1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "large_object_space.h"
18 
19 #include <memory>
20 
21 #include "gc/accounting/space_bitmap-inl.h"
22 #include "base/logging.h"
23 #include "base/mutex-inl.h"
24 #include "base/stl_util.h"
25 #include "image.h"
26 #include "os.h"
27 #include "space-inl.h"
28 #include "thread-inl.h"
29 #include "utils.h"
30 
31 namespace art {
32 namespace gc {
33 namespace space {
34 
35 class ValgrindLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
36  public:
ValgrindLargeObjectMapSpace(const std::string & name)37   explicit ValgrindLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
38   }
39 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size)40   virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
41                                 size_t* usable_size) OVERRIDE {
42     mirror::Object* obj =
43         LargeObjectMapSpace::Alloc(self, num_bytes + kValgrindRedZoneBytes * 2, bytes_allocated,
44                                    usable_size);
45     mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
46         reinterpret_cast<uintptr_t>(obj) + kValgrindRedZoneBytes);
47     VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<void*>(obj), kValgrindRedZoneBytes);
48     VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(object_without_rdz) + num_bytes,
49                                kValgrindRedZoneBytes);
50     if (usable_size != nullptr) {
51       *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
52     }
53     return object_without_rdz;
54   }
55 
AllocationSize(mirror::Object * obj,size_t * usable_size)56   virtual size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
57     mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
58         reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
59     return LargeObjectMapSpace::AllocationSize(object_with_rdz, usable_size);
60   }
61 
Free(Thread * self,mirror::Object * obj)62   virtual size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
63     mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
64         reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
65     VALGRIND_MAKE_MEM_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
66     return LargeObjectMapSpace::Free(self, object_with_rdz);
67   }
68 
Contains(const mirror::Object * obj) const69   bool Contains(const mirror::Object* obj) const OVERRIDE {
70     mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
71         reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
72     return LargeObjectMapSpace::Contains(object_with_rdz);
73   }
74 
75  private:
76   static constexpr size_t kValgrindRedZoneBytes = kPageSize;
77 };
78 
SwapBitmaps()79 void LargeObjectSpace::SwapBitmaps() {
80   live_bitmap_.swap(mark_bitmap_);
81   // Swap names to get more descriptive diagnostics.
82   std::string temp_name = live_bitmap_->GetName();
83   live_bitmap_->SetName(mark_bitmap_->GetName());
84   mark_bitmap_->SetName(temp_name);
85 }
86 
LargeObjectSpace(const std::string & name,byte * begin,byte * end)87 LargeObjectSpace::LargeObjectSpace(const std::string& name, byte* begin, byte* end)
88     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
89       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
90       total_objects_allocated_(0), begin_(begin), end_(end) {
91 }
92 
93 
CopyLiveToMarked()94 void LargeObjectSpace::CopyLiveToMarked() {
95   mark_bitmap_->CopyFrom(live_bitmap_.get());
96 }
97 
LargeObjectMapSpace(const std::string & name)98 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
99     : LargeObjectSpace(name, nullptr, nullptr),
100       lock_("large object map space lock", kAllocSpaceLock) {}
101 
Create(const std::string & name)102 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
103   if (Runtime::Current()->RunningOnValgrind()) {
104     return new ValgrindLargeObjectMapSpace(name);
105   } else {
106     return new LargeObjectMapSpace(name);
107   }
108 }
109 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size)110 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
111                                            size_t* bytes_allocated, size_t* usable_size) {
112   std::string error_msg;
113   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes,
114                                          PROT_READ | PROT_WRITE, true, &error_msg);
115   if (UNLIKELY(mem_map == NULL)) {
116     LOG(WARNING) << "Large object allocation failed: " << error_msg;
117     return NULL;
118   }
119   MutexLock mu(self, lock_);
120   mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
