1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "dex/compiler_ir.h"
18 #include "dex/frontend.h"
19 #include "dex/quick/dex_file_method_inliner.h"
20 #include "dex/quick/dex_file_to_method_inliner_map.h"
21 #include "dex_file-inl.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "invoke_type.h"
24 #include "mirror/array.h"
25 #include "mirror/class-inl.h"
26 #include "mirror/dex_cache.h"
27 #include "mirror/object_array-inl.h"
28 #include "mirror/reference-inl.h"
29 #include "mirror/string.h"
30 #include "mir_to_lir-inl.h"
31 #include "scoped_thread_state_change.h"
32 #include "x86/codegen_x86.h"
33 
34 namespace art {
35 
36 // Shortcuts to repeatedly used long types.
37 typedef mirror::ObjectArray<mirror::Object> ObjArray;
38 
39 /*
40  * This source files contains "gen" codegen routines that should
41  * be applicable to most targets.  Only mid-level support utilities
42  * and "op" calls may be used here.
43  */
44 
AddIntrinsicSlowPath(CallInfo * info,LIR * branch,LIR * resume)45 void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
46   class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
47    public:
48     IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info, LIR* branch, LIR* resume = nullptr)
49         : LIRSlowPath(m2l, info->offset, branch, resume), info_(info) {
50     }
51 
52     void Compile() {
53       m2l_->ResetRegPool();
54       m2l_->ResetDefTracking();
55       GenerateTargetLabel(kPseudoIntrinsicRetry);
56       // NOTE: GenInvokeNoInline() handles MarkSafepointPC.
57       m2l_->GenInvokeNoInline(info_);
58       if (cont_ != nullptr) {
59         m2l_->OpUnconditionalBranch(cont_);
60       }
61     }
62 
63    private:
64     CallInfo* const info_;
65   };
66 
67   AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
68 }
69 
70 /*
71  * To save scheduling time, helper calls are broken into two parts: generation of
72  * the helper target address, and the actual call to the helper.  Because x86
73  * has a memory call operation, part 1 is a NOP for x86.  For other targets,
74  * load arguments between the two parts.
75  */
76 // template <size_t pointer_size>
CallHelperSetup(QuickEntrypointEnum trampoline)77 RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
78   if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
79     return RegStorage::InvalidReg();
80   } else {
81     return LoadHelper(trampoline);
82   }
83 }
84 
CallHelper(RegStorage r_tgt,QuickEntrypointEnum trampoline,bool safepoint_pc,bool use_link)85 LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
86                          bool use_link) {
87   LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
88 
89   if (r_tgt.Valid()) {
90     FreeTemp(r_tgt);
91   }
92 
93   if (safepoint_pc) {
94     MarkSafepointPC(call_inst);
95   }
96   return call_inst;
97 }
98 
CallRuntimeHelper(QuickEntrypointEnum trampoline,bool safepoint_pc)99 void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
100   RegStorage r_tgt = CallHelperSetup(trampoline);
101   ClobberCallerSave();
102   CallHelper(r_tgt, trampoline, safepoint_pc);
103 }
104 
CallRuntimeHelperImm(QuickEntrypointEnum trampoline,int arg0,bool safepoint_pc)105 void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
106   RegStorage r_tgt = CallHelperSetup(trampoline);
107   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
108   ClobberCallerSave();
109   CallHelper(r_tgt, trampoline, safepoint_pc);
110 }
111 
CallRuntimeHelperReg(QuickEntrypointEnum trampoline,RegStorage arg0,bool safepoint_pc)112 void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
113                                    bool safepoint_pc) {
114   RegStorage r_tgt = CallHelperSetup(trampoline);
115   OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
116   ClobberCallerSave();
117   CallHelper(r_tgt, trampoline, safepoint_pc);
118 }
119 
CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,bool safepoint_pc)120 void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
121                                            bool safepoint_pc) {
122   RegStorage r_tgt = CallHelperSetup(trampoline);
123   if (arg0.wide == 0) {
124     LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
125   } else {
126     LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
127   }
128   ClobberCallerSave();
129   CallHelper(r_tgt, trampoline, safepoint_pc);
130 }
131 
CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline,int arg0,int arg1,bool safepoint_pc)132 void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
133                                       bool safepoint_pc) {
134   RegStorage r_tgt = CallHelperSetup(trampoline);
135   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
136   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
137   ClobberCallerSave();
138   CallHelper(r_tgt, trampoline, safepoint_pc);
139 }
140 
CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,bool safepoint_pc)141 void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
142                                               RegLocation arg1, bool safepoint_pc) {
143   RegStorage r_tgt = CallHelperSetup(trampoline);
144   if (arg1.wide == 0) {
145     LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
146   } else {
147     RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
148     LoadValueDirectWideFixed(arg1, r_tmp);
149   }
150   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
151   ClobberCallerSave();
152   CallHelper(r_tgt, trampoline, safepoint_pc);
153 }
154 
CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline,RegLocation arg0,int arg1,bool safepoint_pc)155 void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
156                                               int arg1, bool safepoint_pc) {
157   RegStorage r_tgt = CallHelperSetup(trampoline);
158   DCHECK(!arg0.wide);
159   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
160   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
161   ClobberCallerSave();
162   CallHelper(r_tgt, trampoline, safepoint_pc);
163 }
164 
CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline,int arg0,RegStorage arg1,bool safepoint_pc)165 void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
166                                       bool safepoint_pc) {
167   RegStorage r_tgt = CallHelperSetup(trampoline);
168   OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
169   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
170   ClobberCallerSave();
171   CallHelper(r_tgt, trampoline, safepoint_pc);
172 }
173 
CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline,RegStorage arg0,int arg1,bool safepoint_pc)174 void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
175                                       bool safepoint_pc) {
176   RegStorage r_tgt = CallHelperSetup(trampoline);
177   OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
178   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
179   ClobberCallerSave();
180   CallHelper(r_tgt, trampoline, safepoint_pc);
181 }
182 
CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline,int arg0,bool safepoint_pc)183 void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
184                                          bool safepoint_pc) {
185   RegStorage r_tgt = CallHelperSetup(trampoline);
186   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
187   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
188   ClobberCallerSave();
189   CallHelper(r_tgt, trampoline, safepoint_pc);
190 }
191 
CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline,RegStorage arg0,bool safepoint_pc)192 void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
193                                          bool safepoint_pc) {
194   RegStorage r_tgt = CallHelperSetup(trampoline);
195   DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
196   RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
197   if (r_tmp.NotExactlyEquals(arg0)) {
198     OpRegCopy(r_tmp, arg0);
199   }
200   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
201   ClobberCallerSave();
202   CallHelper(r_tgt, trampoline, safepoint_pc);
203 }
204 
CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline,RegStorage arg0,RegLocation arg2,bool safepoint_pc)205 void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0,
206                                                     RegLocation arg2, bool safepoint_pc) {
207   RegStorage r_tgt = CallHelperSetup(trampoline);
208   DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
209   RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
210   if (r_tmp.NotExactlyEquals(arg0)) {
211     OpRegCopy(r_tmp, arg0);
212   }
213   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
214   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
215   ClobberCallerSave();
216   CallHelper(r_tgt, trampoline, safepoint_pc);
217 }
218 
CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,bool safepoint_pc)219 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
220                                                       RegLocation arg0, RegLocation arg1,
221                                                       bool safepoint_pc) {
222   RegStorage r_tgt = CallHelperSetup(trampoline);
223   if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
224     RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
225 
226     RegStorage arg1_reg;
227     if (arg1.fp == arg0.fp) {
228       arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
229     } else {
230       arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
231     }
232 
233     if (arg0.wide == 0) {
234       LoadValueDirectFixed(arg0, arg0_reg);
235     } else {
236       LoadValueDirectWideFixed(arg0, arg0_reg);
237     }
238 
239     if (arg1.wide == 0) {
240       LoadValueDirectFixed(arg1, arg1_reg);
241     } else {
242       LoadValueDirectWideFixed(arg1, arg1_reg);
243     }
244   } else {
245     DCHECK(!cu_->target64);
246     if (arg0.wide == 0) {
247       LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
248       if (arg1.wide == 0) {
249         if (cu_->instruction_set == kMips) {
250           LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg1, kNotWide));
251         } else {
252           LoadValueDirectFixed(arg1, TargetReg(kArg1, kNotWide));
253         }
254       } else {
255         if (cu_->instruction_set == kMips) {
256           LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
257         } else {
258           LoadValueDirectWideFixed(arg1, TargetReg(kArg1, kWide));
259         }
260       }
261     } else {
262       LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
263       if (arg1.wide == 0) {
264         LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
265       } else {
266         LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
267       }
268     }
269   }
270   ClobberCallerSave();
271   CallHelper(r_tgt, trampoline, safepoint_pc);
272 }
273 
CopyToArgumentRegs(RegStorage arg0,RegStorage arg1)274 void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
275   WideKind arg0_kind = arg0.GetWideKind();
276   WideKind arg1_kind = arg1.GetWideKind();
277   if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
278     if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
279       // Swap kArg0 and kArg1 with kArg2 as temp.
