1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "dex/compiler_ir.h"
18 #include "dex/frontend.h"
19 #include "dex/quick/dex_file_method_inliner.h"
20 #include "dex/quick/dex_file_to_method_inliner_map.h"
21 #include "dex_file-inl.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "invoke_type.h"
24 #include "mirror/array.h"
25 #include "mirror/class-inl.h"
26 #include "mirror/dex_cache.h"
27 #include "mirror/object_array-inl.h"
28 #include "mirror/reference-inl.h"
29 #include "mirror/string.h"
30 #include "mir_to_lir-inl.h"
31 #include "scoped_thread_state_change.h"
32 #include "x86/codegen_x86.h"
33
34 namespace art {
35
36 // Shortcuts to repeatedly used long types.
37 typedef mirror::ObjectArray<mirror::Object> ObjArray;
38
39 /*
40 * This source files contains "gen" codegen routines that should
41 * be applicable to most targets. Only mid-level support utilities
42 * and "op" calls may be used here.
43 */
44
AddIntrinsicSlowPath(CallInfo * info,LIR * branch,LIR * resume)45 void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
46 class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
47 public:
48 IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info, LIR* branch, LIR* resume = nullptr)
49 : LIRSlowPath(m2l, info->offset, branch, resume), info_(info) {
50 }
51
52 void Compile() {
53 m2l_->ResetRegPool();
54 m2l_->ResetDefTracking();
55 GenerateTargetLabel(kPseudoIntrinsicRetry);
56 // NOTE: GenInvokeNoInline() handles MarkSafepointPC.
57 m2l_->GenInvokeNoInline(info_);
58 if (cont_ != nullptr) {
59 m2l_->OpUnconditionalBranch(cont_);
60 }
61 }
62
63 private:
64 CallInfo* const info_;
65 };
66
67 AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
68 }
69
70 /*
71 * To save scheduling time, helper calls are broken into two parts: generation of
72 * the helper target address, and the actual call to the helper. Because x86
73 * has a memory call operation, part 1 is a NOP for x86. For other targets,
74 * load arguments between the two parts.
75 */
76 // template <size_t pointer_size>
CallHelperSetup(QuickEntrypointEnum trampoline)77 RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
78 if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
79 return RegStorage::InvalidReg();
80 } else {
81 return LoadHelper(trampoline);
82 }
83 }
84
CallHelper(RegStorage r_tgt,QuickEntrypointEnum trampoline,bool safepoint_pc,bool use_link)85 LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
86 bool use_link) {
87 LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
88
89 if (r_tgt.Valid()) {
90 FreeTemp(r_tgt);
91 }
92
93 if (safepoint_pc) {
94 MarkSafepointPC(call_inst);
95 }
96 return call_inst;
97 }
98
CallRuntimeHelper(QuickEntrypointEnum trampoline,bool safepoint_pc)99 void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
100 RegStorage r_tgt = CallHelperSetup(trampoline);
101 ClobberCallerSave();
102 CallHelper(r_tgt, trampoline, safepoint_pc);
103 }
104
CallRuntimeHelperImm(QuickEntrypointEnum trampoline,int arg0,bool safepoint_pc)105 void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
106 RegStorage r_tgt = CallHelperSetup(trampoline);
107 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
108 ClobberCallerSave();
109 CallHelper(r_tgt, trampoline, safepoint_pc);
110 }
111
CallRuntimeHelperReg(QuickEntrypointEnum trampoline,RegStorage arg0,bool safepoint_pc)112 void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
113 bool safepoint_pc) {
114 RegStorage r_tgt = CallHelperSetup(trampoline);
115 OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
116 ClobberCallerSave();
117 CallHelper(r_tgt, trampoline, safepoint_pc);
118 }
119
CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,bool safepoint_pc)120 void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
121 bool safepoint_pc) {
122 RegStorage r_tgt = CallHelperSetup(trampoline);
123 if (arg0.wide == 0) {
124 LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
125 } else {
126 LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
127 }
128 ClobberCallerSave();
129 CallHelper(r_tgt, trampoline, safepoint_pc);
130 }
131
CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline,int arg0,int arg1,bool safepoint_pc)132 void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
133 bool safepoint_pc) {
134 RegStorage r_tgt = CallHelperSetup(trampoline);
135 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
136 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
137 ClobberCallerSave();
138 CallHelper(r_tgt, trampoline, safepoint_pc);
139 }
140
CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,bool safepoint_pc)141 void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
142 RegLocation arg1, bool safepoint_pc) {
143 RegStorage r_tgt = CallHelperSetup(trampoline);
144 if (arg1.wide == 0) {
145 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
146 } else {
147 RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
148 LoadValueDirectWideFixed(arg1, r_tmp);
149 }
150 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
151 ClobberCallerSave();
152 CallHelper(r_tgt, trampoline, safepoint_pc);
153 }
154
CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline,RegLocation arg0,int arg1,bool safepoint_pc)155 void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
156 int arg1, bool safepoint_pc) {
157 RegStorage r_tgt = CallHelperSetup(trampoline);
158 DCHECK(!arg0.wide);
159 LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
160 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
161 ClobberCallerSave();
162 CallHelper(r_tgt, trampoline, safepoint_pc);
163 }
164
CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline,int arg0,RegStorage arg1,bool safepoint_pc)165 void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
166 bool safepoint_pc) {
167 RegStorage r_tgt = CallHelperSetup(trampoline);
168 OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
169 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
170 ClobberCallerSave();
171 CallHelper(r_tgt, trampoline, safepoint_pc);
172 }
173
CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline,RegStorage arg0,int arg1,bool safepoint_pc)174 void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
175 bool safepoint_pc) {
176 RegStorage r_tgt = CallHelperSetup(trampoline);
177 OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
178 LoadConstant(TargetReg(kArg1, kNotWide), arg1);
179 ClobberCallerSave();
180 CallHelper(r_tgt, trampoline, safepoint_pc);
181 }
182
CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline,int arg0,bool safepoint_pc)183 void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
184 bool safepoint_pc) {
185 RegStorage r_tgt = CallHelperSetup(trampoline);
186 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
187 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
188 ClobberCallerSave();
189 CallHelper(r_tgt, trampoline, safepoint_pc);
190 }
191
CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline,RegStorage arg0,bool safepoint_pc)192 void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
193 bool safepoint_pc) {
194 RegStorage r_tgt = CallHelperSetup(trampoline);
195 DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
196 RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
197 if (r_tmp.NotExactlyEquals(arg0)) {
198 OpRegCopy(r_tmp, arg0);
199 }
200 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
201 ClobberCallerSave();
202 CallHelper(r_tgt, trampoline, safepoint_pc);
203 }
204
CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline,RegStorage arg0,RegLocation arg2,bool safepoint_pc)205 void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0,
206 RegLocation arg2, bool safepoint_pc) {
207 RegStorage r_tgt = CallHelperSetup(trampoline);
208 DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
209 RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
210 if (r_tmp.NotExactlyEquals(arg0)) {
211 OpRegCopy(r_tmp, arg0);
212 }
213 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
214 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
215 ClobberCallerSave();
216 CallHelper(r_tgt, trampoline, safepoint_pc);
217 }
218
CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,bool safepoint_pc)219 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
220 RegLocation arg0, RegLocation arg1,
221 bool safepoint_pc) {
222 RegStorage r_tgt = CallHelperSetup(trampoline);
223 if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
224 RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
225
226 RegStorage arg1_reg;
227 if (arg1.fp == arg0.fp) {
228 arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
229 } else {
230 arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
231 }
232
233 if (arg0.wide == 0) {
234 LoadValueDirectFixed(arg0, arg0_reg);
235 } else {
236 LoadValueDirectWideFixed(arg0, arg0_reg);
237 }
238
239 if (arg1.wide == 0) {
240 LoadValueDirectFixed(arg1, arg1_reg);
241 } else {
242 LoadValueDirectWideFixed(arg1, arg1_reg);
243 }
244 } else {
245 DCHECK(!cu_->target64);
246 if (arg0.wide == 0) {
247 LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
248 if (arg1.wide == 0) {
249 if (cu_->instruction_set == kMips) {
250 LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg1, kNotWide));
251 } else {
252 LoadValueDirectFixed(arg1, TargetReg(kArg1, kNotWide));
253 }
254 } else {
255 if (cu_->instruction_set == kMips) {
256 LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
257 } else {
258 LoadValueDirectWideFixed(arg1, TargetReg(kArg1, kWide));
259 }
260 }
261 } else {
262 LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
263 if (arg1.wide == 0) {
264 LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
265 } else {
266 LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
267 }
268 }
269 }
270 ClobberCallerSave();
271 CallHelper(r_tgt, trampoline, safepoint_pc);
272 }
273
CopyToArgumentRegs(RegStorage arg0,RegStorage arg1)274 void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
275 WideKind arg0_kind = arg0.GetWideKind();
276 WideKind arg1_kind = arg1.GetWideKind();
277 if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
278 if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
279 // Swap kArg0 and kArg1 with kArg2 as temp.