121   large_objects_.push_back(obj);
122   mem_maps_.Put(obj, mem_map);
123   size_t allocation_size = mem_map->Size();
124   DCHECK(bytes_allocated != nullptr);
125   begin_ = std::min(begin_, reinterpret_cast<byte*>(obj));
126   byte* obj_end = reinterpret_cast<byte*>(obj) + allocation_size;
127   if (end_ == nullptr || obj_end > end_) {
128     end_ = obj_end;
129   }
130   *bytes_allocated = allocation_size;
131   if (usable_size != nullptr) {
132     *usable_size = allocation_size;
133   }
134   num_bytes_allocated_ += allocation_size;
135   total_bytes_allocated_ += allocation_size;
136   ++num_objects_allocated_;
137   ++total_objects_allocated_;
138   return obj;
139 }
140 
Free(Thread * self,mirror::Object * ptr)141 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
142   MutexLock mu(self, lock_);
143   MemMaps::iterator found = mem_maps_.find(ptr);
144   if (UNLIKELY(found == mem_maps_.end())) {
145     Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR));
146     LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
147   }
148   DCHECK_GE(num_bytes_allocated_, found->second->Size());
149   size_t allocation_size = found->second->Size();
150   num_bytes_allocated_ -= allocation_size;
151   --num_objects_allocated_;
152   delete found->second;
153   mem_maps_.erase(found);
154   return allocation_size;
155 }
156 
AllocationSize(mirror::Object * obj,size_t * usable_size)157 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
158   MutexLock mu(Thread::Current(), lock_);
159   auto found = mem_maps_.find(obj);
160   CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
161   return found->second->Size();
162 }
163 
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)164 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
165   size_t total = 0;
166   for (size_t i = 0; i < num_ptrs; ++i) {
167     if (kDebugSpaces) {
168       CHECK(Contains(ptrs[i]));
169     }
170     total += Free(self, ptrs[i]);
171   }
172   return total;
173 }
174 
Walk(DlMallocSpace::WalkCallback callback,void * arg)175 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
176   MutexLock mu(Thread::Current(), lock_);
177   for (auto it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
178     MemMap* mem_map = it->second;
179     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
180     callback(NULL, NULL, 0, arg);
181   }
182 }
183 
Contains(const mirror::Object * obj) const184 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
185   Thread* self = Thread::Current();
186   if (lock_.IsExclusiveHeld(self)) {
187     // We hold lock_ so do the check.
188     return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
189   } else {
190     MutexLock mu(self, lock_);
191     return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
192   }
193 }
194 
195 // Keeps track of allocation sizes + whether or not the previous allocation is free.
196 // Used to coalesce free blocks and find the best fit block for an allocation.
197 class AllocationInfo {
198  public:
AllocationInfo()199   AllocationInfo() : prev_free_(0), alloc_size_(0) {
200   }
201   // Return the number of pages that the allocation info covers.
AlignSize() const202   size_t AlignSize() const {
203     return alloc_size_ & ~kFlagFree;
204   }
205   // Returns the allocation size in bytes.
ByteSize() const206   size_t ByteSize() const {
207     return AlignSize() * FreeListSpace::kAlignment;
208   }
209   // Updates the allocation size and whether or not it is free.
SetByteSize(size_t size,bool free)210   void SetByteSize(size_t size, bool free) {
211     DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
212     alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0U);
213   }
IsFree() const214   bool IsFree() const {
215     return (alloc_size_ & kFlagFree) != 0;
216   }
217   // Finds and returns the next non free allocation info after ourself.
GetNextInfo()218   AllocationInfo* GetNextInfo() {
219     return this + AlignSize();
220   }
GetNextInfo() const221   const AllocationInfo* GetNextInfo() const {
222     return this + AlignSize();
223   }
224   // Returns the previous free allocation info by using the prev_free_ member to figure out
225   // where it is. This is only used for coalescing so we only need to be able to do it if the
226   // previous allocation info is free.
GetPrevFreeInfo()227   AllocationInfo* GetPrevFreeInfo() {
228     DCHECK_NE(prev_free_, 0U);
229     return this - prev_free_;
230   }
231   // Returns the address of the object associated with this allocation info.
