1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "compiler_internals.h"
18 #include "global_value_numbering.h"
19 #include "local_value_numbering.h"
20 #include "dataflow_iterator-inl.h"
21 #include "dex/global_value_numbering.h"
22 #include "dex/quick/dex_file_method_inliner.h"
23 #include "dex/quick/dex_file_to_method_inliner_map.h"
24 #include "utils/scoped_arena_containers.h"
25
26 namespace art {
27
Predecessors(BasicBlock * bb)28 static unsigned int Predecessors(BasicBlock* bb) {
29 return bb->predecessors->Size();
30 }
31
32 /* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
SetConstant(int32_t ssa_reg,int value)33 void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
34 is_constant_v_->SetBit(ssa_reg);
35 constant_values_[ssa_reg] = value;
36 }
37
SetConstantWide(int ssa_reg,int64_t value)38 void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
39 is_constant_v_->SetBit(ssa_reg);
40 is_constant_v_->SetBit(ssa_reg + 1);
41 constant_values_[ssa_reg] = Low32Bits(value);
42 constant_values_[ssa_reg + 1] = High32Bits(value);
43 }
44
DoConstantPropagation(BasicBlock * bb)45 void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
46 MIR* mir;
47
48 for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
49 // Skip pass if BB has MIR without SSA representation.
50 if (mir->ssa_rep == nullptr) {
51 return;
52 }
53
54 uint64_t df_attributes = GetDataFlowAttributes(mir);
55
56 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
57
58 if (!(df_attributes & DF_HAS_DEFS)) continue;
59
60 /* Handle instructions that set up constants directly */
61 if (df_attributes & DF_SETS_CONST) {
62 if (df_attributes & DF_DA) {
63 int32_t vB = static_cast<int32_t>(d_insn->vB);
64 switch (d_insn->opcode) {
65 case Instruction::CONST_4:
66 case Instruction::CONST_16:
67 case Instruction::CONST:
68 SetConstant(mir->ssa_rep->defs[0], vB);
69 break;
70 case Instruction::CONST_HIGH16:
71 SetConstant(mir->ssa_rep->defs[0], vB << 16);
72 break;
73 case Instruction::CONST_WIDE_16:
74 case Instruction::CONST_WIDE_32:
75 SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
76 break;
77 case Instruction::CONST_WIDE:
78 SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
79 break;
80 case Instruction::CONST_WIDE_HIGH16:
81 SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
82 break;
83 default:
84 break;
85 }
86 }
87 /* Handle instructions that set up constants directly */
88 } else if (df_attributes & DF_IS_MOVE) {
89 int i;
90
91 for (i = 0; i < mir->ssa_rep->num_uses; i++) {
92 if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
93 }
94 /* Move a register holding a constant to another register */
95 if (i == mir->ssa_rep->num_uses) {
96 SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
97 if (df_attributes & DF_A_WIDE) {
98 SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
99 }
100 }
101 }
102 }
103 /* TODO: implement code to handle arithmetic operations */
104 }
105
106 /* Advance to next strictly dominated MIR node in an extended basic block */
AdvanceMIR(BasicBlock ** p_bb,MIR * mir)107 MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
108 BasicBlock* bb = *p_bb;
109 if (mir != NULL) {
110 mir = mir->next;
111 if (mir == NULL) {
112 bb = GetBasicBlock(bb->fall_through);
113 if ((bb == NULL) || Predecessors(bb) != 1) {
114 mir = NULL;
115 } else {
116 *p_bb = bb;
117 mir = bb->first_mir_insn;
118 }
119 }
120 }
121 return mir;
122 }
123
124 /*
125 * To be used at an invoke mir. If the logically next mir node represents
126 * a move-result, return it. Else, return NULL. If a move-result exists,
127 * it is required to immediately follow the invoke with no intervening
128 * opcodes or incoming arcs. However, if the result of the invoke is not
129 * used, a move-result may not be present.
