86_RET1 = rDX; rX86_INVOKE_TGT = rAX; rX86_COUNT = rCX; // Initialize the number of reserved vector registers num_reserved_vector_regs_ = -1; } Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, ArenaAllocator* const arena) { return new X86Mir2Lir(cu, mir_graph, arena); } // Not used in x86(-64) RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) { LOG(FATAL) << "Unexpected use of LoadHelper in x86"; return RegStorage::InvalidReg(); } LIR* X86Mir2Lir::CheckSuspendUsingLoad() { // First load the pointer in fs:[suspend-trigger] into eax // Then use a test instruction to indirect via that address. if (cu_->target64) { NewLIR2(kX86Mov64RT, rs_rAX.GetReg(), Thread::ThreadSuspendTriggerOffset<8>().Int32Value()); } else { NewLIR2(kX86Mov32RT, rs_rAX.GetReg(), Thread::ThreadSuspendTriggerOffset<4>().Int32Value()); } return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0); } uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return X86Mir2Lir::EncodingMap[opcode].flags; } const char* X86Mir2Lir::GetTargetInstName(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return X86Mir2Lir::EncodingMap[opcode].name; } const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return X86Mir2Lir::EncodingMap[opcode].fmt; } void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { // Can we do this directly to memory? rl_dest = UpdateLocWide(rl_dest); if ((rl_dest.location == kLocDalvikFrame) || (rl_dest.location == kLocCompilerTemp)) { int32_t val_lo = Low32Bits(value); int32_t val_hi = High32Bits(value); int r_base = rs_rX86_SP.GetReg(); int displacement = SRegOffset(rl_dest.s_reg_low); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo); AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2, false /* is_load */, true /* is64bit */); store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi); AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2, false /* is_load */, true /* is64bit */); return; } // Just use the standard code to do the generation. Mir2Lir::GenConstWide(rl_dest, value); } // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc void X86Mir2Lir::DumpRegLocation(RegLocation loc) { LOG(INFO) << "location: " << loc.location << ',' << (loc.wide ? " w" : " ") << (loc.defined ? " D" : " ") << (loc.is_const ? " c" : " ") << (loc.fp ? " F" : " ") << (loc.core ? " C" : " ") << (loc.ref ? " r" : " ") << (loc.high_word ? " h" : " ") << (loc.home ? " H" : " ") << ", low: " << static_cast(loc.reg.GetLowReg()) << ", high: " << static_cast(loc.reg.GetHighReg()) << ", s_reg: " << loc.s_reg_low << ", orig: " << loc.orig_sreg; } void X86Mir2Lir::Materialize() { // A good place to put the analysis before starting. AnalyzeMIR(); // Now continue with regular code generation. Mir2Lir::Materialize(); } void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, SpecialTargetRegister symbolic_reg) { /* * For x86, just generate a 32 bit move immediate instruction, that will be filled * in at 'link time'. For now, put a unique value based on target to ensure that * code deduplication works. */ int target_method_idx = target_method.dex_method_index; const DexFile* target_dex_file = target_method.dex_file; const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); uintptr_t target_method_id_ptr = reinterpret_cast(&target_method_id); // Generate the move instruction with the unique pointer and save index, dex_file, and type. LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, kNotWide).GetReg(), static_cast(target_method_id_ptr), target_method_idx, WrapPointer(const_cast(target_dex_file)), type); AppendLIR(move); method_address_insns_.Insert(move); } void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) { /* * For x86, just generate a 32 bit move immediate instruction, that will be filled * in at 'link time'. For now, put a unique value based on target to ensure that * code deduplication works. */ const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx); uintptr_t ptr = reinterpret_cast(&id); // Generate the move instruction with the unique pointer and save index and type. LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, kNotWide).GetReg(), static_cast(ptr), type_idx); AppendLIR(move); class_type_address_insns_.Insert(move); } LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { /* * For x86, just generate a 32 bit call relative instruction, that will be filled * in at 'link time'. For now, put a unique value based on target to ensure that * code deduplication works. */ int target_method_idx = target_method.dex_method_index; const DexFile* target_dex_file = target_method.dex_file; const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); uintptr_t target_method_id_ptr = reinterpret_cast(&target_method_id); // Generate the call instruction with the unique pointer and save index, dex_file, and type. LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast(target_method_id_ptr), target_method_idx, WrapPointer(const_cast(target_dex_file)), type); AppendLIR(call); call_method_insns_.Insert(call); return call; } /* * @brief Enter a 32 bit quantity into a buffer * @param buf buffer. * @param data Data value. */ static void PushWord(std::vector&buf, int32_t data) { buf.push_back(data & 0xff); buf.push_back((data >> 8) & 0xff); buf.push_back((data >> 16) & 0xff); buf.push_back((data >> 24) & 0xff); } void X86Mir2Lir::InstallLiteralPools() { // These are handled differently for x86. DCHECK(code_literal_list_ == nullptr); DCHECK(method_literal_list_ == nullptr); DCHECK(class_literal_list_ == nullptr); // Align to 16 byte boundary. We have implicit knowledge that the start of the method is // on a 4 byte boundary. How can I check this if it changes (other than aligned loads // will fail at runtime)? if (const_vectors_ != nullptr) { int align_size = (16-4) - (code_buffer_.size() & 0xF); if (align_size < 0) { align_size += 16; } while (align_size > 0) { code_buffer_.push_back(0); align_size--; } for (LIR *p = const_vectors_; p != nullptr; p = p->next) { PushWord(code_buffer_, p->operands[0]); PushWord(code_buffer_, p->operands[1]); PushWord(code_buffer_, p->operands[2]); PushWord(code_buffer_, p->operands[3]); } } // Handle the fixups for methods. for (uint32_t i = 0; i < method_address_insns_.Size(); i++) { LIR* p = method_address_insns_.Get(i); DCHECK_EQ(p->opcode, kX86Mov32RI); uint32_t target_method_idx = p->operands[2]; const DexFile* target_dex_file = reinterpret_cast(UnwrapPointer(p->operands[3])); // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, cu_->invoke_type, target_method_idx, target_dex_file, static_cast(p->operands[4]), patch_offset); } // Handle the fixups for class types. for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) { LIR* p = class_type_address_insns_.Get(i); DCHECK_EQ(p->opcode, kX86Mov32RI); uint32_t target_method_idx = p->operands[2]; // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, target_method_idx, patch_offset); } // And now the PC-relative calls to methods. for (uint32_t i = 0; i < call_method_insns_.Size(); i++) { LIR* p = call_method_insns_.Get(i); DCHECK_EQ(p->opcode, kX86CallI); uint32_t