280       OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
281       OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
282       OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
283     } else {
284       OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
285       OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
286     }
287   } else {
288     OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
289     OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
290   }
291 }
292 
CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline,RegStorage arg0,RegStorage arg1,bool safepoint_pc)293 void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
294                                       RegStorage arg1, bool safepoint_pc) {
295   RegStorage r_tgt = CallHelperSetup(trampoline);
296   CopyToArgumentRegs(arg0, arg1);
297   ClobberCallerSave();
298   CallHelper(r_tgt, trampoline, safepoint_pc);
299 }
300 
CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline,RegStorage arg0,RegStorage arg1,int arg2,bool safepoint_pc)301 void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
302                                          RegStorage arg1, int arg2, bool safepoint_pc) {
303   RegStorage r_tgt = CallHelperSetup(trampoline);
304   CopyToArgumentRegs(arg0, arg1);
305   LoadConstant(TargetReg(kArg2, kNotWide), arg2);
306   ClobberCallerSave();
307   CallHelper(r_tgt, trampoline, safepoint_pc);
308 }
309 
CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg2,bool safepoint_pc)310 void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0,
311                                                     RegLocation arg2, bool safepoint_pc) {
312   RegStorage r_tgt = CallHelperSetup(trampoline);
313   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
314   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
315   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
316   ClobberCallerSave();
317   CallHelper(r_tgt, trampoline, safepoint_pc);
318 }
319 
CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline,int arg0,int arg2,bool safepoint_pc)320 void Mir2Lir::CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2,
321                                             bool safepoint_pc) {
322   RegStorage r_tgt = CallHelperSetup(trampoline);
323   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
324   LoadConstant(TargetReg(kArg2, kNotWide), arg2);
325   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
326   ClobberCallerSave();
327   CallHelper(r_tgt, trampoline, safepoint_pc);
328 }
329 
CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)330 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
331                                                          RegLocation arg1,
332                                                          RegLocation arg2, bool safepoint_pc) {
333   RegStorage r_tgt = CallHelperSetup(trampoline);
334   DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U);  // The static_cast works around an
335                                                         // instantiation bug in GCC.
336   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
337   if (arg2.wide == 0) {
338     LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
339   } else {
340     LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
341   }
342   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
343   ClobberCallerSave();
344   CallHelper(r_tgt, trampoline, safepoint_pc);
345 }
346 
CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)347 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
348     QuickEntrypointEnum trampoline,
349     RegLocation arg0,
350     RegLocation arg1,
351     RegLocation arg2,
352     bool safepoint_pc) {
353   RegStorage r_tgt = CallHelperSetup(trampoline);
354   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
355   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
356   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
357   ClobberCallerSave();
358   CallHelper(r_tgt, trampoline, safepoint_pc);
359 }
360 
361 /*
362  * If there are any ins passed in registers that have not been promoted
363  * to a callee-save register, flush them to the frame.  Perform initial
364  * assignment of promoted arguments.
365  *
366  * ArgLocs is an array of location records describing the incoming arguments
367  * with one location record per word of argument.
368  */
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)369 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
370   /*
371    * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
372    * It will attempt to keep kArg0 live (or copy it to home location
373    * if promoted).
374    */
375   RegLocation rl_src = rl_method;
376   rl_src.location = kLocPhysReg;
377   rl_src.reg = TargetReg(kArg0, kRef);
378   rl_src.home = false;
379   MarkLive(rl_src);
380   StoreValue(rl_method, rl_src);
381   // If Method* has been promoted, explicitly flush
382   if (rl_method.location == kLocPhysReg) {
383     StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
384   }
385 
386   if (cu_->num_ins == 0) {
387     return;
388   }
389 
390   int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
391   /*
392    * Copy incoming arguments to their proper home locations.
393    * NOTE: an older version of dx had an issue in which
394    * it would reuse static method argument registers.
395    * This could result in the same Dalvik virtual register
396    * being promoted to both core and fp regs. To account for this,
397    * we only copy to the corresponding promoted physical register
398    * if it matches the type of the SSA name for the incoming
399    * argument.  It is also possible that long and double arguments
400    * end up half-promoted.  In those cases, we must flush the promoted
401    * half to memory as well.
402    */
403   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
404   for (int i = 0; i < cu_->num_ins; i++) {
405     PromotionMap* v_map = &promotion_map_[start_vreg + i];
406     RegStorage reg = GetArgMappingToPhysicalReg(i);
407 
408     if (reg.Valid()) {
409       // If arriving in register
410       bool need_flush = true;
411       RegLocation* t_loc = &ArgLocs[i];
412       if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
413         OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
414         need_flush = false;
415       } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
416         OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
417         need_flush = false;
418       } else {
419         need_flush = true;
420       }
421 
422       // For wide args, force flush if not fully promoted
423       if (t_loc->wide) {
424         PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
425         // Is only half promoted?
426         need_flush |= (p_map->core_location != v_map->core_location) ||
427             (p_map->fp_location != v_map->fp_location);
428         if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
429           /*
430            * In Arm, a double is represented as a pair of consecutive single float
431            * registers starting at an even number.  It's possible that both Dalvik vRegs
432            * representing the incoming double were independently promoted as singles - but
433            * not in a form usable as a double.  If so, we need to flush - even though the
434            * incoming arg appears fully in register.  At this point in the code, both
435            * halves of the double are promoted.  Make sure they are in a usable form.
436            */
437           int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
438           int low_reg = promotion_map_[lowreg_index].fp_reg;
439           int high_reg = promotion_map_[lowreg_index + 1].fp_reg;
440           if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
441             need_flush = true;
442           }
443         }
444       }
445       if (need_flush) {
446         Store32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg);
447       }
448     } else {
449       // If arriving in frame & promoted
450       if (v_map->core_location == kLocPhysReg) {
451         Load32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i),
452                    RegStorage::Solo32(v_map->core_reg));
453       }
454       if (v_map->fp_location == kLocPhysReg) {
455         Load32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i),
456                    RegStorage::Solo32(v_map->fp_reg));
457       }
458     }
459   }
460 }
461 
CommonCallCodeLoadThisIntoArg1(const CallInfo * info,Mir2Lir * cg)462 static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
463   RegLocation rl_arg = info->args[0];
464   cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
465 }
466 
CommonCallCodeLoadClassIntoArg0(const CallInfo * info,Mir2Lir * cg)467 static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
468   cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
469   // get this->klass_ [use kArg1, set kArg0]
470   cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
471                   cg->TargetReg(kArg0, kRef),
472                   kNotVolatile);
473   cg->MarkPossibleNullPointerException(info->opt_flags);
474 }
475 
CommonCallCodeLoadCodePointerIntoInvokeTgt(const CallInfo * info,const RegStorage * alt_from,const CompilationUnit * cu,Mir2Lir * cg)476 static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const CallInfo* info,
477                                                        const RegStorage* alt_from,
478                                                        const CompilationUnit* cu, Mir2Lir* cg) {
479   if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
480     int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
481         InstructionSetPointerSize(cu->instruction_set)).Int32Value();
482     // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
483     cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset,
484                      cg->TargetPtrReg(kInvokeTgt));
485     return true;
486   }
487   return false;
488 }
489 
490 /*
491  * Bit of a hack here - in the absence of a real scheduling pass,
492  * emit the next instruction in static & direct invoke sequences.