GetObjectAddress()232   mirror::Object* GetObjectAddress() {
233     return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
234   }
235   // Return how many kAlignment units there are before the free block.
GetPrevFree() const236   size_t GetPrevFree() const {
237     return prev_free_;
238   }
239   // Returns how many free bytes there is before the block.
GetPrevFreeBytes() const240   size_t GetPrevFreeBytes() const {
241     return GetPrevFree() * FreeListSpace::kAlignment;
242   }
243   // Update the size of the free block prior to the allocation.
SetPrevFreeBytes(size_t bytes)244   void SetPrevFreeBytes(size_t bytes) {
245     DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
246     prev_free_ = bytes / FreeListSpace::kAlignment;
247   }
248 
249  private:
250   // Used to implement best fit object allocation. Each allocation has an AllocationInfo which
251   // contains the size of the previous free block preceding it. Implemented in such a way that we
252   // can also find the iterator for any allocation info pointer.
253   static constexpr uint32_t kFlagFree = 0x8000000;
254   // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
255   // allocation before us is not free.
256   // These variables are undefined in the middle of allocations / free blocks.
257   uint32_t prev_free_;
258   // Allocation size of this object in kAlignment as the unit.
259   uint32_t alloc_size_;
260 };
261 
GetSlotIndexForAllocationInfo(const AllocationInfo * info) const262 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
263   DCHECK_GE(info, allocation_info_);
264   DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
265   return info - allocation_info_;
266 }
267 
GetAllocationInfoForAddress(uintptr_t address)268 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
269   return &allocation_info_[GetSlotIndexForAddress(address)];
270 }
271 
GetAllocationInfoForAddress(uintptr_t address) const272 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
273   return &allocation_info_[GetSlotIndexForAddress(address)];
274 }
275 
operator ()(const AllocationInfo * a,const AllocationInfo * b) const276 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
277                                                       const AllocationInfo* b) const {
278   if (a->GetPrevFree() < b->GetPrevFree()) return true;
279   if (a->GetPrevFree() > b->GetPrevFree()) return false;
280   if (a->AlignSize() < b->AlignSize()) return true;
281   if (a->AlignSize() > b->AlignSize()) return false;
282   return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
283 }
284 
Create(const std::string & name,byte * requested_begin,size_t size)285 FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
286   CHECK_EQ(size % kAlignment, 0U);
287   std::string error_msg;
288   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
289                                          PROT_READ | PROT_WRITE, true, &error_msg);
290   CHECK(mem_map != NULL) << "Failed to allocate large object space mem map: " << error_msg;
291   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
292 }
293 
FreeListSpace(const std::string & name,MemMap * mem_map,byte * begin,byte * end)294 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
295     : LargeObjectSpace(name, begin, end),
296       mem_map_(mem_map),
297       lock_("free list space lock", kAllocSpaceLock) {
298   const size_t space_capacity = end - begin;
299   free_end_ = space_capacity;
300   CHECK_ALIGNED(space_capacity, kAlignment);
301   const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
302   std::string error_msg;
303   allocation_info_map_.reset(MemMap::MapAnonymous("large object free list space allocation info map",
304                                                   nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
305                                                   false, &error_msg));
306   CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
307       << error_msg;
308   allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
309 }
310 
~FreeListSpace()311 FreeListSpace::~FreeListSpace() {}
312 
Walk(DlMallocSpace::WalkCallback callback,void * arg)313 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
314   MutexLock mu(Thread::Current(), lock_);
315   const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
316   AllocationInfo* cur_info = &allocation_info_[0];
317   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
318   while (cur_info < end_info) {
319     if (!cur_info->IsFree()) {
320       size_t alloc_size = cur_info->ByteSize();
321       byte* byte_start = reinterpret_cast<byte*>(GetAddressForAllocationInfo(cur_info));
322       byte* byte_end = byte_start + alloc_size;
323       callback(byte_start, byte_end, alloc_size, arg);
324       callback(nullptr, nullptr, 0, arg);
325     }
326     cur_info = cur_info->GetNextInfo();
327   }
328   CHECK_EQ(cur_info, end_info);
329 }
330 
RemoveFreePrev(AllocationInfo * info)331 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
332   CHECK_GT(info->GetPrevFree(), 0U);
333   auto it = free_blocks_.lower_bound(info);
334   CHECK(it != free_blocks_.end());
335   CHECK_EQ(*it, info);
336   free_blocks_.erase(it);
337 }
338 
Free(Thread * self,mirror::Object * obj)339 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
340   MutexLock mu(self, lock_);
341   DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
342                         << reinterpret_cast<void*>(End());
343   DCHECK_ALIGNED(obj, kAlignment);
344   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
345   DCHECK(!info->IsFree());
346   const size_t allocation_size = info->ByteSize();
347   DCHECK_GT(allocation_size, 0U);
348   DCHECK_ALIGNED(allocation_size, kAlignment);
349   info->SetByteSize(allocation_size, true);  // Mark as free.
