/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This program processes Renderscript function definitions described in spec files. * For each spec file provided on the command line, it generates a corresponding * Renderscript header (*.rsh) which is meant for inclusion in client scripts. * * This program also generates Junit test files to automatically test each of the * functions using randomly generated data. We create two files for each function: * - a Renderscript file named Test{Function}.rs, * - a Junit file named Test{function}.java, which calls the above RS file. * * This program takes an optional -v parameter, the RS version to target the * test files for. The header file will always contain all the functions. * * This program contains five main classes: * - SpecFile: Represents on spec file. * - Function: Each instance represents a function, like clamp. Even though the * spec file contains many entries for clamp, we'll only have one clamp instance. * - Specification: Defines one of the many variations of the function. There's * a one to one correspondance between Specification objects and entries in the * spec file. Strings that are parts of a Specification can include placeholders, * which are "#1", "#2", "#3", and "#4". We'll replace these by values before * generating the files. * - Permutation: A concrete version of a specification, where all placeholders have * been replaced by actual values. * - ParameterDefinition: A definition of a parameter of a concrete function. */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; namespace { const char* AUTO_GENERATED_WARNING = "// Don't edit this file! It is auto-generated by " "frameworks/rs/api/gen_runtime.\n\n"; const char* LEGAL_NOTICE = "/*\n" " * Copyright (C) 2014 The Android Open Source Project\n" " *\n" " * Licensed under the Apache License, Version 2.0 (the \"License\");\n" " * you may not use this file except in compliance with the License.\n" " * You may obtain a copy of the License at\n" " *\n" " * http://www.apache.org/licenses/LICENSE-2.0\n" " *\n" " * Unless required by applicable law or agreed to in writing, software\n" " * distributed under the License is distributed on an \"AS IS\" BASIS,\n" " * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n" " * See the License for the specific language governing permissions and\n" " * limitations under the License.\n" " */\n\n"; class Function; class Specification; class Permutation; struct Type; /* Information about a parameter to a function. The values of all the fields should only be set by * parseParameterDefinition. */ struct ParameterDefinition { string rsType; // The Renderscript type, e.g. "uint3" string rsBaseType; // As above but without the number, e.g. "uint" string javaBaseType; // The type we need to declare in Java, e.g. "unsigned int" string specType; // The type found in the spec, e.g. "f16" bool isFloatType; // True if it's a floating point value /* The number of entries in the vector. It should be either "1", "2", "3", or "4". It's also * "1" for scalars. */ string mVectorSize; /* The space the vector takes in an array. It's the same as the vector size, except for size * "3", where the width is "4". */ string vectorWidth; string specName; // e.g. x, as found in the spec file string variableName; // e.g. inX, used both in .rs and .java string rsAllocName; // e.g. gAllocInX string javaAllocName; // e.g. inX string javaArrayName; // e.g. arrayInX // If non empty, the mininum and maximum values to be used when generating the test data. string minValue; string maxValue; /* If non empty, contains the name of another parameter that should be smaller or equal to this * parameter, i.e. value(smallerParameter) <= value(this). This is used when testing clamp. */ string smallerParameter; bool isOutParameter; // True if this parameter returns data from the script. bool undefinedIfOutIsNan; // If true, we don't validate if 'out' is NaN. int typeIndex; // Index in the TYPES array. int compatibleTypeIndex; // Index in TYPES for which the test data must also fit. /* Parse the parameter definition found in the spec file. It will generate a name if none * are present in the file. One of the two counts will be incremented, and potentially * used to generate unique names. isReturn is true if we're processing the "return:" * definition. */ void parseParameterDefinition(string s, bool isReturn, int* inputCount, int* outputCount); }; // An entire spec file and the methods to process it. class SpecFile { public: explicit SpecFile(const string& specFileName) : mSpecFileName(specFileName) {} bool process(int versionOfTestFiles); private: const string mSpecFileName; // The largest version number that we have found in all the specifications. int mLargestVersionNumber; map mFunctionsMap; // All the known functions. typedef map::iterator FunctionsIterator; bool readSpecFile(); Function* getFunction(const string& name); bool generateFiles(int versionOfTestFiles); bool writeAllFunctions(ofstream& headerFile, int versionOfTestFiles); }; /* Represents a function, like "clamp". Even though the spec file contains many entries for clamp, * we'll only have one clamp instance. */ class Function { private: string mName; // The lower case name, e.g. native_log string mCapitalizedName; // The capitalized name, e.g. NativeLog string mTestName; // e.g. TestNativeLog string mRelaxedTestName; // e.g. TestNativeLogRelaxed vector mSpecifications; typedef vector::iterator SpecificationIterator; /* We keep track of the allocations generated in the .rs file and the argument classes defined * in the Java file, as we share these between the functions created for each specification. */ set mRsAllocationsGenerated; set mJavaGeneratedArgumentClasses; string mJavaCallAllCheckMethods; // Lines of Java code to invoke the check methods. ofstream mRsFile; // The Renderscript test file we're generating. ofstream mJavaFile; // The Jave test file we're generating. bool startRsFile(); // Open the mRsFile and writes its header. bool writeRelaxedRsFile(); // Write the entire relaxed rs test file (an include essentially) bool startJavaFile(); // Open the mJavaFile and writes the header. void finishJavaFile(); // Write the test method and closes the file. public: explicit Function(const string& name); void addSpecification(Specification* spec) { mSpecifications.push_back(spec); } /* Write the .java and the two .rs test files. versionOfTestFiles is used to restrict which API * to test. Also writes the section of the header file. */ bool writeFiles(ofstream& headerFile, int versionOfTestFiles); // Write an allocation and keep track of having it written, so it can be shared. void writeRsAllocationDefinition(const ParameterDefinition& param); // Write an argument class definiton and keep track of having it written, so it can be shared. void writeJavaArgumentClassDefinition(const string& className, const string& definition); // Add a call to mJavaCallAllCheckMethods to be used at the end of the file generation. void addJavaCheckCall(const string& call); }; /* Defines one of the many variations of the function. There's a one to one correspondance between * Specification objects and entries in the spec file. Some of the strings that are parts of a * Specification can include placeholders, which are "#1", "#2", "#3", and "#4". We'll replace * these by values before generating the files. */ class Specification { private: /* The range of versions this specification applies to. 0 if there's no restriction, so an API * that became available at 9 and is still valid would have min:9 max:0. */ int mMinVersion; int mMaxVersion; /* The name of the function without #n, e.g. convert. As of this writing, it only differs for * convert. */ string mCleanName; /* How to test. One of: * "scalar": Generate test code that checks entries of each vector indepently. E.g. for * sin(float3), the test code will call the CoreMathVerfier.computeSin 3 times. * "vector": Generate test code that calls the CoreMathVerifier only once for each vector. * This is useful for APIs like dot() or length(). * "noverify": Generate test code that calls the API but don't verify the returned value. * "limited": Like "scalar" but tests a limited range of input values. * "custom": Like "scalar" but instead of calling CoreMathVerifier.computeXXX() to compute * the expected value, we call instead CoreMathVerifier.verifyXXX(). This method * returns a string that contains the error message, null if there's no error. */ string mTest; string mPrecisionLimit; // Maximum precision required when checking output of this function. vector > mReplaceables; // The following fields may contain placeholders that will be replaced using the mReplaceables. // The name of this function, can include #, e.g. convert_#1_#2 string mName; string mReturn; // The return type vector mComment; // The comments to be included in the header vector mInline; // The inline code to be included in the header vector mParam; // One entry per parameter defined // Substitute the placeholders in the strings by the corresponding entries in mReplaceables. string expandString(string s, int i1, int i2, int i3, int i4) const; void expandStringVector(const vector& in, int i1, int i2, int i3, int i4, vector* out) const; public: Specification() { mMinVersion = 0; mMaxVersion = 0; } int getMinVersion() const { return mMinVersion; } int getMaxVersion() const { return mMaxVersion; } string getName(int i1, int i2, int i3, int i4) const { return expandString(mName, i1, i2, i3, i4); } string getReturn(int i1, int i2, int i3, int i4) const { return expandString(mReturn, i1, i2, i3, i4); } void getComments(int i1, int i2, int i3, int i4, vector* comments) const { return expandStringVector(mComment, i1, i2, i3, i4, comments); } void getInlines(int i1, int i2, int i3, int i4, vector* inlines) const { return expandStringVector(mInline, i1, i2, i3, i4, inlines); } void getParams(int i1, int i2, int i3, int i4, vector* params) const { return expandStringVector(mParam, i1, i2, i3, i4, params); } string getTest() const { return mTest; } string getPrecisionLimit() const { return mPrecisionLimit; } string getCleanName() const { return mCleanName; } void writeFiles(ofstream& headerFile, ofstream& rsFile, ofstream& javaFile, Function* function, int versionOfTestFiles); bool writeRelaxedRsFile() const; // Return true if this specification should be generated for this version. bool relevantForVersion(int versionOfTestFiles) const; static Specification* scanSpecification(FILE* in); }; // A concrete version of a specification, where all placeholders have been replaced by actual // values. class Permutation { private: Function* mFunction; Specification* mSpecification; // These are the expanded version of those found on Specification string mName; string mCleanName; string mTest; // How to test. One of "scalar", "vector", "noverify", "limited", and "none". string mPrecisionLimit; // Maximum precision required when checking output of this function. vector mInline; vector mComment; // The inputs and outputs of the function. This include the return type, if present. vector mParams; // The index of the return value in mParams, -1 if the function is void. int mReturnIndex; // The index of the first input value in mParams, -1 if there's no input. int mFirstInputIndex; // The number of input and output parameters. int mInputCount; int mOutputCount; // Whether one of the output parameters is a float. bool mHasFloatAnswers; string mRsKernelName; string mJavaArgumentsClassName; string mJavaArgumentsNClassName; string mJavaVerifierComputeMethodName; string mJavaVerifierVerifyMethodName; string mJavaCheckMethodName; string mJavaVerifyMethodName; void writeHeaderSection(ofstream& file) const; void writeRsSection(ofstream& rs) const; void writeJavaSection(ofstream& file) const; void writeJavaArgumentClass(ofstream& file, bool scalar) const; void writeJavaCheckMethod(ofstream& file, bool generateCallToVerifier) const; void writeJavaVerifyScalarMethod(ofstream& file, bool verifierValidates) const; void writeJavaVerifyVectorMethod(ofstream& file) const; void writeJavaVerifyFunctionHeader(ofstream& file) const; void writeJavaInputAllocationDefinition(ofstream& file, const string& indent, const ParameterDefinition& param) const; void writeJavaOutputAllocationDefinition(ofstream& file, const string& indent, const ParameterDefinition& param) const; // Write code to create a random allocation for which the data must be compatible for two types. void writeJavaRandomCompatibleFloatAllocation(ofstream& file, const string& dataType, const string& seed, char vectorSize, const Type& compatibleType, const Type& generatedType) const; void writeJavaRandomCompatibleIntegerAllocation(ofstream& file, const string& dataType, const string& seed, char vectorSize, const Type& compatibleType, const Type& generatedType) const; void writeJavaCallToRs(ofstream& file, bool relaxed, bool generateCallToVerifier) const; void writeJavaTestAndSetValid(ofstream& file, int indent, const ParameterDefinition& p, const string& argsIndex, const string& actualIndex) const; void writeJavaTestOneValue(ofstream& file, int indent, const ParameterDefinition& p, const string& argsIndex, const string& actualIndex) const; void writeJavaAppendOutputToMessage(ofstream& file, int indent, const ParameterDefinition& p, const string& argsIndex, const string& actualIndex, bool verifierValidates) const; void writeJavaAppendInputToMessage(ofstream& file, int indent, const ParameterDefinition& p, const string& actual) const; void writeJavaAppendNewLineToMessage(ofstream& file, int indent) const; void writeJavaAppendVariableToMessage(ofstream& file, int indent, const ParameterDefinition& p, const string& value) const; void writeJavaAppendFloatVariableToMessage(ofstream& file, int indent, const string& value, bool regularFloat) const; void writeJavaVectorComparison(ofstream& file, int indent, const ParameterDefinition& p) const; void writeJavaAppendVectorInputToMessage(ofstream& file, int indent, const ParameterDefinition& p) const; void writeJavaAppendVectorOutputToMessage(ofstream& file, int indent, const ParameterDefinition& p) const; bool passByAddressToSet(const string& name) const; void convertToRsType(const string& name, string* dataType, char* vectorSize) const; public: Permutation(Function* function, Specification* specification, int i1, int i2, int i3, int i4); void writeFiles(ofstream& headerFile, ofstream& rsFile, ofstream& javaFile, int versionOfTestFiles); }; // Table of type equivalences // TODO: We should just be pulling this from a shared header. Slang does exactly the same thing. enum NumberKind { SIGNED_INTEGER, UNSIGNED_INTEGER, FLOATING_POINT }; struct Type { const char* specType; // Name found in the .spec file string rsDataType; // RS data type string cType; // Type in a C file const char* javaType; // Type in a Java file NumberKind kind; /* For integers, number of bits of the number, excluding the sign bit. * For floats, number of implied bits of the mantissa. */ int significantBits; // For floats, number of bits of the exponent. 