1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "common_compiler_test.h"
18
19 #if defined(__arm__)
20 #include <sys/ucontext.h>
21 #endif
22 #include <fstream>
23
24 #include "class_linker.h"
25 #include "compiled_method.h"
26 #include "dex/quick_compiler_callbacks.h"
27 #include "dex/verification_results.h"
28 #include "dex/quick/dex_file_to_method_inliner_map.h"
29 #include "driver/compiler_driver.h"
30 #include "entrypoints/entrypoint_utils.h"
31 #include "interpreter/interpreter.h"
32 #include "mirror/art_method.h"
33 #include "mirror/dex_cache.h"
34 #include "mirror/object-inl.h"
35 #include "scoped_thread_state_change.h"
36 #include "thread-inl.h"
37 #include "utils.h"
38
39 namespace art {
40
41 // Normally the ClassLinker supplies this.
42 extern "C" void art_quick_generic_jni_trampoline(mirror::ArtMethod*);
43
44 #if defined(__arm__)
45 // A signal handler called when have an illegal instruction. We record the fact in
46 // a global boolean and then increment the PC in the signal context to return to
47 // the next instruction. We know the instruction is an sdiv (4 bytes long).
baddivideinst(int signo,siginfo * si,void * data)48 static void baddivideinst(int signo, siginfo *si, void *data) {
49 UNUSED(signo);
50 UNUSED(si);
51 struct ucontext *uc = (struct ucontext *)data;
52 struct sigcontext *sc = &uc->uc_mcontext;
53 sc->arm_r0 = 0; // set R0 to #0 to signal error
54 sc->arm_pc += 4; // skip offending instruction
55 }
56
57 // This is in arch/arm/arm_sdiv.S. It does the following:
58 // mov r1,#1
59 // sdiv r0,r1,r1
60 // bx lr
61 //
62 // the result will be the value 1 if sdiv is supported. If it is not supported
63 // a SIGILL signal will be raised and the signal handler (baddivideinst) called.
64 // The signal handler sets r0 to #0 and then increments pc beyond the failed instruction.
65 // Thus if the instruction is not supported, the result of this function will be #0
66
67 extern "C" bool CheckForARMSDIVInstruction();
68
GuessInstructionFeatures()69 static InstructionSetFeatures GuessInstructionFeatures() {
70 InstructionSetFeatures f;
71
72 // Uncomment this for processing of /proc/cpuinfo.
73 if (false) {
74 // Look in /proc/cpuinfo for features we need. Only use this when we can guarantee that
75 // the kernel puts the appropriate feature flags in here. Sometimes it doesn't.
76 std::ifstream in("/proc/cpuinfo");
77 if (in) {
78 while (!in.eof()) {
79 std::string line;
80 std::getline(in, line);
81 if (!in.eof()) {
82 if (line.find("Features") != std::string::npos) {
83 if (line.find("idivt") != std::string::npos) {
84 f.SetHasDivideInstruction(true);
85 }
86 }
87 }
88 in.close();
89 }
90 } else {
91 LOG(INFO) << "Failed to open /proc/cpuinfo";
92 }
93 }
94
95 // See if have a sdiv instruction. Register a signal handler and try to execute
96 // an sdiv instruction. If we get a SIGILL then it's not supported. We can't use
97 // the /proc/cpuinfo method for this because Krait devices don't always put the idivt
98 // feature in the list.
99 struct sigaction sa, osa;
100 sa.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
101 sa.sa_sigaction = baddivideinst;
102 sigaction(SIGILL, &sa, &osa);
103
104 if (CheckForARMSDIVInstruction()) {
105 f.SetHasDivideInstruction(true);
106 }
107
108 // Restore the signal handler.
109 sigaction(SIGILL, &osa, nullptr);
110
111 // Other feature guesses in here.
112 return f;
113 }
114 #endif
115
116 // Given a set of instruction features from the build, parse it. The
117 // input 'str' is a comma separated list of feature names. Parse it and
118 // return the InstructionSetFeatures object.
ParseFeatureList(std::string str)119 static InstructionSetFeatures ParseFeatureList(std::string str) {
120 InstructionSetFeatures result;
121 typedef std::vector<std::string> FeatureList;
122 FeatureList features;
123 Split(str, ',', features);
124 for (FeatureList::iterator i = features.begin(); i != features.end(); i++) {
125 std::string feature = Trim(*i);
126 if (feature == "default") {
127 // Nothing to do.
128 } else if (feature == "div") {
129 // Supports divide instruction.
130 result.SetHasDivideInstruction(true);
131 } else if (feature == "nodiv") {
132 // Turn off support for divide instruction.
