/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.inputmethod.latin.utils; import static com.android.inputmethod.latin.Constants.CODE_UNSPECIFIED; import android.text.Spanned; import android.text.TextUtils; import com.android.inputmethod.annotations.UsedForTesting; import com.android.inputmethod.latin.Constants; import java.util.ArrayList; import java.util.Arrays; import java.util.Locale; import java.util.regex.Matcher; import java.util.regex.Pattern; public final class StringUtils { public static final int CAPITALIZE_NONE = 0; // No caps, or mixed case public static final int CAPITALIZE_FIRST = 1; // First only public static final int CAPITALIZE_ALL = 2; // All caps private static final String EMPTY_STRING = ""; private static final char CHAR_LINE_FEED = 0X000A; private static final char CHAR_VERTICAL_TAB = 0X000B; private static final char CHAR_FORM_FEED = 0X000C; private static final char CHAR_CARRIAGE_RETURN = 0X000D; private static final char CHAR_NEXT_LINE = 0X0085; private static final char CHAR_LINE_SEPARATOR = 0X2028; private static final char CHAR_PARAGRAPH_SEPARATOR = 0X2029; private StringUtils() { // This utility class is not publicly instantiable. } public static int codePointCount(final String text) { if (TextUtils.isEmpty(text)) return 0; return text.codePointCount(0, text.length()); } public static String newSingleCodePointString(int codePoint) { if (Character.charCount(codePoint) == 1) { // Optimization: avoid creating a temporary array for characters that are // represented by a single char value return String.valueOf((char) codePoint); } // For surrogate pair return new String(Character.toChars(codePoint)); } public static boolean containsInArray(final String text, final String[] array) { for (final String element : array) { if (text.equals(element)) return true; } return false; } /** * Comma-Splittable Text is similar to Comma-Separated Values (CSV) but has much simpler syntax. * Unlike CSV, Comma-Splittable Text has no escaping mechanism, so that the text can't contain * a comma character in it. */ private static final String SEPARATOR_FOR_COMMA_SPLITTABLE_TEXT = ","; public static boolean containsInCommaSplittableText(final String text, final String extraValues) { if (TextUtils.isEmpty(extraValues)) { return false; } return containsInArray(text, extraValues.split(SEPARATOR_FOR_COMMA_SPLITTABLE_TEXT)); } public static String removeFromCommaSplittableTextIfExists(final String text, final String extraValues) { if (TextUtils.isEmpty(extraValues)) { return EMPTY_STRING; } final String[] elements = extraValues.split(SEPARATOR_FOR_COMMA_SPLITTABLE_TEXT); if (!containsInArray(text, elements)) { return extraValues; } final ArrayList result = new ArrayList<>(elements.length - 1); for (final String element : elements) { if (!text.equals(element)) { result.add(element); } } return TextUtils.join(SEPARATOR_FOR_COMMA_SPLITTABLE_TEXT, result); } /** * Remove duplicates from an array of strings. * * This method will always keep the first occurrence of all strings at their position * in the array, removing the subsequent ones. */ public static void removeDupes(final ArrayList suggestions) { if (suggestions.size() < 2) return; int i = 1; // Don't cache suggestions.size(), since we may be removing items while (i < suggestions.size()) { final String cur = suggestions.get(i); // Compare each suggestion with each previous suggestion for (int j = 0; j < i; j++) { final String previous = suggestions.get(j); if (TextUtils.equals(cur, previous)) { suggestions.remove(i); i--; break; } } i++; } } public static String capitalizeFirstCodePoint(final String s, final Locale locale) { if (s.length() <= 1) { return toUpperCaseOfStringForLocale(s, true /* needsToUpperCase */, locale); } // Please refer to the comment below in // {@link #capitalizeFirstAndDowncaseRest(String,Locale)} as this has the same shortcomings final int cutoff = s.offsetByCodePoints(0, 1); return toUpperCaseOfStringForLocale( s.substring(0, cutoff), true /* needsToUpperCase */, locale) + s.substring(cutoff); } public static String capitalizeFirstAndDowncaseRest(final String s, final Locale locale) { if (s.length() <= 1) { return toUpperCaseOfStringForLocale(s, true /* needsToUpperCase */, locale); } // TODO: fix the bugs below // - It does not work for Serbian, because it fails to account for the "lj" character, // which should be "Lj" in title case and "LJ" in upper case. // - It does not work for Dutch, because it fails to account for the "ij" digraph when it's // written as two separate code points. They are two different characters but both should // be capitalized as "IJ" as if they were a single letter in most words (not all). If the // unicode char for the ligature is used however, it works. final int cutoff = s.offsetByCodePoints(0, 1); final String titleCaseFirstLetter = toUpperCaseOfStringForLocale( s.substring(0, cutoff), true /* needsToUpperCase */, locale); return titleCaseFirstLetter + s.substring(cutoff).toLowerCase(locale); } private static final int[] EMPTY_CODEPOINTS = {}; public static int[] toCodePointArray(final CharSequence charSequence) { return toCodePointArray(charSequence, 0, charSequence.length()); } /** * Converts a range of a string to an array of code points. * @param charSequence the source string. * @param startIndex the start index inside the string in java chars, inclusive. * @param endIndex the end index inside the string in java chars, exclusive. * @return a new array of code points. At most endIndex - startIndex, but possibly less. */ public static int[] toCodePointArray(final CharSequence charSequence, final int startIndex, final int endIndex) { final int length = charSequence.length(); if (length <= 0) { return EMPTY_CODEPOINTS; } final int[] codePoints = new int[Character.codePointCount(charSequence, startIndex, endIndex)]; copyCodePointsAndReturnCodePointCount(codePoints, charSequence, startIndex, endIndex, false /* downCase */); return codePoints; } /** * Copies the codepoints in a CharSequence to an int array. * * This method assumes there is enough space in the array to store the code points. The size * can be measured with Character#codePointCount(CharSequence, int, int) before passing to this * method. If the int array is too small, an ArrayIndexOutOfBoundsException will be thrown. * Also, this method makes no effort to be thread-safe. Do not modify the CharSequence while * this method is running, or the behavior is undefined. * This method can optionally downcase code points before copying them, but it pays no attention * to locale while doing so. * * @param destination the int array. * @param charSequence the CharSequence. * @param startIndex the start index inside the string in java chars, inclusive. * @param endIndex the end index inside the string in java chars, exclusive. * @param downCase if this is true, code points will be downcased before being copied. * @return the number of copied code points. */ public static int copyCodePointsAndReturnCodePointCount(final int[] destination, final CharSequence charSequence, final int startIndex, final int endIndex, final boolean downCase) { int destIndex = 0; for (int index = startIndex; index < endIndex; index = Character.offsetByCodePoints(charSequence, index, 1)) { final int codePoint = Character.codePointAt(charSequence, index); // TODO: stop using this, as it's not aware of the locale and does not always do // the right thing. destination[destIndex] = downCase ? Character.toLowerCase(codePoint) : codePoint; destIndex++; } return destIndex; } public static int[] toSortedCodePointArray(final String string) { final int[] codePoints = toCodePointArray(string); Arrays.sort(codePoints); return codePoints; } /** * Construct a String from a code point array * * @param codePoints a code point array that is null terminated when its logical length is * shorter than the array length. * @return a string constructed from the code point array. */ public static String getStringFromNullTerminatedCodePointArray(final int[] codePoints) { int stringLength = codePoints.length; for (int i = 0; i < codePoints.length; i++) { if (codePoints[i] == 0) { stringLength = i; break; } } return new String(codePoints, 0 /* offset */, stringLength); } // This method assumes the text is not null. For the empty string, it returns CAPITALIZE_NONE. public static int getCapitalizationType(final String text) { // If the first char is not uppercase, then the word is either all lower case or // camel case, and in either case we return CAPITALIZE_NONE. final int len = text.length(); int index = 0; for (; index < len; index = text.offsetByCodePoints(index, 1)) { if (Character.isLetter(text.codePointAt(index))) { break; } } if (index == len) return CAPITALIZE_NONE; if (!Character.isUpperCase(text.codePointAt(index))) { return CAPITALIZE_NONE; } int capsCount = 1; int letterCount = 1; for (index = text.offsetByCodePoints(index, 1); index < len; index = text.offsetByCodePoints(index, 1)) { if (1 != capsCount && letterCount != capsCount) break; final int codePoint = text.codePointAt(index); if (Character.isUpperCase(codePoint)) { ++capsCount; ++letterCount; } else if (Character.isLetter(codePoint)) { // We need to discount non-letters since they may not be upper-case, but may // still be part of a word (e.g. single quote or dash, as in "IT'S" or "FULL-TIME") ++letterCount; } } // We know the first char is upper case. So we want to test if either every letter other // than the first is lower case, or if they are all upper case. If the string is exactly // one char long, then we will arrive here with letterCount 1, and this is correct, too. if (1 == capsCount) return CAPITALIZE_FIRST; return (letterCount == capsCount ? CAPITALIZE_ALL : CAPITALIZE_NONE); } public static boolean isIdenticalAfterUpcase(final String text) { final int length = text.length(); int i = 0; while (i < length) { final int codePoint = text.codePointAt(i); if (Character.isLetter(codePoint) && !Character.isUpperCase(codePoint)) { return false; } i += Character.charCount(codePoint); } return true; } public static boolean isIdenticalAfterDowncase(final String text) { final int length = text.length(); int i = 0; while (i < length) { final int codePoint = text.codePointAt(i); if (Character.isLetter(codePoint) && !Character.isLowerCase(codePoint)) { return false; } i += Character.charCount(codePoint); } return true; } public static boolean isIdenticalAfterCapitalizeEachWord(final String text, final int[] sortedSeparators) { boolean needsCapsNext = true; final int len = text.length(); for (int i = 0; i < len; i = text.offsetByCodePoints(i, 1)) { final int codePoint = text.codePointAt(i); if (Character.isLetter(codePoint)) { if ((needsCapsNext && !Character.isUpperCase(codePoint)) || (!needsCapsNext && !Character.isLowerCase(codePoint))) { return false; } } // We need a capital letter next if this is a separator. needsCapsNext = (Arrays.binarySearch(sortedSeparators, codePoint) >= 0); } return true; } // TODO: like capitalizeFirst*, this does not work perfectly for Dutch because of the IJ digraph // which should be capitalized together in *some* cases. public static String capitalizeEachWord(final String text, final int[] sortedSeparators, final Locale locale) { final StringBuilder builder = new StringBuilder(); boolean needsCapsNext = true; final int len = text.length(); for (int i = 0; i < len; i = text.offsetByCodePoints(i, 1)) { final String nextChar = text.substring(i, text.offsetByCodePoints(i, 1)); if (needsCapsNext) { builder.append(nextChar.toUpperCase(locale)); } else { builder.append(nextChar.toLowerCase(locale)); } // We need a capital letter next if this is a separator. needsCapsNext = (Arrays.binarySearch(sortedSeparators, nextChar.codePointAt(0)) >= 0); } return builder.toString(); } /** * Approximates whether the text before the cursor looks like a URL. * * This is not foolproof, but it should work well in the practice. * Essentially it walks backward from the cursor until it finds something that's not a letter, * digit, or common URL symbol like underscore. If it hasn't found a period yet, then it * does not look like a URL. * If the text: * - starts with www and contains a period * - starts with a slash preceded by either a slash, whitespace, or start-of-string * Then it looks like a URL and we return true. Otherwise, we return false. * * Note: this method is called quite often, and should be fast. * * TODO: This will return that "abc./def" and ".abc/def" look like URLs to keep down the * code complexity, but ideally it should not. It's acceptable for now. */ public static boolean lastPartLooksLikeURL(final CharSequence text) { int i = text.length(); if (0 == i) return false; int wCount = 0; int slashCount = 0; boolean hasSlash = false; boolean hasPeriod = false; int codePoint = 0; while (i > 0) { codePoint = Character.codePointBefore(text, i); if (codePoint < Constants.CODE_PERIOD || codePoint > 'z') { // Handwavy heuristic to see if that's a URL character. Anything between period // and z. This includes all lower- and upper-case ascii letters, period, // underscore, arrobase, question