280 OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
281 OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
282 OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
283 } else {
284 OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
285 OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
286 }
287 } else {
288 OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
289 OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
290 }
291 }
292
CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline,RegStorage arg0,RegStorage arg1,bool safepoint_pc)293 void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
294 RegStorage arg1, bool safepoint_pc) {
295 RegStorage r_tgt = CallHelperSetup(trampoline);
296 CopyToArgumentRegs(arg0, arg1);
297 ClobberCallerSave();
298 CallHelper(r_tgt, trampoline, safepoint_pc);
299 }
300
CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline,RegStorage arg0,RegStorage arg1,int arg2,bool safepoint_pc)301 void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
302 RegStorage arg1, int arg2, bool safepoint_pc) {
303 RegStorage r_tgt = CallHelperSetup(trampoline);
304 CopyToArgumentRegs(arg0, arg1);
305 LoadConstant(TargetReg(kArg2, kNotWide), arg2);
306 ClobberCallerSave();
307 CallHelper(r_tgt, trampoline, safepoint_pc);
308 }
309
CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg2,bool safepoint_pc)310 void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0,
311 RegLocation arg2, bool safepoint_pc) {
312 RegStorage r_tgt = CallHelperSetup(trampoline);
313 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
314 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
315 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
316 ClobberCallerSave();
317 CallHelper(r_tgt, trampoline, safepoint_pc);
318 }
319
CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline,int arg0,int arg2,bool safepoint_pc)320 void Mir2Lir::CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2,
321 bool safepoint_pc) {
322 RegStorage r_tgt = CallHelperSetup(trampoline);
323 LoadCurrMethodDirect(TargetReg(kArg1, kRef));
324 LoadConstant(TargetReg(kArg2, kNotWide), arg2);
325 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
326 ClobberCallerSave();
327 CallHelper(r_tgt, trampoline, safepoint_pc);
328 }
329
CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline,int arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)330 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
331 RegLocation arg1,
332 RegLocation arg2, bool safepoint_pc) {
333 RegStorage r_tgt = CallHelperSetup(trampoline);
334 DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U); // The static_cast works around an
335 // instantiation bug in GCC.
336 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
337 if (arg2.wide == 0) {
338 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
339 } else {
340 LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
341 }
342 LoadConstant(TargetReg(kArg0, kNotWide), arg0);
343 ClobberCallerSave();
344 CallHelper(r_tgt, trampoline, safepoint_pc);
345 }
346
CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,RegLocation arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)347 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
348 QuickEntrypointEnum trampoline,
349 RegLocation arg0,
350 RegLocation arg1,
351 RegLocation arg2,
352 bool safepoint_pc) {
353 RegStorage r_tgt = CallHelperSetup(trampoline);
354 LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
355 LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
356 LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
357 ClobberCallerSave();
358 CallHelper(r_tgt, trampoline, safepoint_pc);
359 }
360
361 /*
362 * If there are any ins passed in registers that have not been promoted
363 * to a callee-save register, flush them to the frame. Perform initial
364 * assignment of promoted arguments.
365 *
366 * ArgLocs is an array of location records describing the incoming arguments
367 * with one location record per word of argument.
368 */
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)369 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
370 /*
371 * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
372 * It will attempt to keep kArg0 live (or copy it to home location
373 * if promoted).
374 */
375 RegLocation rl_src = rl_method;
376 rl_src.location = kLocPhysReg;
377 rl_src.reg = TargetReg(kArg0, kRef);
378 rl_src.home = false;
379 MarkLive(rl_src);
380 StoreValue(rl_method, rl_src);
381 // If Method* has been promoted, explicitly flush
382 if (rl_method.location == kLocPhysReg) {
383 StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
384 }
385
386 if (cu_->num_ins == 0) {
387 return;
388 }
389
390 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
391 /*
392 * Copy incoming arguments to their proper home locations.
393 * NOTE: an older version of dx had an issue in which
394 * it would reuse static method argument registers.
395 * This could result in the same Dalvik virtual register
396 * being promoted to both core and fp regs. To account for this,
397 * we only copy to the corresponding promoted physical register
398 * if it matches the type of the SSA name for the incoming
399 * argument. It is also possible that long and double arguments
400 * end up half-promoted. In those cases, we must flush the promoted
401 * half to memory as well.
402 */
403 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
404 for (int i = 0; i < cu_->num_ins; i++) {
405 PromotionMap* v_map = &promotion_map_[start_vreg + i];
406 RegStorage reg = GetArgMappingToPhysicalReg(i);
407
408 if (reg.Valid()) {
409 // If arriving in register
410 bool need_flush = true;
411 RegLocation* t_loc = &ArgLocs[i];
412 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
413 OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
414 need_flush = false;
415 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
416 OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
417 need_flush = false;
418 } else {
419 need_flush = true;
420 }
421
422 // For wide args, force flush if not fully promoted
423 if (t_loc->wide) {
424 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
425 // Is only half promoted?
426 need_flush |= (p_map->core_location != v_map->core_location) ||
427 (p_map->fp_location != v_map->fp_location);
428 if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
429 /*
430 * In Arm, a double is represented as a pair of consecutive single float
431 * registers starting at an even number. It's possible that both Dalvik vRegs
432 * representing the incoming double were independently promoted as singles - but
433 * not in a form usable as a double. If so, we need to flush - even though the
434 * incoming arg appears fully in register. At this point in the code, both
435 * halves of the double are promoted. Make sure they are in a usable form.
436 */
437 int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
438 int low_reg = promotion_map_[lowreg_index].fp_reg;
439 int high_reg = promotion_map_[lowreg_index + 1].fp_reg;
440 if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
441 need_flush = true;
442 }
443 }
444 }
445 if (need_flush) {
446 Store32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg);
447 }
448 } else {
449 // If arriving in frame & promoted
450 if (v_map->core_location == kLocPhysReg) {
451 Load32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i),
452 RegStorage::Solo32(v_map->core_reg));
453 }
454 if (v_map->fp_location == kLocPhysReg) {
455 Load32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i),
456 RegStorage::Solo32(v_map->fp_reg));
457 }
458 }
459 }
460 }
461
CommonCallCodeLoadThisIntoArg1(const CallInfo * info,Mir2Lir * cg)462 static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
463 RegLocation rl_arg = info->args[0];
464 cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
465 }
466
CommonCallCodeLoadClassIntoArg0(const CallInfo * info,Mir2Lir * cg)467 static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
468 cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
469 // get this->klass_ [use kArg1, set kArg0]
470 cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
471 cg->TargetReg(kArg0, kRef),
472 kNotVolatile);
473 cg->MarkPossibleNullPointerException(info->opt_flags);
474 }
475
CommonCallCodeLoadCodePointerIntoInvokeTgt(const CallInfo * info,const RegStorage * alt_from,const CompilationUnit * cu,Mir2Lir * cg)476 static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const CallInfo* info,
477 const RegStorage* alt_from,
478 const CompilationUnit* cu, Mir2Lir* cg) {
479 if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
480 int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
481 InstructionSetPointerSize(cu->instruction_set)).Int32Value();
482 // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
483 cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset,
484 cg->TargetPtrReg(kInvokeTgt));
485 return true;
486 }
487 return false;
488 }
489
490 /*
491 * Bit of a hack here - in the absence of a real scheduling pass,
492 * emit the next instruction in static & direct invoke sequences.