133 result.SetHasDivideInstruction(false);
134 } else {
135 LOG(FATAL) << "Unknown instruction set feature: '" << feature << "'";
136 }
137 }
138 // Others...
139 return result;
140 }
141
CommonCompilerTest()142 CommonCompilerTest::CommonCompilerTest() {}
~CommonCompilerTest()143 CommonCompilerTest::~CommonCompilerTest() {}
144
CreateOatMethod(const void * code)145 OatFile::OatMethod CommonCompilerTest::CreateOatMethod(const void* code) {
146 CHECK(code != nullptr);
147 const byte* base = reinterpret_cast<const byte*>(code); // Base of data points at code.
148 base -= kPointerSize; // Move backward so that code_offset != 0.
149 uint32_t code_offset = kPointerSize;
150 return OatFile::OatMethod(base, code_offset);
151 }
152
MakeExecutable(mirror::ArtMethod * method)153 void CommonCompilerTest::MakeExecutable(mirror::ArtMethod* method) {
154 CHECK(method != nullptr);
155
156 const CompiledMethod* compiled_method = nullptr;
157 if (!method->IsAbstract()) {
158 mirror::DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache();
159 const DexFile& dex_file = *dex_cache->GetDexFile();
160 compiled_method =
161 compiler_driver_->GetCompiledMethod(MethodReference(&dex_file,
162 method->GetDexMethodIndex()));
163 }
164 if (compiled_method != nullptr) {
165 const SwapVector<uint8_t>* code = compiled_method->GetQuickCode();
166 const void* code_ptr;
167 if (code != nullptr) {
168 uint32_t code_size = code->size();
169 CHECK_NE(0u, code_size);
170 const SwapVector<uint8_t>& vmap_table = compiled_method->GetVmapTable();
171 uint32_t vmap_table_offset = vmap_table.empty() ? 0u
172 : sizeof(OatQuickMethodHeader) + vmap_table.size();
173 const SwapVector<uint8_t>& mapping_table = compiled_method->GetMappingTable();
174 uint32_t mapping_table_offset = mapping_table.empty() ? 0u
175 : sizeof(OatQuickMethodHeader) + vmap_table.size() + mapping_table.size();
176 const SwapVector<uint8_t>& gc_map = compiled_method->GetGcMap();
177 uint32_t gc_map_offset = gc_map.empty() ? 0u
178 : sizeof(OatQuickMethodHeader) + vmap_table.size() + mapping_table.size() + gc_map.size();
179 OatQuickMethodHeader method_header(mapping_table_offset, vmap_table_offset, gc_map_offset,
180 compiled_method->GetFrameSizeInBytes(),
181 compiled_method->GetCoreSpillMask(),
182 compiled_method->GetFpSpillMask(), code_size);
183
184 header_code_and_maps_chunks_.push_back(std::vector<uint8_t>());
185 std::vector<uint8_t>* chunk = &header_code_and_maps_chunks_.back();
186 size_t size = sizeof(method_header) + code_size + vmap_table.size() + mapping_table.size() +
187 gc_map.size();
188 size_t code_offset = compiled_method->AlignCode(size - code_size);
189 size_t padding = code_offset - (size - code_size);
190 chunk->reserve(padding + size);
191 chunk->resize(sizeof(method_header));
192 memcpy(&(*chunk)[0], &method_header, sizeof(method_header));
193 chunk->insert(chunk->begin(), vmap_table.begin(), vmap_table.end());
194 chunk->insert(chunk->begin(), mapping_table.begin(), mapping_table.end());
195 chunk->insert(chunk->begin(), gc_map.begin(), gc_map.end());
196 chunk->insert(chunk->begin(), padding, 0);
197 chunk->insert(chunk->end(), code->begin(), code->end());
198 CHECK_EQ(padding + size, chunk->size());
199 code_ptr = &(*chunk)[code_offset];
200 } else {
201 code = compiled_method->GetPortableCode();
202 code_ptr = &(*code)[0];
203 }
204 MakeExecutable(code_ptr, code->size());
205 const void* method_code = CompiledMethod::CodePointer(code_ptr,
206 compiled_method->GetInstructionSet());
207 LOG(INFO) << "MakeExecutable " << PrettyMethod(method) << " code=" << method_code;
208 OatFile::OatMethod oat_method = CreateOatMethod(method_code);
209 oat_method.LinkMethod(method);
210 method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
211 } else {
212 // No code? You must mean to go into the interpreter.
213 // Or the generic JNI...