target_method_idx = p->operands[1]; const DexFile* target_dex_file = reinterpret_cast(UnwrapPointer(p->operands[2])); // The offset to patch is the last 4 bytes of the instruction. int patch_offset = p->offset + p->flags.size - 4; cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, cu_->invoke_type, target_method_idx, target_dex_file, static_cast(p->operands[3]), patch_offset, -4 /* offset */); } // And do the normal processing. Mir2Lir::InstallLiteralPools(); } bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { RegLocation rl_src = info->args[0]; RegLocation rl_srcPos = info->args[1]; RegLocation rl_dst = info->args[2]; RegLocation rl_dstPos = info->args[3]; RegLocation rl_length = info->args[4]; if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) { return false; } if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) { return false; } ClobberCallerSave(); LockCallTemps(); // Using fixed registers. RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX; LoadValueDirectFixed(rl_src, rs_rAX); LoadValueDirectFixed(rl_dst, rs_rCX); LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr); LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr); LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); LoadValueDirectFixed(rl_length, rs_rDX); // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path. LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr); LoadValueDirectFixed(rl_src, rs_rAX); LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); LIR* src_bad_len = nullptr; LIR* src_bad_off = nullptr; LIR* srcPos_negative = nullptr; if (!rl_srcPos.is_const) { LoadValueDirectFixed(rl_srcPos, tmp_reg); srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); // src_pos < src_len src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); // src_len - src_pos < copy_len OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } else { int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg); if (pos_val == 0) { src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); } else { // src_pos < src_len src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); // src_len - src_pos < copy_len OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } } LIR* dstPos_negative = nullptr; LIR* dst_bad_len = nullptr; LIR* dst_bad_off = nullptr; LoadValueDirectFixed(rl_dst, rs_rAX); LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); if (!rl_dstPos.is_const) { LoadValueDirectFixed(rl_dstPos, tmp_reg); dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr); // dst_pos < dst_len dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr); // dst_len - dst_pos < copy_len OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg); dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } else { int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg); if (pos_val == 0) { dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr); } else { // dst_pos < dst_len dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr); // dst_len - dst_pos < copy_len OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val); dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr); } } // Everything is checked now. LoadValueDirectFixed(rl_src, rs_rAX); LoadValueDirectFixed(rl_dst, tmp_reg); LoadValueDirectFixed(rl_srcPos, rs_rCX); NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(), rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value()); // RAX now holds the address of the first src element to be copied. LoadValueDirectFixed(rl_dstPos, rs_rCX); NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(), rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() ); // RBX now holds the address of the first dst element to be copied. // Check if the number of elements to be copied is odd or even. If odd // then copy the first element (so that the remaining number of elements // is even). LoadValueDirectFixed(rl_length, rs_rCX); OpRegImm(kOpAnd, rs_rCX, 1); LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); OpRegImm(kOpSub, rs_rDX, 1); LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf); StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf); // Since the remaining number of elements is even, we will copy by // two elements at a time. LIR* beginLoop = NewLIR0(kPseudoTargetLabel); LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr); OpRegImm(kOpSub, rs_rDX, 2); LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle); StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle); OpUnconditionalBranch(beginLoop); LIR *check_failed = NewLIR0(kPseudoTargetLabel); LIR* launchpad_branch = OpUnconditionalBranch(nullptr); LIR *return_point = NewLIR0(kPseudoTargetLabel); jmp_to_ret->target = return_point; jmp_to_begin_loop->target = beginLoop; src_dst_same->target = check_failed; len_too_big->target = check_failed; src_null_branch->target = check_failed; if (srcPos_negative != nullptr) srcPos_negative ->target = check_failed; if (src_bad_off != nullptr) src_bad_off->target = check_failed; if (src_bad_len != nullptr) src_bad_len->target = check_failed; dst_null_branch->target = check_failed; if (dstPos_negative != nullptr) dstPos_negative->target = check_failed; if (dst_bad_off != nullptr) dst_bad_off->target = check_failed; if (dst_bad_len != nullptr) dst_bad_len->target = check_failed; AddIntrinsicSlowPath(info, launchpad_branch, return_point); ClobberCallerSave(); // We must clobber everything because slow path will return here return true; } /* * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff, * otherwise bails to standard library code. */ bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { RegLocation rl_obj = info->args[0]; RegLocation rl_char = info->args[1]; RegLocation rl_start; // Note: only present in III flavor or IndexOf. // RBX is callee-save register in 64-bit mode. RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX; int start_value = -1; uint32_t char_value = rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0; if (char_value > 0xFFFF) { // We have to punt to the real String.indexOf. return false; } // Okay, we are commited to inlining this. // EAX: 16 bit character being searched. // ECX: count: number of words to be searched. // EDI: String being searched. // EDX: temporary during execution. // EBX or R11: temporary during execution (depending on mode). // REP SCASW: search instruction. FlushReg(rs_rAX); Clobber(rs_rAX); LockTemp(rs_rAX); FlushReg(rs_rCX); Clobber(rs_rCX); LockTemp(rs_rCX); FlushReg(rs_rDX); Clobber(rs_rDX); LockTemp(rs_rDX); FlushReg(rs_tmp); Clobber(rs_tmp); LockTemp(rs_tmp); if (cu_->target64) { FlushReg(rs_rDI); Clobber(rs_rDI); LockTemp(rs_rDI); } RegLocation rl_return = GetReturn(kCoreReg); RegLocation rl_dest = InlineTarget(info); // Is the string non-NULL? LoadValueDirectFixed(rl_obj, rs_rDX); GenNullCheck(rs_rDX, info->opt_flags); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. LIR *slowpath_branch = nullptr, *length_compare = nullptr; // We need the value in EAX. if (rl_char.is_const) { LoadConstantNoClobber(rs_rAX, char_value); } else { // Does the character fit in 16 bits? Compare it at runtime. LoadValueDirectFixed(rl_char, rs_rAX); slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr); } // From here down, we know that we are looking for a char that fits in 16 bits. // Location of reference to data array within the String object. int value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int count_offset = mirror::String::CountOffset().Int32Value(); // Starting offset within data array. int offset_offset = mirror::String::OffsetOffset().Int32Value(); // Start of char data with array_. int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); // Compute the number of words to search in to rCX. Load32Disp(rs_rDX, count_offset, rs_rCX); // Possible signal here due to null pointer dereference. // Note that the signal handler will expect the top word of // the stack to be the ArtMethod*. If the PUSH edi instruction // below is ahead of the load above then this will not be true // and the signal handler will not work. MarkPossibleNullPointerException(0); if (!cu_->target64) { // EDI is callee-save register in 32-bit mode. NewLIR1(kX86Push32R, rs_rDI.GetReg()); } if (zero_based) { // Start index is not present. // We have to handle an empty string. Use special instruction JECXZ. length_compare = NewLIR0(kX86Jecxz8); // Copy the number of words to search in a temporary register. // We will use the register at the end to calculate result. OpRegReg(kOpMov, rs_tmp, rs_rCX); } else { // Start index is present. rl_start = info->args[2]; // We have to offset by the start index. if (rl_start.is_const) { start_value = mir_graph_->ConstantValue(rl_start.orig_sreg); start_value = std::max(start_value, 0); // Is the start > count? length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr); OpRegImm(kOpMov, rs_rDI, start_value); // Copy the number of words to search in a temporary register. // We will use the register at the end to calculate result. OpRegReg(kOpMov, rs_tmp, rs_rCX); if (start_value != 0) { // Decrease the number of words to search by the start index. OpRegImm(kOpSub, rs_rCX, start_value); } } else { // Handle "start index < 0" case. if (!cu_->target64 && rl_start.location != kLocPhysReg) { // Load the start index from stack, remembering that we pushed EDI. int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); Load32Disp(rs_rX86_SP, displacement, rs_rDI); // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it. DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info)); int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1; AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false); } else { LoadValueDirectFixed(rl_start, rs_rDI); } OpRegReg(kOpXor, rs_tmp, rs_tmp); OpRegReg(kOpCmp, rs_rDI, rs_tmp); OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp); // The length of the string should be greater than the start index. length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr); // Copy the number of words to search in a temporary register. // We will use the register at the end to calculate result. OpRegReg(kOpMov, rs_tmp, rs_rCX); // Decrease the number of words to search by the start index. OpRegReg(kOpSub, rs_rCX, rs_rDI); } } // Load the address of the string into EDI. // In case of start index we have to add the address to existing value in EDI. // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET. if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) { Load32Disp(rs_rDX, offset_offset, rs_rDI); } else { OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset); } OpRegImm(kOpLsl, rs_rDI, 1); OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset); OpRegImm(kOpAdd, rs_rDI, data_offset); // EDI now contains the start of the string to be searched. // We are all prepared to do the search for the character. NewLIR0(kX86RepneScasw); // Did we find a match? LIR* failed_branch = OpCondBranch(kCondNe, nullptr); // yes, we matched. Compute the index of the result. OpRegReg(kOpSub, rs_tmp, rs_rCX); NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1); LIR *all_done = NewLIR1(kX86Jmp8, 0); // Failed to match; return -1. LIR *not_found = NewLIR0(kPseudoTargetLabel); length_compare->target = not_found; failed_branch->target = not_found; LoadConstantNoClobber(rl_return.reg, -1); // And join up at the end. all_done->target = NewLIR0(kPseudoTargetLabel); if (!cu_->target64) NewLIR1(kX86Pop32R, rs_rDI.GetReg()); // Out of line code returns here. if (slowpath_branch != nullptr) { LIR *return_point = NewLIR0(kPseudoTargetLabel); AddIntrinsicSlowPath(info, slowpath_branch, return_point); ClobberCallerSave(); // We must clobber everything because slow path will return here } StoreValue(rl_dest, rl_return); FreeTemp(rs_rAX); FreeTemp(rs_rCX); FreeTemp(rs_rDX); FreeTemp(rs_tmp); if (cu_->target64) { FreeTemp(rs_rDI); } return true; } /* * @brief Enter an 'advance LOC' into the FDE buffer * @param buf FDE buffer. * @param increment Amount by which to increase the current location. */ static void AdvanceLoc(std::vector&buf, uint32_t increment) { if (increment < 64) { // Encoding in opcode. buf.push_back(0x1 << 6 | increment); } else if (increment < 256) { // Single byte delta. buf.push_back(0x02); buf.push_back(increment); } else if (increment < 256 * 256) { // Two byte delta. buf.push_back(0x03); buf.push_back(increment & 0xff); buf.push_back((increment >> 8) & 0xff); } else { // Four byte delta. buf.push_back(0x04); PushWord(buf, increment); } } std::vector* X86CFIInitialization(bool is_x86_64) { return X86Mir2Lir::ReturnCommonCallFrameInformation(is_x86_64); } static void EncodeUnsignedLeb128(std::vector& buf, uint32_t value) { uint8_t buffer[12]; uint8_t *ptr = EncodeUnsignedLeb128(buffer, value); for (uint8_t *p = buffer; p < ptr; p++) { buf.push_back(*p); } } static void EncodeSignedLeb128(std::vector& buf, int32_t value) { uint8_t buffer[12]; uint8_t *ptr = EncodeSignedLeb128(buffer, value); for (uint8_t *p = buffer; p < ptr; p++) { buf.push_back(*p); } } std::vector* X86Mir2Lir::ReturnCommonCallFrameInformation(bool is_x86_64) { std::vector*cfi_info = new std::vector; // Length (will be filled in later in this routine). PushWord(*cfi_info, 0); // CIE id: always 0. PushWord(*cfi_info, 0); // Version: always 1. cfi_info->push_back(0x01); // Augmentation: 'zR\0' cfi_info->push_back(0x7a); cfi_info->push_back(0x52); cfi_info->push_back(0x0); // Code alignment: 1. EncodeUnsignedLeb128(*cfi_info, 1); // Data alignment. if (is_x86_64) { EncodeSignedLeb128(*cfi_info, -8); } else { EncodeSignedLeb128(*cfi_info, -4); } // Return address register. if (is_x86_64) { // R16(RIP) cfi_info->push_back(0x10); } else { // R8(EIP) cfi_info->push_back(0x08); } // Augmentation length: 1. cfi_info->push_back(1); // Augmentation data: 0x03 ((DW_EH_PE_absptr << 4) | DW_EH_PE_udata4). cfi_info->push_back(0x03); // Initial instructions. if (is_x86_64) { // DW_CFA_def_cfa R7(RSP) 8. cfi_info->push_back(0x0c); cfi_info->push_back(0x07); cfi_info->push_back(0x08); // DW_CFA_offset R16(RIP) 1 (* -8). cfi_info->push_back(0x90); cfi_info->push_back(0x01); } else { // DW_CFA_def_cfa R4(ESP) 4. cfi_info->push_back(0x0c); cfi_info->push_back(0x04); cfi_info->push_back(0x04); // DW_CFA_offset R8(EIP) 1 (* -4). cfi_info->push_back(0x88); cfi_info->push_back(0x01); } // Padding to a multiple of 4 while ((cfi_info->size() & 3) != 0) { // DW_CFA_nop is encoded as 0. cfi_info->push_back(0); } // Set the length of the CIE inside the generated bytes. uint32_t length = cfi_info->size() - 4; (*cfi_info)[0] = length; (*cfi_info)[1] = length >> 8; (*cfi_info)[2] = length >> 16; (*cfi_info)[3] = length >> 24; return cfi_info; } static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) { if (is_x86_64) { switch (art_reg_id) { case 3 : *dwarf_reg_id = 3; return true; // %rbx // This is the only discrepancy between ART & DWARF register numbering. case 5 : *dwarf_reg_id = 6; return true; // %rbp case 12: *dwarf_reg_id = 12; return true; // %r12 case 13: *dwarf_reg_id = 13; return true; // %r13 case 14: *dwarf_reg_id = 14; return true; // %r14 case 15: *dwarf_reg_id = 15; return true; // %r15 default: return false; // Should not get here } } else { switch (art_reg_id) { case 5: *dwarf_reg_id = 5; return true; // %ebp case 6: *dwarf_reg_id = 6; return true; // %esi case 7: *dwarf_reg_id = 7; return true; // %edi default: return false; // Should not get here } } } std::vector* X86Mir2Lir::ReturnCallFrameInformation() { std::vector*cfi_info = new std::vector; // Generate the FDE for the method. DCHECK_NE(data_offset_, 0U); // Length (will be filled in later in this routine). PushWord(*cfi_info, 0); // 'CIE_pointer' (filled in by linker). PushWord(*cfi_info, 0); // 'initial_location' (filled in by linker). PushWord(*cfi_info, 0); // 'address_range' (number of bytes in the method). PushWord(*cfi_info, data_offset_); // Augmentation length: 0 cfi_info->push_back(0); // The instructions in the FDE. if (stack_decrement_ != nullptr) { // Advance LOC to just past the stack decrement. uint32_t pc = NEXT_LIR(stack_decrement_)->offset; AdvanceLoc(*cfi_info, pc); // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size. cfi_info->push_back(0x0e); EncodeUnsignedLeb128(*cfi_info, frame_size_); // Handle register spills const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4; const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4; uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { pc += kSpillInstLen; // Advance LOC to pass this instruction AdvanceLoc(*cfi_info, kSpillInstLen); int dwarf_reg_id; if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) { // DW_CFA_offset_extended_sf reg_no offset cfi_info->push_back(0x11); EncodeUnsignedLeb128(*cfi_info, dwarf_reg_id); EncodeSignedLeb128(*cfi_info, offset / kDataAlignmentFactor); } offset += GetInstructionSetPointerSize(cu_->instruction_set); } } // We continue with that stack until the epilogue. if (stack_increment_ != nullptr) { uint32_t new_pc = NEXT_LIR(stack_increment_)->offset; AdvanceLoc(*cfi_info, new_pc - pc); // We probably have code snippets after the epilogue, so save the // current state: DW_CFA_remember_state. cfi_info->push_back(0x0a); // We have now popped the stack: DW_CFA_def_cfa_offset 4/8. // There is only the return PC on the stack now. cfi_info->push_back(0x0e); EncodeUnsignedLeb128(*cfi_info, GetInstructionSetPointerSize(cu_->instruction_set)); // Everything after that is the same as before the epilogue. // Stack bump was followed by RET instruction. LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_)); if (post_ret_insn != nullptr) { pc = new_pc; new_pc = post_ret_insn->offset; AdvanceLoc(*cfi_info, new_pc - pc); // Restore the state: DW_CFA_restore_state. cfi_info->push_back(0x0b); } } } // Padding to a multiple of 4 while ((cfi_info->size() & 3) != 0) { // DW_CFA_nop is encoded as 0. cfi_info->push_back(0); } // Set the length of the FDE inside the generated bytes. uint32_t length = cfi_info->size() - 4; (*cfi_info)[0] = length; (*cfi_info)[1] = length >> 8; (*cfi_info)[2] = length >> 16; (*cfi_info)[3] = length >> 24; return cfi_info; } void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { switch (static_cast(mir->dalvikInsn.opcode)) { case kMirOpReserveVectorRegisters: ReserveVectorRegisters(mir); break; case kMirOpReturnVectorRegisters: ReturnVectorRegisters(); break; case kMirOpConstVector: GenConst128(bb, mir); break; case kMirOpMoveVector: GenMoveVector(bb, mir); break; case kMirOpPackedMultiply: GenMultiplyVector(bb, mir); break; case kMirOpPackedAddition: GenAddVector(bb, mir); break; case kMirOpPackedSubtract: GenSubtractVector(bb, mir); break; case kMirOpPackedShiftLeft: GenShiftLeftVector(bb, mir); break; case kMirOpPackedSignedShiftRight: GenSignedShiftRightVector(bb, mir); break; case kMirOpPackedUnsignedShiftRight: GenUnsignedShiftRightVector(bb, mir); break; case kMirOpPackedAnd: GenAndVector(bb, mir); break; case kMirOpPackedOr: GenOrVector(bb, mir); break; case kMirOpPackedXor: GenXorVector(bb, mir); break; case kMirOpPackedAddReduce: GenAddReduceVector(bb, mir); break; case kMirOpPackedReduce: GenReduceVector(bb, mir); break; case kMirOpPackedSet: GenSetVector(bb, mir); break; default: break; } } void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) { // We should not try to reserve twice without returning the registers DCHECK_NE(num_reserved_vector_regs_, -1); int num_vector_reg = mir->dalvikInsn.vA; for (int i = 0; i < num_vector_reg; i++) { RegStorage xp_reg = RegStorage::Solo128(i); RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); Clobber(xp_reg); for (RegisterInfo *info = xp_reg_info->GetAliasChain(); info != nullptr; info = info->GetAliasChain()) { if (info->GetReg().IsSingle()) { reg_pool_->sp_regs_.Delete(info); } else { reg_pool_->dp_regs_.Delete(info); } } } num_reserved_vector_regs_ = num_vector_reg; } void X86Mir2Lir::ReturnVectorRegisters() { // Return all the reserved registers for (int i = 0; i < num_reserved_vector_regs_; i++) { RegStorage xp_reg = RegStorage::Solo128(i); RegisterInfo *xp_reg_info = GetRegInfo(xp_reg); for (RegisterInfo *info = xp_reg_info->GetAliasChain(); info != nullptr; info = info->GetAliasChain()) { if (info->GetReg().IsSingle()) { reg_pool_->sp_regs_.Insert(info); } else { reg_pool_->dp_regs_.Insert(info); } } } // We don't have anymore reserved vector registers num_reserved_vector_regs_ = -1; } void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) { store_method_addr_used_ = true; int type_size = mir->dalvikInsn.vB; // We support 128 bit vectors. DCHECK_EQ(type_size & 0xFFFF, 128); RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); uint32_t *args = mir->dalvikInsn.arg; int reg = rs_dest.GetReg(); // Check for all 0 case. if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) { NewLIR2(kX86XorpsRR, reg, reg); return; } // Append the mov const vector to reg opcode. AppendOpcodeWithConst(kX86MovupsRM, reg, mir); } void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) { // Okay, load it from the constant vector area. LIR *data_target = ScanVectorLiteral(mir); if (data_target == nullptr) { data_target = AddVectorLiteral(mir); } // Address the start of the method. RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low); if (rl_method.wide) { rl_method = LoadValueWide(rl_method, kCoreReg); } else { rl_method = LoadValue(rl_method, kCoreReg); } // Load the proper value from the literal area. // We don't know the proper offset for the value, so pick one that will force // 4 byte offset. We will fix this up in the assembler later to have the right // value. ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg()); load->flags.fixup = kFixupLoad; load->target = data_target; } void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg()); } void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) { const int BYTE_SIZE = 8; RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide()); /* * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM * and multiplying 8 at a time before recombining back into one XMM register. * * let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes) * xmm3 is tmp (operate on high bits of 16bit lanes) * * xmm3 = xmm1 * xmm1 = xmm1 .* xmm2 * xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits * xmm3 = xmm3 .>> 8 * xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00 * xmm2 = xmm2 .* xmm3 // xmm2 now has high bits * xmm1 = xmm1 | xmm2 // combine results */ // Copy xmm1. NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg()); // Multiply low bits. NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); // xmm1 now has low bits. AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF); // Prepare high bits for multiplication. NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE); AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00); // Multiply high bits and xmm2 now has high bits. NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg()); // Combine back into dest XMM register. NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); int opcode = 0; switch (opsize) { case k32: opcode = kX86PmulldRR; break; case kSignedHalf: opcode = kX86PmullwRR; break; case kSingle: opcode = kX86MulpsRR; break; case kDouble: opcode = kX86MulpdRR; break; case kSignedByte: // HW doesn't support 16x16 byte multiplication so emulate it. GenMultiplyVectorSignedByte(bb, mir); return; default: LOG(FATAL) << "Unsupported vector multiply " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); int opcode = 0; switch (opsize) { case k32: opcode = kX86PadddRR; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PaddwRR; break; case kUnsignedByte: case kSignedByte: opcode = kX86PaddbRR; break; case kSingle: opcode = kX86AddpsRR; break; case kDouble: opcode = kX86AddpdRR; break; default: LOG(FATAL) << "Unsupported vector addition " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); int opcode = 0; switch (opsize) { case k32: opcode = kX86PsubdRR; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsubwRR; break; case kUnsignedByte: case kSignedByte: opcode = kX86PsubbRR; break; case kSingle: opcode = kX86SubpsRR; break; case kDouble: opcode = kX86SubpdRR; break; default: LOG(FATAL) << "Unsupported vector subtraction " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) { RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_tmp = Get128BitRegister(AllocTempWide()); int opcode = 0; int imm = mir->dalvikInsn.vB; switch (static_cast(mir->dalvikInsn.opcode)) { case kMirOpPackedShiftLeft: opcode = kX86PsllwRI; break; case kMirOpPackedSignedShiftRight: opcode = kX86PsrawRI; break; case kMirOpPackedUnsignedShiftRight: opcode = kX86PsrlwRI; break; default: LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode; break; } /* * xmm1 will have low bits * xmm2 will have high bits * * xmm2 = xmm1 * xmm1 = xmm1 .<< N * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00 * xmm2 = xmm2 .<< N * xmm1 = xmm1 | xmm2 */ // Copy xmm1. NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg()); // Shift lower values. NewLIR2(opcode, rs_dest_src1.GetReg(), imm); // Mask bottom bits. AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00); // Shift higher values. NewLIR2(opcode, rs_tmp.GetReg(), imm); // Combine back into dest XMM register. NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg()); } void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); int imm = mir->dalvikInsn.vB; int opcode = 0; switch (opsize) { case k32: opcode = kX86PslldRI; break; case k64: opcode = kX86PsllqRI; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsllwRI; break; case kSignedByte: case kUnsignedByte: GenShiftByteVector(bb, mir); return; default: LOG(FATAL) << "Unsupported vector shift left " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), imm); } void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); int imm = mir->dalvikInsn.vB; int opcode = 0; switch (opsize) { case k32: opcode = kX86PsradRI; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsrawRI; break; case kSignedByte: case kUnsignedByte: GenShiftByteVector(bb, mir); return; default: LOG(FATAL) << "Unsupported vector signed shift right " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), imm); } void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); int imm = mir->dalvikInsn.vB; int opcode = 0; switch (opsize) { case k32: opcode = kX86PsrldRI; break; case k64: opcode = kX86PsrlqRI; break; case kSignedHalf: case kUnsignedHalf: opcode = kX86PsrlwRI; break; case kSignedByte: case kUnsignedByte: GenShiftByteVector(bb, mir); return; default: LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize; break; } NewLIR2(opcode, rs_dest_src1.GetReg(), imm); } void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) { // We only support 128 bit registers. DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA); RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB); NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); } void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) { MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4); } void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) { // Create temporary MIR as container for 128-bit binary mask. MIR const_mir; MIR* const_mirp = &const_mir; const_mirp->dalvikInsn.opcode = static_cast(kMirOpConstVector); const_mirp->dalvikInsn.arg[0] = m0; const_mirp->dalvikInsn.arg[1] = m1; const_mirp->dalvikInsn.arg[2] = m2; const_mirp->dalvikInsn.arg[3] = m3; // Mask vector with const from literal pool. AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp); } void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) { OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); RegLocation rl_dest = mir_graph_->GetDest(mir); RegStorage rs_tmp; int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8; int vec_unit_size = 0; int opcode = 0; int extr_opcode = 0; RegLocation rl_result; switch (opsize) { case k32: extr_opcode = kX86PextrdRRI; opcode = kX86PhadddRR; vec_unit_size = 4; break; case kSignedByte: case kUnsignedByte: extr_opcode = kX86PextrbRRI; opcode = kX86PhaddwRR; vec_unit_size = 2; break; case kSignedHalf: case kUnsignedHalf: extr_opcode = kX86PextrwRRI; opcode = kX86PhaddwRR; vec_unit_size = 2; break; case kSingle: rl_result = EvalLoc(rl_dest, kFPReg, true); vec_unit_size = 4; for (int i = 0; i < 3; i++) { NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg()); NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39); } NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg()); StoreValue(rl_dest, rl_result); // For single-precision floats, we are done here return; default: LOG(FATAL) << "Unsupported vector add reduce " << opsize; break; } int elems = vec_bytes / vec_unit_size; // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again // TODO is overflow handled correctly? if (opsize == kSignedByte || opsize == kUnsignedByte) { rs_tmp = Get128BitRegister(AllocTempWide()); // tmp = xmm1 .