493 */
NextSDCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t direct_code,uintptr_t direct_method,InvokeType type)494 static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
495 int state, const MethodReference& target_method,
496 uint32_t unused,
497 uintptr_t direct_code, uintptr_t direct_method,
498 InvokeType type) {
499 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
500 if (direct_code != 0 && direct_method != 0) {
501 switch (state) {
502 case 0: // Get the current Method* [sets kArg0]
503 if (direct_code != static_cast<uintptr_t>(-1)) {
504 if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
505 cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
506 }
507 } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
508 cg->LoadCodeAddress(target_method, type, kInvokeTgt);
509 }
510 if (direct_method != static_cast<uintptr_t>(-1)) {
511 cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
512 } else {
513 cg->LoadMethodAddress(target_method, type, kArg0);
514 }
515 break;
516 default:
517 return -1;
518 }
519 } else {
520 RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
521 switch (state) {
522 case 0: // Get the current Method* [sets kArg0]
523 // TUNING: we can save a reg copy if Method* has been promoted.
524 cg->LoadCurrMethodDirect(arg0_ref);
525 break;
526 case 1: // Get method->dex_cache_resolved_methods_
527 cg->LoadRefDisp(arg0_ref,
528 mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
529 arg0_ref,
530 kNotVolatile);
531 // Set up direct code if known.
532 if (direct_code != 0) {
533 if (direct_code != static_cast<uintptr_t>(-1)) {
534 cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
535 } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
536 CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
537 cg->LoadCodeAddress(target_method, type, kInvokeTgt);
538 }
539 }
540 break;
541 case 2: // Grab target method*
542 CHECK_EQ(cu->dex_file, target_method.dex_file);
543 cg->LoadRefDisp(arg0_ref,
544 ObjArray::OffsetOfElement(target_method.dex_method_index).Int32Value(),
545 arg0_ref,
546 kNotVolatile);
547 break;
548 case 3: // Grab the code from the method*
549 if (direct_code == 0) {
550 if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, &arg0_ref, cu, cg)) {
551 break; // kInvokeTgt := arg0_ref->entrypoint
552 }
553 } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
554 break;
555 }
556 // Intentional fallthrough for x86
557 default:
558 return -1;
559 }
560 }
561 return state + 1;
562 }
563
564 /*
565 * Bit of a hack here - in the absence of a real scheduling pass,
566 * emit the next instruction in a virtual invoke sequence.
567 * We can use kLr as a temp prior to target address loading
568 * Note also that we'll load the first argument ("this") into
569 * kArg1 here rather than the standard LoadArgRegs.
570 */
NextVCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)571 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
572 int state, const MethodReference& target_method,
573 uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
574 InvokeType unused3) {
575 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
576 /*
577 * This is the fast path in which the target virtual method is
578 * fully resolved at compile time.
579 */
580 switch (state) {
581 case 0:
582 CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this
583 break;
584 case 1:
585 CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class
586 // Includes a null-check.
587 break;
588 case 2: {
589 // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
590 int32_t offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
591 method_idx * sizeof(mirror::Class::VTableEntry);
592 // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
593 cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
594 break;
595 }
596 case 3:
597 if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, nullptr, cu, cg)) {
598 break; // kInvokeTgt := kArg0->entrypoint
599 }
600 // Intentional fallthrough for X86
601 default:
602 return -1;
603 }
604 return state + 1;
605 }
606
607 /*
608 * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
609 * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
610 * more than one interface method map to the same index. Note also that we'll load the first
611 * argument ("this") into kArg1 here rather than the standard LoadArgRegs.
612 */
NextInterfaceCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t direct_method,InvokeType unused2)613 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
614 const MethodReference& target_method,
615 uint32_t method_idx, uintptr_t unused,
616 uintptr_t direct_method, InvokeType unused2) {
617 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
618
619 switch (state) {
620 case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
621 CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
622 cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
623 if (cu->instruction_set == kX86) {
624 cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
625 }
626 break;
627 case 1:
628 CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this
629 break;
630 case 2:
631 CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class
632 // Includes a null-check.
633 break;
634 case 3: { // Get target method [use kInvokeTgt, set kArg0]
635 int32_t offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
636 (method_idx % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
637 // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
638 cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
639 break;
640 }
641 case 4:
642 if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, nullptr, cu, cg)) {
643 break; // kInvokeTgt := kArg0->entrypoint
644 }
645 // Intentional fallthrough for X86
646 default:
647 return -1;
648 }
649 return state + 1;
650 }
651
NextInvokeInsnSP(CompilationUnit * cu,CallInfo * info,QuickEntrypointEnum trampoline,int state,const MethodReference & target_method,uint32_t method_idx)652 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
653 QuickEntrypointEnum trampoline, int state,
654 const MethodReference& target_method, uint32_t method_idx) {
655 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
656
657
658 /*
659 * This handles the case in which the base method is not fully
660 * resolved at compile time, we bail to a runtime helper.
661 */
662 if (state == 0) {
663 if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
664 // Load trampoline target
665 int32_t disp;
666 if (cu->target64) {
667 disp = GetThreadOffset<8>(trampoline).Int32Value();
668 } else {
669 disp = GetThreadOffset<4>(trampoline).Int32Value();
670 }
671 cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
672 }
673 // Load kArg0 with method index
674 CHECK_EQ(cu->dex_file, target_method.dex_file);
675 cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
676 return 1;
677 }
678 return -1;
679 }
680
NextStaticCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)681 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
682 int state,
683 const MethodReference& target_method,
684 uint32_t unused, uintptr_t unused2,
685 uintptr_t unused3, InvokeType unused4) {
686 return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
687 target_method, 0);
688 }
689
NextDirectCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)690 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
691 const MethodReference& target_method,
692 uint32_t unused, uintptr_t unused2,
693 uintptr_t unused3, InvokeType unused4) {
694 return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
695 target_method, 0);
696 }
697
NextSuperCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)698 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
699 const MethodReference& target_method,
700 uint32_t unused, uintptr_t unused2,
701 uintptr_t unused3, InvokeType unused4) {
702 return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
703 target_method, 0);
704 }
705
NextVCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)706 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
707 const MethodReference& target_method,
708 uint32_t unused, uintptr_t unused2,
709 uintptr_t unused3, InvokeType unused4) {
710 return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
711 target_method, 0);
712 }
713
NextInterfaceCallInsnWithAccessCheck(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)714 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
715 CallInfo* info, int state,
716 const MethodReference& target_method,
717 uint32_t unused, uintptr_t unused2,
718 uintptr_t unused3, InvokeType unused4) {
719 return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
720 target_method, 0);
721 }
722
LoadArgRegs(CallInfo * info,int call_state,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)723 int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
724 NextCallInsn next_call_insn,
725 const MethodReference& target_method,
726 uint32_t vtable_idx, uintptr_t direct_code,
727 uintptr_t direct_method, InvokeType type, bool skip_this) {
728 int last_arg_reg = 3 - 1;
729 int arg_regs[3] = {TargetReg(kArg1, kNotWide).GetReg(), TargetReg(kArg2, kNotWide).GetReg(),
730 TargetReg(kArg3, kNotWide).GetReg()};
731
732 int next_reg = 0;
733 int next_arg = 0;
734 if (skip_this) {
735 next_reg++;
736 next_arg++;
737 }
738 for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
739 RegLocation rl_arg = info->args[next_arg++];
740 rl_arg = UpdateRawLoc(rl_arg);
741 if (rl_arg.wide && (next_reg <= last_arg_reg - 1)) {
742 RegStorage r_tmp(RegStorage::k64BitPair, arg_regs[next_reg], arg_regs[next_reg + 1]);
743 LoadValueDirectWideFixed(rl_arg, r_tmp);
744 next_reg++;
745 next_arg++;
746 } else {
747 if (rl_arg.wide) {
748 rl_arg = NarrowRegLoc(rl_arg);
749 rl_arg.is_const = false;
750 }
751 LoadValueDirectFixed(rl_arg, RegStorage::Solo32(arg_regs[next_reg]));
752 }
753 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
754 direct_code, direct_method, type);
755 }
756 return call_state;
757 }
758
759 /*
760 * Load up to 5 arguments, the first three of which will be in
761 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
762 * and as part of the load sequence, it must be replaced with
763 * the target method pointer. Note, this may also be called
764 * for "range" variants if the number of arguments is 5 or fewer.