493  */
NextSDCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t direct_code,uintptr_t direct_method,InvokeType type)494 static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
495                           int state, const MethodReference& target_method,
496                           uint32_t unused,
497                           uintptr_t direct_code, uintptr_t direct_method,
498                           InvokeType type) {
499   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
500   if (direct_code != 0 && direct_method != 0) {
501     switch (state) {
502     case 0:  // Get the current Method* [sets kArg0]
503       if (direct_code != static_cast<uintptr_t>(-1)) {
504         if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
505           cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
506         }
507       } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
508         cg->LoadCodeAddress(target_method, type, kInvokeTgt);
509       }
510       if (direct_method != static_cast<uintptr_t>(-1)) {
511         cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
512       } else {
513         cg->LoadMethodAddress(target_method, type, kArg0);
514       }
515       break;
516     default:
517       return -1;
518     }
519   } else {
520     RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
521     switch (state) {
522     case 0:  // Get the current Method* [sets kArg0]
523       // TUNING: we can save a reg copy if Method* has been promoted.
524       cg->LoadCurrMethodDirect(arg0_ref);
525       break;
526     case 1:  // Get method->dex_cache_resolved_methods_
527       cg->LoadRefDisp(arg0_ref,
528                       mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
529                       arg0_ref,
530                       kNotVolatile);
531       // Set up direct code if known.
532       if (direct_code != 0) {
533         if (direct_code != static_cast<uintptr_t>(-1)) {
534           cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
535         } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
536           CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
537           cg->LoadCodeAddress(target_method, type, kInvokeTgt);
538         }
539       }
540       break;
541     case 2:  // Grab target method*
542       CHECK_EQ(cu->dex_file, target_method.dex_file);
543       cg->LoadRefDisp(arg0_ref,
544                       ObjArray::OffsetOfElement(target_method.dex_method_index).Int32Value(),
545                       arg0_ref,
546                       kNotVolatile);
547       break;
548     case 3:  // Grab the code from the method*
549       if (direct_code == 0) {
550         if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, &arg0_ref, cu, cg)) {
551           break;                                    // kInvokeTgt := arg0_ref->entrypoint
552         }
553       } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
554         break;
555       }
556       // Intentional fallthrough for x86
557     default:
558       return -1;
559     }
560   }
561   return state + 1;
562 }
563 
564 /*
565  * Bit of a hack here - in the absence of a real scheduling pass,
566  * emit the next instruction in a virtual invoke sequence.
567  * We can use kLr as a temp prior to target address loading
568  * Note also that we'll load the first argument ("this") into
569  * kArg1 here rather than the standard LoadArgRegs.
570  */
NextVCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)571 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
572                          int state, const MethodReference& target_method,
573                          uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
574                          InvokeType unused3) {
575   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
576   /*
577    * This is the fast path in which the target virtual method is
578    * fully resolved at compile time.
579    */
580   switch (state) {
581     case 0:
582       CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
583       break;
584     case 1:
585       CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
586                                                   // Includes a null-check.
587       break;
588     case 2: {
589       // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
590       int32_t offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
591           method_idx * sizeof(mirror::Class::VTableEntry);
592       // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
593       cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
594       break;
595     }
596     case 3:
597       if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, nullptr, cu, cg)) {
598         break;                                    // kInvokeTgt := kArg0->entrypoint
599       }
600       // Intentional fallthrough for X86
601     default:
602       return -1;
603   }
604   return state + 1;
605 }
606 
607 /*
608  * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
609  * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
610  * more than one interface method map to the same index. Note also that we'll load the first
611  * argument ("this") into kArg1 here rather than the standard LoadArgRegs.
612  */
NextInterfaceCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t direct_method,InvokeType unused2)613 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
614                                  const MethodReference& target_method,
615                                  uint32_t method_idx, uintptr_t unused,
616                                  uintptr_t direct_method, InvokeType unused2) {
617   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
618 
619   switch (state) {
620     case 0:  // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
621       CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
622       cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
623       if (cu->instruction_set == kX86) {
624         cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
625       }
626       break;
627     case 1:
628       CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
629       break;
630     case 2:
631       CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
632                                                   // Includes a null-check.
633       break;
634     case 3: {  // Get target method [use kInvokeTgt, set kArg0]
635       int32_t offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
636           (method_idx % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
637       // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
638       cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
639       break;
640     }
641     case 4:
642       if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, nullptr, cu, cg)) {
643         break;                                    // kInvokeTgt := kArg0->entrypoint
644       }
645       // Intentional fallthrough for X86
646     default:
647       return -1;
648   }
649   return state + 1;
650 }
651 
NextInvokeInsnSP(CompilationUnit * cu,CallInfo * info,QuickEntrypointEnum trampoline,int state,const MethodReference & target_method,uint32_t method_idx)652 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
653                             QuickEntrypointEnum trampoline, int state,
654                             const MethodReference& target_method, uint32_t method_idx) {
655   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
656 
657 
658   /*
659    * This handles the case in which the base method is not fully
660    * resolved at compile time, we bail to a runtime helper.
661    */
662   if (state == 0) {
663     if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
664       // Load trampoline target
665       int32_t disp;
666       if (cu->target64) {
667         disp = GetThreadOffset<8>(trampoline).Int32Value();
668       } else {
669         disp = GetThreadOffset<4>(trampoline).Int32Value();
670       }
671       cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
672     }
673     // Load kArg0 with method index
674     CHECK_EQ(cu->dex_file, target_method.dex_file);
675     cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
676     return 1;
677   }
678   return -1;
679 }
680 
NextStaticCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)681 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
682                                 int state,
683                                 const MethodReference& target_method,
684                                 uint32_t unused, uintptr_t unused2,
685                                 uintptr_t unused3, InvokeType unused4) {
686   return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
687                           target_method, 0);
688 }
689 
NextDirectCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)690 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
691                                 const MethodReference& target_method,
692                                 uint32_t unused, uintptr_t unused2,
693                                 uintptr_t unused3, InvokeType unused4) {
694   return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
695                           target_method, 0);
696 }
697 
NextSuperCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)698 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
699                                const MethodReference& target_method,
700                                uint32_t unused, uintptr_t unused2,
701                                uintptr_t unused3, InvokeType unused4) {
702   return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
703                           target_method, 0);
704 }
705 
NextVCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)706 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
707                            const MethodReference& target_method,
708                            uint32_t unused, uintptr_t unused2,
709                            uintptr_t unused3, InvokeType unused4) {
710   return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
711                           target_method, 0);
712 }
713 
NextInterfaceCallInsnWithAccessCheck(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)714 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
715                                                 CallInfo* info, int state,
716                                                 const MethodReference& target_method,
717                                                 uint32_t unused, uintptr_t unused2,
718                                                 uintptr_t unused3, InvokeType unused4) {
719   return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
720                           target_method, 0);
721 }
722 
LoadArgRegs(CallInfo * info,int call_state,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)723 int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
724                          NextCallInsn next_call_insn,
725                          const MethodReference& target_method,
726                          uint32_t vtable_idx, uintptr_t direct_code,
727                          uintptr_t direct_method, InvokeType type, bool skip_this) {
728   int last_arg_reg = 3 - 1;
729   int arg_regs[3] = {TargetReg(kArg1, kNotWide).GetReg(), TargetReg(kArg2, kNotWide).GetReg(),
730                      TargetReg(kArg3, kNotWide).GetReg()};
731 
732   int next_reg = 0;
733   int next_arg = 0;
734   if (skip_this) {
735     next_reg++;
736     next_arg++;
737   }
738   for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
739     RegLocation rl_arg = info->args[next_arg++];
740     rl_arg = UpdateRawLoc(rl_arg);
741     if (rl_arg.wide && (next_reg <= last_arg_reg - 1)) {
742       RegStorage r_tmp(RegStorage::k64BitPair, arg_regs[next_reg], arg_regs[next_reg + 1]);
743       LoadValueDirectWideFixed(rl_arg, r_tmp);
744       next_reg++;
745       next_arg++;
746     } else {
747       if (rl_arg.wide) {
748         rl_arg = NarrowRegLoc(rl_arg);
749         rl_arg.is_const = false;
750       }
751       LoadValueDirectFixed(rl_arg, RegStorage::Solo32(arg_regs[next_reg]));
752     }
753     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
754                                 direct_code, direct_method, type);
755   }
756   return call_state;
757 }
758 
759 /*
760  * Load up to 5 arguments, the first three of which will be in
761  * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
762  * and as part of the load sequence, it must be replaced with
763  * the target method pointer.  Note, this may also be called
764  * for "range" variants if the number of arguments is 5 or fewer.