>> 8. NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg()); NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8); // Zero extend low bits in xmm1. AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF); } while (elems > 1) { if (opsize == kSignedByte || opsize == kUnsignedByte) { NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg()); } NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg()); elems >>= 1; } // Combine the results if we separated them. if (opsize == kSignedByte || opsize == kUnsignedByte) { NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg()); } // We need to extract to a GPR. RegStorage temp = AllocTemp(); NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0); // Can we do this directly into memory? rl_result = UpdateLocTyped(rl_dest, kCoreReg); if (rl_result.location == kLocPhysReg) { // Ensure res is in a core reg rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(kOpAdd, rl_result.reg, temp); StoreFinalValue(rl_dest, rl_result); } else { OpMemReg(kOpAdd, rl_result, temp.GetReg()); } FreeTemp(temp); } void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) { OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegLocation rl_dest = mir_graph_->GetDest(mir); RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); int extract_index = mir->dalvikInsn.arg[0]; int extr_opcode = 0; RegLocation rl_result; bool is_wide = false; switch (opsize) { case k32: rl_result = UpdateLocTyped(rl_dest, kCoreReg); extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI; break; case kSignedHalf: case kUnsignedHalf: rl_result= UpdateLocTyped(rl_dest, kCoreReg); extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI; break; default: LOG(FATAL) << "Unsupported vector add reduce " << opsize; return; break; } if (rl_result.location == kLocPhysReg) { NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index); if (is_wide == true) { StoreFinalValue(rl_dest, rl_result); } else { StoreFinalValueWide(rl_dest, rl_result); } } else { int displacement = SRegOffset(rl_result.s_reg_low); LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg()); AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */); AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */); } } void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) { DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U); OpSize opsize = static_cast(mir->dalvikInsn.vC >> 16); RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA); int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR; RegisterClass reg_type = kCoreReg; switch (opsize) { case k32: op_low = kX86PshufdRRI; break; case kSingle: op_low = kX86PshufdRRI; op_mov = kX86Mova128RR; reg_type = kFPReg; break; case k64: op_low = kX86PshufdRRI; imm = 0x44; break; case kDouble: op_low = kX86PshufdRRI; op_mov = kX86Mova128RR; reg_type = kFPReg; imm = 0x44; break; case kSignedByte: case kUnsignedByte: // Shuffle 8 bit value into 16 bit word. // We set val = val + (val << 8) below and use 16 bit shuffle. case kSignedHalf: case kUnsignedHalf: // Handles low quadword. op_low = kX86PshuflwRRI; // Handles upper quadword. op_high = kX86PshufdRRI; break; default: LOG(FATAL) << "Unsupported vector set " << opsize; break; } RegLocation rl_src = mir_graph_->GetSrc(mir, 0); // Load the value from the VR into the reg. if (rl_src.wide == 0) { rl_src = LoadValue(rl_src, reg_type); } else { rl_src = LoadValueWide(rl_src, reg_type); } // If opsize is 8 bits wide then double value and use 16 bit shuffle instead. if (opsize == kSignedByte || opsize == kUnsignedByte) { RegStorage temp = AllocTemp(); // val = val + (val << 8). NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg()); NewLIR2(kX86Sal32RI, temp.GetReg(), 8); NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg()); FreeTemp(temp); } // Load the value into the XMM register. NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg()); // Now shuffle the value across the destination. NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm); // And then repeat as needed. if (op_high != 0) { NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm); } } LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) { int *args = reinterpret_cast(mir->dalvikInsn.arg); for (LIR *p = const_vectors_; p != nullptr; p = p->next) { if (args[0] == p->operands[0] && args[1] == p->operands[1] && args[2] == p->operands[2] && args[3] == p->operands[3]) { return p; } } return nullptr; } LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) { LIR* new_value = static_cast(arena_->Alloc(sizeof(LIR), kArenaAllocData)); int *args = reinterpret_cast(mir->dalvikInsn.arg); new_value->operands[0] = args[0]; new_value->operands[1] = args[1]; new_value->operands[2] = args[2]; new_value->operands[3] = args[3]; new_value->next = const_vectors_; if (const_vectors_ == nullptr) { estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary. } estimated_native_code_size_ += 16; // Space for one vector. const_vectors_ = new_value; return new_value; } // ------------ ABI support: mapping of args to physical registers ------------- RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) { const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5}; const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister); const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3, kFArg4, kFArg5, kFArg6, kFArg7}; const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister); if (is_double_or_float) { if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide); } } else { if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], is_ref ? kRef : (is_wide ? kWide : kNotWide)); } } return RegStorage::InvalidReg(); } RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) { DCHECK(IsInitialized()); auto res = mapping_.find(in_position); return res != mapping_.end() ? res->second : RegStorage::InvalidReg(); } void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) { DCHECK(mapper != nullptr); max_mapped_in_ = -1; is_there_stack_mapped_ = false; for (int in_position = 0; in_position < count; in_position++) { RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide, arg_locs[in_position].ref); if (reg.Valid()) { mapping_[in_position] = reg; max_mapped_in_ = std::max(max_mapped_in_, in_position); if (arg_locs[in_position].wide) { // We covered 2 args, so skip the next one