765 */
GenDalvikArgsNoRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)766 int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
767 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
768 const MethodReference& target_method,
769 uint32_t vtable_idx, uintptr_t direct_code,
770 uintptr_t direct_method, InvokeType type, bool skip_this) {
771 RegLocation rl_arg;
772
773 /* If no arguments, just return */
774 if (info->num_arg_words == 0)
775 return call_state;
776
777 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
778 direct_code, direct_method, type);
779
780 DCHECK_LE(info->num_arg_words, 5);
781 if (info->num_arg_words > 3) {
782 int32_t next_use = 3;
783 // Detect special case of wide arg spanning arg3/arg4
784 RegLocation rl_use0 = info->args[0];
785 RegLocation rl_use1 = info->args[1];
786 RegLocation rl_use2 = info->args[2];
787 if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && rl_use2.wide) {
788 RegStorage reg;
789 // Wide spans, we need the 2nd half of uses[2].
790 rl_arg = UpdateLocWide(rl_use2);
791 if (rl_arg.location == kLocPhysReg) {
792 if (rl_arg.reg.IsPair()) {
793 reg = rl_arg.reg.GetHigh();
794 } else {
795 RegisterInfo* info = GetRegInfo(rl_arg.reg);
796 info = info->FindMatchingView(RegisterInfo::kHighSingleStorageMask);
797 if (info == nullptr) {
798 // NOTE: For hard float convention we won't split arguments across reg/mem.
799 UNIMPLEMENTED(FATAL) << "Needs hard float api.";
800 }
801 reg = info->GetReg();
802 }
803 } else {
804 // kArg2 & rArg3 can safely be used here
805 reg = TargetReg(kArg3, kNotWide);
806 {
807 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
808 Load32Disp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
809 }
810 call_state = next_call_insn(cu_, info, call_state, target_method,
811 vtable_idx, direct_code, direct_method, type);
812 }
813 {
814 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
815 Store32Disp(TargetPtrReg(kSp), (next_use + 1) * 4, reg);
816 }
817 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
818 direct_code, direct_method, type);
819 next_use++;
820 }
821 // Loop through the rest
822 while (next_use < info->num_arg_words) {
823 RegStorage arg_reg;
824 rl_arg = info->args[next_use];
825 rl_arg = UpdateRawLoc(rl_arg);
826 if (rl_arg.location == kLocPhysReg) {
827 arg_reg = rl_arg.reg;
828 } else {
829 arg_reg = TargetReg(kArg2, rl_arg.wide ? kWide : kNotWide);
830 if (rl_arg.wide) {
831 LoadValueDirectWideFixed(rl_arg, arg_reg);
832 } else {
833 LoadValueDirectFixed(rl_arg, arg_reg);
834 }
835 call_state = next_call_insn(cu_, info, call_state, target_method,
836 vtable_idx, direct_code, direct_method, type);
837 }
838 int outs_offset = (next_use + 1) * 4;
839 {
840 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
841 if (rl_arg.wide) {
842 StoreBaseDisp(TargetPtrReg(kSp), outs_offset, arg_reg, k64, kNotVolatile);
843 next_use += 2;
844 } else {
845 Store32Disp(TargetPtrReg(kSp), outs_offset, arg_reg);
846 next_use++;
847 }
848 }
849 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
850 direct_code, direct_method, type);
851 }
852 }
853
854 call_state = LoadArgRegs(info, call_state, next_call_insn,
855 target_method, vtable_idx, direct_code, direct_method,
856 type, skip_this);
857
858 if (pcrLabel) {
859 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
860 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
861 } else {
862 *pcrLabel = nullptr;
863 if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
864 (info->opt_flags & MIR_IGNORE_NULL_CHECK)) {
865 return call_state;
866 }
867 // In lieu of generating a check for kArg1 being null, we need to
868 // perform a load when doing implicit checks.
869 GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
870 }
871 }
872 return call_state;
873 }
874
875 // Default implementation of implicit null pointer check.
876 // Overridden by arch specific as necessary.
GenImplicitNullCheck(RegStorage reg,int opt_flags)877 void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
878 if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
879 return;
880 }
881 RegStorage tmp = AllocTemp();
882 Load32Disp(reg, 0, tmp);
883 MarkPossibleNullPointerException(opt_flags);
884 FreeTemp(tmp);
885 }
886
887
888 /*
889 * May have 0+ arguments (also used for jumbo). Note that
890 * source virtual registers may be in physical registers, so may
891 * need to be flushed to home location before copying. This
892 * applies to arg3 and above (see below).
893 *
894 * Two general strategies:
895 * If < 20 arguments
896 * Pass args 3-18 using vldm/vstm block copy
897 * Pass arg0, arg1 & arg2 in kArg1-kArg3
898 * If 20+ arguments
899 * Pass args arg19+ using memcpy block copy
900 * Pass arg0, arg1 & arg2 in kArg1-kArg3
901 *
902 */
GenDalvikArgsRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)903 int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
904 LIR** pcrLabel, NextCallInsn next_call_insn,
905 const MethodReference& target_method,
906 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
907 InvokeType type, bool skip_this) {
908 // If we can treat it as non-range (Jumbo ops will use range form)
909 if (info->num_arg_words <= 5)
910 return GenDalvikArgsNoRange(info, call_state, pcrLabel,
911 next_call_insn, target_method, vtable_idx,
912 direct_code, direct_method, type, skip_this);
913 /*
914 * First load the non-register arguments. Both forms expect all
915 * of the source arguments to be in their home frame location, so
916 * scan the s_reg names and flush any that have been promoted to
917 * frame backing storage.
918 */
919 // Scan the rest of the args - if in phys_reg flush to memory
920 for (int next_arg = 0; next_arg < info->num_arg_words;) {
921 RegLocation loc = info->args[next_arg];
922 if (loc.wide) {
923 loc = UpdateLocWide(loc);
924 if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
925 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
926 StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
927 }
928 next_arg += 2;
929 } else {
930 loc = UpdateLoc(loc);
931 if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
932 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
933 Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
934 }
935 next_arg++;
936 }
937 }
938
939 // Logic below assumes that Method pointer is at offset zero from SP.
940 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
941
942 // The first 3 arguments are passed via registers.
943 // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either
944 // get size of uintptr_t or size of object reference according to model being used.