765  */
GenDalvikArgsNoRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)766 int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
767                                   int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
768                                   const MethodReference& target_method,
769                                   uint32_t vtable_idx, uintptr_t direct_code,
770                                   uintptr_t direct_method, InvokeType type, bool skip_this) {
771   RegLocation rl_arg;
772 
773   /* If no arguments, just return */
774   if (info->num_arg_words == 0)
775     return call_state;
776 
777   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
778                               direct_code, direct_method, type);
779 
780   DCHECK_LE(info->num_arg_words, 5);
781   if (info->num_arg_words > 3) {
782     int32_t next_use = 3;
783     // Detect special case of wide arg spanning arg3/arg4
784     RegLocation rl_use0 = info->args[0];
785     RegLocation rl_use1 = info->args[1];
786     RegLocation rl_use2 = info->args[2];
787     if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && rl_use2.wide) {
788       RegStorage reg;
789       // Wide spans, we need the 2nd half of uses[2].
790       rl_arg = UpdateLocWide(rl_use2);
791       if (rl_arg.location == kLocPhysReg) {
792         if (rl_arg.reg.IsPair()) {
793           reg = rl_arg.reg.GetHigh();
794         } else {
795           RegisterInfo* info = GetRegInfo(rl_arg.reg);
796           info = info->FindMatchingView(RegisterInfo::kHighSingleStorageMask);
797           if (info == nullptr) {
798             // NOTE: For hard float convention we won't split arguments across reg/mem.
799             UNIMPLEMENTED(FATAL) << "Needs hard float api.";
800           }
801           reg = info->GetReg();
802         }
803       } else {
804         // kArg2 & rArg3 can safely be used here
805         reg = TargetReg(kArg3, kNotWide);
806         {
807           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
808           Load32Disp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
809         }
810         call_state = next_call_insn(cu_, info, call_state, target_method,
811                                     vtable_idx, direct_code, direct_method, type);
812       }
813       {
814         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
815         Store32Disp(TargetPtrReg(kSp), (next_use + 1) * 4, reg);
816       }
817       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
818                                   direct_code, direct_method, type);
819       next_use++;
820     }
821     // Loop through the rest
822     while (next_use < info->num_arg_words) {
823       RegStorage arg_reg;
824       rl_arg = info->args[next_use];
825       rl_arg = UpdateRawLoc(rl_arg);
826       if (rl_arg.location == kLocPhysReg) {
827         arg_reg = rl_arg.reg;
828       } else {
829         arg_reg = TargetReg(kArg2, rl_arg.wide ? kWide : kNotWide);
830         if (rl_arg.wide) {
831           LoadValueDirectWideFixed(rl_arg, arg_reg);
832         } else {
833           LoadValueDirectFixed(rl_arg, arg_reg);
834         }
835         call_state = next_call_insn(cu_, info, call_state, target_method,
836                                     vtable_idx, direct_code, direct_method, type);
837       }
838       int outs_offset = (next_use + 1) * 4;
839       {
840         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
841         if (rl_arg.wide) {
842           StoreBaseDisp(TargetPtrReg(kSp), outs_offset, arg_reg, k64, kNotVolatile);
843           next_use += 2;
844         } else {
845           Store32Disp(TargetPtrReg(kSp), outs_offset, arg_reg);
846           next_use++;
847         }
848       }
849       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
850                                direct_code, direct_method, type);
851     }
852   }
853 
854   call_state = LoadArgRegs(info, call_state, next_call_insn,
855                            target_method, vtable_idx, direct_code, direct_method,
856                            type, skip_this);
857 
858   if (pcrLabel) {
859     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
860       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
861     } else {
862       *pcrLabel = nullptr;
863       if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
864           (info->opt_flags & MIR_IGNORE_NULL_CHECK)) {
865         return call_state;
866       }
867       // In lieu of generating a check for kArg1 being null, we need to
868       // perform a load when doing implicit checks.
869       GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
870     }
871   }
872   return call_state;
873 }
874 
875 // Default implementation of implicit null pointer check.
876 // Overridden by arch specific as necessary.
GenImplicitNullCheck(RegStorage reg,int opt_flags)877 void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
878   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
879     return;
880   }
881   RegStorage tmp = AllocTemp();
882   Load32Disp(reg, 0, tmp);
883   MarkPossibleNullPointerException(opt_flags);
884   FreeTemp(tmp);
885 }
886 
887 
888 /*
889  * May have 0+ arguments (also used for jumbo).  Note that
890  * source virtual registers may be in physical registers, so may
891  * need to be flushed to home location before copying.  This
892  * applies to arg3 and above (see below).
893  *
894  * Two general strategies:
895  *    If < 20 arguments
896  *       Pass args 3-18 using vldm/vstm block copy
897  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
898  *    If 20+ arguments
899  *       Pass args arg19+ using memcpy block copy
900  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
901  *
902  */
GenDalvikArgsRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)903 int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
904                                 LIR** pcrLabel, NextCallInsn next_call_insn,
905                                 const MethodReference& target_method,
906                                 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
907                                 InvokeType type, bool skip_this) {
908   // If we can treat it as non-range (Jumbo ops will use range form)
909   if (info->num_arg_words <= 5)
910     return GenDalvikArgsNoRange(info, call_state, pcrLabel,
911                                 next_call_insn, target_method, vtable_idx,
912                                 direct_code, direct_method, type, skip_this);
913   /*
914    * First load the non-register arguments.  Both forms expect all
915    * of the source arguments to be in their home frame location, so
916    * scan the s_reg names and flush any that have been promoted to
917    * frame backing storage.
918    */
919   // Scan the rest of the args - if in phys_reg flush to memory
920   for (int next_arg = 0; next_arg < info->num_arg_words;) {
921     RegLocation loc = info->args[next_arg];
922     if (loc.wide) {
923       loc = UpdateLocWide(loc);
924       if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
925         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
926         StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
927       }
928       next_arg += 2;
929     } else {
930       loc = UpdateLoc(loc);
931       if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
932         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
933         Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
934       }
935       next_arg++;
936     }
937   }
938 
939   // Logic below assumes that Method pointer is at offset zero from SP.
940   DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
941 
942   // The first 3 arguments are passed via registers.
943   // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either
944   // get size of uintptr_t or size of object reference according to model being used.