214 if (!method->IsNative()) {
215 #if defined(ART_USE_PORTABLE_COMPILER)
216 const void* method_code = GetPortableToInterpreterBridge();
217 #else
218 const void* method_code = GetQuickToInterpreterBridge();
219 #endif
220 OatFile::OatMethod oat_method = CreateOatMethod(method_code);
221 oat_method.LinkMethod(method);
222 method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
223 } else {
224 const void* method_code = reinterpret_cast<void*>(art_quick_generic_jni_trampoline);
225
226 OatFile::OatMethod oat_method = CreateOatMethod(method_code);
227 oat_method.LinkMethod(method);
228 method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
229 }
230 }
231 // Create bridges to transition between different kinds of compiled bridge.
232 #if defined(ART_USE_PORTABLE_COMPILER)
233 if (method->GetEntryPointFromPortableCompiledCode() == nullptr) {
234 method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge());
235 } else {
236 CHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
237 method->SetEntryPointFromQuickCompiledCode(GetQuickToPortableBridge());
238 method->SetIsPortableCompiled();
239 }
240 #else
241 CHECK(method->GetEntryPointFromQuickCompiledCode() != nullptr);
242 #endif
243 }
244
MakeExecutable(const void * code_start,size_t code_length)245 void CommonCompilerTest::MakeExecutable(const void* code_start, size_t code_length) {
246 CHECK(code_start != nullptr);
247 CHECK_NE(code_length, 0U);
248 uintptr_t data = reinterpret_cast<uintptr_t>(code_start);
249 uintptr_t base = RoundDown(data, kPageSize);
250 uintptr_t limit = RoundUp(data + code_length, kPageSize);
251 uintptr_t len = limit - base;
252 int result = mprotect(reinterpret_cast<void*>(base), len, PROT_READ | PROT_WRITE | PROT_EXEC);
253 CHECK_EQ(result, 0);
254
255 // Flush instruction cache
256 // Only uses __builtin___clear_cache if GCC >= 4.3.3
257 #if GCC_VERSION >= 40303
258 __builtin___clear_cache(reinterpret_cast<void*>(base), reinterpret_cast<void*>(base + len));
259 #else
260 // Only warn if not Intel as Intel doesn't have cache flush instructions.
261 #if !defined(__i386__) && !defined(__x86_64__)
262 LOG(WARNING) << "UNIMPLEMENTED: cache flush";
263 #endif
264 #endif
265 }
266
MakeExecutable(mirror::ClassLoader * class_loader,const char * class_name)267 void CommonCompilerTest::MakeExecutable(mirror::ClassLoader* class_loader, const char* class_name) {
268 std::string class_descriptor(DotToDescriptor(class_name));
269 Thread* self = Thread::Current();
270 StackHandleScope<1> hs(self);
271 Handle<mirror::ClassLoader> loader(hs.NewHandle(class_loader));
272 mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), loader);
273 CHECK(klass != nullptr) << "Class not found " << class_name;
274 for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
275 MakeExecutable(klass->GetDirectMethod(i));
276 }
277 for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
278 MakeExecutable(klass->GetVirtualMethod(i));
279 }
280 }
281
SetUp()282 void CommonCompilerTest::SetUp() {
283 CommonRuntimeTest::SetUp();
284 {
285 ScopedObjectAccess soa(Thread::Current());
286
287 InstructionSet instruction_set = kRuntimeISA;
288
289 // Take the default set of instruction features from the build.
290 InstructionSetFeatures instruction_set_features =
291 ParseFeatureList(Runtime::GetDefaultInstructionSetFeatures());
292
293 #if defined(__arm__)
294 InstructionSetFeatures runtime_features = GuessInstructionFeatures();
295
296 // for ARM, do a runtime check to make sure that the features we are passed from
297 // the build match the features we actually determine at runtime.
298 ASSERT_LE(instruction_set_features, runtime_features);
299 #endif
300
301 runtime_->SetInstructionSet(instruction_set);
302 for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
303 Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
304 if (!runtime_->HasCalleeSaveMethod(type)) {
305 runtime_->SetCalleeSaveMethod(
306 runtime_->CreateCalleeSaveMethod(type), type);
307 }
308 }
309
310 // TODO: make selectable
311 Compiler::Kind compiler_kind
312 = (kUsePortableCompiler) ? Compiler::kPortable : Compiler::kQuick;
313 timer_.reset(new CumulativeLogger("Compilation times"));
314 compiler_driver_.reset(new CompilerDriver(compiler_options_.get(),
315 verification_results_.get(),
316 method_inliner_map_.get(),
317 compiler_kind, instruction_set,
318 instruction_set_features,
319 true, new std::set<std::string>, nullptr,
320 2, true, true, timer_.get()));
321 }
322 // We typically don't generate an image in unit tests, disable this optimization by default.
