/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "elf_file.h" #include #include #include "base/logging.h" #include "base/stringprintf.h" #include "base/stl_util.h" #include "dwarf.h" #include "leb128.h" #include "utils.h" #include "instruction_set.h" namespace art { // ------------------------------------------------------------------- // Binary GDB JIT Interface as described in // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html extern "C" { typedef enum { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN } JITAction; struct JITCodeEntry { JITCodeEntry* next_; JITCodeEntry* prev_; const byte *symfile_addr_; uint64_t symfile_size_; }; struct JITDescriptor { uint32_t version_; uint32_t action_flag_; JITCodeEntry* relevant_entry_; JITCodeEntry* first_entry_; }; // GDB will place breakpoint into this function. // To prevent GCC from inlining or removing it we place noinline attribute // and inline assembler statement inside. void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } // GDB will inspect contents of this descriptor. // Static initialization is necessary to prevent GDB from seeing // uninitialized descriptor. JITDescriptor __jit_debug_descriptor = { 1, JIT_NOACTION, nullptr, nullptr }; } static JITCodeEntry* CreateCodeEntry(const byte *symfile_addr, uintptr_t symfile_size) { JITCodeEntry* entry = new JITCodeEntry; entry->symfile_addr_ = symfile_addr; entry->symfile_size_ = symfile_size; entry->prev_ = nullptr; // TODO: Do we need a lock here? entry->next_ = __jit_debug_descriptor.first_entry_; if (entry->next_ != nullptr) { entry->next_->prev_ = entry; } __jit_debug_descriptor.first_entry_ = entry; __jit_debug_descriptor.relevant_entry_ = entry; __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; __jit_debug_register_code(); return entry; } static void UnregisterCodeEntry(JITCodeEntry* entry) { // TODO: Do we need a lock here? if (entry->prev_ != nullptr) { entry->prev_->next_ = entry->next_; } else { __jit_debug_descriptor.first_entry_ = entry->next_; } if (entry->next_ != nullptr) { entry->next_->prev_ = entry->prev_; } __jit_debug_descriptor.relevant_entry_ = entry; __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; __jit_debug_register_code(); delete entry; } ElfFile::ElfFile(File* file, bool writable, bool program_header_only, uint8_t* requested_base) : file_(file), writable_(writable), program_header_only_(program_header_only), header_(nullptr), base_address_(nullptr), program_headers_start_(nullptr), section_headers_start_(nullptr), dynamic_program_header_(nullptr), dynamic_section_start_(nullptr), symtab_section_start_(nullptr), dynsym_section_start_(nullptr), strtab_section_start_(nullptr), dynstr_section_start_(nullptr), hash_section_start_(nullptr), symtab_symbol_table_(nullptr), dynsym_symbol_table_(nullptr), jit_elf_image_(nullptr), jit_gdb_entry_(nullptr), requested_base_(requested_base) { CHECK(file != nullptr); } ElfFile* ElfFile::Open(File* file, bool writable, bool program_header_only, std::string* error_msg, uint8_t* requested_base) { std::unique_ptr elf_file(new ElfFile(file, writable, program_header_only, requested_base)); int prot; int flags; if (writable) { prot = PROT_READ | PROT_WRITE; flags = MAP_SHARED; } else { prot = PROT_READ; flags = MAP_PRIVATE; } if (!elf_file->Setup(prot, flags, error_msg)) { return nullptr; } return elf_file.release(); } ElfFile* ElfFile::Open(File* file, int prot, int flags, std::string* error_msg) { std::unique_ptr elf_file(new ElfFile(file, (prot & PROT_WRITE) == PROT_WRITE, false, /*requested_base*/nullptr)); if (!elf_file->Setup(prot, flags, error_msg)) { return nullptr; } return elf_file.release(); } bool ElfFile::Setup(int prot, int flags, std::string* error_msg) { int64_t temp_file_length = file_->GetLength(); if (temp_file_length < 0) { errno = -temp_file_length; *error_msg = StringPrintf("Failed to get length of file: '%s' fd=%d: %s", file_->GetPath().c_str(), file_->Fd(), strerror(errno)); return false; } size_t file_length = static_cast(temp_file_length); if (file_length < sizeof(Elf32_Ehdr)) { *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF header of " "%zd bytes: '%s'", file_length, sizeof(Elf32_Ehdr), file_->GetPath().c_str()); return false; } if (program_header_only_) { // first just map ELF header to get program header size information size_t elf_header_size = sizeof(Elf32_Ehdr); if (!SetMap(MemMap::MapFile(elf_header_size, prot, flags, file_->Fd(), 0, file_->GetPath().c_str(), error_msg), error_msg)) { return false; } // then remap to cover program header size_t program_header_size = header_->e_phoff + (header_->e_phentsize * header_->e_phnum); if (file_length < program_header_size) { *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF program " "header of %zd bytes: '%s'", file_length, sizeof(Elf32_Ehdr), file_->GetPath().c_str()); return false; } if (!SetMap(MemMap::MapFile(program_header_size, prot, flags, file_->Fd(), 0, file_->GetPath().c_str(), error_msg), error_msg)) { *error_msg = StringPrintf("Failed to map ELF program headers: %s", error_msg->c_str()); return false; } } else { // otherwise map entire file if (!SetMap(MemMap::MapFile(file_->GetLength(), prot, flags, file_->Fd(), 0, file_->GetPath().c_str(), error_msg), error_msg)) { *error_msg = StringPrintf("Failed to map ELF file: %s", error_msg->c_str()); return false; } } if (program_header_only_) { program_headers_start_ = Begin() + GetHeader().e_phoff; } else { if (!CheckAndSet(GetHeader().e_phoff, "program headers", &program_headers_start_, error_msg)) { return false; } // Setup section headers. if (!CheckAndSet(GetHeader().e_shoff, "section