0 for integer types. int exponentBits; }; const Type TYPES[] = {{"f16", "FLOAT_16", "half", "half", FLOATING_POINT, 11, 5}, {"f32", "FLOAT_32", "float", "float", FLOATING_POINT, 24, 8}, {"f64", "FLOAT_64", "double", "double", FLOATING_POINT, 53, 11}, {"i8", "SIGNED_8", "char", "byte", SIGNED_INTEGER, 7, 0}, {"u8", "UNSIGNED_8", "uchar", "byte", UNSIGNED_INTEGER, 8, 0}, {"i16", "SIGNED_16", "short", "short", SIGNED_INTEGER, 15, 0}, {"u16", "UNSIGNED_16", "ushort", "short", UNSIGNED_INTEGER, 16, 0}, {"i32", "SIGNED_32", "int", "int", SIGNED_INTEGER, 31, 0}, {"u32", "UNSIGNED_32", "uint", "int", UNSIGNED_INTEGER, 32, 0}, {"i64", "SIGNED_64", "long", "long", SIGNED_INTEGER, 63, 0}, {"u64", "UNSIGNED_64", "ulong", "long", UNSIGNED_INTEGER, 64, 0}}; const int NUM_TYPES = sizeof(TYPES) / sizeof(TYPES[0]); // Returns the index in TYPES for the provided cType int FindCType(const string& cType) { for (int i = 0; i < NUM_TYPES; i++) { if (cType == TYPES[i].cType) { return i; } } return -1; } // Capitalizes and removes underscores. E.g. converts "native_log" to NativeLog. string capitalize(const string& source) { int length = source.length(); string result; bool capitalize = true; for (int s = 0; s < length; s++) { if (source[s] == '_') { capitalize = true; } else if (capitalize) { result += toupper(source[s]); capitalize = false; } else { result += source[s]; } } return result; } string tab(int n) { return string(n * 4, ' '); } // Returns a string that's an hexadecimal constant fo the hash of the string. string hashString(const string& s) { long hash = 0; for (size_t i = 0; i < s.length(); i++) { hash = hash * 43 + s[i]; } stringstream stream; stream << "0x" << std::hex << hash << "l"; return stream.str(); } // Removes the character from present. Returns true if the string contained the character. static bool charRemoved(char c, string* s) { size_t p = s->find(c); if (p != string::npos) { s->erase(p, 1); return true; } return false; } // Return true if the string is already in the set. Inserts it if not. bool testAndSet(const string& flag, set* set) { if (set->find(flag) == set->end()) { set->insert(flag); return false; } return true; } // Convert an int into a string. string toString(int n) { char buf[100]; snprintf(buf, sizeof(buf), "%d", n); return string(buf); } void trim(string* s, size_t start) { if (start > 0) { s->erase(0, start); } while (s->size() && (s->at(0) == ' ')) { s->erase(0, 1); } size_t p = s->find_first_of("\n\r"); if (p != string::npos) { s->erase(p); } while ((s->size() > 0) && (s->at(s->size() - 1) == ' ')) { s->erase(s->size() - 1); } } string stringReplace(string s, string match, string rep) { while (1) { size_t p = s.find(match); if (p == string::npos) break; s.erase(p, match.size()); s.insert(p, rep); } return s; } // Return the next line from the input file. bool getNextLine(FILE* in, string* s) { s->clear(); while (1) { int c = fgetc(in); if (c == EOF) return s->size() != 0; if (c == '\n') break; s->push_back((char)c); } return true; } void writeIfdef(ofstream& file, string filename, bool isStart) { string t = "__"; t += filename; t += "__"; for (size_t i = 2; i < t.size(); i++) { if (t[i] == '.') { t[i] = '_'; } } if (isStart) { file << "#ifndef " << t << "\n"; file << "#define " << t << "\n"; } else { file << "#endif // " << t << "\n"; } } void writeJavaArrayInitialization(ofstream& file, const ParameterDefinition& p) { file << tab(2) << p.javaBaseType << "[] " << p.javaArrayName << " = new " << p.javaBaseType << "[INPUTSIZE * " << p.vectorWidth << "];\n"; file << tab(2) << p.javaAllocName << ".copyTo(" << p.javaArrayName << ");\n"; } bool parseCommandLine(int argc, char* argv[], int* versionOfTestFiles, vector* specFileNames) { for (int i = 1; i < argc; i++) { if (argv[i][0] == '-') { if (argv[i][1] == 'v') { i++; if (i < argc) { char* end; *versionOfTestFiles = strtol(argv[i], &end, 10); if (*end != '\0') { printf("Can't parse the version number %s\n", argv[i]); return false; } } else { printf("Missing version number after -v\n"); return false; } } else { printf("Unrecognized flag %s\n", argv[i]); return false; } } else { specFileNames->push_back(argv[i]); } } if (specFileNames->size() == 0) { printf("No spec file specified\n"); return false; } return true; } /* Returns a double that should be able to be converted to an integer of size * numberOfIntegerBits. */ static double MaxDoubleForInteger(int numberOfIntegerBits, int mantissaSize) { /* Double has only 52 bits of precision (53 implied). So for longs, we want * to create smaller values to avoid a round up. Same for floats and halfs. */ int lowZeroBits = max(0, numberOfIntegerBits - mantissaSize); unsigned long l = (0xffffffffffffffff >> (64 - numberOfIntegerBits + lowZeroBits)) << lowZeroBits; return (double)l; } /* Parse a parameter definition. It's of the form "type [*][name]". The type * is required. The name is optional. The * indicates it's an output * parameter. We also pass the indexed of this parameter in the definition, so * we can create names like in2, in3, etc. */ void ParameterDefinition::parseParameterDefinition(string s, bool isReturn, int* inputCount, int* outputCount) { istringstream stream(s); string name, type, option; stream >> rsType; stream >> specName; stream >> option; // Determine if this is an output. isOutParameter = charRemoved('*', &rsType) || charRemoved('*', &specName) || isReturn; // Extract the vector size out of the type. int last = rsType.size() - 1; char lastChar = rsType[last]; if (lastChar >= '0' && lastChar <= '9') { rsBaseType = rsType.substr(0, last); mVectorSize = lastChar; } else { rsBaseType = rsType; mVectorSize = "1"; } if (mVectorSize == "3") { vectorWidth = "4"; } else { vectorWidth = mVectorSize; } /* Create variable names to be used in the java and .rs files. Because x and * y are reserved in .rs files, we prefix variable names with "in" or "out". */ if (isOutParameter) { variableName = "out"; if (!specName.empty()) { variableName += capitalize(specName); } else if (!isReturn) { variableName += toString(*outputCount); } (*outputCount)++; } else { variableName = "in"; if (!specName.empty()) { variableName += capitalize(specName); } else if (*inputCount > 0) { variableName += toString(*inputCount); } (*inputCount)++; } rsAllocName = "gAlloc" + capitalize(variableName); javaAllocName = variableName; javaArrayName = "array" + capitalize(javaAllocName); // Process the option. undefinedIfOutIsNan = false; compatibleTypeIndex = -1; if (!option.empty()) { if (option.compare(0, 6, "range(") == 0) { size_t pComma = option.find(','); size_t pParen = option.find(')'); if (pComma == string::npos || pParen == string::npos) { printf("Incorrect range %s\n", option.c_str()); } else { minValue = option.substr(6, pComma - 6); maxValue = option.substr(pComma + 1, pParen - pComma - 1); } } else if (option.compare(0, 6, "above(") == 0) { size_t pParen = option.find(')'); if (pParen == string::npos) { printf("Incorrect option %s\n", option.c_str()); } else { smallerParameter = option.substr(6, pParen - 6); } } else if (option.compare(0, 11, "compatible(") == 0) { size_t pParen = option.find(')'); if (pParen == string::npos) { printf("Incorrect option %s\n", option.c_str()); } else { compatibleTypeIndex = FindCType(option.substr(11, pParen - 11)); } } else if (option.compare(0, 11, "conditional") == 0) { undefinedIfOutIsNan = true; } else { printf("Unrecognized option %s\n", option.c_str()); } } typeIndex = FindCType(rsBaseType); isFloatType = false; if (typeIndex < 0) { // TODO set a global flag when we encounter an error & abort printf("Error, could not find %s\n", rsBaseType.c_str()); } else { javaBaseType = TYPES[typeIndex].javaType; specType = TYPES[typeIndex].specType; isFloatType = TYPES[typeIndex].exponentBits > 0; } } bool SpecFile::process(int versionOfTestFiles) { if (!readSpecFile()) { return false; } if (versionOfTestFiles == 0) { versionOfTestFiles = mLargestVersionNumber; } if (!generateFiles(versionOfTestFiles)) { return false; } printf("%s: %ld functions processed.