945   int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t));
946   int start_offset = SRegOffset(info->args[3].s_reg_low);
947   int regs_left_to_pass_via_stack = info->num_arg_words - 3;
948   DCHECK_GT(regs_left_to_pass_via_stack, 0);
949 
950   if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) {
951     // Use vldm/vstm pair using kArg3 as a temp
952     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
953                              direct_code, direct_method, type);
954     OpRegRegImm(kOpAdd, TargetReg(kArg3, kRef), TargetPtrReg(kSp), start_offset);
955     LIR* ld = nullptr;
956     {
957       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
958       ld = OpVldm(TargetReg(kArg3, kRef), regs_left_to_pass_via_stack);
959     }
960     // TUNING: loosen barrier
961     ld->u.m.def_mask = &kEncodeAll;
962     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
963                              direct_code, direct_method, type);
964     OpRegRegImm(kOpAdd, TargetReg(kArg3, kRef), TargetPtrReg(kSp), 4 /* Method* */ + (3 * 4));
965     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
966                              direct_code, direct_method, type);
967     LIR* st = nullptr;
968     {
969       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
970       st = OpVstm(TargetReg(kArg3, kRef), regs_left_to_pass_via_stack);
971     }
972     st->u.m.def_mask = &kEncodeAll;
973     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
974                              direct_code, direct_method, type);
975   } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
976     int current_src_offset = start_offset;
977     int current_dest_offset = outs_offset;
978 
979     // Only davik regs are accessed in this loop; no next_call_insn() calls.
980     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
981     while (regs_left_to_pass_via_stack > 0) {
982       // This is based on the knowledge that the stack itself is 16-byte aligned.
983       bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
984       bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
985       size_t bytes_to_move;
986 
987       /*
988        * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
989        * a 128-bit move because we won't get the chance to try to aligned. If there are more than
990        * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
991        * We do this because we could potentially do a smaller move to align.
992        */
993       if (regs_left_to_pass_via_stack == 4 ||
994           (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
995         // Moving 128-bits via xmm register.
996         bytes_to_move = sizeof(uint32_t) * 4;
997 
998         // Allocate a free xmm temp. Since we are working through the calling sequence,
999         // we expect to have an xmm temporary available.  AllocTempDouble will abort if
1000         // there are no free registers.
1001         RegStorage temp = AllocTempDouble();
1002 
1003         LIR* ld1 = nullptr;
1004         LIR* ld2 = nullptr;
1005         LIR* st1 = nullptr;
1006         LIR* st2 = nullptr;
1007 
1008         /*
1009          * The logic is similar for both loads and stores. If we have 16-byte alignment,
1010          * do an aligned move. If we have 8-byte alignment, then do the move in two
1011          * parts. This approach prevents possible cache line splits. Finally, fall back
1012          * to doing an unaligned move. In most cases we likely won't split the cache
1013          * line but we cannot prove it and thus take a conservative approach.
1014          */
1015         bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
1016         bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
1017 
1018         if (src_is_16b_aligned) {
1019           ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP);
1020         } else if (src_is_8b_aligned) {
1021           ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP);
1022           ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1),
1023                             kMovHi128FP);
1024         } else {
1025           ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP);
1026         }
1027 
1028         if (dest_is_16b_aligned) {
1029           st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP);
1030         } else if (dest_is_8b_aligned) {
1031           st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP);
1032           st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1),
1033                             temp, kMovHi128FP);
1034         } else {
1035           st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP);
1036         }
1037 
1038         // TODO If we could keep track of aliasing information for memory accesses that are wider
1039         // than 64-bit, we wouldn't need to set up a barrier.
1040         if (ld1 != nullptr) {
1041           if (ld2 != nullptr) {
1042             // For 64-bit load we can actually set up the aliasing information.
1043             AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
1044             AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true,
1045                                     true);
1046           } else {
1047             // Set barrier for 128-bit load.
1048             ld1->u.m.def_mask = &kEncodeAll;
1049           }
1050         }
1051         if (st1 != nullptr) {
1052           if (st2 != nullptr) {
1053             // For 64-bit store we can actually set up the aliasing information.
1054             AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
1055             AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false,
1056                                     true);
1057           } else {
1058             // Set barrier for 128-bit store.
1059             st1->u.m.def_mask = &kEncodeAll;
1060           }
1061         }
1062 
1063         // Free the temporary used for the data movement.
1064         FreeTemp(temp);
1065       } else {
1066         // Moving 32-bits via general purpose register.
1067         bytes_to_move = sizeof(uint32_t);
1068 
1069         // Instead of allocating a new temp, simply reuse one of the registers being used
1070         // for argument passing.
1071         RegStorage temp = TargetReg(kArg3, kNotWide);
1072 
1073         // Now load the argument VR and store to the outs.
1074         Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
1075         Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
1076       }
1077 
1078       current_src_offset += bytes_to_move;
1079       current_dest_offset += bytes_to_move;
1080       regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
1081     }
1082   } else {
1083     // Generate memcpy
1084     OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
1085     OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
1086     CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
1087                                (info->num_arg_words - 3) * 4, false);
1088   }
1089 
1090   call_state = LoadArgRegs(info, call_state, next_call_insn,
1091                            target_method, vtable_idx, direct_code, direct_method,
1092                            type, skip_this);
1093 
1094   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1095                            direct_code, direct_method, type);
1096   if (pcrLabel) {
1097     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
1098       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
1099     } else {
1100       *pcrLabel = nullptr;
1101       if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
1102           (info->opt_flags & MIR_IGNORE_NULL_CHECK)) {
1103         return call_state;
1104       }
1105       // In lieu of generating a check for kArg1 being null, we need to
1106       // perform a load when doing implicit checks.
1107       GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
1108     }
1109   }
1110   return call_state;
1111 }
1112 
InlineTarget(CallInfo * info)1113 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
1114   RegLocation res;
1115   if (info->result.location == kLocInvalid) {
1116     res = GetReturn(LocToRegClass(info->result));
1117   } else {
1118     res = info->result;
1119   }
1120   return res;
1121 }
1122 
InlineTargetWide(CallInfo * info)1123 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
1124   RegLocation res;
1125   if (info->result.location == kLocInvalid) {
1126     res = GetReturnWide(kCoreReg);
1127   } else {
1128     res = info->result;
1129   }
1130   return res;
1131 }
1132 
GenInlinedReferenceGetReferent(CallInfo * info)1133 bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
1134   if (cu_->instruction_set == kMips) {
1135     // TODO - add Mips implementation
1136     return false;
1137   }
1138 
1139   // the refrence class is stored in the image dex file which might not be the same as the cu's
1140   // dex file. Query the reference class for the image dex file then reset to starting dex file
1141   // in after loading class type.
1142   uint16_t type_idx = 0;
1143   const DexFile* ref_dex_file = nullptr;
1144   {
1145     ScopedObjectAccess soa(Thread::Current());
1146     type_idx = mirror::Reference::GetJavaLangRefReference()->GetDexTypeIndex();
1147     ref_dex_file = mirror::Reference::GetJavaLangRefReference()->GetDexCache()->GetDexFile();
1148   }
1149   CHECK(LIKELY(ref_dex_file != nullptr));
1150 
1151   // address is either static within the image file, or needs to be patched up after compilation.
1152   bool unused_type_initialized;
1153   bool use_direct_type_ptr;
1154   uintptr_t direct_type_ptr;
1155   bool is_finalizable;
1156   const DexFile* old_dex = cu_->dex_file;
1157   cu_->dex_file = ref_dex_file;
1158   RegStorage reg_class = TargetReg(kArg1, kRef);
1159   Clobber(reg_class);
1160   LockTemp(reg_class);
1161   if (!cu_->compiler_driver->CanEmbedTypeInCode(*ref_dex_file, type_idx, &unused_type_initialized,
1162                                                 &use_direct_type_ptr, &direct_type_ptr,
1163                                                 &is_finalizable) || is_finalizable) {
1164     cu_->dex_file = old_dex;
1165     // address is not known and post-compile patch is not possible, cannot insert intrinsic.
1166     return false;
1167   }
1168   if (use_direct_type_ptr) {
1169     LoadConstant(reg_class, direct_type_ptr);
1170   } else if (cu_->dex_file == old_dex) {
1171     // TODO: Bug 16656190 If cu_->dex_file != old_dex the patching could retrieve the wrong class
1172     // since the load class is indexed only by the type_idx. We should include which dex file a
1173     // class is from in the LoadClassType LIR.