headers", §ion_headers_start_, error_msg)) { return false; } // Find shstrtab. Elf32_Shdr* shstrtab_section_header = GetSectionNameStringSection(); if (shstrtab_section_header == nullptr) { *error_msg = StringPrintf("Failed to find shstrtab section header in ELF file: '%s'", file_->GetPath().c_str()); return false; } // Find .dynamic section info from program header dynamic_program_header_ = FindProgamHeaderByType(PT_DYNAMIC); if (dynamic_program_header_ == nullptr) { *error_msg = StringPrintf("Failed to find PT_DYNAMIC program header in ELF file: '%s'", file_->GetPath().c_str()); return false; } if (!CheckAndSet(GetDynamicProgramHeader().p_offset, "dynamic section", reinterpret_cast(&dynamic_section_start_), error_msg)) { return false; } // Find other sections from section headers for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) { Elf32_Shdr* section_header = GetSectionHeader(i); if (section_header == nullptr) { *error_msg = StringPrintf("Failed to find section header for section %d in ELF file: '%s'", i, file_->GetPath().c_str()); return false; } switch (section_header->sh_type) { case SHT_SYMTAB: { if (!CheckAndSet(section_header->sh_offset, "symtab", reinterpret_cast(&symtab_section_start_), error_msg)) { return false; } break; } case SHT_DYNSYM: { if (!CheckAndSet(section_header->sh_offset, "dynsym", reinterpret_cast(&dynsym_section_start_), error_msg)) { return false; } break; } case SHT_STRTAB: { // TODO: base these off of sh_link from .symtab and .dynsym above if ((section_header->sh_flags & SHF_ALLOC) != 0) { // Check that this is named ".dynstr" and ignore otherwise. const char* header_name = GetString(*shstrtab_section_header, section_header->sh_name); if (strncmp(".dynstr", header_name, 8) == 0) { if (!CheckAndSet(section_header->sh_offset, "dynstr", reinterpret_cast(&dynstr_section_start_), error_msg)) { return false; } } } else { // Check that this is named ".strtab" and ignore otherwise. const char* header_name = GetString(*shstrtab_section_header, section_header->sh_name); if (strncmp(".strtab", header_name, 8) == 0) { if (!CheckAndSet(section_header->sh_offset, "strtab", reinterpret_cast(&strtab_section_start_), error_msg)) { return false; } } } break; } case SHT_DYNAMIC: { if (reinterpret_cast(dynamic_section_start_) != Begin() + section_header->sh_offset) { LOG(WARNING) << "Failed to find matching SHT_DYNAMIC for PT_DYNAMIC in " << file_->GetPath() << ": " << std::hex << reinterpret_cast(dynamic_section_start_) << " != " << reinterpret_cast(Begin() + section_header->sh_offset); return false; } break; } case SHT_HASH: { if (!CheckAndSet(section_header->sh_offset, "hash section", reinterpret_cast(&hash_section_start_), error_msg)) { return false; } break; } } } // Check for the existence of some sections. if (!CheckSectionsExist(error_msg)) { return false; } } return true; } ElfFile::~ElfFile() { STLDeleteElements(&segments_); delete symtab_symbol_table_; delete dynsym_symbol_table_; delete jit_elf_image_; if (jit_gdb_entry_) { UnregisterCodeEntry(jit_gdb_entry_); } } bool ElfFile::CheckAndSet(Elf32_Off offset, const char* label, byte** target, std::string* error_msg) { if (Begin() + offset >= End()) { *error_msg = StringPrintf("Offset %d is out of range for %s in ELF file: '%s'", offset, label, file_->GetPath().c_str()); return false; } *target = Begin() + offset; return true; } bool ElfFile::CheckSectionsLinked(const byte* source, const byte* target) const { // Only works in whole-program mode, as we need to iterate over the sections. // Note that we normally can't search by type, as duplicates are allowed for most section types. if (program_header_only_) { return true; } Elf32_Shdr* source_section = nullptr; Elf32_Word target_index = 0; bool target_found = false; for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) { Elf32_Shdr* section_header = GetSectionHeader(i); if (Begin() + section_header->sh_offset == source) { // Found the source. source_section = section_header; if (target_index) { break; } } else if (Begin() + section_header->sh_offset == target) { target_index = i; target_found = true; if (source_section != nullptr) { break; } } } return target_found && source_section != nullptr && source_section->sh_link == target_index; } bool ElfFile::CheckSectionsExist(std::string* error_msg) const { if (!program_header_only_) { // If in full mode, need section headers. if (section_headers_start_ == nullptr) { *error_msg = StringPrintf("No section headers in ELF file: '%s'", file_->GetPath().c_str()); return false; } } // This is redundant, but defensive. if (dynamic_program_header_ == nullptr) { *error_msg = StringPrintf("Failed to find PT_DYNAMIC program header in ELF file: '%s'", file_->GetPath().c_str()); return false; } // Need a dynamic section. This is redundant, but defensive. if (dynamic_section_start_ == nullptr) { *error_msg = StringPrintf("Failed to find dynamic section in ELF file: '%s'", file_->GetPath().c_str()); return false; } // Symtab validation. These is not really a hard failure, as we are currently not using the // symtab internally, but it's nice to be defensive. if (symtab_section_start_ != nullptr) { // When there's a symtab, there should be a strtab. if (strtab_section_start_ == nullptr) { *error_msg = StringPrintf("No strtab for symtab in ELF file: '%s'", file_->GetPath().c_str()); return false; } // The symtab should link to the strtab. if (!CheckSectionsLinked(reinterpret_cast(symtab_section_start_), reinterpret_cast(strtab_section_start_))) { *error_msg = StringPrintf("Symtab is not linked to the strtab in ELF file: '%s'", file_->GetPath().c_str()); return false; } } // We always need a dynstr & dynsym. if (dynstr_section_start_ == nullptr) { *error_msg = StringPrintf("No dynstr in ELF file: '%s'", file_->GetPath().c_str()); return false; } if (dynsym_section_start_ == nullptr) { *error_msg = StringPrintf("No dynsym in ELF file: '%s'", file_->GetPath().c_str()); return false; } // Need a hash section for dynamic symbol lookup. if (hash_section_start_ == nullptr) { *error_msg = StringPrintf("Failed to find hash section in ELF file: '%s'", file_->GetPath().c_str()); return false; } // And the hash section should be linking to the dynsym. if (!CheckSectionsLinked(reinterpret_cast(hash_section_start_), reinterpret_cast(dynsym_section_start_))) { *error_msg = StringPrintf("Hash section is not linked to the dynstr in ELF file: '%s'", file_->GetPath().c_str()); return false; } // We'd also like to confirm a shstrtab in program_header_only_ mode (else Open() does this for // us). This is usually the last in an oat file, and a good indicator of whether writing was // successful (or the process crashed and left garbage). if (program_header_only_) { // It might not be mapped, but we can compare against the file size. int64_t offset = static_cast(GetHeader().e_shoff + (GetHeader().e_shstrndx * GetHeader().e_shentsize)); if (offset >= file_->GetLength()) { *error_msg = StringPrintf("Shstrtab is not in the mapped ELF file: '%s'", file_->GetPath().c_str()); return false; } } return true; } bool ElfFile::SetMap(MemMap* map, std::string* error_msg) { if (map == nullptr) { // MemMap::Open should have already set an error. DCHECK(!error_msg->empty()); return false; } map_.reset(map); CHECK(map_.get() != nullptr) << file_->GetPath(); CHECK(map_->Begin() != nullptr) << file_->GetPath(); header_ = reinterpret_cast(map_->Begin()); if ((ELFMAG0 != header_->e_ident[EI_MAG0]) || (ELFMAG1 != header_->e_ident[EI_MAG1]) || (ELFMAG2 != header_->e_ident[EI_MAG2]) || (ELFMAG3 != header_->e_ident[EI_MAG3])) { *error_msg = StringPrintf("Failed to find ELF magic value %d %d %d %d in %s, found %d %d %d %d", ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3, file_->GetPath().c_str(), header_->e_ident[EI_MAG0], header_->e_ident[EI_MAG1], header_->e_ident[EI_MAG2], header_->e_ident[EI_MAG3]); return false; } if (ELFCLASS32 != header_->e_ident[EI_CLASS]) { *error_msg = StringPrintf("Failed to find expected EI_CLASS value %d in %s, found %d", ELFCLASS32, file_->GetPath().c_str(), header_->e_ident[EI_CLASS]); return false; } if (ELFDATA2LSB != header_->e_ident[EI_DATA]) { *error_msg = StringPrintf("Failed to find expected EI_DATA value %d in %s, found %d", ELFDATA2LSB, file_->GetPath().c_str(), header_->e_ident[EI_CLASS]); return false; } if (EV_CURRENT != header_->e_ident[EI_VERSION]) { *error_msg = StringPrintf("Failed to find expected EI_VERSION value %d in %s, found %d", EV_CURRENT, file_->GetPath().c_str(), header_->e_ident[EI_CLASS]); return false; } if (ET_DYN != header_->e_type) { *error_msg = StringPrintf("Failed to find expected e_type value %d in %s, found %d", ET_DYN, file_->GetPath().c_str(), header_->e_type); return false; } if (EV_CURRENT != header_->e_version) { *error_msg = StringPrintf("Failed to find expected e_version value %d in %s, found %d", EV_CURRENT, file_->GetPath().c_str(), header_->e_version); return false; } if (0 != header_->e_entry) { *error_msg = StringPrintf("Failed to find expected e_entry value %d in %s, found %d", 0, file_->GetPath().c_str(), header_->e_entry); return false; } if (0 == header_->e_phoff) { *error_msg = StringPrintf("Failed to find non-zero e_phoff value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shoff) { *error_msg = StringPrintf("Failed to find non-zero e_shoff value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_ehsize) { *error_msg = StringPrintf("Failed to find non-zero e_ehsize value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_phentsize) { *error_msg = StringPrintf("Failed to find non-zero e_phentsize value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_phnum) { *error_msg = StringPrintf("Failed to find non-zero e_phnum value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shentsize) { *error_msg = StringPrintf("Failed to find non-zero e_shentsize value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shnum) { *error_msg = StringPrintf("Failed to find non-zero e_shnum value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shstrndx) { *error_msg = StringPrintf("Failed to find non-zero e_shstrndx value in %s", file_->GetPath().c_str()); return false; } if (header_->e_shstrndx >= header_->e_shnum) { *error_msg = StringPrintf("Failed to find e_shnum value %d less than %d in %s", header_->e_shstrndx, header_->e_shnum, file_->GetPath().c_str()); return false; } if (!program_header_only_) { if (header_->e_phoff >= Size()) { *error_msg = StringPrintf("Failed to find e_phoff value %d less than %zd in %s", header_->e_phoff, Size(), file_->GetPath().c_str()); return false; } if (header_->e_shoff >= Size()) { *error_msg = StringPrintf("Failed to find e_shoff value %d less than %zd in %s", header_->e_shoff, Size(), file_->GetPath().c_str()); return false; } } return true; } Elf32_Ehdr& ElfFile::GetHeader() const { CHECK(header_ != nullptr); // Header has been checked in SetMap. This is a sanity check. return *header_; } byte* ElfFile::GetProgramHeadersStart() const { CHECK(program_headers_start_ != nullptr); // Header has been set in Setup. This is a sanity // check. return program_headers_start_; } byte* ElfFile::GetSectionHeadersStart() const { CHECK(!program_header_only_); // Only used in "full" mode. CHECK(section_headers_start_ != nullptr); // Is checked in CheckSectionsExist. Sanity