in_position++; } } else { is_there_stack_mapped_ = true; } } initialized_ = true; } RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) { if (!cu_->target64) { return GetCoreArgMappingToPhysicalReg(arg_num); } if (!in_to_reg_storage_mapping_.IsInitialized()) { int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg]; InToRegStorageX86_64Mapper mapper(this); in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper); } return in_to_reg_storage_mapping_.Get(arg_num); } RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) { // For the 32-bit internal ABI, the first 3 arguments are passed in registers. // Not used for 64-bit, TODO: Move X86_32 to the same framework switch (core_arg_num) { case 0: return rs_rX86_ARG1; case 1: return rs_rX86_ARG2; case 2: return rs_rX86_ARG3; default: return RegStorage::InvalidReg(); } } // ---------End of ABI support: mapping of args to physical registers ------------- /* * If there are any ins passed in registers that have not been promoted * to a callee-save register, flush them to the frame. Perform initial * assignment of promoted arguments. * * ArgLocs is an array of location records describing the incoming arguments * with one location record per word of argument. */ void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method); /* * Dummy up a RegLocation for the incoming Method* * It will attempt to keep kArg0 live (or copy it to home location * if promoted). */ RegLocation rl_src = rl_method; rl_src.location = kLocPhysReg; rl_src.reg = TargetReg(kArg0, kRef); rl_src.home = false; MarkLive(rl_src); StoreValue(rl_method, rl_src); // If Method* has been promoted, explicitly flush if (rl_method.location == kLocPhysReg) { StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile); } if (cu_->num_ins == 0) { return; } int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; /* * Copy incoming arguments to their proper home locations. * NOTE: an older version of dx had an issue in which * it would reuse static method argument registers. * This could result in the same Dalvik virtual register * being promoted to both core and fp regs. To account for this, * we only copy to the corresponding promoted physical register * if it matches the type of the SSA name for the incoming * argument. It is also possible that long and double arguments * end up half-promoted. In those cases, we must flush the promoted * half to memory as well. */ ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); for (int i = 0; i < cu_->num_ins; i++) { // get reg corresponding to input RegStorage reg = GetArgMappingToPhysicalReg(i); RegLocation* t_loc = &ArgLocs[i]; if (reg.Valid()) { // If arriving in register. // We have already updated the arg location with promoted info // so we can be based on it. if (t_loc->location == kLocPhysReg) { // Just copy it. OpRegCopy(t_loc->reg, reg); } else { // Needs flush. if (t_loc->ref) { StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile); } else { StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32, kNotVolatile); } } } else { // If arriving in frame & promoted. if (t_loc->location == kLocPhysReg) { if (t_loc->ref) { LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile); } else { LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, t_loc->wide ? k64 : k32, kNotVolatile); } } } if (t_loc->wide) { // Increment i to skip the next one. i++; } } } /* * Load up to 5 arguments, the first three of which will be in * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, * and as part of the load sequence, it must be replaced with * the target method pointer. Note, this may also be called * for "range" variants if the number of arguments is 5 or fewer. */ int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { if (!cu_->target64) { return Mir2Lir::GenDalvikArgsNoRange(info, call_state, pcrLabel, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); } return GenDalvikArgsRange(info, call_state, pcrLabel, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); } /* * May have 0+ arguments (also used for jumbo). Note that * source virtual registers may be in physical registers, so may * need to be flushed to home location before copying. This * applies to arg3 and above (see below). * * Two general strategies: * If < 20 arguments * Pass args 3-18 using vldm/vstm block copy * Pass arg0, arg1 & arg2 in kArg1-kArg3 * If 20+ arguments * Pass args arg19+ using memcpy block copy * Pass arg0, arg1 & arg2 in kArg1-kArg3 * */ int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { if (!cu_->target64) { return Mir2Lir::GenDalvikArgsRange(info, call_state, pcrLabel, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); } /* If no arguments, just return */ if (info->num_arg_words == 0) return call_state; const int start_index = skip_this ? 1 : 0; InToRegStorageX86_64Mapper mapper(this); InToRegStorageMapping in_to_reg_storage_mapping; in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper); const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn(); const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 : info->args[last_mapped_in].wide ? 2 : 1; int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped); // Fisrt of all, check whether it make sense to use bulk copying // Optimization is aplicable only for range case // TODO: make a constant instead of 2 if (info->is_range && regs_left_to_pass_via_stack >= 2) { // Scan the rest of the args - if in phys_reg flush to memory for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) { RegLocation loc = info->args[next_arg]; if (loc.wide) { loc = UpdateLocWide(loc); if (loc.location == kLocPhysReg) { ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile); } next_arg += 2; } else { loc = UpdateLoc(loc); if (loc.location == kLocPhysReg) { ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile); } next_arg++; } } // Logic below assumes that Method pointer is at offset zero from SP. DCHECK_EQ(VRegOffset(static_cast(kVRegMethodPtrBaseReg)), 0); // The rest can be copied together int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low); int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set); int current_src_offset = start_offset; int current_dest_offset = outs_offset; // Only davik regs are accessed in this loop; no next_call_insn() calls. ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); while (regs_left_to_pass_via_stack > 0) { // This is based on the knowledge that the stack itself is 16-byte aligned. bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; size_t bytes_to_move; /* * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a * a 128-bit move because we won't get the chance to try to aligned. If there are more than * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. * We do this because we could potentially do a smaller move to align. */ if (regs_left_to_pass_via_stack == 4 || (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { // Moving 128-bits via xmm register. bytes_to_move = sizeof(uint32_t) * 4; // Allocate a free xmm temp. Since we are working through the calling sequence, // we expect to have an xmm temporary available. AllocTempDouble will abort if // there are no free registers. RegStorage temp = AllocTempDouble(); LIR* ld1 = nullptr; LIR* ld2 = nullptr; LIR* st1 = nullptr; LIR* st2 = nullptr; /* * The logic is similar for both loads and stores. If we have 16-byte alignment, * do an aligned move. If we have 8-byte alignment, then do the move in two * parts. This approach prevents possible cache line splits. Finally, fall back * to doing an unaligned move. In most cases we likely won't split the cache * line but we cannot prove it and thus take a conservative approach. */ bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); if (src_is_16b_aligned) { ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP); } else if (src_is_8b_aligned) { ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP); ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1), kMovHi128FP); } else { ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP); } if (dest_is_16b_aligned) { st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP); } else if (dest_is_8b_aligned) { st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP); st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP); } else { st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP); } // TODO If we could keep track of aliasing information for memory accesses that are wider // than 64-bit, we wouldn't need to set up a barrier. if (ld1 != nullptr) { if (ld2 != nullptr) { // For 64-bit load we can actually set up the aliasing information. AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true); } else { // Set barrier for 128-bit load. ld1->u.m.def_mask = &kEncodeAll; } } if (st1 != nullptr) { if (st2 != nullptr) { // For 64-bit store we can actually set up the aliasing information. AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true); } else { // Set barrier for 128-bit store. st1->u.m.def_mask = &kEncodeAll; } } // Free the temporary used for the data movement. FreeTemp(temp); } else { // Moving 32-bits via general purpose register. bytes_to_move = sizeof(uint32_t); // Instead of allocating a new temp, simply reuse one of the registers being used // for argument passing. RegStorage temp = TargetReg(kArg3, kNotWide); // Now load the argument VR and store to the outs. Load32Disp(rs_rX86_SP, current_src_offset, temp); Store32Disp(rs_rX86_SP, current_dest_offset, temp); } current_src_offset += bytes_to_move; current_dest_offset += bytes_to_move; regs_left_to_pass_via_stack -= (bytes_to_move >> 2); } DCHECK_EQ(regs_left_to_pass_via_stack, 0); } // Now handle rest not registers if they are if (in_to_reg_storage_mapping.IsThereStackMapped()) { RegStorage regSingle = TargetReg(kArg2, kNotWide); RegStorage regWide = TargetReg(kArg3, kWide); for (int i = start_index; i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) { RegLocation rl_arg = info->args[i]; rl_arg = UpdateRawLoc(rl_arg); RegStorage reg = in_to_reg_storage_mapping.Get(i); if (!reg.Valid()) { int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set); { ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); if (rl_arg.wide) { if (rl_arg.location == kLocPhysReg) { StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile); } else { LoadValueDirectWideFixed(rl_arg, regWide); StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile); } } else { if (rl_arg.location == kLocPhysReg) { StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile); } else { LoadValueDirectFixed(rl_arg, regSingle); StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile); } } } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } if (rl_arg.wide) { i++; } } } // Finish with mapped registers for (int i = start_index; i <= last_mapped_in; i++) { RegLocation rl_arg = info->args[i]; rl_arg = UpdateRawLoc(rl_arg); RegStorage reg = in_to_reg_storage_mapping.Get(i); if (reg.Valid()) { if (rl_arg.wide) { LoadValueDirectWideFixed(rl_arg, reg); } else { LoadValueDirectFixed(rl_arg, reg); } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } if (rl_arg.wide) { i++; } } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); if (pcrLabel) { if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags); } else { *pcrLabel = nullptr; // In lieu of generating a check for kArg1 being null, we need to // perform a load when doing implicit checks. RegStorage tmp = AllocTemp(); Load32Disp(TargetReg(kArg1, kRef), 0, tmp); MarkPossibleNullPointerException(info->opt_flags); FreeTemp(tmp); } } return call_state; } bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) { // Location of reference to data array int value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count int count_offset = mirror::String::CountOffset().Int32Value(); // Starting offset within data array int offset_offset = mirror::String::OffsetOffset().Int32Value(); // Start of char data with array_ int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); RegLocation rl_obj = info->args[0]; RegLocation rl_idx = info->args[1]; rl_obj = LoadValue(rl_obj, kRefReg); // X86 wants to avoid putting a constant index into a register. if (!rl_idx.is_const) { rl_idx = LoadValue(rl_idx, kCoreReg); } RegStorage reg_max; GenNullCheck(rl_obj.reg, info->opt_flags); bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); LIR* range_check_branch = nullptr; RegStorage reg_off; RegStorage reg_ptr; if (range_check) { // On x86, we can compare to memory directly // Set up a launch pad to allow retry in case of bounds violation */ if (rl_idx.is_const) { LIR* comparison; range_check_branch = OpCmpMemImmBranch( kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset, mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison); MarkPossibleNullPointerExceptionAfter(0, comparison); } else { OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset); MarkPossibleNullPointerException(0); range_check_branch = OpCondBranch(kCondUge, nullptr); } } reg_off = AllocTemp(); reg_ptr = AllocTempRef(); Load32Disp(rl_obj.reg, offset_offset, reg_off); LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile); if (rl_idx.is_const) { OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg)); } else { OpRegReg(kOpAdd, reg_off, rl_idx.reg); } FreeTemp(rl_obj.reg); if (rl_idx.location == kLocPhysReg) { FreeTemp(rl_idx.reg); } RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf); FreeTemp(reg_off); FreeTemp(reg_ptr); StoreValue(rl_dest, rl_result); if (range_check) { DCHECK(range_check_branch != nullptr); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked. AddIntrinsicSlowPath(info, range_check_branch); } return true; } bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { RegLocation rl_dest = InlineTarget(info); // Early exit if the result is unused. if (rl_dest.orig_sreg < 0) { return true; } RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); if (cu_->target64) { OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>()); } else { OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>()); } StoreValue(rl_dest, rl_result); return true; } } // namespace art