1174     LoadClassType(type_idx, kArg1);
1175   } else {
1176     cu_->dex_file = old_dex;
1177     return false;
1178   }
1179   cu_->dex_file = old_dex;
1180 
1181   // get the offset for flags in reference class.
1182   uint32_t slow_path_flag_offset = 0;
1183   uint32_t disable_flag_offset = 0;
1184   {
1185     ScopedObjectAccess soa(Thread::Current());
1186     mirror::Class* reference_class = mirror::Reference::GetJavaLangRefReference();
1187     slow_path_flag_offset = reference_class->GetSlowPathFlagOffset().Uint32Value();
1188     disable_flag_offset = reference_class->GetDisableIntrinsicFlagOffset().Uint32Value();
1189   }
1190   CHECK(slow_path_flag_offset && disable_flag_offset &&
1191         (slow_path_flag_offset != disable_flag_offset));
1192 
1193   // intrinsic logic start.
1194   RegLocation rl_obj = info->args[0];
1195   rl_obj = LoadValue(rl_obj);
1196 
1197   RegStorage reg_slow_path = AllocTemp();
1198   RegStorage reg_disabled = AllocTemp();
1199   Load32Disp(reg_class, slow_path_flag_offset, reg_slow_path);
1200   Load32Disp(reg_class, disable_flag_offset, reg_disabled);
1201   FreeTemp(reg_class);
1202   LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
1203   FreeTemp(reg_disabled);
1204 
1205   // if slow path, jump to JNI path target
1206   LIR* slow_path_branch;
1207   if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
1208     // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
1209     slow_path_branch = OpCondBranch(kCondNe, nullptr);
1210   } else {
1211     // Generate compare and branch.
1212     slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
1213   }
1214   FreeTemp(reg_slow_path);
1215 
1216   // slow path not enabled, simply load the referent of the reference object
1217   RegLocation rl_dest = InlineTarget(info);
1218   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1219   GenNullCheck(rl_obj.reg, info->opt_flags);
1220   LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
1221       kNotVolatile);
1222   MarkPossibleNullPointerException(info->opt_flags);
1223   StoreValue(rl_dest, rl_result);
1224 
1225   LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
1226   AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
1227   ClobberCallerSave();  // We must clobber everything because slow path will return here
1228   return true;
1229 }
1230 
GenInlinedCharAt(CallInfo * info)1231 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
1232   if (cu_->instruction_set == kMips) {
1233     // TODO - add Mips implementation
1234     return false;
1235   }
1236   // Location of reference to data array
1237   int value_offset = mirror::String::ValueOffset().Int32Value();
1238   // Location of count
1239   int count_offset = mirror::String::CountOffset().Int32Value();
1240   // Starting offset within data array
1241   int offset_offset = mirror::String::OffsetOffset().Int32Value();
1242   // Start of char data with array_
1243   int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1244 
1245   RegLocation rl_obj = info->args[0];
1246   RegLocation rl_idx = info->args[1];
1247   rl_obj = LoadValue(rl_obj, kRefReg);
1248   rl_idx = LoadValue(rl_idx, kCoreReg);
1249   RegStorage reg_max;
1250   GenNullCheck(rl_obj.reg, info->opt_flags);
1251   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
1252   LIR* range_check_branch = nullptr;
1253   RegStorage reg_off;
1254   RegStorage reg_ptr;
1255   reg_off = AllocTemp();
1256   reg_ptr = AllocTempRef();
1257   if (range_check) {
1258     reg_max = AllocTemp();
1259     Load32Disp(rl_obj.reg, count_offset, reg_max);
1260     MarkPossibleNullPointerException(info->opt_flags);
1261   }
1262   Load32Disp(rl_obj.reg, offset_offset, reg_off);
1263   MarkPossibleNullPointerException(info->opt_flags);
1264   LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
1265   if (range_check) {
1266     // Set up a slow path to allow retry in case of bounds violation */
1267     OpRegReg(kOpCmp, rl_idx.reg, reg_max);
1268     FreeTemp(reg_max);
1269     range_check_branch = OpCondBranch(kCondUge, nullptr);
1270   }
1271   OpRegImm(kOpAdd, reg_ptr, data_offset);
1272   if (rl_idx.is_const) {
1273     OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
1274   } else {
1275     OpRegReg(kOpAdd, reg_off, rl_idx.reg);
1276   }
1277   FreeTemp(rl_obj.reg);
1278   if (rl_idx.location == kLocPhysReg) {
1279     FreeTemp(rl_idx.reg);
1280   }
1281   RegLocation rl_dest = InlineTarget(info);
1282   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1283   LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf);
1284   FreeTemp(reg_off);
1285   FreeTemp(reg_ptr);
1286   StoreValue(rl_dest, rl_result);
1287   if (range_check) {
1288     DCHECK(range_check_branch != nullptr);
1289     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
1290     AddIntrinsicSlowPath(info, range_check_branch);
1291   }
1292   return true;
1293 }
1294 
1295 // Generates an inlined String.is_empty or String.length.
GenInlinedStringIsEmptyOrLength(CallInfo * info,bool is_empty)1296 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
1297   if (cu_->instruction_set == kMips) {
1298     // TODO - add Mips implementation
1299     return false;
1300   }
1301   // dst = src.length();
1302   RegLocation rl_obj = info->args[0];
1303   rl_obj = LoadValue(rl_obj, kRefReg);
1304   RegLocation rl_dest = InlineTarget(info);
1305   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1306   GenNullCheck(rl_obj.reg, info->opt_flags);
1307   Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
1308   MarkPossibleNullPointerException(info->opt_flags);
1309   if (is_empty) {
1310     // dst = (dst == 0);
1311     if (cu_->instruction_set == kThumb2) {
1312       RegStorage t_reg = AllocTemp();
1313       OpRegReg(kOpNeg, t_reg, rl_result.reg);
1314       OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
1315     } else if (cu_->instruction_set == kArm64) {
1316       OpRegImm(kOpSub, rl_result.reg, 1);
1317       OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
1318     } else {
1319       DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
1320       OpRegImm(kOpSub, rl_result.reg, 1);
1321       OpRegImm(kOpLsr, rl_result.reg, 31);
1322     }
1323   }
1324   StoreValue(rl_dest, rl_result);
1325   return true;
1326 }
1327 
GenInlinedReverseBytes(CallInfo * info,OpSize size)1328 bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
1329   if (cu_->instruction_set == kMips) {
1330     // TODO - add Mips implementation.
1331     return false;
1332   }
1333   RegLocation rl_src_i = info->args[0];
1334   RegLocation rl_i = (size == k64) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
1335   RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1336   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1337   if (size == k64) {
1338     if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
1339       OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
1340       StoreValueWide(rl_dest, rl_result);
1341       return true;
1342     }
1343     RegStorage r_i_low = rl_i.reg.GetLow();
1344     if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1345       // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
1346       r_i_low = AllocTemp();
1347       OpRegCopy(r_i_low, rl_i.reg);
1348     }
1349     OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
1350     OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
1351     if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1352       FreeTemp(r_i_low);
1353     }
1354     StoreValueWide(rl_dest, rl_result);
1355   } else {
1356     DCHECK(size == k32 || size == kSignedHalf);
1357     OpKind op = (size == k32) ? kOpRev : kOpRevsh;
1358     OpRegReg(op, rl_result.reg, rl_i.reg);
1359     StoreValue(rl_dest, rl_result);
1360   }
1361   return true;
1362 }
1363 
GenInlinedAbsInt(CallInfo * info)1364 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
1365   if (cu_->instruction_set == kMips) {
1366     // TODO - add Mips implementation
1367     return false;
1368   }
1369   RegLocation rl_src = info->args[0];
1370   rl_src = LoadValue(rl_src, kCoreReg);
1371   RegLocation rl_dest = InlineTarget(info);
1372   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1373   RegStorage sign_reg = AllocTemp();
1374   // abs(x) = y<=x>>31, (x+y)^y.