945 int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t));
946 int start_offset = SRegOffset(info->args[3].s_reg_low);
947 int regs_left_to_pass_via_stack = info->num_arg_words - 3;
948 DCHECK_GT(regs_left_to_pass_via_stack, 0);
949
950 if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) {
951 // Use vldm/vstm pair using kArg3 as a temp
952 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
953 direct_code, direct_method, type);
954 OpRegRegImm(kOpAdd, TargetReg(kArg3, kRef), TargetPtrReg(kSp), start_offset);
955 LIR* ld = nullptr;
956 {
957 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
958 ld = OpVldm(TargetReg(kArg3, kRef), regs_left_to_pass_via_stack);
959 }
960 // TUNING: loosen barrier
961 ld->u.m.def_mask = &kEncodeAll;
962 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
963 direct_code, direct_method, type);
964 OpRegRegImm(kOpAdd, TargetReg(kArg3, kRef), TargetPtrReg(kSp), 4 /* Method* */ + (3 * 4));
965 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
966 direct_code, direct_method, type);
967 LIR* st = nullptr;
968 {
969 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
970 st = OpVstm(TargetReg(kArg3, kRef), regs_left_to_pass_via_stack);
971 }
972 st->u.m.def_mask = &kEncodeAll;
973 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
974 direct_code, direct_method, type);
975 } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
976 int current_src_offset = start_offset;
977 int current_dest_offset = outs_offset;
978
979 // Only davik regs are accessed in this loop; no next_call_insn() calls.
980 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
981 while (regs_left_to_pass_via_stack > 0) {
982 // This is based on the knowledge that the stack itself is 16-byte aligned.
983 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
984 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
985 size_t bytes_to_move;
986
987 /*
988 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
989 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
990 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
991 * We do this because we could potentially do a smaller move to align.
992 */
993 if (regs_left_to_pass_via_stack == 4 ||
994 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
995 // Moving 128-bits via xmm register.
996 bytes_to_move = sizeof(uint32_t) * 4;
997
998 // Allocate a free xmm temp. Since we are working through the calling sequence,
999 // we expect to have an xmm temporary available. AllocTempDouble will abort if
1000 // there are no free registers.
1001 RegStorage temp = AllocTempDouble();
1002
1003 LIR* ld1 = nullptr;
1004 LIR* ld2 = nullptr;
1005 LIR* st1 = nullptr;
1006 LIR* st2 = nullptr;
1007
1008 /*
1009 * The logic is similar for both loads and stores. If we have 16-byte alignment,
1010 * do an aligned move. If we have 8-byte alignment, then do the move in two
1011 * parts. This approach prevents possible cache line splits. Finally, fall back
1012 * to doing an unaligned move. In most cases we likely won't split the cache
1013 * line but we cannot prove it and thus take a conservative approach.
1014 */
1015 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
1016 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
1017
1018 if (src_is_16b_aligned) {
1019 ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP);
1020 } else if (src_is_8b_aligned) {
1021 ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP);
1022 ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1),
1023 kMovHi128FP);
1024 } else {
1025 ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP);
1026 }
1027
1028 if (dest_is_16b_aligned) {
1029 st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP);
1030 } else if (dest_is_8b_aligned) {
1031 st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP);
1032 st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1),
1033 temp, kMovHi128FP);
1034 } else {
1035 st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP);
1036 }
1037
1038 // TODO If we could keep track of aliasing information for memory accesses that are wider
1039 // than 64-bit, we wouldn't need to set up a barrier.
1040 if (ld1 != nullptr) {
1041 if (ld2 != nullptr) {
1042 // For 64-bit load we can actually set up the aliasing information.
1043 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
1044 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true,
1045 true);
1046 } else {
1047 // Set barrier for 128-bit load.
1048 ld1->u.m.def_mask = &kEncodeAll;
1049 }
1050 }
1051 if (st1 != nullptr) {
1052 if (st2 != nullptr) {
1053 // For 64-bit store we can actually set up the aliasing information.
1054 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
1055 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false,
1056 true);
1057 } else {
1058 // Set barrier for 128-bit store.
1059 st1->u.m.def_mask = &kEncodeAll;
1060 }
1061 }
1062
1063 // Free the temporary used for the data movement.
1064 FreeTemp(temp);
1065 } else {
1066 // Moving 32-bits via general purpose register.
1067 bytes_to_move = sizeof(uint32_t);
1068
1069 // Instead of allocating a new temp, simply reuse one of the registers being used
1070 // for argument passing.
1071 RegStorage temp = TargetReg(kArg3, kNotWide);
1072
1073 // Now load the argument VR and store to the outs.
1074 Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
1075 Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
1076 }
1077
1078 current_src_offset += bytes_to_move;
1079 current_dest_offset += bytes_to_move;
1080 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
1081 }
1082 } else {
1083 // Generate memcpy
1084 OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
1085 OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
1086 CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
1087 (info->num_arg_words - 3) * 4, false);
1088 }
1089
1090 call_state = LoadArgRegs(info, call_state, next_call_insn,
1091 target_method, vtable_idx, direct_code, direct_method,
1092 type, skip_this);
1093
1094 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1095 direct_code, direct_method, type);
1096 if (pcrLabel) {
1097 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
1098 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
1099 } else {
1100 *pcrLabel = nullptr;
1101 if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
1102 (info->opt_flags & MIR_IGNORE_NULL_CHECK)) {
1103 return call_state;
1104 }
1105 // In lieu of generating a check for kArg1 being null, we need to
1106 // perform a load when doing implicit checks.
1107 GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
1108 }
1109 }
1110 return call_state;
1111 }
1112
InlineTarget(CallInfo * info)1113 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
1114 RegLocation res;
1115 if (info->result.location == kLocInvalid) {
1116 res = GetReturn(LocToRegClass(info->result));
1117 } else {
1118 res = info->result;
1119 }
1120 return res;
1121 }
1122
InlineTargetWide(CallInfo * info)1123 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
1124 RegLocation res;
1125 if (info->result.location == kLocInvalid) {
1126 res = GetReturnWide(kCoreReg);
1127 } else {
1128 res = info->result;
1129 }
1130 return res;
1131 }
1132
GenInlinedReferenceGetReferent(CallInfo * info)1133 bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
1134 if (cu_->instruction_set == kMips) {
1135 // TODO - add Mips implementation
1136 return false;
1137 }
1138
1139 // the refrence class is stored in the image dex file which might not be the same as the cu's
1140 // dex file. Query the reference class for the image dex file then reset to starting dex file
1141 // in after loading class type.
1142 uint16_t type_idx = 0;
1143 const DexFile* ref_dex_file = nullptr;
1144 {
1145 ScopedObjectAccess soa(Thread::Current());
1146 type_idx = mirror::Reference::GetJavaLangRefReference()->GetDexTypeIndex();
1147 ref_dex_file = mirror::Reference::GetJavaLangRefReference()->GetDexCache()->GetDexFile();
1148 }
1149 CHECK(LIKELY(ref_dex_file != nullptr));
1150
1151 // address is either static within the image file, or needs to be patched up after compilation.
1152 bool unused_type_initialized;
1153 bool use_direct_type_ptr;
1154 uintptr_t direct_type_ptr;
1155 bool is_finalizable;
1156 const DexFile* old_dex = cu_->dex_file;
1157 cu_->dex_file = ref_dex_file;
1158 RegStorage reg_class = TargetReg(kArg1, kRef);
1159 Clobber(reg_class);
1160 LockTemp(reg_class);
1161 if (!cu_->compiler_driver->CanEmbedTypeInCode(*ref_dex_file, type_idx, &unused_type_initialized,
1162 &use_direct_type_ptr, &direct_type_ptr,
1163 &is_finalizable) || is_finalizable) {
1164 cu_->dex_file = old_dex;
1165 // address is not known and post-compile patch is not possible, cannot insert intrinsic.
1166 return false;
1167 }
1168 if (use_direct_type_ptr) {
1169 LoadConstant(reg_class, direct_type_ptr);
1170 } else if (cu_->dex_file == old_dex) {
1171 // TODO: Bug 16656190 If cu_->dex_file != old_dex the patching could retrieve the wrong class
1172 // since the load class is indexed only by the type_idx. We should include which dex file a
1173 // class is from in the LoadClassType LIR.
1174 LoadClassType(type_idx, kArg1);
1175 } else {
1176 cu_->dex_file = old_dex;
1177 return false;
1178 }
1179 cu_->dex_file = old_dex;
1180
1181 // get the offset for flags in reference class.