\n", mSpecFileName.c_str(), mFunctionsMap.size()); return true; } // Read the specification, adding the definitions to the global functions map. bool SpecFile::readSpecFile() { FILE* specFile = fopen(mSpecFileName.c_str(), "rt"); if (!specFile) { printf("Error opening input file: %s\n", mSpecFileName.c_str()); return false; } mLargestVersionNumber = 0; while (1) { Specification* spec = Specification::scanSpecification(specFile); if (spec == NULL) { break; } getFunction(spec->getCleanName())->addSpecification(spec); int specMin = spec->getMinVersion(); int specMax = spec->getMaxVersion(); if (specMin && specMin > mLargestVersionNumber) { mLargestVersionNumber = specMin; } if (specMax && specMax > mLargestVersionNumber) { mLargestVersionNumber = specMax; } } fclose(specFile); return true; } bool SpecFile::generateFiles(int versionOfTestFiles) { printf("%s: Generating test files for version %d\n", mSpecFileName.c_str(), versionOfTestFiles); // The header file name should have the same base but with a ".rsh" extension. string headerFileName = mSpecFileName; size_t l = headerFileName.length(); const char SPEC[] = ".spec"; const int SPEC_SIZE = sizeof(SPEC) - 1; const int start = l - SPEC_SIZE; if (start >= 0 && headerFileName.compare(start, SPEC_SIZE, SPEC) == 0) { headerFileName.erase(start); } headerFileName += ".rsh"; // Write the start of the header file. ofstream headerFile; headerFile.open(headerFileName.c_str(), ios::out | ios::trunc); if (!headerFile.is_open()) { printf("Error opening output file: %s\n", headerFileName.c_str()); return false; } headerFile << LEGAL_NOTICE; headerFile << AUTO_GENERATED_WARNING; writeIfdef(headerFile, headerFileName, true); // Write the functions to the header and test files. bool success = writeAllFunctions(headerFile, versionOfTestFiles); // Finish the header file. writeIfdef(headerFile, headerFileName, false); headerFile.close(); return success; } // Return the named function from the map. Creates it if it's not there. Function* SpecFile::getFunction(const string& name) { FunctionsIterator iter = mFunctionsMap.find(name); if (iter != mFunctionsMap.end()) { return iter->second; } Function* f = new Function(name); mFunctionsMap[name] = f; return f; } bool SpecFile::writeAllFunctions(ofstream& headerFile, int versionOfTestFiles) { bool success = true; for (FunctionsIterator iter = mFunctionsMap.begin(); iter != mFunctionsMap.end(); iter++) { Function* func = iter->second; if (!func->writeFiles(headerFile, versionOfTestFiles)) { success = false; } } return success; } Function::Function(const string& name) { mName = name; mCapitalizedName = capitalize(mName); mTestName = "Test" + mCapitalizedName; mRelaxedTestName = mTestName + "Relaxed"; } bool Function::writeFiles(ofstream& headerFile, int versionOfTestFiles) { if (!startRsFile() || !startJavaFile() || !writeRelaxedRsFile()) { return false; } for (SpecificationIterator i = mSpecifications.begin(); i < mSpecifications.end(); i++) { (*i)->writeFiles(headerFile, mRsFile, mJavaFile, this, versionOfTestFiles); } finishJavaFile(); // There's no work to wrap-up in the .rs file. mRsFile.close(); mJavaFile.close(); return true; } bool Function::startRsFile() { string fileName = mTestName + ".rs"; mRsFile.open(fileName.c_str(), ios::out | ios::trunc); if (!mRsFile.is_open()) { printf("Error opening file: %s\n", fileName.c_str()); return false; } mRsFile << LEGAL_NOTICE; mRsFile << "#pragma version(1)\n"; mRsFile << "#pragma rs java_package_name(android.renderscript.cts)\n\n"; mRsFile << AUTO_GENERATED_WARNING; return true; } // Write an allocation definition if not already emitted in the .rs file. void Function::writeRsAllocationDefinition(const ParameterDefinition& param) { if (!testAndSet(param.rsAllocName, &mRsAllocationsGenerated)) { mRsFile << "rs_allocation " << param.rsAllocName << ";\n"; } } // Write the entire *Relaxed.rs test file, as it only depends on the name. bool Function::writeRelaxedRsFile() { string name = mRelaxedTestName + ".rs"; FILE* file = fopen(name.c_str(), "wt"); if (!file) { printf("Error opening file: %s\n", name.c_str()); return false; } fputs(LEGAL_NOTICE, file); string s; s += "#include \"" + mTestName + ".rs\"\n"; s += "#pragma rs_fp_relaxed\n"; s += AUTO_GENERATED_WARNING; fputs(s.c_str(), file); fclose(file); return true; } bool Function::startJavaFile() { string fileName = mTestName + ".java"; mJavaFile.open(fileName.c_str(), ios::out | ios::trunc); if (!mJavaFile.is_open()) { printf("Error opening file: %s\n", fileName.c_str()); return false; } mJavaFile << LEGAL_NOTICE; mJavaFile << AUTO_GENERATED_WARNING; mJavaFile << "package android.renderscript.cts;\n\n"; mJavaFile << "import android.renderscript.Allocation;\n"; mJavaFile << "import android.renderscript.RSRuntimeException;\n"; mJavaFile << "import android.renderscript.Element;\n\n"; mJavaFile << "public class " << mTestName << " extends RSBaseCompute {\n\n"; mJavaFile << tab(1) << "private ScriptC_" << mTestName << " script;\n"; mJavaFile << tab(1) << "private ScriptC_" << mRelaxedTestName << " scriptRelaxed;\n\n"; mJavaFile << tab(1) << "@Override\n"; mJavaFile << tab(1) << "protected void setUp() throws Exception {\n"; mJavaFile << tab(2) << "super.setUp();\n"; mJavaFile << tab(2) << "script = new ScriptC_" << mTestName << "(mRS);\n"; mJavaFile << tab(2) << "scriptRelaxed = new ScriptC_" << mRelaxedTestName << "(mRS);\n"; mJavaFile << tab(1) << "}\n\n"; return true; } void Function::writeJavaArgumentClassDefinition(const string& className, const string& definition) { if (!testAndSet(className, &mJavaGeneratedArgumentClasses)) { mJavaFile << definition; } } void Function::addJavaCheckCall(const string& call) { mJavaCallAllCheckMethods += tab(2) + call + "\n"; } void Function::finishJavaFile() { mJavaFile << tab(1) << "public void test" << mCapitalizedName << "() {\n"; mJavaFile << mJavaCallAllCheckMethods; mJavaFile << tab(1) << "}\n"; mJavaFile << "}\n"; } void Specification::expandStringVector(const vector& in, int i1, int i2, int i3, int i4, vector* out) const { out->clear(); for (vector::const_iterator iter = in.begin(); iter != in.end(); iter++) { out->push_back(expandString(*iter, i1, i2, i3, i4)); } } Specification* Specification::scanSpecification(FILE* in) { Specification* spec = new Specification(); spec->mTest = "scalar"; // default bool modeComment = false; bool modeInline = false; bool success = true; while (1) { string s; bool ret = getNextLine(in, &s); if (!ret) break; if (modeComment) { if (!s.size() || (s[0] == ' ')) { trim(&s, 0); spec->mComment.push_back(s); continue; } else { modeComment = false; } } if (modeInline) { if (!s.size() || (s[0] == ' ')) { trim(&s, 0); spec->mInline.push_back(s); continue; } else { modeInline = false; } } if (s[0] == '#') { continue; } if (s.compare(0, 5, "name:") == 0) { trim(&s, 5); spec->mName = s; // Some functions like convert have # part of the name. Truncate at that point. size_t p = s.find('#'); if (p != string::npos) { if (p > 0 && s[p - 1] == '_') { p--; } s.erase(p); } spec->mCleanName = s; continue; } if (s.compare(0, 4, "arg:") == 0) { trim(&s, 4); spec->mParam.push_back(s); continue; } if (s.compare(0, 4, "ret:") == 0) { trim(&s, 4); spec->mReturn = s; continue; } if (s.compare(0, 5, "test:") == 0) { trim(&s, 5); if (s == "scalar" || s == "vector" || s == "noverify" || s == "custom" || s == "none") { spec->mTest = s; } else if (s.compare(0, 7, "limited") == 0) { spec->mTest = "limited"; if (s.compare(7, 1, "(") == 0) { size_t pParen = s.find(')'); if (pParen == string::npos) { printf("Incorrect test %s\n", s.c_str()); } else { spec->mPrecisionLimit = s.substr(8, pParen - 8); } } } else { printf("Error: Unrecognized test option: %s\n", s.c_str()); success = false; } continue; } if (s.compare(0, 4, "end:") == 0) { if (success) { return spec; } else { delete spec; return NULL; } } if (s.compare(0, 8, "comment:") == 0) { modeComment = true; continue; } if (s.compare(0, 7, "inline:") == 0) { modeInline = true; continue; } if (s.compare(0, 8, "version:") == 0) { trim(&s, 8); sscanf(s.c_str(), "%i %i", &spec->mMinVersion, &spec->mMaxVersion); continue; } if (s.compare(0, 8, "start:") == 0) { continue; } if (s.compare(0, 2, "w:") == 0) { vector t; if (s.find("1") != string::npos) { t.push_back(""); } if (s.find("2") != string::npos) { t.push_back("2"); } if (s.find("3") != string::npos) { t.push_back("3"); } if (s.find("4") != string::npos) { t.push_back("4"); } spec->mReplaceables.push_back(t); continue; } if (s.compare(0, 2, "t:") == 0) { vector t; for (int i = 0; i < NUM_TYPES; i++) { if (s.find(TYPES[i].specType) != string::npos) { t.push_back(TYPES[i].cType); } } spec->mReplaceables.push_back(t); continue; } if (s.size() == 0) { // eat empty line continue; } printf("Error, line:\n"); printf(" %s\n", s.c_str()); } delete spec; return NULL; } void Specification::writeFiles(ofstream& headerFile, ofstream& rsFile, ofstream& javaFile, Function* function, int versionOfTestFiles) { int start[4]; int end[4]; for (int i = 0; i < 4; i++) { if (i < (int)mReplaceables.size()) { start[i] = 0; end[i] = mReplaceables[i].size(); } else { start[i] = -1; end[i] = 0; } } for (int i4 = start[3]; i4 < end[3]; i4++) { for (int i3 = start[2]; i3 < end[2]; i3++) { for (int i2 = start[1]; i2 < end[1]; i2++) { for (int i1 = start[0]; i1 < end[0]; i1++) { Permutation p(function, this, i1, i2, i3, i4); p.writeFiles(headerFile, rsFile, javaFile, versionOfTestFiles); } } } } } bool Specification::relevantForVersion(int versionOfTestFiles) const { if (mMinVersion != 0 && mMinVersion > versionOfTestFiles) { return false; } if (mMaxVersion != 0 && mMaxVersion < versionOfTestFiles) { return false; } return true; } string Specification::expandString(string s, int i1, int i2, int i3, int i4) const { if (mReplaceables.size() > 0) { s = stringReplace(s, "#1", mReplaceables[0][i1]); } if (mReplaceables.size() > 1) { s = stringReplace(s, "#2", mReplaceables[1][i2]); } if (mReplaceables.size() > 2) { s = stringReplace(s, "#3", mReplaceables[2][i3]); } if (mReplaceables.size() > 3) { s = stringReplace(s, "#4", mReplaceables[3][i4]); } return s; } Permutation::Permutation(Function* func, Specification* spec, int i1, int i2, int i3, int i4) : mFunction(func), mSpecification(spec), mReturnIndex(-1), mFirstInputIndex(-1), mInputCount(0), mOutputCount(0) { // We expand the strings now to make capitalization easier. The previous code preserved the #n // markers just before emitting, which made capitalization difficult. mName = spec->getName(i1, i2, i3, i4); mCleanName = spec->getCleanName(); mTest = spec->getTest(); mPrecisionLimit = spec->getPrecisionLimit(); spec->getInlines(i1, i2, i3, i4, &mInline); spec->getComments(i1, i2, i3, i4, &mComment); vector paramDefinitions; spec->getParams(i1, i2, i3, i4, ¶mDefinitions); mHasFloatAnswers = false; for (size_t i = 0; i < paramDefinitions.size(); i++) { ParameterDefinition* def = new ParameterDefinition(); def->parseParameterDefinition(paramDefinitions[i], false, &mInputCount, &mOutputCount); if (!def->isOutParameter && mFirstInputIndex < 0) { mFirstInputIndex = mParams.size(); } if (def->isOutParameter && def->isFloatType) { mHasFloatAnswers = true; } mParams.push_back(def); } const string s = spec->getReturn(i1, i2, i3, i4); if (!s.empty() && s != "void") { ParameterDefinition* def = new ParameterDefinition(); // Adding "*" tells the parse method it's an output. def->parseParameterDefinition(s, true, &mInputCount, &mOutputCount); if (def->isOutParameter && def->isFloatType) { mHasFloatAnswers = true; } mReturnIndex = mParams.size(); mParams.push_back(def); } mRsKernelName = "test" + capitalize(mName); mJavaArgumentsClassName = "Arguments"; mJavaArgumentsNClassName = "Arguments"; mJavaCheckMethodName = "check" + capitalize(mCleanName); mJavaVerifyMethodName = "verifyResults" + capitalize(mCleanName); for (int i = 0; i < (int)mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; mRsKernelName += capitalize(p.rsType); mJavaArgumentsClassName += capitalize(p.rsBaseType); mJavaArgumentsNClassName += capitalize(p.rsBaseType); if (p.mVectorSize != "1") { mJavaArgumentsNClassName += "N"; } mJavaCheckMethodName += capitalize(p.rsType); mJavaVerifyMethodName += capitalize(p.rsType); } mJavaVerifierComputeMethodName = "compute" + capitalize(mCleanName); mJavaVerifierVerifyMethodName = "verify" + capitalize(mCleanName); } void Permutation::writeFiles(ofstream& headerFile, ofstream& rsFile, ofstream& javaFile, int versionOfTestFiles) { writeHeaderSection(headerFile); if (mSpecification->relevantForVersion(versionOfTestFiles) && mTest != "none") { writeRsSection(rsFile); writeJavaSection(javaFile); } } void Permutation::writeHeaderSection(ofstream& file) const { int minVersion = mSpecification->getMinVersion(); int maxVersion = mSpecification->getMaxVersion(); bool hasVersion = minVersion || maxVersion; if (hasVersion) { if (maxVersion) { file << "#if (defined(RS_VERSION) && (RS_VERSION >= " << minVersion << ") && (RS_VERSION <= " << maxVersion << "))\n"; } else { file << "#if (defined(RS_VERSION) && (RS_VERSION >= " << minVersion << "))\n"; } } file << "/*\n"; for (size_t ct = 0; ct < mComment.size(); ct++) { if (!mComment[ct].empty()) { file << " * " << mComment[ct] << "\n"; } else { file << " *\n"; } } file << " *\n"; if (minVersion || maxVersion) { if (maxVersion) { file << " * Suppored by API versions " << minVersion << " - " << maxVersion << "\n"; } else { file << " * Supported by API versions " << minVersion << " and newer.