1375   OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
1376   OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1377   OpRegReg(kOpXor, rl_result.reg, sign_reg);
1378   StoreValue(rl_dest, rl_result);
1379   return true;
1380 }
1381 
GenInlinedAbsLong(CallInfo * info)1382 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
1383   if (cu_->instruction_set == kMips) {
1384     // TODO - add Mips implementation
1385     return false;
1386   }
1387   RegLocation rl_src = info->args[0];
1388   rl_src = LoadValueWide(rl_src, kCoreReg);
1389   RegLocation rl_dest = InlineTargetWide(info);
1390   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1391 
1392   // If on x86 or if we would clobber a register needed later, just copy the source first.
1393   if (cu_->instruction_set != kX86_64 &&
1394       (cu_->instruction_set == kX86 ||
1395        rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
1396     OpRegCopyWide(rl_result.reg, rl_src.reg);
1397     if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
1398         rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
1399         rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
1400         rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
1401       // Reuse source registers to avoid running out of temps.
1402       FreeTemp(rl_src.reg);
1403     }
1404     rl_src = rl_result;
1405   }
1406 
1407   // abs(x) = y<=x>>31, (x+y)^y.
1408   RegStorage sign_reg;
1409   if (cu_->instruction_set == kX86_64) {
1410     sign_reg = AllocTempWide();
1411     OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
1412     OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1413     OpRegReg(kOpXor, rl_result.reg, sign_reg);
1414   } else {
1415     sign_reg = AllocTemp();
1416     OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
1417     OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
1418     OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
1419     OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
1420     OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
1421   }
1422   FreeTemp(sign_reg);
1423   StoreValueWide(rl_dest, rl_result);
1424   return true;
1425 }
1426 
GenInlinedReverseBits(CallInfo * info,OpSize size)1427 bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
1428   // Currently implemented only for ARM64
1429   return false;
1430 }
1431 
GenInlinedMinMaxFP(CallInfo * info,bool is_min,bool is_double)1432 bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
1433   // Currently implemented only for ARM64
1434   return false;
1435 }
1436 
GenInlinedCeil(CallInfo * info)1437 bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
1438   return false;
1439 }
1440 
GenInlinedFloor(CallInfo * info)1441 bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
1442   return false;
1443 }
1444 
GenInlinedRint(CallInfo * info)1445 bool Mir2Lir::GenInlinedRint(CallInfo* info) {
1446   return false;
1447 }
1448 
GenInlinedRound(CallInfo * info,bool is_double)1449 bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
1450   return false;
1451 }
1452 
GenInlinedFloatCvt(CallInfo * info)1453 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
1454   if (cu_->instruction_set == kMips) {
1455     // TODO - add Mips implementation
1456     return false;
1457   }
1458   RegLocation rl_src = info->args[0];
1459   RegLocation rl_dest = InlineTarget(info);
1460   StoreValue(rl_dest, rl_src);
1461   return true;
1462 }
1463 
GenInlinedDoubleCvt(CallInfo * info)1464 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
1465   if (cu_->instruction_set == kMips) {
1466     // TODO - add Mips implementation
1467     return false;
1468   }
1469   RegLocation rl_src = info->args[0];
1470   RegLocation rl_dest = InlineTargetWide(info);
1471   StoreValueWide(rl_dest, rl_src);
1472   return true;
1473 }
1474 
GenInlinedArrayCopyCharArray(CallInfo * info)1475 bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1476   return false;
1477 }
1478 
1479 
1480 /*
1481  * Fast String.indexOf(I) & (II).  Tests for simple case of char <= 0xFFFF,
1482  * otherwise bails to standard library code.
1483  */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1484 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1485   if (cu_->instruction_set == kMips) {
1486     // TODO - add Mips implementation
1487     return false;
1488   }
1489   if (cu_->instruction_set == kX86_64) {
1490     // TODO - add kX86_64 implementation
1491     return false;
1492   }
1493   RegLocation rl_obj = info->args[0];
1494   RegLocation rl_char = info->args[1];
1495   if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
1496     // Code point beyond 0xFFFF. Punt to the real String.indexOf().
1497     return false;
1498   }
1499 
1500   ClobberCallerSave();
1501   LockCallTemps();  // Using fixed registers
1502   RegStorage reg_ptr = TargetReg(kArg0, kRef);
1503   RegStorage reg_char = TargetReg(kArg1, kNotWide);
1504   RegStorage reg_start = TargetReg(kArg2, kNotWide);
1505 
1506   LoadValueDirectFixed(rl_obj, reg_ptr);
1507   LoadValueDirectFixed(rl_char, reg_char);
1508   if (zero_based) {
1509     LoadConstant(reg_start, 0);
1510   } else {
1511     RegLocation rl_start = info->args[2];     // 3rd arg only present in III flavor of IndexOf.
1512     LoadValueDirectFixed(rl_start, reg_start);
1513   }
1514   RegStorage r_tgt = LoadHelper(kQuickIndexOf);
1515   GenExplicitNullCheck(reg_ptr, info->opt_flags);
1516   LIR* high_code_point_branch =
1517       rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
1518   // NOTE: not a safepoint
1519   OpReg(kOpBlx, r_tgt);
1520   if (!rl_char.is_const) {
1521     // Add the slow path for code points beyond 0xFFFF.
1522     DCHECK(high_code_point_branch != nullptr);
1523     LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
1524     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1525     AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
1526     ClobberCallerSave();  // We must clobber everything because slow path will return here
1527   } else {
1528     DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
1529     DCHECK(high_code_point_branch == nullptr);
1530   }
1531   RegLocation rl_return = GetReturn(kCoreReg);
1532   RegLocation rl_dest = InlineTarget(info);
1533   StoreValue(rl_dest, rl_return);
1534   return true;
1535 }
1536 
1537 /* Fast string.compareTo(Ljava/lang/string;)I. */
GenInlinedStringCompareTo(CallInfo * info)1538 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
1539   if (cu_->instruction_set == kMips) {
1540     // TODO - add Mips implementation
1541     return false;
1542   }
1543   ClobberCallerSave();
1544   LockCallTemps();  // Using fixed registers
1545   RegStorage reg_this = TargetReg(kArg0, kRef);
1546   RegStorage reg_cmp = TargetReg(kArg1, kRef);
1547 
1548   RegLocation rl_this = info->args[0];
1549   RegLocation rl_cmp = info->args[1];
1550   LoadValueDirectFixed(rl_this, reg_this);
1551   LoadValueDirectFixed(rl_cmp, reg_cmp);
1552   RegStorage r_tgt;
1553   if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1554     r_tgt = LoadHelper(kQuickStringCompareTo);
1555   } else {
1556     r_tgt = RegStorage::InvalidReg();
1557   }
1558   GenExplicitNullCheck(reg_this, info->opt_flags);
1559   info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1560   // TUNING: check if rl_cmp.s_reg_low is already null checked
1561   LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
1562   AddIntrinsicSlowPath(info, cmp_null_check_branch);
1563   // NOTE: not a safepoint
1564   CallHelper(r_tgt, kQuickStringCompareTo, false, true);
1565   RegLocation rl_return = GetReturn(kCoreReg);
1566   RegLocation rl_dest = InlineTarget(info);
1567   StoreValue(rl_dest, rl_return);
1568   return true;
1569 }
1570 
GenInlinedCurrentThread(CallInfo * info)1571 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1572   RegLocation rl_dest = InlineTarget(info);
1573 
1574   // Early exit if the result is unused.
1575   if (rl_dest.orig_sreg < 0) {
1576     return true;
1577   }
1578 
1579   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1580 
1581   switch (cu_->instruction_set) {
1582     case kArm:
1583       // Fall-through.
1584     case kThumb2:
1585       // Fall-through.