mark, equal sign. It excludes spaces, exclamation // marks, double quotes... // Anything that's not a URL-like character causes us to break from here and // evaluate normally. break; } if (Constants.CODE_PERIOD == codePoint) { hasPeriod = true; } if (Constants.CODE_SLASH == codePoint) { hasSlash = true; if (2 == ++slashCount) { return true; } } else { slashCount = 0; } if ('w' == codePoint) { ++wCount; } else { wCount = 0; } i = Character.offsetByCodePoints(text, i, -1); } // End of the text run. // If it starts with www and includes a period, then it looks like a URL. if (wCount >= 3 && hasPeriod) return true; // If it starts with a slash, and the code point before is whitespace, it looks like an URL. if (1 == slashCount && (0 == i || Character.isWhitespace(codePoint))) return true; // If it has both a period and a slash, it looks like an URL. if (hasPeriod && hasSlash) return true; // Otherwise, it doesn't look like an URL. return false; } /** * Examines the string and returns whether we're inside a double quote. * * This is used to decide whether we should put an automatic space before or after a double * quote character. If we're inside a quotation, then we want to close it, so we want a space * after and not before. Otherwise, we want to open the quotation, so we want a space before * and not after. Exception: after a digit, we never want a space because the "inch" or * "minutes" use cases is dominant after digits. * In the practice, we determine whether we are in a quotation or not by finding the previous * double quote character, and looking at whether it's followed by whitespace. If so, that * was a closing quotation mark, so we're not inside a double quote. If it's not followed * by whitespace, then it was an opening quotation mark, and we're inside a quotation. * * @param text the text to examine. * @return whether we're inside a double quote. */ public static boolean isInsideDoubleQuoteOrAfterDigit(final CharSequence text) { int i = text.length(); if (0 == i) return false; int codePoint = Character.codePointBefore(text, i); if (Character.isDigit(codePoint)) return true; int prevCodePoint = 0; while (i > 0) { codePoint = Character.codePointBefore(text, i); if (Constants.CODE_DOUBLE_QUOTE == codePoint) { // If we see a double quote followed by whitespace, then that // was a closing quote. if (Character.isWhitespace(prevCodePoint)) return false; } if (Character.isWhitespace(codePoint) && Constants.CODE_DOUBLE_QUOTE == prevCodePoint) { // If we see a double quote preceded by whitespace, then that // was an opening quote. No need to continue seeking. return true; } i -= Character.charCount(codePoint); prevCodePoint = codePoint; } // We reached the start of text. If the first char is a double quote, then we're inside // a double quote. Otherwise we're not. return Constants.CODE_DOUBLE_QUOTE == codePoint; } public static boolean isEmptyStringOrWhiteSpaces(final String s) { final int N = codePointCount(s); for (int i = 0; i < N; ++i) { if (!Character.isWhitespace(s.codePointAt(i))) { return false; } } return true; } @UsedForTesting public static String byteArrayToHexString(final byte[] bytes) { if (bytes == null || bytes.length == 0) { return EMPTY_STRING; } final StringBuilder sb = new StringBuilder(); for (byte b : bytes) { sb.append(String.format("%02x", b & 0xff)); } return sb.toString(); } /** * Convert hex string to byte array. The string length must be an even number. */ @UsedForTesting public static byte[] hexStringToByteArray(final String hexString) { if (TextUtils.isEmpty(hexString)) { return null; } final int N = hexString.length(); if (N % 2 != 0) { throw new NumberFormatException("Input hex string length must be an even number." + " Length = " + N); } final byte[] bytes = new byte[N / 2]; for (int i = 0; i < N; i += 2) { bytes[i / 2] = (byte) ((Character.digit(hexString.charAt(i), 16) << 4) + Character.digit(hexString.charAt(i + 1), 16)); } return bytes; } private static final String LANGUAGE_GREEK = "el"; private static Locale getLocaleUsedForToTitleCase(final Locale locale) { // In Greek locale {@link String#toUpperCase(Locale)} eliminates accents from its result. // In order to get accented upper case letter, {@link Locale#ROOT} should be used. if (LANGUAGE_GREEK.equals(locale.getLanguage())) { return Locale.ROOT; } return locale; } public static String toUpperCaseOfStringForLocale(final