350   // Look at the next chunk.
351   AllocationInfo* next_info = info->GetNextInfo();
352   // Calculate the start of the end free block.
353   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
354   size_t prev_free_bytes = info->GetPrevFreeBytes();
355   size_t new_free_size = allocation_size;
356   if (prev_free_bytes != 0) {
357     // Coalesce with previous free chunk.
358     new_free_size += prev_free_bytes;
359     RemoveFreePrev(info);
360     info = info->GetPrevFreeInfo();
361     // The previous allocation info must not be free since we are supposed to always coalesce.
362     DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
363   }
364   uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
365   if (next_addr >= free_end_start) {
366     // Easy case, the next chunk is the end free region.
367     CHECK_EQ(next_addr, free_end_start);
368     free_end_ += new_free_size;
369   } else {
370     AllocationInfo* new_free_info;
371     if (next_info->IsFree()) {
372       AllocationInfo* next_next_info = next_info->GetNextInfo();
373       // Next next info can't be free since we always coalesce.
374       DCHECK(!next_next_info->IsFree());
375       DCHECK(IsAligned<kAlignment>(next_next_info->ByteSize()));
376       new_free_info = next_next_info;
377       new_free_size += next_next_info->GetPrevFreeBytes();
378       RemoveFreePrev(next_next_info);
379     } else {
380       new_free_info = next_info;
381     }
382     new_free_info->SetPrevFreeBytes(new_free_size);
383     free_blocks_.insert(new_free_info);
384     info->SetByteSize(new_free_size, true);
385     DCHECK_EQ(info->GetNextInfo(), new_free_info);
386   }
387   --num_objects_allocated_;
388   DCHECK_LE(allocation_size, num_bytes_allocated_);
389   num_bytes_allocated_ -= allocation_size;
390   madvise(obj, allocation_size, MADV_DONTNEED);
391   if (kIsDebugBuild) {
392     // Can't disallow reads since we use them to find next chunks during coalescing.
393     mprotect(obj, allocation_size, PROT_READ);
394   }
395   return allocation_size;
396 }
397 
AllocationSize(mirror::Object * obj,size_t * usable_size)398 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
399   DCHECK(Contains(obj));
400   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
401   DCHECK(!info->IsFree());
402   size_t alloc_size = info->ByteSize();
403   if (usable_size != nullptr) {
404     *usable_size = alloc_size;
405   }
406   return alloc_size;
407 }
408 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size)409 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
410                                      size_t* usable_size) {
411   MutexLock mu(self, lock_);
412   const size_t allocation_size = RoundUp(num_bytes, kAlignment);
413   AllocationInfo temp_info;
414   temp_info.SetPrevFreeBytes(allocation_size);
415   temp_info.SetByteSize(0, false);
416   AllocationInfo* new_info;
417   // Find the smallest chunk at least num_bytes in size.