1586     case kMips:
1587       Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
1588       break;
1589 
1590     case kArm64:
1591       LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
1592                   kNotVolatile);
1593       break;
1594 
1595     default:
1596       LOG(FATAL) << "Unexpected isa " << cu_->instruction_set;
1597   }
1598   StoreValue(rl_dest, rl_result);
1599   return true;
1600 }
1601 
GenInlinedUnsafeGet(CallInfo * info,bool is_long,bool is_volatile)1602 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1603                                   bool is_long, bool is_volatile) {
1604   if (cu_->instruction_set == kMips) {
1605     // TODO - add Mips implementation
1606     return false;
1607   }
1608   // Unused - RegLocation rl_src_unsafe = info->args[0];
1609   RegLocation rl_src_obj = info->args[1];  // Object
1610   RegLocation rl_src_offset = info->args[2];  // long low
1611   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
1612   RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1613 
1614   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1615   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1616   RegLocation rl_result = EvalLoc(rl_dest, LocToRegClass(rl_dest), true);
1617   if (is_long) {
1618     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1619         || cu_->instruction_set == kArm64) {
1620       LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
1621     } else {
1622       RegStorage rl_temp_offset = AllocTemp();
1623       OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1624       LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
1625       FreeTemp(rl_temp_offset);
1626     }
1627   } else {
1628     if (rl_result.ref) {
1629       LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
1630     } else {
1631       LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
1632     }
1633   }
1634 
1635   if (is_volatile) {
1636     GenMemBarrier(kLoadAny);
1637   }
1638 
1639   if (is_long) {
1640     StoreValueWide(rl_dest, rl_result);
1641   } else {
1642     StoreValue(rl_dest, rl_result);
1643   }
1644   return true;
1645 }
1646 
GenInlinedUnsafePut(CallInfo * info,bool is_long,bool is_object,bool is_volatile,bool is_ordered)1647 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1648                                   bool is_object, bool is_volatile, bool is_ordered) {
1649   if (cu_->instruction_set == kMips) {
1650     // TODO - add Mips implementation
1651     return false;
1652   }
1653   // Unused - RegLocation rl_src_unsafe = info->args[0];
1654   RegLocation rl_src_obj = info->args[1];  // Object
1655   RegLocation rl_src_offset = info->args[2];  // long low
1656   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
1657   RegLocation rl_src_value = info->args[4];  // value to store
1658   if (is_volatile || is_ordered) {
1659     GenMemBarrier(kAnyStore);
1660   }
1661   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1662   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1663   RegLocation rl_value;
1664   if (is_long) {
1665     rl_value = LoadValueWide(rl_src_value, kCoreReg);
1666     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1667         || cu_->instruction_set == kArm64) {
1668       StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
1669     } else {
1670       RegStorage rl_temp_offset = AllocTemp();
1671       OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1672       StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
1673       FreeTemp(rl_temp_offset);
1674     }
1675   } else {
1676     rl_value = LoadValue(rl_src_value);
1677     if (rl_value.ref) {
1678       StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
1679     } else {
1680       StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
1681     }
1682   }
1683 
1684   // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
1685   FreeTemp(rl_offset.reg);
1686 
1687   if (is_volatile) {
1688     // Prevent reordering with a subsequent volatile load.
1689     // May also be needed to address store atomicity issues.
1690     GenMemBarrier(kAnyAny);
1691   }
1692   if (is_object) {
1693     MarkGCCard(rl_value.reg, rl_object.reg);
1694   }
1695   return true;
1696 }
1697 
GenInvoke(CallInfo * info)1698 void Mir2Lir::GenInvoke(CallInfo* info) {
1699   if ((info->opt_flags & MIR_INLINED) != 0) {
1700     // Already inlined but we may still need the null check.
1701     if (info->type != kStatic &&
1702         ((cu_->disable_opt & (1 << kNullCheckElimination)) != 0 ||
1703          (info->opt_flags & MIR_IGNORE_NULL_CHECK) == 0))  {
1704       RegLocation rl_obj = LoadValue(info->args[0], kRefReg);
1705       GenNullCheck(rl_obj.reg);
1706     }
1707     return;
1708   }
1709   DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1710   if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1711       ->GenIntrinsic(this, info)) {
1712     return;
1713   }
1714   GenInvokeNoInline(info);
1715 }
1716 
GenInvokeNoInlineCall(Mir2Lir * mir_to_lir,InvokeType type)1717 static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) {
1718   QuickEntrypointEnum trampoline;
1719   switch (type) {
1720     case kInterface:
1721       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
1722       break;
1723     case kDirect:
1724       trampoline = kQuickInvokeDirectTrampolineWithAccessCheck;
1725       break;
1726     case kStatic:
1727       trampoline = kQuickInvokeStaticTrampolineWithAccessCheck;
1728       break;
1729     case kSuper:
1730       trampoline = kQuickInvokeSuperTrampolineWithAccessCheck;
1731       break;
1732     case kVirtual:
1733       trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck;
1734       break;
1735     default:
1736       LOG(FATAL) << "Unexpected invoke type";
1737       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
1738   }
1739   return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline);
1740 }
1741 
GenInvokeNoInline(CallInfo * info)1742 void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
1743   int call_state = 0;
1744   LIR* null_ck;
1745   LIR** p_null_ck = NULL;
1746   NextCallInsn next_call_insn;
1747   FlushAllRegs();  /* Everything to home location */
1748   // Explicit register usage
1749   LockCallTemps();
1750 
1751   const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
1752   cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
1753   BeginInvoke(info);
1754   InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
1755   info->type = static_cast<InvokeType>(method_info.GetSharpType());
1756   bool fast_path = method_info.FastPath();
1757   bool skip_this;
1758   if (info->type == kInterface) {
1759     next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
1760     skip_this = fast_path;
1761   } else if (info->type == kDirect) {
1762     if (fast_path) {
1763       p_null_ck = &null_ck;
1764     }
1765     next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
1766     skip_this = false;
1767   } else if (info->type == kStatic) {
1768     next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
1769     skip_this = false;
1770   } else if (info->type == kSuper) {
1771     DCHECK(!fast_path);  // Fast path is a direct call.
1772     next_call_insn = NextSuperCallInsnSP;
1773     skip_this = false;
1774   } else {
1775     DCHECK_EQ(info->type, kVirtual);
1776     next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1777     skip_this = fast_path;
1778   }
1779   MethodReference target_method = method_info.GetTargetMethod();
1780   if (!info->is_range) {
1781     call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
1782                                       next_call_insn, target_method, method_info.VTableIndex(),
1783                                       method_info.DirectCode(), method_info.DirectMethod(),
1784                                       original_type, skip_this);
1785   } else {
1786     call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
1787                                     next_call_insn, target_method, method_info.VTableIndex(),
1788                                     method_info.DirectCode(), method_info.DirectMethod(),
1789                                     original_type, skip_this);
1790   }
1791   // Finish up any of the call sequence not interleaved in arg loading
1792   while (call_state >= 0) {
1793     call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
1794                                 method_info.DirectCode(), method_info.DirectMethod(), original_type);
1795   }
1796   LIR* call_inst;
1797   if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1798     call_inst = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
1799   } else {
1800     if (fast_path) {
1801       if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
1802         // We can have the linker fixup a call relative.
1803         call_inst =
1804           reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup(target_method, info->type);
1805       } else {
1806         int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
1807             InstructionSetPointerSize(cu_->instruction_set)).Int32Value();
1808         call_inst = OpMem(kOpBlx, TargetReg(kArg0, kRef), offset);
1809       }
1810     } else {
1811       call_inst = GenInvokeNoInlineCall(this, info->type);
1812     }
1813   }
1814   EndInvoke(info);
1815   MarkSafepointPC(call_inst);
1816 
1817   FreeCallTemps();
1818   if (info->result.location != kLocInvalid) {
1819     // We have a following MOVE_RESULT - do it now.
1820     if (info->result.wide) {
1821       RegLocation ret_loc = GetReturnWide(LocToRegClass(info->result));
1822       StoreValueWide(info->result, ret_loc);
1823     } else {
1824       RegLocation ret_loc = GetReturn(LocToRegClass(info->result));
1825       StoreValue(info->result, ret_loc);
1826     }
1827   }
1828 }
1829 
1830 }  // namespace art
1831