323 compiler_driver_->SetSupportBootImageFixup(false);
324 }
325
SetUpRuntimeOptions(RuntimeOptions * options)326 void CommonCompilerTest::SetUpRuntimeOptions(RuntimeOptions* options) {
327 CommonRuntimeTest::SetUpRuntimeOptions(options);
328
329 compiler_options_.reset(new CompilerOptions);
330 verification_results_.reset(new VerificationResults(compiler_options_.get()));
331 method_inliner_map_.reset(new DexFileToMethodInlinerMap);
332 callbacks_.reset(new QuickCompilerCallbacks(verification_results_.get(),
333 method_inliner_map_.get()));
334 options->push_back(std::make_pair("compilercallbacks", callbacks_.get()));
335 }
336
TearDown()337 void CommonCompilerTest::TearDown() {
338 timer_.reset();
339 compiler_driver_.reset();
340 callbacks_.reset();
341 method_inliner_map_.reset();
342 verification_results_.reset();
343 compiler_options_.reset();
344
345 CommonRuntimeTest::TearDown();
346 }
347
CompileClass(mirror::ClassLoader * class_loader,const char * class_name)348 void CommonCompilerTest::CompileClass(mirror::ClassLoader* class_loader, const char* class_name) {
349 std::string class_descriptor(DotToDescriptor(class_name));
350 Thread* self = Thread::Current();
351 StackHandleScope<1> hs(self);
352 Handle<mirror::ClassLoader> loader(hs.NewHandle(class_loader));
353 mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), loader);
354 CHECK(klass != nullptr) << "Class not found " << class_name;
355 for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
356 CompileMethod(klass->GetDirectMethod(i));
357 }
358 for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
359 CompileMethod(klass->GetVirtualMethod(i));
360 }
361 }
362
CompileMethod(mirror::ArtMethod * method)363 void CommonCompilerTest::CompileMethod(mirror::ArtMethod* method) {
364 CHECK(method != nullptr);
365 TimingLogger timings("CommonTest::CompileMethod", false, false);
366 TimingLogger::ScopedTiming t(__FUNCTION__, &timings);
367 compiler_driver_->CompileOne(method, &timings);
368 TimingLogger::ScopedTiming t2("MakeExecutable", &timings);
369 MakeExecutable(method);
370 }
371
CompileDirectMethod(Handle<mirror::ClassLoader> class_loader,const char * class_name,const char * method_name,const char * signature)372 void CommonCompilerTest::CompileDirectMethod(Handle<mirror::ClassLoader> class_loader,
373 const char* class_name, const char* method_name,
374 const char* signature) {
375 std::string class_descriptor(DotToDescriptor(class_name));
376 Thread* self = Thread::Current();
377 mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), class_loader);
378 CHECK(klass != nullptr) << "Class not found " << class_name;
379 mirror::ArtMethod* method = klass->FindDirectMethod(method_name, signature);
380 CHECK(method != nullptr) << "Direct method not found: "
381 << class_name << "." << method_name << signature;
382 CompileMethod(method);
383 }
384
CompileVirtualMethod(Handle<mirror::ClassLoader> class_loader,const char * class_name,const char * method_name,const char * signature)385 void CommonCompilerTest::CompileVirtualMethod(Handle<mirror::ClassLoader> class_loader, const char* class_name,
386 const char* method_name, const char* signature)
387 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
388 std::string class_descriptor(DotToDescriptor(class_name));
389 Thread* self = Thread::Current();
390 mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), class_loader);
391 CHECK(klass != nullptr) << "Class not found " << class_name;
392 mirror::ArtMethod* method = klass->FindVirtualMethod(method_name, signature);
393 CHECK(method != NULL) << "Virtual method not found: "
394 << class_name << "." << method_name << signature;
395 CompileMethod(method);
396 }
397
ReserveImageSpace()398 void CommonCompilerTest::ReserveImageSpace() {
399 // Reserve where the image will be loaded up front so that other parts of test set up don't
400 // accidentally end up colliding with the fixed memory address when we need to load the image.
401 std::string error_msg;
402 MemMap::Init();
403 image_reservation_.reset(MemMap::MapAnonymous("image reservation",
404 reinterpret_cast<byte*>(ART_BASE_ADDRESS),
405 (size_t)100 * 1024 * 1024, // 100MB
406 PROT_NONE,
407 false /* no need for 4gb flag with fixed mmap*/,
408 &error_msg));
409 CHECK(image_reservation_.get() != nullptr) << error_msg;
410 }
411
UnreserveImageSpace()412 void CommonCompilerTest::UnreserveImageSpace() {
413 image_reservation_.reset();
414 }
415
416 } // namespace art
417