1182 uint32_t slow_path_flag_offset = 0;
1183 uint32_t disable_flag_offset = 0;
1184 {
1185 ScopedObjectAccess soa(Thread::Current());
1186 mirror::Class* reference_class = mirror::Reference::GetJavaLangRefReference();
1187 slow_path_flag_offset = reference_class->GetSlowPathFlagOffset().Uint32Value();
1188 disable_flag_offset = reference_class->GetDisableIntrinsicFlagOffset().Uint32Value();
1189 }
1190 CHECK(slow_path_flag_offset && disable_flag_offset &&
1191 (slow_path_flag_offset != disable_flag_offset));
1192
1193 // intrinsic logic start.
1194 RegLocation rl_obj = info->args[0];
1195 rl_obj = LoadValue(rl_obj);
1196
1197 RegStorage reg_slow_path = AllocTemp();
1198 RegStorage reg_disabled = AllocTemp();
1199 Load32Disp(reg_class, slow_path_flag_offset, reg_slow_path);
1200 Load32Disp(reg_class, disable_flag_offset, reg_disabled);
1201 FreeTemp(reg_class);
1202 LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
1203 FreeTemp(reg_disabled);
1204
1205 // if slow path, jump to JNI path target
1206 LIR* slow_path_branch;
1207 if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
1208 // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
1209 slow_path_branch = OpCondBranch(kCondNe, nullptr);
1210 } else {
1211 // Generate compare and branch.
1212 slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
1213 }
1214 FreeTemp(reg_slow_path);
1215
1216 // slow path not enabled, simply load the referent of the reference object
1217 RegLocation rl_dest = InlineTarget(info);
1218 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1219 GenNullCheck(rl_obj.reg, info->opt_flags);
1220 LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
1221 kNotVolatile);
1222 MarkPossibleNullPointerException(info->opt_flags);
1223 StoreValue(rl_dest, rl_result);
1224
1225 LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
1226 AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
1227 ClobberCallerSave(); // We must clobber everything because slow path will return here
1228 return true;
1229 }
1230
GenInlinedCharAt(CallInfo * info)1231 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
1232 if (cu_->instruction_set == kMips) {
1233 // TODO - add Mips implementation
1234 return false;
1235 }
1236 // Location of reference to data array
1237 int value_offset = mirror::String::ValueOffset().Int32Value();
1238 // Location of count
1239 int count_offset = mirror::String::CountOffset().Int32Value();
1240 // Starting offset within data array
1241 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1242 // Start of char data with array_
1243 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1244
1245 RegLocation rl_obj = info->args[0];
1246 RegLocation rl_idx = info->args[1];
1247 rl_obj = LoadValue(rl_obj, kRefReg);
1248 rl_idx = LoadValue(rl_idx, kCoreReg);
1249 RegStorage reg_max;
1250 GenNullCheck(rl_obj.reg, info->opt_flags);
1251 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
1252 LIR* range_check_branch = nullptr;
1253 RegStorage reg_off;
1254 RegStorage reg_ptr;
1255 reg_off = AllocTemp();
1256 reg_ptr = AllocTempRef();
1257 if (range_check) {
1258 reg_max = AllocTemp();
1259 Load32Disp(rl_obj.reg, count_offset, reg_max);
1260 MarkPossibleNullPointerException(info->opt_flags);
1261 }
1262 Load32Disp(rl_obj.reg, offset_offset, reg_off);
1263 MarkPossibleNullPointerException(info->opt_flags);
1264 LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
1265 if (range_check) {
1266 // Set up a slow path to allow retry in case of bounds violation */
1267 OpRegReg(kOpCmp, rl_idx.reg, reg_max);
1268 FreeTemp(reg_max);
1269 range_check_branch = OpCondBranch(kCondUge, nullptr);
1270 }
1271 OpRegImm(kOpAdd, reg_ptr, data_offset);
1272 if (rl_idx.is_const) {
1273 OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
1274 } else {
1275 OpRegReg(kOpAdd, reg_off, rl_idx.reg);
1276 }
1277 FreeTemp(rl_obj.reg);
1278 if (rl_idx.location == kLocPhysReg) {
1279 FreeTemp(rl_idx.reg);
1280 }
1281 RegLocation rl_dest = InlineTarget(info);
1282 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1283 LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf);
1284 FreeTemp(reg_off);
1285 FreeTemp(reg_ptr);
1286 StoreValue(rl_dest, rl_result);
1287 if (range_check) {
1288 DCHECK(range_check_branch != nullptr);
1289 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked.
1290 AddIntrinsicSlowPath(info, range_check_branch);
1291 }
1292 return true;
1293 }
1294
1295 // Generates an inlined String.is_empty or String.length.
GenInlinedStringIsEmptyOrLength(CallInfo * info,bool is_empty)1296 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
1297 if (cu_->instruction_set == kMips) {
1298 // TODO - add Mips implementation
1299 return false;
1300 }
1301 // dst = src.length();
1302 RegLocation rl_obj = info->args[0];
1303 rl_obj = LoadValue(rl_obj, kRefReg);
1304 RegLocation rl_dest = InlineTarget(info);
1305 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1306 GenNullCheck(rl_obj.reg, info->opt_flags);
1307 Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
1308 MarkPossibleNullPointerException(info->opt_flags);
1309 if (is_empty) {
1310 // dst = (dst == 0);
1311 if (cu_->instruction_set == kThumb2) {
1312 RegStorage t_reg = AllocTemp();
1313 OpRegReg(kOpNeg, t_reg, rl_result.reg);
1314 OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
1315 } else if (cu_->instruction_set == kArm64) {
1316 OpRegImm(kOpSub, rl_result.reg, 1);
1317 OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
1318 } else {
1319 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
1320 OpRegImm(kOpSub, rl_result.reg, 1);
1321 OpRegImm(kOpLsr, rl_result.reg, 31);
1322 }
1323 }
1324 StoreValue(rl_dest, rl_result);
1325 return true;
1326 }
1327
GenInlinedReverseBytes(CallInfo * info,OpSize size)1328 bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
1329 if (cu_->instruction_set == kMips) {
1330 // TODO - add Mips implementation.
1331 return false;
1332 }
1333 RegLocation rl_src_i = info->args[0];
1334 RegLocation rl_i = (size == k64) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
1335 RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info); // result reg
1336 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1337 if (size == k64) {
1338 if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
1339 OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
1340 StoreValueWide(rl_dest, rl_result);
1341 return true;
1342 }
1343 RegStorage r_i_low = rl_i.reg.GetLow();
1344 if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1345 // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
1346 r_i_low = AllocTemp();
1347 OpRegCopy(r_i_low, rl_i.reg);
1348 }
1349 OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
1350 OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
1351 if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
1352 FreeTemp(r_i_low);
1353 }
1354 StoreValueWide(rl_dest, rl_result);
1355 } else {
1356 DCHECK(size == k32 || size == kSignedHalf);
1357 OpKind op = (size == k32) ? kOpRev : kOpRevsh;
1358 OpRegReg(op, rl_result.reg, rl_i.reg);
1359 StoreValue(rl_dest, rl_result);
1360 }
1361 return true;
1362 }
1363
GenInlinedAbsInt(CallInfo * info)1364 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
1365 if (cu_->instruction_set == kMips) {
1366 // TODO - add Mips implementation
1367 return false;
1368 }
1369 RegLocation rl_src = info->args[0];
1370 rl_src = LoadValue(rl_src, kCoreReg);
1371 RegLocation rl_dest = InlineTarget(info);
1372 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1373 RegStorage sign_reg = AllocTemp();
1374 // abs(x) = y<=x>>31, (x+y)^y.