\n"; } } file << " */\n"; if (mInline.size() > 0) { file << "static "; } else { file << "extern "; } if (mReturnIndex >= 0) { file << mParams[mReturnIndex]->rsType; } else { file << "void"; } file << " __attribute__(("; if (mOutputCount <= 1) { file << "const, "; } file << "overloadable))"; file << mName; file << "("; bool needComma = false; for (int i = 0; i < (int)mParams.size(); i++) { if (i != mReturnIndex) { const ParameterDefinition& p = *mParams[i]; if (needComma) { file << ", "; } file << p.rsType; if (p.isOutParameter) { file << "*"; } if (!p.specName.empty()) { file << " " << p.specName; } needComma = true; } } if (mInline.size() > 0) { file << ") {\n"; for (size_t ct = 0; ct < mInline.size(); ct++) { file << " " << mInline[ct].c_str() << "\n"; } file << "}\n"; } else { file << ");\n"; } if (hasVersion) { file << "#endif\n"; } file << "\n"; } /* Write the section of the .rs file for this permutation. * * We communicate the extra input and output parameters via global allocations. * For example, if we have a function that takes three arguments, two for input * and one for output: * * start: * name: gamn * ret: float3 * arg: float3 a * arg: int b * arg: float3 *c * end: * * We'll produce: * * rs_allocation gAllocInB; * rs_allocation gAllocOutC; * * float3 __attribute__((kernel)) test_gamn_float3_int_float3(float3 inA, unsigned int x) { * int inB; * float3 outC; * float2 out; * inB = rsGetElementAt_int(gAllocInB, x); * out = gamn(a, in_b, &outC); * rsSetElementAt_float4(gAllocOutC, &outC, x); * return out; * } * * We avoid re-using x and y from the definition because these have reserved * meanings in a .rs file. */ void Permutation::writeRsSection(ofstream& rs) const { // Write the allocation declarations we'll need. for (int i = 0; i < (int)mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; // Don't need allocation for one input and one return value. if (i != mReturnIndex && i != mFirstInputIndex) { mFunction->writeRsAllocationDefinition(p); } } rs << "\n"; // Write the function header. if (mReturnIndex >= 0) { rs << mParams[mReturnIndex]->rsType; } else { rs << "void"; } rs << " __attribute__((kernel)) " << mRsKernelName; rs << "("; bool needComma = false; if (mFirstInputIndex >= 0) { rs << mParams[mFirstInputIndex]->rsType << " " << mParams[mFirstInputIndex]->variableName; needComma = true; } if (mOutputCount > 1 || mInputCount > 1) { if (needComma) { rs << ", "; } rs << "unsigned int x"; } rs << ") {\n"; // Write the local variable declarations and initializations. for (int i = 0; i < (int)mParams.size(); i++) { if (i == mFirstInputIndex || i == mReturnIndex) { continue; } const ParameterDefinition& p = *mParams[i]; rs << tab(1) << p.rsType << " " << p.variableName; if (p.isOutParameter) { rs << " = 0;\n"; } else { rs << " = rsGetElementAt_" << p.rsType << "(" << p.rsAllocName << ", x);\n"; } } // Write the function call. if (mReturnIndex >= 0) { if (mOutputCount > 1) { rs << tab(1) << mParams[mReturnIndex]->rsType << " " << mParams[mReturnIndex]->variableName << " = "; } else { rs << tab(1) << "return "; } } rs << mName << "("; needComma = false; for (int i = 0; i < (int)mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (i == mReturnIndex) { continue; } if (needComma) { rs << ", "; } if (p.isOutParameter) { rs << "&"; } rs << p.variableName; needComma = true; } rs << ");\n"; if (mOutputCount > 1) { // Write setting the extra out parameters into the allocations. for (int i = 0; i < (int)mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter && i != mReturnIndex) { rs << tab(1) << "rsSetElementAt_" << p.rsType << "(" << p.rsAllocName << ", "; if (passByAddressToSet(p.variableName)) { rs << "&"; } rs << p.variableName << ", x);\n"; } } if (mReturnIndex >= 0) { rs << tab(1) << "return " << mParams[mReturnIndex]->variableName << ";\n"; } } rs << "}\n"; } bool Permutation::passByAddressToSet(const string& name) const { string s = name; int last = s.size() - 1; char lastChar = s[last]; return lastChar >= '0' && lastChar <= '9'; } void Permutation::writeJavaSection(ofstream& file) const { // By default, we test the results using item by item comparison. if (mTest == "scalar" || mTest == "limited") { writeJavaArgumentClass(file, true); writeJavaCheckMethod(file, true); writeJavaVerifyScalarMethod(file, false); } else if (mTest == "custom") { writeJavaArgumentClass(file, true); writeJavaCheckMethod(file, true); writeJavaVerifyScalarMethod(file, true); } else if (mTest == "vector") { writeJavaArgumentClass(file, false); writeJavaCheckMethod(file, true); writeJavaVerifyVectorMethod(file); } else if (mTest == "noverify") { writeJavaCheckMethod(file, false); } // Register the check method to be called. This code will be written at the end. mFunction->addJavaCheckCall(mJavaCheckMethodName + "();"); } void Permutation::writeJavaArgumentClass(ofstream& file, bool scalar) const { string name; if (scalar) { name = mJavaArgumentsClassName; } else { name = mJavaArgumentsNClassName; } string s; s += tab(1) + "public class " + name + " {\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; s += tab(2) + "public "; if (p.isOutParameter && p.isFloatType && mTest != "custom") { s += "Target.Floaty"; } else { s += p.javaBaseType; } if (!scalar && p.mVectorSize != "1") { s += "[]"; } s += " " + p.variableName + ";\n"; } s += tab(1) + "}\n\n"; mFunction->writeJavaArgumentClassDefinition(name, s); } void Permutation::writeJavaCheckMethod(ofstream& file, bool generateCallToVerifier) const { file << tab(1) << "private void " << mJavaCheckMethodName << "() {\n"; // Generate the input allocations and initialization. for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (!p.isOutParameter) { writeJavaInputAllocationDefinition(file, tab(2), p); } } // Enforce ordering if needed. for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (!p.isOutParameter && !p.smallerParameter.empty()) { string smallerAlloc = "in" + capitalize(p.smallerParameter); file << tab(2) << "enforceOrdering(" << smallerAlloc << ", " << p.javaAllocName << ");\n"; } } writeJavaCallToRs(file, false, generateCallToVerifier); writeJavaCallToRs(file, true, generateCallToVerifier); file << tab(1) << "}\n\n"; } void Permutation::writeJavaInputAllocationDefinition(ofstream& file, const string& indent, const ParameterDefinition& param) const { string dataType; char vectorSize; convertToRsType(param.rsType, &dataType, &vectorSize); string seed = hashString(mJavaCheckMethodName + param.javaAllocName); file << indent << "Allocation " << param.javaAllocName << " = "; if (param.compatibleTypeIndex >= 0) { if (TYPES[param.typeIndex].kind == FLOATING_POINT) { writeJavaRandomCompatibleFloatAllocation(file, dataType, seed, vectorSize, TYPES[param.compatibleTypeIndex], TYPES[param.typeIndex]); } else { writeJavaRandomCompatibleIntegerAllocation(file, dataType, seed, vectorSize, TYPES[param.compatibleTypeIndex], TYPES[param.typeIndex]); } } else if (!param.minValue.empty()) { if (TYPES[param.typeIndex].kind != FLOATING_POINT) { printf("range(,) is only supported for floating point\n"); } else { file << "createRandomFloatAllocation(mRS, Element.DataType." << dataType << ", " << vectorSize << ", " << seed << ", " << param.minValue << ", " << param.maxValue << ")"; } } else { file << "createRandomAllocation(mRS, Element.DataType." << dataType << ", " << vectorSize // TODO set to false only for native, i.e. // << ", " << seed << ", " << (mTest == "limited" ? "false" : "true") << ")"; << ", " << seed << ", false)"; } file << ";\n"; } void Permutation::writeJavaRandomCompatibleFloatAllocation(ofstream& file, const string& dataType, const string& seed, char vectorSize, const Type& compatibleType, const Type& generatedType) const { file << "createRandomFloatAllocation" << "(mRS, Element.DataType." << dataType << ", " << vectorSize << ", " << seed << ", "; double minValue = 0.0; double maxValue = 0.0; switch (compatibleType.kind) { case FLOATING_POINT: { // We're generating floating point values. We just worry about the exponent. // Subtract 1 for the exponent sign. int bits = min(compatibleType.exponentBits, generatedType.exponentBits) - 1; maxValue = ldexp(0.95, (1 << bits) - 1); minValue = -maxValue; break; } case UNSIGNED_INTEGER: maxValue = MaxDoubleForInteger(compatibleType.significantBits, generatedType.significantBits); minValue = 0.0; break; case SIGNED_INTEGER: maxValue = MaxDoubleForInteger(compatibleType.significantBits, generatedType.significantBits); minValue = -maxValue - 1.0; break; } file << scientific << std::setprecision(19); file << minValue << ", " << maxValue << ")"; file.unsetf(ios_base::floatfield); } void Permutation::writeJavaRandomCompatibleIntegerAllocation(ofstream& file, const string& dataType, const string& seed, char vectorSize, const Type& compatibleType, const Type& generatedType) const { file << "createRandomIntegerAllocation" << "(mRS, Element.DataType." << dataType << ", " << vectorSize << ", " << seed << ", "; if (compatibleType.kind == FLOATING_POINT) { // Currently, all floating points can take any number we generate. bool isSigned = generatedType.kind == SIGNED_INTEGER; file << (isSigned ? "true" : "false") << ", " << generatedType.significantBits; } else { bool isSigned = compatibleType.kind == SIGNED_INTEGER && generatedType.kind == SIGNED_INTEGER; file << (isSigned ? "true" : "false") << ", " << min(compatibleType.significantBits, generatedType.significantBits); } file << ")"; } void Permutation::writeJavaOutputAllocationDefinition(ofstream& file, const string& indent, const ParameterDefinition& param) const { string dataType; char vectorSize; convertToRsType(param.rsType, &dataType, &vectorSize); file << indent << "Allocation " << param.javaAllocName << " = Allocation.createSized(mRS, " << "getElement(mRS, Element.DataType." << dataType << ", " << vectorSize << "), INPUTSIZE);\n"; } // Converts float2 to FLOAT_32 and 2, etc. void Permutation::convertToRsType(const string& name, string* dataType, char* vectorSize) const { string s = name; int last = s.size() - 1; char lastChar = s[last]; if (lastChar >= '1' && lastChar <= '4') { s.erase(last); *vectorSize = lastChar; } else { *vectorSize = '1'; } dataType->clear(); for (int i = 0; i < NUM_TYPES; i++) { if (s == TYPES[i].cType) { *dataType = TYPES[i].rsDataType; break; } } } void Permutation::writeJavaVerifyScalarMethod(ofstream& file, bool verifierValidates) const { writeJavaVerifyFunctionHeader(file); string vectorSize = "1"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; writeJavaArrayInitialization(file, p); if (p.mVectorSize != "1" && p.mVectorSize != vectorSize) { if (vectorSize == "1") { vectorSize = p.mVectorSize; } else { printf("Yikes, had vector %s and %s\n", vectorSize.c_str(), p.mVectorSize.c_str()); } } } file << tab(2) << "for (int i = 0; i < INPUTSIZE; i++) {\n"; file << tab(3) << "for (int j = 0; j < " << vectorSize << " ; j++) {\n"; file << tab(4) << "// Extract the inputs.\n"; file << tab(4) << mJavaArgumentsClassName << " args = new " << mJavaArgumentsClassName << "();\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (!p.isOutParameter) { file << tab(4) << "args." << p.variableName << " = " << p.javaArrayName << "[i"; if (p.vectorWidth != "1") { file << " * " << p.vectorWidth << " + j"; } file << "];\n"; } } if (verifierValidates) { file << tab(4) << "// Extract the outputs.\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter) { file << tab(4) << "args." << p.variableName << " = " << p.javaArrayName << "[i * " + p.vectorWidth + " + j];\n"; } } file << tab(4) << "// Ask the CoreMathVerifier to validate.\n"; if (mHasFloatAnswers) { file << tab(4) << "Target target = new Target(relaxed);\n"; } file << tab(4) << "String errorMessage = CoreMathVerifier." << mJavaVerifierVerifyMethodName << "(args"; if (mHasFloatAnswers) { file << ", target"; } file << ");\n"; file << tab(4) << "boolean valid = errorMessage == null;\n"; } else { file << tab(4) << "// Figure out what the outputs should have been.\n"; if (mHasFloatAnswers) { file << tab(4) << "Target target = new Target(relaxed);\n"; } file << tab(4) << "CoreMathVerifier." << mJavaVerifierComputeMethodName << "(args"; if (mHasFloatAnswers) { file << ", target"; } file << ");\n"; file << tab(4) << "// Validate the outputs.\n"; file << tab(4) << "boolean valid = true;\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter) { writeJavaTestAndSetValid(file, 4, p, "", "[i * " + p.vectorWidth + " + j]"); } } } file << tab(4) << "if (!valid) {\n"; file << tab(5) << "StringBuilder message = new StringBuilder();\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter) { writeJavaAppendOutputToMessage(file, 5, p, "", "[i * " + p.vectorWidth + " + j]", verifierValidates); } else { writeJavaAppendInputToMessage(file, 5, p, "args." + p.variableName); } } if (verifierValidates) { file << tab(5) << "message.append(errorMessage);\n"; } file << tab(5) << "assertTrue(\"Incorrect output for " << mJavaCheckMethodName << "\" +\n"; file << tab(7) << "(relaxed ? \"_relaxed\" : \"\") + \":\\n\" + message.toString(), valid);\n"; file << tab(4) << "}\n"; file << tab(3) << "}\n"; file << tab(2) << "}\n"; file << tab(1) << "}\n\n"; } void Permutation::writeJavaVerifyFunctionHeader(ofstream& file) const { file << tab(1) << "private void " << mJavaVerifyMethodName << "("; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; file << "Allocation " << p.javaAllocName << ", "; } file << "boolean relaxed) {\n"; } void Permutation::writeJavaTestAndSetValid(ofstream& file, int indent, const ParameterDefinition& p, const string& argsIndex, const string& actualIndex) const { writeJavaTestOneValue(file, indent, p, argsIndex, actualIndex); file << tab(indent + 1) << "valid = false;\n"; file << tab(indent) << "}\n"; } void Permutation::writeJavaTestOneValue(ofstream& file, int indent, const ParameterDefinition& p, const string& argsIndex, const string& actualIndex) const { file << tab(indent) << "if ("; if (p.isFloatType) { file << "!args." << p.variableName << argsIndex << ".couldBe(" << p.javaArrayName << actualIndex; if (!mPrecisionLimit.empty()) { file << ", " << mPrecisionLimit; } file << ")"; } else { file << "args." << p.variableName << argsIndex << " != " << p.javaArrayName << actualIndex; } if (p.undefinedIfOutIsNan && mReturnIndex >= 0) { file << " && !args." << mParams[mReturnIndex]->variableName << argsIndex << ".isNaN()"; } file << ") {\n"; } void Permutation::writeJavaAppendOutputToMessage(ofstream& file, int indent, const ParameterDefinition& p, const string& argsIndex, const string& actualIndex, bool verifierValidates) const { if (verifierValidates) { const string actual = "args." + p.variableName + argsIndex; file << tab(indent) << "message.append(\"Output " + p.variableName + ": \");\n"; if (p.isFloatType) { writeJavaAppendFloatVariableToMessage(file, indent, actual, true); } else { writeJavaAppendVariableToMessage(file, indent, p, actual); } writeJavaAppendNewLineToMessage(file, indent); } else { const string expected = "args." + p.variableName + argsIndex; const string actual = p.javaArrayName + actualIndex; file << tab(indent) << "message.append(\"Expected output " + p.variableName + ": \");\n"; if (p.isFloatType) { writeJavaAppendFloatVariableToMessage(file, indent, expected, false); } else { writeJavaAppendVariableToMessage(file, indent, p, expected); } writeJavaAppendNewLineToMessage(file, indent); file << tab(indent) << "message.append(\"Actual output " + p.variableName + ": \");\n"; writeJavaAppendVariableToMessage(file, indent, p, actual); writeJavaTestOneValue(file, indent, p, argsIndex, actualIndex); file << tab(indent + 1) << "message.append(\" FAIL\");\n"; file << tab(indent) << "}\n"; writeJavaAppendNewLineToMessage(file, indent); } } void Permutation::writeJavaAppendInputToMessage(ofstream& file, int indent, const ParameterDefinition& p, const string& actual) const { file << tab(indent) << "message.append(\"Input " + p.variableName + ": \");\n"; writeJavaAppendVariableToMessage(file, indent, p, actual); writeJavaAppendNewLineToMessage(file, indent); } void Permutation::writeJavaAppendNewLineToMessage(ofstream& file, int indent) const { file << tab(indent) << "message.append(\"\\n\");\n"; } void Permutation::writeJavaAppendVariableToMessage(ofstream& file, int indent, const ParameterDefinition& p, const string& value) const { if (p.specType == "f16" || p.specType == "f32") { file << tab(indent) << "message.append(String.format(\"%14.8g {%8x} %15a\",\n"; file << tab(indent + 2) << value << ", " << "Float.floatToRawIntBits(" << value << "), " << value << "));\n"; } else if (p.specType == "f64") { file << tab(indent) << "message.append(String.format(\"%24.8g {%16x} %31a\",\n"; file << tab(indent + 2) << value << ", " << "Double.doubleToRawLongBits(" << value << "), " << value << "));\n"; } else if (p.specType[0] == 'u') { file << tab(indent) << "message.append(String.format(\"0x%x\", " << value << "));\n"; } else { file << tab(indent) << "message.append(String.format(\"%d\", " << value << "));\n"; } } void Permutation::writeJavaAppendFloatVariableToMessage(ofstream& file, int indent, const string& value, bool regularFloat) const { file << tab(indent) << "message.append("; if (regularFloat) { file << "Float.toString(" << value << ")"; } else { file << value << ".toString()"; } file << ");\n"; } void Permutation::writeJavaVectorComparison(ofstream& file, int indent, const ParameterDefinition& p) const { if (p.mVectorSize == "1") { writeJavaTestAndSetValid(file, indent, p, "", "[i]"); } else { file << tab(indent) << "for (int j = 0; j < " << p.mVectorSize << " ; j++) {\n"; writeJavaTestAndSetValid(file, indent + 1, p, "[j]", "[i * " + p.vectorWidth + " + j]"); file << tab(indent) << "}\n"; } } void Permutation::writeJavaAppendVectorInputToMessage(ofstream& file, int indent, const ParameterDefinition& p) const { if (p.mVectorSize == "1") { writeJavaAppendInputToMessage(file, indent, p, p.javaArrayName + "[i]"); } else { file << tab(indent) << "for (int j = 0; j < " << p.mVectorSize << " ; j++) {\n"; writeJavaAppendInputToMessage(file, indent + 1, p, p.javaArrayName + "[i * " + p.vectorWidth + " + j]"); file << tab(indent) << "}\n"; } } void Permutation::writeJavaAppendVectorOutputToMessage(ofstream& file, int indent, const ParameterDefinition& p) const { if (p.mVectorSize == "1") { writeJavaAppendOutputToMessage(file, indent, p, "", "[i]", false); } else { file << tab(indent) << "for (int j = 0; j < " << p.mVectorSize << " ; j++) {\n"; writeJavaAppendOutputToMessage(file, indent + 1, p, "[j]", "[i * " + p.vectorWidth + " + j]", false); file << tab(indent) << "}\n"; } } void Permutation::writeJavaVerifyVectorMethod(ofstream& file) const { writeJavaVerifyFunctionHeader(file); for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; writeJavaArrayInitialization(file, p); } file << tab(2) + "for (int i = 0; i < INPUTSIZE; i++) {\n"; file << tab(3) << mJavaArgumentsNClassName << " args = new " << mJavaArgumentsNClassName << "();\n"; file << tab(3) << "// Create the appropriate sized arrays in args\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.mVectorSize != "1") { string type = p.javaBaseType; if (p.isOutParameter && p.isFloatType) { type = "Target.Floaty"; } file << tab(3) << "args." << p.variableName << " = new " << type << "[" << p.mVectorSize << "];\n"; } } file << tab(3) << "// Fill args with the input values\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (!p.isOutParameter) { if (p.mVectorSize == "1") { file << tab(3) << "args." << p.variableName << " = " << p.javaArrayName + "[i]" << ";\n"; } else { file << tab(3) << "for (int j = 0; j < " << p.mVectorSize << " ; j++) {\n"; file << tab(4) << "args." << p.variableName + "[j] = " << p.javaArrayName + "[i * " + p.vectorWidth + " + j]" << ";\n"; file << tab(3) << "}\n"; } } } file << tab(3) << "Target target = new Target(relaxed);\n"; file << tab(3) << "CoreMathVerifier." << mJavaVerifierComputeMethodName << "(args, target);\n\n"; file << tab(3) << "// Compare the expected outputs to the actual values returned by RS.\n"; file << tab(3) << "boolean valid = true;\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter) { writeJavaVectorComparison(file, 3, p); } } file << tab(3) << "if (!valid) {\n"; file << tab(4) << "StringBuilder message = new StringBuilder();\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter) { writeJavaAppendVectorOutputToMessage(file, 4, p); } else { writeJavaAppendVectorInputToMessage(file, 4, p); } } file << tab(4) << "assertTrue(\"Incorrect output for " << mJavaCheckMethodName << "\" +\n"; file << tab(6) << "(relaxed ? \"_relaxed\" : \"\") + \":\\n\" + message.toString(), valid);\n"; file << tab(3) << "}\n"; file << tab(2) << "}\n"; file << tab(1) << "}\n\n"; } void Permutation::writeJavaCallToRs(ofstream& file, bool relaxed, bool generateCallToVerifier) const { string script = "script"; if (relaxed) { script += "Relaxed"; } file << tab(2) << "try {\n"; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (p.isOutParameter) { writeJavaOutputAllocationDefinition(file, tab(3), p); } } for (int i = 0; i < (int)mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; if (i != mReturnIndex && i != mFirstInputIndex) { file << tab(3) << script << ".set_" << p.rsAllocName << "(" << p.javaAllocName << ");\n"; } } file << tab(3) << script << ".forEach_" << mRsKernelName << "("; bool needComma = false; if (mFirstInputIndex >= 0) { file << mParams[mFirstInputIndex]->javaAllocName; needComma = true; } if (mReturnIndex >= 0) { if (needComma) { file << ", "; } file << mParams[mReturnIndex]->variableName << ");\n"; } if (generateCallToVerifier) { file << tab(3) << mJavaVerifyMethodName << "("; for (size_t i = 0; i < mParams.size(); i++) { const ParameterDefinition& p = *mParams[i]; file << p.variableName << ", "; } if (relaxed) { file << "true"; } else { file << "false"; } file << ");\n"; } file << tab(2) << "} catch (Exception e) {\n"; file << tab(3) << "throw new RSRuntimeException(\"RenderScript. Can't invoke forEach_" << mRsKernelName << ": \" + e.toString());\n"; file << tab(2) << "}\n"; } } // namespace int main(int argc, char* argv[]) { int versionOfTestFiles = 0; vector specFileNames; if (!parseCommandLine(argc, argv, &versionOfTestFiles, &specFileNames)) { printf("Usage: gen_runtime spec_file [spec_file...] [-v version_of_test_files]\n"); return -1; } int result = 0; for (size_t i = 0; i < specFileNames.size(); i++) { SpecFile specFile(specFileNames[i]); if (!specFile.process(versionOfTestFiles)) { result = -1; } } return result; }