check. return section_headers_start_; } Elf32_Phdr& ElfFile::GetDynamicProgramHeader() const { CHECK(dynamic_program_header_ != nullptr); // Is checked in CheckSectionsExist. Sanity check. return *dynamic_program_header_; } Elf32_Dyn* ElfFile::GetDynamicSectionStart() const { CHECK(dynamic_section_start_ != nullptr); // Is checked in CheckSectionsExist. Sanity check. return dynamic_section_start_; } static bool IsSymbolSectionType(Elf32_Word section_type) { return ((section_type == SHT_SYMTAB) || (section_type == SHT_DYNSYM)); } Elf32_Sym* ElfFile::GetSymbolSectionStart(Elf32_Word section_type) const { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; switch (section_type) { case SHT_SYMTAB: { return symtab_section_start_; break; } case SHT_DYNSYM: { return dynsym_section_start_; break; } default: { LOG(FATAL) << section_type; return nullptr; } } } const char* ElfFile::GetStringSectionStart(Elf32_Word section_type) const { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; switch (section_type) { case SHT_SYMTAB: { return strtab_section_start_; } case SHT_DYNSYM: { return dynstr_section_start_; } default: { LOG(FATAL) << section_type; return nullptr; } } } const char* ElfFile::GetString(Elf32_Word section_type, Elf32_Word i) const { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; if (i == 0) { return nullptr; } const char* string_section_start = GetStringSectionStart(section_type); if (string_section_start == nullptr) { return nullptr; } return string_section_start + i; } // WARNING: The following methods do not check for an error condition (non-existent hash section). // It is the caller's job to do this. Elf32_Word* ElfFile::GetHashSectionStart() const { return hash_section_start_; } Elf32_Word ElfFile::GetHashBucketNum() const { return GetHashSectionStart()[0]; } Elf32_Word ElfFile::GetHashChainNum() const { return GetHashSectionStart()[1]; } Elf32_Word ElfFile::GetHashBucket(size_t i, bool* ok) const { if (i >= GetHashBucketNum()) { *ok = false; return 0; } *ok = true; // 0 is nbucket, 1 is nchain return GetHashSectionStart()[2 + i]; } Elf32_Word ElfFile::GetHashChain(size_t i, bool* ok) const { if (i >= GetHashBucketNum()) { *ok = false; return 0; } *ok = true; // 0 is nbucket, 1 is nchain, & chains are after buckets return GetHashSectionStart()[2 + GetHashBucketNum() + i]; } Elf32_Word ElfFile::GetProgramHeaderNum() const { return GetHeader().e_phnum; } Elf32_Phdr* ElfFile::GetProgramHeader(Elf32_Word i) const { CHECK_LT(i, GetProgramHeaderNum()) << file_->GetPath(); // Sanity check for caller. byte* program_header = GetProgramHeadersStart() + (i * GetHeader().e_phentsize); if (program_header >= End()) { return nullptr; // Failure condition. } return reinterpret_cast(program_header); } Elf32_Phdr* ElfFile::FindProgamHeaderByType(Elf32_Word type) const { for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf32_Phdr* program_header = GetProgramHeader(i); if (program_header->p_type == type) { return program_header; } } return nullptr; } Elf32_Word ElfFile::GetSectionHeaderNum() const { return GetHeader().e_shnum; } Elf32_Shdr* ElfFile::GetSectionHeader(Elf32_Word i) const { // Can only access arbitrary sections when we have the whole file, not just program header. // Even if we Load(), it doesn't bring in all the sections. CHECK(!program_header_only_) << file_->GetPath(); if (i >= GetSectionHeaderNum()) { return nullptr; // Failure condition. } byte* section_header = GetSectionHeadersStart() + (i * GetHeader().e_shentsize); if (section_header >= End()) { return nullptr; // Failure condition. } return reinterpret_cast(section_header); } Elf32_Shdr* ElfFile::FindSectionByType(Elf32_Word type) const { // Can only access arbitrary sections when we have the whole file, not just program header. // We could change this to switch on known types if they were detected during loading. CHECK(!program_header_only_) << file_->GetPath(); for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) { Elf32_Shdr* section_header = GetSectionHeader(i); if (section_header->sh_type == type) { return section_header; } } return nullptr; } // from bionic static unsigned elfhash(const char *_name) { const unsigned char *name = (const unsigned char *) _name; unsigned h = 0, g; while (*name) { h = (h << 4) + *name++; g = h & 0xf0000000; h ^= g; h ^= g >> 24; } return h; } Elf32_Shdr* ElfFile::GetSectionNameStringSection() const { return GetSectionHeader(GetHeader().e_shstrndx); } const byte* ElfFile::FindDynamicSymbolAddress(const std::string& symbol_name) const { // Check that we have a hash section. if (GetHashSectionStart() == nullptr) { return nullptr; // Failure condition. } const Elf32_Sym* sym = FindDynamicSymbol(symbol_name); if (sym != nullptr) { // TODO: we need to change this to calculate base_address_ in ::Open, // otherwise it will be wrongly 0 if ::Load has not yet been called. return base_address_ + sym->st_value; } else { return nullptr; } } // WARNING: Only called from FindDynamicSymbolAddress. Elides check for hash section. const Elf32_Sym* ElfFile::FindDynamicSymbol(const std::string& symbol_name) const { if (GetHashBucketNum() == 0) { // No dynamic symbols at all. return nullptr; } Elf32_Word hash = elfhash(symbol_name.c_str()); Elf32_Word bucket_index = hash % GetHashBucketNum(); bool ok; Elf32_Word symbol_and_chain_index = GetHashBucket(bucket_index, &ok); if (!ok) { return nullptr; } while (symbol_and_chain_index != 0 /* STN_UNDEF */) { Elf32_Sym* symbol = GetSymbol(SHT_DYNSYM, symbol_and_chain_index); if (symbol == nullptr) { return nullptr; // Failure condition. } const char* name = GetString(SHT_DYNSYM, symbol->st_name); if (symbol_name == name) { return symbol; } symbol_and_chain_index = GetHashChain(symbol_and_chain_index, &ok); if (!ok) { return nullptr; } } return nullptr; } Elf32_Word ElfFile::GetSymbolNum(Elf32_Shdr& section_header) const { CHECK(IsSymbolSectionType(section_header.sh_type)) << file_->GetPath() << " " << section_header.sh_type; CHECK_NE(0U, section_header.sh_entsize) << file_->GetPath(); return section_header.sh_size / section_header.sh_entsize; } Elf32_Sym* ElfFile::GetSymbol(Elf32_Word section_type, Elf32_Word i) const { Elf32_Sym* sym_start = GetSymbolSectionStart(section_type); if (sym_start == nullptr) { return nullptr; } return sym_start + i; } ElfFile::SymbolTable** ElfFile::GetSymbolTable(Elf32_Word section_type) { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; switch (section_type) { case SHT_SYMTAB: { return &symtab_symbol_table_; } case SHT_DYNSYM: { return &dynsym_symbol_table_; } default: { LOG(FATAL) << section_type; return nullptr; } } } Elf32_Sym* ElfFile::FindSymbolByName(Elf32_Word section_type, const std::string& symbol_name, bool build_map) { CHECK(!program_header_only_) << file_->GetPath(); CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; SymbolTable** symbol_table = GetSymbolTable(section_type); if (*symbol_table != nullptr || build_map) { if (*symbol_table == nullptr) { DCHECK(build_map); *symbol_table = new SymbolTable; Elf32_Shdr* symbol_section = FindSectionByType(section_type); if (symbol_section == nullptr) { return nullptr; // Failure condition. } Elf32_Shdr* string_section = GetSectionHeader(symbol_section->sh_link); if (string_section == nullptr) { return nullptr; // Failure condition. } for (uint32_t i = 0; i < GetSymbolNum(*symbol_section); i++) { Elf32_Sym* symbol = GetSymbol(section_type, i); if (symbol == nullptr) { return nullptr; // Failure condition. } unsigned char type = ELF32_ST_TYPE(symbol->st_info); if (type == STT_NOTYPE) { continue; } const char* name = GetString(*string_section, symbol->st_name); if (name == nullptr) { continue; } std::pair result = (*symbol_table)->insert(std::make_pair(name, symbol)); if (!result.second) { // If a duplicate, make sure it has the same logical value. Seen on x86. if ((symbol->st_value != result.first->second->st_value) || (symbol->st_size != result.first->second->st_size) || (symbol->st_info != result.first->second->st_info) || (symbol->st_other != result.first->second->st_other) || (symbol->st_shndx != result.first->second->st_shndx)) { return nullptr; // Failure condition. } } } } CHECK(*symbol_table != nullptr); SymbolTable::const_iterator it = (*symbol_table)->find(symbol_name); if (it == (*symbol_table)->end()) { return nullptr; } return it->second; } // Fall back to linear search Elf32_Shdr* symbol_section = FindSectionByType(section_type); if (symbol_section == nullptr) { return nullptr; } Elf32_Shdr* string_section = GetSectionHeader(symbol_section->sh_link); if (string_section == nullptr) { return nullptr; } for (uint32_t i = 0; i < GetSymbolNum(*symbol_section); i++) { Elf32_Sym* symbol = GetSymbol(section_type, i); if (symbol == nullptr) { return nullptr; // Failure condition. } const char* name = GetString(*string_section, symbol->st_name); if (name == nullptr) { continue; } if (symbol_name == name) { return symbol; } } return nullptr; } Elf32_Addr ElfFile::FindSymbolAddress(Elf32_Word section_type, const std::string& symbol_name, bool build_map) { Elf32_Sym* symbol = FindSymbolByName(section_type, symbol_name, build_map); if (symbol == nullptr) { return 0; } return symbol->st_value; } const char* ElfFile::GetString(Elf32_Shdr& string_section, Elf32_Word i) const { CHECK(!program_header_only_) << file_->GetPath(); // TODO: remove this static_cast from enum when using -std=gnu++0x if (static_cast(SHT_STRTAB) != string_section.sh_type) { return nullptr; // Failure condition. } if (i >= string_section.sh_size) { return nullptr; } if (i == 0) { return nullptr; } byte* strings = Begin() + string_section.sh_offset; byte* string = strings + i; if (string >= End()) { return nullptr; } return reinterpret_cast(string); } Elf32_Word ElfFile::GetDynamicNum() const { return GetDynamicProgramHeader().p_filesz / sizeof(Elf32_Dyn); } Elf32_Dyn& ElfFile::GetDynamic(Elf32_Word i) const { CHECK_LT(i, GetDynamicNum()) << file_->GetPath(); return *(GetDynamicSectionStart() + i); } Elf32_Dyn* ElfFile::FindDynamicByType(Elf32_Sword type) const { for (Elf32_Word i = 0; i < GetDynamicNum(); i++) { Elf32_Dyn* dyn = &GetDynamic(i); if (dyn->d_tag == type) { return dyn; } } return NULL; } Elf32_Word ElfFile::FindDynamicValueByType(Elf32_Sword type) const { Elf32_Dyn* dyn = FindDynamicByType(type); if (dyn == NULL) { return 0; } else { return dyn->d_un.d_val; } } Elf32_Rel* ElfFile::GetRelSectionStart(Elf32_Shdr& section_header) const { CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; return reinterpret_cast(Begin() + section_header.sh_offset); } Elf32_Word ElfFile::GetRelNum(Elf32_Shdr& section_header) const { CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; CHECK_NE(0U, section_header.sh_entsize) << file_->GetPath(); return section_header.sh_size / section_header.sh_entsize; } Elf32_Rel& ElfFile::GetRel(Elf32_Shdr& section_header, Elf32_Word i) const { CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; CHECK_LT(i, GetRelNum(section_header)) << file_->GetPath(); return *(GetRelSectionStart(section_header) + i); } Elf32_Rela* ElfFile::GetRelaSectionStart(Elf32_Shdr& section_header) const { CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; return reinterpret_cast(Begin() + section_header.sh_offset); } Elf32_Word ElfFile::GetRelaNum(Elf32_Shdr& section_header) const { CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; return section_header.sh_size / section_header.sh_entsize; } Elf32_Rela& ElfFile::GetRela(Elf32_Shdr& section_header, Elf32_Word i) const { CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; CHECK_LT(i, GetRelaNum(section_header)) << file_->GetPath(); return *(GetRelaSectionStart(section_header) + i); } // Base on bionic phdr_table_get_load_size size_t ElfFile::GetLoadedSize() const { Elf32_Addr min_vaddr = 0xFFFFFFFFu; Elf32_Addr max_vaddr = 0x00000000u; for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf32_Phdr* program_header = GetProgramHeader(i); if (program_header->p_type != PT_LOAD) { continue; } Elf32_Addr begin_vaddr = program_header->p_vaddr; if (begin_vaddr < min_vaddr) { min_vaddr = begin_vaddr; } Elf32_Addr end_vaddr = program_header->p_vaddr + program_header->p_memsz; if (end_vaddr > max_vaddr) { max_vaddr = end_vaddr; } } min_vaddr = RoundDown(min_vaddr, kPageSize); max_vaddr = RoundUp(max_vaddr, kPageSize); CHECK_LT(min_vaddr, max_vaddr) << file_->GetPath(); size_t loaded_size = max_vaddr - min_vaddr; return loaded_size; } bool ElfFile::Load(bool executable, std::string* error_msg) { CHECK(program_header_only_) << file_->GetPath(); if (executable) { InstructionSet elf_ISA = kNone; switch (GetHeader().e_machine) { case EM_ARM: { elf_ISA = kArm; break; } case EM_AARCH64: { elf_ISA = kArm64; break; } case EM_386: { elf_ISA = kX86; break; } case EM_X86_64: { elf_ISA = kX86_64; break; } case EM_MIPS: { elf_ISA = kMips; break; } } if (elf_ISA != kRuntimeISA) { std::ostringstream oss; oss << "Expected ISA " << kRuntimeISA << " but found " << elf_ISA; *error_msg = oss.str(); return false; } } bool reserved = false; for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf32_Phdr* program_header = GetProgramHeader(i); if (program_header == nullptr) { *error_msg = StringPrintf("No program header for entry %d in ELF file %s.", i, file_->GetPath().c_str()); return false; } // Record .dynamic header information for later use if (program_header->p_type == PT_DYNAMIC) { dynamic_program_header_ = program_header; continue; } // Not something to load, move on. if (program_header->p_type != PT_LOAD) { continue; } // Found something to load. // Before load the actual segments, reserve a contiguous chunk // of required size and address for all segments, but with no // permissions. We'll then carve that up with the proper // permissions as we load the actual segments. If p_vaddr is // non-zero, the segments require the specific address specified, // which either was specified in the file because we already set // base_address_ after the first zero segment). int64_t temp_file_length = file_->GetLength(); if (temp_file_length < 0) { errno = -temp_file_length; *error_msg = StringPrintf("Failed to get length of file: '%s' fd=%d: %s", file_->GetPath().c_str(), file_->Fd(), strerror(errno)); return false; } size_t file_length = static_cast(temp_file_length); if (!reserved) { uint8_t* reserve_base = reinterpret_cast(program_header->p_vaddr); uint8_t* reserve_base_override = reserve_base; // Override the base (e.g. when compiling with --compile-pic) if (requested_base_ != nullptr) { reserve_base_override = requested_base_; } std::string reservation_name("ElfFile reservation for "); reservation_name += file_->GetPath(); std::unique_ptr reserve(MemMap::MapAnonymous(reservation_name.c_str(), reserve_base_override, GetLoadedSize(), PROT_NONE, false, error_msg)); if (reserve.get() == nullptr) { *error_msg = StringPrintf("Failed to allocate %s: %s", reservation_name.c_str(), error_msg->c_str()); return false; } reserved = true; // Base address is the difference of actual mapped location and the p_vaddr base_address_ = reinterpret_cast(reinterpret_cast(reserve->Begin()) - reinterpret_cast(reserve_base)); // By adding the p_vaddr of a section/symbol to base_address_ we will always get the // dynamic memory address of where that object is actually mapped // // TODO: base_address_ needs to be calculated in ::Open, otherwise // FindDynamicSymbolAddress returns the wrong values until Load is called. segments_.push_back(reserve.release()); } // empty segment, nothing to map if (program_header->p_memsz == 0) { continue; } byte* p_vaddr = base_address_ + program_header->p_vaddr; int prot = 0; if (executable && ((program_header->p_flags & PF_X) != 0)) { prot |= PROT_EXEC; } if ((program_header->p_flags & PF_W) != 0) { prot |= PROT_WRITE; } if ((program_header->p_flags & PF_R) != 0) { prot |= PROT_READ; } int flags = 0; if (writable_) { prot |= PROT_WRITE; flags |= MAP_SHARED; } else { flags |= MAP_PRIVATE; } if (file_length < (program_header->p_offset + program_header->p_memsz)) { *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF segment " "%d of %d bytes: '%s'", file_length, i, program_header->p_offset + program_header->p_memsz, file_->GetPath().c_str()); return false; } std::unique_ptr segment(MemMap::MapFileAtAddress(p_vaddr, program_header->p_memsz, prot, flags, file_->Fd(), program_header->p_offset, true, // implies MAP_FIXED file_->GetPath().c_str(), error_msg)); if (segment.get() == nullptr) { *error_msg = StringPrintf("Failed to map ELF file segment %d from %s: %s", i, file_->GetPath().c_str(), error_msg->c_str()); return false; } if (segment->Begin() != p_vaddr) { *error_msg = StringPrintf("Failed to map ELF file segment %d from %s at expected address %p, " "instead mapped to %p", i, file_->GetPath().c_str(), p_vaddr, segment->Begin()); return false; } segments_.push_back(segment.release()); } // Now that we are done loading, .dynamic should be in memory to find .dynstr, .dynsym, .hash byte* dsptr = base_address_ + GetDynamicProgramHeader().p_vaddr; if ((dsptr < Begin() || dsptr >= End()) && !ValidPointer(dsptr)) { *error_msg = StringPrintf("dynamic section address invalid in ELF file %s", file_->GetPath().c_str()); return false; } dynamic_section_start_ = reinterpret_cast(dsptr); for (Elf32_Word i = 0; i < GetDynamicNum(); i++) { Elf32_Dyn& elf_dyn = GetDynamic(i); byte* d_ptr = base_address_ + elf_dyn.d_un.d_ptr; switch (elf_dyn.d_tag) { case DT_HASH: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_->GetPath().c_str()); return false; } hash_section_start_ = reinterpret_cast(d_ptr); break; } case DT_STRTAB: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_->GetPath().c_str()); return false; } dynstr_section_start_ = reinterpret_cast(d_ptr); break; } case DT_SYMTAB: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_->GetPath().c_str()); return false; } dynsym_section_start_ = reinterpret_cast(d_ptr); break; } case DT_NULL: { if (GetDynamicNum() != i+1) { *error_msg = StringPrintf("DT_NULL found after %d .dynamic entries, " "expected %d as implied by size of PT_DYNAMIC segment in %s", i + 1, GetDynamicNum(), file_->GetPath().c_str()); return false; } break; } } } // Check for the existence of some sections. if (!CheckSectionsExist(error_msg)) { return false; } // Use GDB JIT support to do stack backtrace, etc. if (executable) { GdbJITSupport(); } return true; } bool ElfFile::ValidPointer(const byte* start) const { for (size_t i = 0; i < segments_.size(); ++i) { const MemMap* segment = segments_[i]; if (segment->Begin() <= start && start < segment->End()) { return true; } } return false; } Elf32_Shdr* ElfFile::FindSectionByName(const std::string& name) const { CHECK(!program_header_only_); Elf32_Shdr* shstrtab_sec = GetSectionNameStringSection(); if (shstrtab_sec == nullptr) { return nullptr; } for (uint32_t i = 0; i < GetSectionHeaderNum(); i++) { Elf32_Shdr* shdr = GetSectionHeader(i); if (shdr == nullptr) { return nullptr; } const char* sec_name = GetString(*shstrtab_sec, shdr->sh_name); if (sec_name == nullptr) { continue; } if (name == sec_name) { return shdr; } } return nullptr; } struct PACKED(1) FDE { uint32_t raw_length_; uint32_t GetLength() { return raw_length_ + sizeof(raw_length_); } uint32_t CIE_pointer; uint32_t initial_location; uint32_t address_range; uint8_t instructions[0]; }; static FDE* NextFDE(FDE* frame) { byte* fde_bytes = reinterpret_cast(frame); fde_bytes += frame->GetLength(); return reinterpret_cast(fde_bytes); } static bool IsFDE(FDE* frame) { return frame->CIE_pointer != 0; } // TODO This only works for 32-bit Elf Files. static bool FixupEHFrame(uintptr_t text_start, byte* eh_frame, size_t eh_frame_size) { FDE* last_frame = reinterpret_cast(eh_frame + eh_frame_size); FDE* frame = NextFDE(reinterpret_cast(eh_frame)); for (; frame < last_frame; frame = NextFDE(frame)) { if (!IsFDE(frame)) { return false; } frame->initial_location += text_start; } return true; } struct PACKED(1) DebugInfoHeader { uint32_t unit_length; // TODO 32-bit specific size uint16_t version; uint32_t debug_abbrev_offset; // TODO 32-bit specific size uint8_t address_size; }; // Returns -1 if it is variable length, which we will just disallow for now. static int32_t FormLength(uint32_t att) { switch (att) { case DW_FORM_data1: case DW_FORM_flag: case DW_FORM_flag_present: case DW_FORM_ref1: return 1; case DW_FORM_data2: case DW_FORM_ref2: return 2; case DW_FORM_addr: // TODO 32-bit only case DW_FORM_ref_addr: // TODO 32-bit only case DW_FORM_sec_offset: // TODO 32-bit only case DW_FORM_strp: // TODO 32-bit only case DW_FORM_data4: case DW_FORM_ref4: return 4; case DW_FORM_data8: case DW_FORM_ref8: case DW_FORM_ref_sig8: return 8; case DW_FORM_block: case DW_FORM_block1: case DW_FORM_block2: case DW_FORM_block4: case DW_FORM_exprloc: case DW_FORM_indirect: case DW_FORM_ref_udata: case DW_FORM_sdata: case DW_FORM_string: case DW_FORM_udata: default: return -1; } } class DebugTag { public: const uint32_t index_; ~DebugTag() {} // Creates a new tag and moves data pointer up to the start of the next one. // nullptr means error. static DebugTag* Create(const byte** data_pointer) { const byte* data = *data_pointer; uint32_t index = DecodeUnsignedLeb128(&data); std::unique_ptr tag(new DebugTag(index)); tag->size_ = static_cast( reinterpret_cast(data) - reinterpret_cast(*data_pointer)); // skip the abbrev tag->tag_ = DecodeUnsignedLeb128(&data); tag->has_child_ = (*data == 0); data++; while (true) { uint32_t attr = DecodeUnsignedLeb128(&data); uint32_t form = DecodeUnsignedLeb128(&data); if (attr == 0 && form == 0) { break; } else if (attr == 0 || form == 0) { // Bad abbrev. return nullptr; } int32_t size = FormLength(form); if (size == -1) { return nullptr; } tag->AddAttribute(attr, static_cast(size)); } *data_pointer = data; return tag.release(); } uint32_t GetSize() const { return size_; } bool HasChild() { return has_child_; } uint32_t GetTagNumber() { return tag_; } // Gets the offset of a particular attribute in this tag structure. // Interpretation of the data is left to the consumer. 