String text, final boolean needsToUpperCase, final Locale locale) { if (text == null || !needsToUpperCase) { return text; } return text.toUpperCase(getLocaleUsedForToTitleCase(locale)); } public static int toUpperCaseOfCodeForLocale(final int code, final boolean needsToUpperCase, final Locale locale) { if (!Constants.isLetterCode(code) || !needsToUpperCase) return code; final String text = newSingleCodePointString(code); final String casedText = toUpperCaseOfStringForLocale( text, needsToUpperCase, locale); return codePointCount(casedText) == 1 ? casedText.codePointAt(0) : CODE_UNSPECIFIED; } public static int getTrailingSingleQuotesCount(final CharSequence charSequence) { final int lastIndex = charSequence.length() - 1; int i = lastIndex; while (i >= 0 && charSequence.charAt(i) == Constants.CODE_SINGLE_QUOTE) { --i; } return lastIndex - i; } /** * Splits the given {@code charSequence} with at occurrences of the given {@code regex}. *

* This is equivalent to * {@code charSequence.toString().split(regex, preserveTrailingEmptySegments ? -1 : 0)} * except that the spans are preserved in the result array. *

* @param input the character sequence to be split. * @param regex the regex pattern to be used as the separator. * @param preserveTrailingEmptySegments {@code true} to preserve the trailing empty * segments. Otherwise, trailing empty segments will be removed before being returned. * @return the array which contains the result. All the spans in the {@param input} is * preserved. */ @UsedForTesting public static CharSequence[] split(final CharSequence charSequence, final String regex, final boolean preserveTrailingEmptySegments) { // A short-cut for non-spanned strings. if (!(charSequence instanceof Spanned)) { // -1 means that trailing empty segments will be preserved. return charSequence.toString().split(regex, preserveTrailingEmptySegments ? -1 : 0); } // Hereafter, emulate String.split for CharSequence. final ArrayList sequences = new ArrayList<>(); final Matcher matcher = Pattern.compile(regex).matcher(charSequence); int nextStart = 0; boolean matched = false; while (matcher.find()) { sequences.add(charSequence.subSequence(nextStart, matcher.start())); nextStart = matcher.end(); matched = true; } if (!matched) { // never matched. preserveTrailingEmptySegments is ignored in this case. return new CharSequence[] { charSequence }; } sequences.add(charSequence.subSequence(nextStart, charSequence.length())); if (!preserveTrailingEmptySegments) { for (int i = sequences.size() - 1; i >= 0; --i) { if (!TextUtils.isEmpty(sequences.get(i))) { break; } sequences.remove(i); } } return sequences.toArray(new CharSequence[sequences.size()]); } @UsedForTesting public static class Stringizer { public String stringize(final E element) { return element != null ? element.toString() : "null"; } @UsedForTesting public final String join(final E[] array) { return joinStringArray(toStringArray(array), null /* delimiter */); } @UsedForTesting public final String join(final E[] array, final String delimiter) { return joinStringArray(toStringArray(array), delimiter); } protected String[] toStringArray(final E[] array) { final String[] stringArray = new String[array.length]; for (int index = 0; index < array.length; index++) { stringArray[index] = stringize(array[index]); } return stringArray; } protected String joinStringArray(final String[] stringArray, final String delimiter) { if (stringArray == null) { return "null"; } if (delimiter == null) { return Arrays.toString(stringArray); } final StringBuilder sb = new StringBuilder(); for (int index = 0; index < stringArray.length; index++) { sb.append(index == 0 ? "[" : delimiter); sb.append(stringArray[index]); } return sb + "]"; } } /** * Returns whether the last composed word contains line-breaking character (e.g. CR or LF). * @param text the text to be examined. * @return {@code true} if the last composed word contains line-breaking separator. */ @UsedForTesting public static boolean hasLineBreakCharacter(final String text) { if (TextUtils.isEmpty(text)) { return false; } for (int i = text.length() - 1; i >= 0; --i) { final char c = text.charAt(i); switch (c) { case CHAR_LINE_FEED: case CHAR_VERTICAL_TAB: case CHAR_FORM_FEED: case CHAR_CARRIAGE_RETURN: case CHAR_NEXT_LINE: case CHAR_LINE_SEPARATOR: case CHAR_PARAGRAPH_SEPARATOR: return true; } } return false; } }