1375 OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
1376 OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1377 OpRegReg(kOpXor, rl_result.reg, sign_reg);
1378 StoreValue(rl_dest, rl_result);
1379 return true;
1380 }
1381
GenInlinedAbsLong(CallInfo * info)1382 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
1383 if (cu_->instruction_set == kMips) {
1384 // TODO - add Mips implementation
1385 return false;
1386 }
1387 RegLocation rl_src = info->args[0];
1388 rl_src = LoadValueWide(rl_src, kCoreReg);
1389 RegLocation rl_dest = InlineTargetWide(info);
1390 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1391
1392 // If on x86 or if we would clobber a register needed later, just copy the source first.
1393 if (cu_->instruction_set != kX86_64 &&
1394 (cu_->instruction_set == kX86 ||
1395 rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
1396 OpRegCopyWide(rl_result.reg, rl_src.reg);
1397 if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
1398 rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
1399 rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
1400 rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
1401 // Reuse source registers to avoid running out of temps.
1402 FreeTemp(rl_src.reg);
1403 }
1404 rl_src = rl_result;
1405 }
1406
1407 // abs(x) = y<=x>>31, (x+y)^y.
1408 RegStorage sign_reg;
1409 if (cu_->instruction_set == kX86_64) {
1410 sign_reg = AllocTempWide();
1411 OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
1412 OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
1413 OpRegReg(kOpXor, rl_result.reg, sign_reg);
1414 } else {
1415 sign_reg = AllocTemp();
1416 OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
1417 OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
1418 OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
1419 OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
1420 OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
1421 }
1422 FreeTemp(sign_reg);
1423 StoreValueWide(rl_dest, rl_result);
1424 return true;
1425 }
1426
GenInlinedReverseBits(CallInfo * info,OpSize size)1427 bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
1428 // Currently implemented only for ARM64
1429 return false;
1430 }
1431
GenInlinedMinMaxFP(CallInfo * info,bool is_min,bool is_double)1432 bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
1433 // Currently implemented only for ARM64
1434 return false;
1435 }
1436
GenInlinedCeil(CallInfo * info)1437 bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
1438 return false;
1439 }
1440
GenInlinedFloor(CallInfo * info)1441 bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
1442 return false;
1443 }
1444
GenInlinedRint(CallInfo * info)1445 bool Mir2Lir::GenInlinedRint(CallInfo* info) {
1446 return false;
1447 }
1448
GenInlinedRound(CallInfo * info,bool is_double)1449 bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
1450 return false;
1451 }
1452
GenInlinedFloatCvt(CallInfo * info)1453 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
1454 if (cu_->instruction_set == kMips) {
1455 // TODO - add Mips implementation
1456 return false;
1457 }
1458 RegLocation rl_src = info->args[0];
1459 RegLocation rl_dest = InlineTarget(info);
1460 StoreValue(rl_dest, rl_src);
1461 return true;
1462 }
1463
GenInlinedDoubleCvt(CallInfo * info)1464 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
1465 if (cu_->instruction_set == kMips) {
1466 // TODO - add Mips implementation
1467 return false;
1468 }
1469 RegLocation rl_src = info->args[0];
1470 RegLocation rl_dest = InlineTargetWide(info);
1471 StoreValueWide(rl_dest, rl_src);
1472 return true;
1473 }
1474
GenInlinedArrayCopyCharArray(CallInfo * info)1475 bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1476 return false;
1477 }
1478
1479
1480 /*
1481 * Fast String.indexOf(I) & (II). Tests for simple case of char <= 0xFFFF,
1482 * otherwise bails to standard library code.
1483 */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1484 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1485 if (cu_->instruction_set == kMips) {
1486 // TODO - add Mips implementation
1487 return false;
1488 }
1489 if (cu_->instruction_set == kX86_64) {
1490 // TODO - add kX86_64 implementation
1491 return false;
1492 }
1493 RegLocation rl_obj = info->args[0];
1494 RegLocation rl_char = info->args[1];
1495 if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
1496 // Code point beyond 0xFFFF. Punt to the real String.indexOf().
1497 return false;
1498 }
1499
1500 ClobberCallerSave();
1501 LockCallTemps(); // Using fixed registers
1502 RegStorage reg_ptr = TargetReg(kArg0, kRef);
1503 RegStorage reg_char = TargetReg(kArg1, kNotWide);
1504 RegStorage reg_start = TargetReg(kArg2, kNotWide);
1505
1506 LoadValueDirectFixed(rl_obj, reg_ptr);
1507 LoadValueDirectFixed(rl_char, reg_char);
1508 if (zero_based) {
1509 LoadConstant(reg_start, 0);
1510 } else {
1511 RegLocation rl_start = info->args[2]; // 3rd arg only present in III flavor of IndexOf.
1512 LoadValueDirectFixed(rl_start, reg_start);
1513 }
1514 RegStorage r_tgt = LoadHelper(kQuickIndexOf);
1515 GenExplicitNullCheck(reg_ptr, info->opt_flags);
1516 LIR* high_code_point_branch =
1517 rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
1518 // NOTE: not a safepoint
1519 OpReg(kOpBlx, r_tgt);
1520 if (!rl_char.is_const) {
1521 // Add the slow path for code points beyond 0xFFFF.
1522 DCHECK(high_code_point_branch != nullptr);
1523 LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
1524 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
1525 AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
1526 ClobberCallerSave(); // We must clobber everything because slow path will return here
1527 } else {
1528 DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
1529 DCHECK(high_code_point_branch == nullptr);
1530 }
1531 RegLocation rl_return = GetReturn(kCoreReg);
1532 RegLocation rl_dest = InlineTarget(info);
1533 StoreValue(rl_dest, rl_return);
1534 return true;
1535 }
1536
1537 /* Fast string.compareTo(Ljava/lang/string;)I. */
GenInlinedStringCompareTo(CallInfo * info)1538 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
1539 if (cu_->instruction_set == kMips) {
1540 // TODO - add Mips implementation
1541 return false;
1542 }
1543 ClobberCallerSave();
1544 LockCallTemps(); // Using fixed registers
1545 RegStorage reg_this = TargetReg(kArg0, kRef);
1546 RegStorage reg_cmp = TargetReg(kArg1, kRef);
1547
1548 RegLocation rl_this = info->args[0];
1549 RegLocation rl_cmp = info->args[1];
1550 LoadValueDirectFixed(rl_this, reg_this);
1551 LoadValueDirectFixed(rl_cmp, reg_cmp);
1552 RegStorage r_tgt;
1553 if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1554 r_tgt = LoadHelper(kQuickStringCompareTo);
1555 } else {
1556 r_tgt = RegStorage::InvalidReg();
1557 }
1558 GenExplicitNullCheck(reg_this, info->opt_flags);
1559 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
1560 // TUNING: check if rl_cmp.s_reg_low is already null checked
1561 LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
1562 AddIntrinsicSlowPath(info, cmp_null_check_branch);
1563 // NOTE: not a safepoint
1564 CallHelper(r_tgt, kQuickStringCompareTo, false, true);
1565 RegLocation rl_return = GetReturn(kCoreReg);
1566 RegLocation rl_dest = InlineTarget(info);
1567 StoreValue(rl_dest, rl_return);
1568 return true;
1569 }
1570
GenInlinedCurrentThread(CallInfo * info)1571 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1572 RegLocation rl_dest = InlineTarget(info);
1573
1574 // Early exit if the result is unused.
1575 if (rl_dest.orig_sreg < 0) {
1576 return true;
1577 }
1578
1579 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
1580
1581 switch (cu_->instruction_set) {
1582 case kArm:
1583 // Fall-through.
1584 case kThumb2:
1585 // Fall-through.