418   auto it = free_blocks_.lower_bound(&temp_info);
419   if (it != free_blocks_.end()) {
420     AllocationInfo* info = *it;
421     free_blocks_.erase(it);
422     // Fit our object in the previous allocation info free space.
423     new_info = info->GetPrevFreeInfo();
424     // Remove the newly allocated block from the info and update the prev_free_.
425     info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
426     if (info->GetPrevFreeBytes() > 0) {
427       AllocationInfo* new_free = info - info->GetPrevFree();
428       new_free->SetPrevFreeBytes(0);
429       new_free->SetByteSize(info->GetPrevFreeBytes(), true);
430       // If there is remaining space, insert back into the free set.
431       free_blocks_.insert(info);
432     }
433   } else {
434     // Try to steal some memory from the free space at the end of the space.
435     if (LIKELY(free_end_ >= allocation_size)) {
436       // Fit our object at the start of the end free block.
437       new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
438       free_end_ -= allocation_size;
439     } else {
440       return nullptr;
441     }
442   }
443   DCHECK(bytes_allocated != nullptr);
444   *bytes_allocated = allocation_size;
445   if (usable_size != nullptr) {
446     *usable_size = allocation_size;
447   }
448   // Need to do these inside of the lock.
449   ++num_objects_allocated_;
450   ++total_objects_allocated_;
451   num_bytes_allocated_ += allocation_size;
452   total_bytes_allocated_ += allocation_size;
453   mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
454   // We always put our object at the start of the free block, there can not be another free block
455   // before it.
456   if (kIsDebugBuild) {
457     mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
458   }
459   new_info->SetPrevFreeBytes(0);
460   new_info->SetByteSize(allocation_size, false);
461   return obj;
462 }
463 
Dump(std::ostream & os) const464 void FreeListSpace::Dump(std::ostream& os) const {
465   MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_));
466   os << GetName() << " -"
467      << " begin: " << reinterpret_cast<void*>(Begin())
468      << " end: " << reinterpret_cast<void*>(End()) << "\n";
469   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
470   const AllocationInfo* cur_info =
471       GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
472   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
473   while (cur_info < end_info) {
474     size_t size = cur_info->ByteSize();
475     uintptr_t address = GetAddressForAllocationInfo(cur_info);
476     if (cur_info->IsFree()) {
477       os << "Free block at address: " << reinterpret_cast<const void*>(address)
478          << " of length " << size << " bytes\n";
479     } else {
480       os << "Large object at address: " << reinterpret_cast<const void*>(address)
481          << " of length " << size << " bytes\n";
482     }
483     cur_info = cur_info->GetNextInfo();
484   }
485   if (free_end_) {
486     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
487        << " of length " << free_end_ << " bytes\n";
488   }
489 }
490 
SweepCallback(size_t num_ptrs,mirror::Object ** ptrs,void * arg)491 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
492   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
493   space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
494   Thread* self = context->self;
495   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
496   // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
497   // the bitmaps as an optimization.
498   if (!context->swap_bitmaps) {
499     accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
500     for (size_t i = 0; i < num_ptrs; ++i) {
501       bitmap->Clear(ptrs[i]);
502     }
503   }
504   context->freed.objects += num_ptrs;
505   context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
506 }
507 
Sweep(bool swap_bitmaps)508 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
509   if (Begin() >= End()) {
510     return collector::ObjectBytePair(0, 0);
511   }
512   accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
513   accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
514   if (swap_bitmaps) {
515     std::swap(live_bitmap, mark_bitmap);
516   }
517   AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
518   accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
519                                            reinterpret_cast<uintptr_t>(Begin()),
520                                            reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc);
521   return scc.freed;
522 }
523 
LogFragmentationAllocFailure(std::ostream &,size_t)524 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
525                                                     size_t /*failed_alloc_bytes*/) {
526   UNIMPLEMENTED(FATAL);
527 }
528 
529 }  // namespace space
530 }  // namespace gc
531 }  // namespace art
532