0 is returned if the // tag does not contain the attribute. uint32_t GetOffsetOf(uint32_t dwarf_attribute) const { auto it = off_map_.find(dwarf_attribute); if (it == off_map_.end()) { return 0; } else { return it->second; } } // Gets the size of attribute uint32_t GetAttrSize(uint32_t dwarf_attribute) const { auto it = size_map_.find(dwarf_attribute); if (it == size_map_.end()) { return 0; } else { return it->second; } } private: explicit DebugTag(uint32_t index) : index_(index), size_(0), tag_(0), has_child_(false) {} void AddAttribute(uint32_t type, uint32_t attr_size) { off_map_.insert(std::pair(type, size_)); size_map_.insert(std::pair(type, attr_size)); size_ += attr_size; } std::map off_map_; std::map size_map_; uint32_t size_; uint32_t tag_; bool has_child_; }; class DebugAbbrev { public: ~DebugAbbrev() {} static DebugAbbrev* Create(const byte* dbg_abbrev, size_t dbg_abbrev_size) { std::unique_ptr abbrev(new DebugAbbrev); const byte* last = dbg_abbrev + dbg_abbrev_size; while (dbg_abbrev < last) { std::unique_ptr tag(DebugTag::Create(&dbg_abbrev)); if (tag.get() == nullptr) { return nullptr; } else { abbrev->tags_.insert(std::pair(tag->index_, abbrev->tag_list_.size())); abbrev->tag_list_.push_back(std::move(tag)); } } return abbrev.release(); } DebugTag* ReadTag(const byte* entry) { uint32_t tag_num = DecodeUnsignedLeb128(&entry); auto it = tags_.find(tag_num); if (it == tags_.end()) { return nullptr; } else { CHECK_GT(tag_list_.size(), it->second); return tag_list_.at(it->second).get(); } } private: DebugAbbrev() {} std::map tags_; std::vector> tag_list_; }; class DebugInfoIterator { public: static DebugInfoIterator* Create(DebugInfoHeader* header, size_t frame_size, DebugAbbrev* abbrev) { std::unique_ptr iter(new DebugInfoIterator(header, frame_size, abbrev)); if (iter->GetCurrentTag() == nullptr) { return nullptr; } else { return iter.release(); } } ~DebugInfoIterator() {} // Moves to the next DIE. Returns false if at last entry. // TODO Handle variable length attributes. bool next() { if (current_entry_ == nullptr || current_tag_ == nullptr) { return false; } current_entry_ += current_tag_->GetSize(); if (current_entry_ >= last_entry_) { current_entry_ = nullptr; return false; } current_tag_ = abbrev_->ReadTag(current_entry_); if (current_tag_ == nullptr) { current_entry_ = nullptr; return false; } else { return true; } } const DebugTag* GetCurrentTag() { return const_cast(current_tag_); } byte* GetPointerToField(uint8_t dwarf_field) { if (current_tag_ == nullptr || current_entry_ == nullptr || current_entry_ >= last_entry_) { return nullptr; } uint32_t off = current_tag_->GetOffsetOf(dwarf_field); if (off == 0) { // tag does not have that field. return nullptr; } else { DCHECK_LT(off, current_tag_->GetSize()); return current_entry_ + off; } } private: DebugInfoIterator(DebugInfoHeader* header, size_t frame_size, DebugAbbrev* abbrev) : abbrev_(abbrev), last_entry_(reinterpret_cast(header) + frame_size), current_entry_(reinterpret_cast(header) + sizeof(DebugInfoHeader)), current_tag_(abbrev_->ReadTag(current_entry_)) {} DebugAbbrev* abbrev_; byte* last_entry_; byte* current_entry_; DebugTag* current_tag_; }; static bool FixupDebugInfo(uint32_t text_start, DebugInfoIterator* iter) { do { if (iter->GetCurrentTag()->GetAttrSize(DW_AT_low_pc) != sizeof(int32_t) || iter->GetCurrentTag()->GetAttrSize(DW_AT_high_pc) != sizeof(int32_t)) { return false; } uint32_t* PC_low = reinterpret_cast(iter->GetPointerToField(DW_AT_low_pc)); uint32_t* PC_high = reinterpret_cast(iter->GetPointerToField(DW_AT_high_pc)); if (PC_low != nullptr && PC_high != nullptr) { *PC_low += text_start; *PC_high += text_start; } } while (iter->next()); return true; } static bool FixupDebugSections(const byte* dbg_abbrev, size_t dbg_abbrev_size, uintptr_t text_start, byte* dbg_info, size_t dbg_info_size, byte* eh_frame, size_t eh_frame_size) { std::unique_ptr abbrev(DebugAbbrev::Create(dbg_abbrev, dbg_abbrev_size)); if (abbrev.get() == nullptr) { return false; } std::unique_ptr iter( DebugInfoIterator::Create(reinterpret_cast(dbg_info), dbg_info_size, abbrev.get())); if (iter.get() == nullptr) { return false; } return FixupDebugInfo(text_start, iter.get()) && FixupEHFrame(text_start, eh_frame, eh_frame_size); } void ElfFile::GdbJITSupport() { // We only get here if we only are mapping the program header. DCHECK(program_header_only_); // Well, we need the whole file to do this. std::string error_msg; // Make it MAP_PRIVATE so we can just give it to gdb if all the necessary // sections are there. std::unique_ptr all_ptr(Open(const_cast(file_), PROT_READ | PROT_WRITE, MAP_PRIVATE, &error_msg)); if (all_ptr.get() == nullptr) { return; } ElfFile& all = *all_ptr; // Do we have interesting sections? const Elf32_Shdr* debug_info = all.FindSectionByName(".debug_info"); const Elf32_Shdr* debug_abbrev = all.FindSectionByName(".debug_abbrev"); const Elf32_Shdr* eh_frame = all.FindSectionByName(".eh_frame"); const Elf32_Shdr* debug_str = all.FindSectionByName(".debug_str"); const Elf32_Shdr* strtab_sec = all.FindSectionByName(".strtab"); const Elf32_Shdr* symtab_sec = all.FindSectionByName(".symtab"); Elf32_Shdr* text_sec = all.FindSectionByName(".text"); if (debug_info == nullptr || debug_abbrev == nullptr || eh_frame == nullptr || debug_str == nullptr || text_sec == nullptr || strtab_sec == nullptr || symtab_sec == nullptr) { return; } // We need to add in a strtab and symtab to the image. // all is MAP_PRIVATE so it can be written to freely. // We also already have strtab and symtab so we are fine there. Elf32_Ehdr& elf_hdr = all.GetHeader(); elf_hdr.e_entry = 0; elf_hdr.e_phoff = 0; elf_hdr.e_phnum = 0; elf_hdr.e_phentsize = 0; elf_hdr.e_type = ET_EXEC; text_sec->sh_type = SHT_NOBITS; text_sec->sh_offset = 0; if (!FixupDebugSections( all.Begin() + debug_abbrev->sh_offset, debug_abbrev->sh_size, text_sec->sh_addr, all.Begin() + debug_info->sh_offset, debug_info->sh_size, all.Begin() + eh_frame->sh_offset, eh_frame->sh_size)) { LOG(ERROR) << "Failed to load GDB data"; return; } jit_gdb_entry_ = CreateCodeEntry(all.Begin(), all.Size()); gdb_file_mapping_.reset(all_ptr.release()); } } // namespace art