1586 case kMips:
1587 Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
1588 break;
1589
1590 case kArm64:
1591 LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
1592 kNotVolatile);
1593 break;
1594
1595 default:
1596 LOG(FATAL) << "Unexpected isa " << cu_->instruction_set;
1597 }
1598 StoreValue(rl_dest, rl_result);
1599 return true;
1600 }
1601
GenInlinedUnsafeGet(CallInfo * info,bool is_long,bool is_volatile)1602 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1603 bool is_long, bool is_volatile) {
1604 if (cu_->instruction_set == kMips) {
1605 // TODO - add Mips implementation
1606 return false;
1607 }
1608 // Unused - RegLocation rl_src_unsafe = info->args[0];
1609 RegLocation rl_src_obj = info->args[1]; // Object
1610 RegLocation rl_src_offset = info->args[2]; // long low
1611 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
1612 RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg
1613
1614 RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1615 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1616 RegLocation rl_result = EvalLoc(rl_dest, LocToRegClass(rl_dest), true);
1617 if (is_long) {
1618 if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1619 || cu_->instruction_set == kArm64) {
1620 LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
1621 } else {
1622 RegStorage rl_temp_offset = AllocTemp();
1623 OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1624 LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
1625 FreeTemp(rl_temp_offset);
1626 }
1627 } else {
1628 if (rl_result.ref) {
1629 LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
1630 } else {
1631 LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
1632 }
1633 }
1634
1635 if (is_volatile) {
1636 GenMemBarrier(kLoadAny);
1637 }
1638
1639 if (is_long) {
1640 StoreValueWide(rl_dest, rl_result);
1641 } else {
1642 StoreValue(rl_dest, rl_result);
1643 }
1644 return true;
1645 }
1646
GenInlinedUnsafePut(CallInfo * info,bool is_long,bool is_object,bool is_volatile,bool is_ordered)1647 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1648 bool is_object, bool is_volatile, bool is_ordered) {
1649 if (cu_->instruction_set == kMips) {
1650 // TODO - add Mips implementation
1651 return false;
1652 }
1653 // Unused - RegLocation rl_src_unsafe = info->args[0];
1654 RegLocation rl_src_obj = info->args[1]; // Object
1655 RegLocation rl_src_offset = info->args[2]; // long low
1656 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
1657 RegLocation rl_src_value = info->args[4]; // value to store
1658 if (is_volatile || is_ordered) {
1659 GenMemBarrier(kAnyStore);
1660 }
1661 RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1662 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1663 RegLocation rl_value;
1664 if (is_long) {
1665 rl_value = LoadValueWide(rl_src_value, kCoreReg);
1666 if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
1667 || cu_->instruction_set == kArm64) {
1668 StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
1669 } else {
1670 RegStorage rl_temp_offset = AllocTemp();
1671 OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
1672 StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
1673 FreeTemp(rl_temp_offset);
1674 }
1675 } else {
1676 rl_value = LoadValue(rl_src_value);
1677 if (rl_value.ref) {
1678 StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
1679 } else {
1680 StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
1681 }
1682 }
1683
1684 // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
1685 FreeTemp(rl_offset.reg);
1686
1687 if (is_volatile) {
1688 // Prevent reordering with a subsequent volatile load.
1689 // May also be needed to address store atomicity issues.
1690 GenMemBarrier(kAnyAny);
1691 }
1692 if (is_object) {
1693 MarkGCCard(rl_value.reg, rl_object.reg);
1694 }
1695 return true;
1696 }
1697
GenInvoke(CallInfo * info)1698 void Mir2Lir::GenInvoke(CallInfo* info) {
1699 if ((info->opt_flags & MIR_INLINED) != 0) {
1700 // Already inlined but we may still need the null check.
1701 if (info->type != kStatic &&
1702 ((cu_->disable_opt & (1 << kNullCheckElimination)) != 0 ||
1703 (info->opt_flags & MIR_IGNORE_NULL_CHECK) == 0)) {
1704 RegLocation rl_obj = LoadValue(info->args[0], kRefReg);
1705 GenNullCheck(rl_obj.reg);
1706 }
1707 return;
1708 }
1709 DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1710 if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1711 ->GenIntrinsic(this, info)) {
1712 return;
1713 }
1714 GenInvokeNoInline(info);
1715 }
1716
GenInvokeNoInlineCall(Mir2Lir * mir_to_lir,InvokeType type)1717 static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) {
1718 QuickEntrypointEnum trampoline;
1719 switch (type) {
1720 case kInterface:
1721 trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
1722 break;
1723 case kDirect:
1724 trampoline = kQuickInvokeDirectTrampolineWithAccessCheck;
1725 break;
1726 case kStatic:
1727 trampoline = kQuickInvokeStaticTrampolineWithAccessCheck;
1728 break;
1729 case kSuper:
1730 trampoline = kQuickInvokeSuperTrampolineWithAccessCheck;
1731 break;
1732 case kVirtual:
1733 trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck;
1734 break;
1735 default:
1736 LOG(FATAL) << "Unexpected invoke type";
1737 trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
1738 }
1739 return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline);
1740 }
1741
GenInvokeNoInline(CallInfo * info)1742 void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
1743 int call_state = 0;
1744 LIR* null_ck;
1745 LIR** p_null_ck = NULL;
1746 NextCallInsn next_call_insn;
1747 FlushAllRegs(); /* Everything to home location */
1748 // Explicit register usage
1749 LockCallTemps();
1750
1751 const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
1752 cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
1753 BeginInvoke(info);
1754 InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
1755 info->type = static_cast<InvokeType>(method_info.GetSharpType());
1756 bool fast_path = method_info.FastPath();
1757 bool skip_this;
1758 if (info->type == kInterface) {
1759 next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
1760 skip_this = fast_path;
1761 } else if (info->type == kDirect) {
1762 if (fast_path) {
1763 p_null_ck = &null_ck;
1764 }
1765 next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
1766 skip_this = false;
1767 } else if (info->type == kStatic) {
1768 next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
1769 skip_this = false;
1770 } else if (info->type == kSuper) {
1771 DCHECK(!fast_path); // Fast path is a direct call.
1772 next_call_insn = NextSuperCallInsnSP;
1773 skip_this = false;
1774 } else {
1775 DCHECK_EQ(info->type, kVirtual);
1776 next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1777 skip_this = fast_path;
1778 }
1779 MethodReference target_method = method_info.GetTargetMethod();
1780 if (!info->is_range) {
1781 call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
1782 next_call_insn, target_method, method_info.VTableIndex(),
1783 method_info.DirectCode(), method_info.DirectMethod(),
1784 original_type, skip_this);
1785 } else {
1786 call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
1787 next_call_insn, target_method, method_info.VTableIndex(),
1788 method_info.DirectCode(), method_info.DirectMethod(),
1789 original_type, skip_this);
1790 }
1791 // Finish up any of the call sequence not interleaved in arg loading
1792 while (call_state >= 0) {
1793 call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
1794 method_info.DirectCode(), method_info.DirectMethod(), original_type);
1795 }
1796 LIR* call_inst;
1797 if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
1798 call_inst = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
1799 } else {
1800 if (fast_path) {
1801 if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
1802 // We can have the linker fixup a call relative.
1803 call_inst =
1804 reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup(target_method, info->type);
1805 } else {
1806 int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
1807 InstructionSetPointerSize(cu_->instruction_set)).Int32Value();
1808 call_inst = OpMem(kOpBlx, TargetReg(kArg0, kRef), offset);
1809 }
1810 } else {
1811 call_inst = GenInvokeNoInlineCall(this, info->type);
1812 }
1813 }
1814 EndInvoke(info);
1815 MarkSafepointPC(call_inst);
1816
1817 FreeCallTemps();
1818 if (info->result.location != kLocInvalid) {
1819 // We have a following MOVE_RESULT - do it now.
1820 if (info->result.wide) {
1821 RegLocation ret_loc = GetReturnWide(LocToRegClass(info->result));
1822 StoreValueWide(info->result, ret_loc);
1823 } else {
1824 RegLocation ret_loc = GetReturn(LocToRegClass(info->result));
1825 StoreValue(info->result, ret_loc);
1826 }
1827 }
1828 }
1829
1830 } // namespace art
1831