130 */
FindMoveResult(BasicBlock * bb,MIR * mir)131 MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
132 BasicBlock* tbb = bb;
133 mir = AdvanceMIR(&tbb, mir);
134 while (mir != NULL) {
135 if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
136 (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
137 (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
138 break;
139 }
140 // Keep going if pseudo op, otherwise terminate
141 if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
142 mir = AdvanceMIR(&tbb, mir);
143 } else {
144 mir = NULL;
145 }
146 }
147 return mir;
148 }
149
NextDominatedBlock(BasicBlock * bb)150 BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
151 if (bb->block_type == kDead) {
152 return NULL;
153 }
154 DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
155 || (bb->block_type == kExitBlock));
156 BasicBlock* bb_taken = GetBasicBlock(bb->taken);
157 BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
158 if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
159 ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
160 // Follow simple unconditional branches.
161 bb = bb_taken;
162 } else {
163 // Follow simple fallthrough
164 bb = (bb_taken != NULL) ? NULL : bb_fall_through;
165 }
166 if (bb == NULL || (Predecessors(bb) != 1)) {
167 return NULL;
168 }
169 DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
170 return bb;
171 }
172
FindPhi(BasicBlock * bb,int ssa_name)173 static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
174 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
175 if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
176 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
177 if (mir->ssa_rep->uses[i] == ssa_name) {
178 return mir;
179 }
180 }
181 }
182 }
183 return NULL;
184 }
185
SelectKind(MIR * mir)186 static SelectInstructionKind SelectKind(MIR* mir) {
187 switch (mir->dalvikInsn.opcode) {
188 case Instruction::MOVE:
189 case Instruction::MOVE_OBJECT:
190 case Instruction::MOVE_16:
191 case Instruction::MOVE_OBJECT_16:
192 case Instruction::MOVE_FROM16:
193 case Instruction::MOVE_OBJECT_FROM16:
194 return kSelectMove;
195 case Instruction::CONST:
196 case Instruction::CONST_4:
197 case Instruction::CONST_16:
198 return kSelectConst;
199 case Instruction::GOTO:
200 case Instruction::GOTO_16:
201 case Instruction::GOTO_32:
202 return kSelectGoto;
203 default:
204 return kSelectNone;
205 }
206 }
207
208 static constexpr ConditionCode kIfCcZConditionCodes[] = {
209 kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
210 };
211
212 COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
213 if_ccz_ccodes_size1);
214
IsInstructionIfCcZ(Instruction::Code opcode)215 static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
216 return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
217 }
218
ConditionCodeForIfCcZ(Instruction::Code opcode)219 static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
220 return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
221 }
222
223 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
224 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
225 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
226 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
227 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
228 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);
229
GetSSAUseCount(int s_reg)230 int MIRGraph::GetSSAUseCount(int s_reg) {
231 return raw_use_counts_.Get(s_reg);
232 }
233
GetNumAvailableNonSpecialCompilerTemps()234 size_t MIRGraph::GetNumAvailableNonSpecialCompilerTemps() {
235 if (num_non_special_compiler_temps_ >= max_available_non_special_compiler_temps_) {
236 return 0;
237 } else {
238 return max_available_non_special_compiler_temps_ - num_non_special_compiler_temps_;
239 }
240 }
241
242
243 // FIXME - will probably need to revisit all uses of this, as type not defined.
244 static const RegLocation temp_loc = {kLocCompilerTemp,
245 0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
246 RegStorage(), INVALID_SREG, INVALID_SREG};
247
GetNewCompilerTemp(CompilerTempType ct_type,bool wide)248 CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
249 // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
250 if (ct_type == kCompilerTempVR) {
251 size_t available_temps = GetNumAvailableNonSpecialCompilerTemps();
252 if (available_temps <= 0 || (available_temps <= 1 && wide)) {
253 return 0;
254 }
255 }
256
257 CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
258 kArenaAllocRegAlloc));
259
260 // Create the type of temp requested. Special temps need special handling because
261 // they have a specific virtual register assignment.
262 if (ct_type == kCompilerTempSpecialMethodPtr) {
263 DCHECK_EQ(wide, false);
264 compiler_temp->v_reg = static_cast<int>(kVRegMethodPtrBaseReg);
265 compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
266
267 // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
268 method_sreg_ = compiler_temp->s_reg_low;
269 } else {
270 DCHECK_EQ(ct_type, kCompilerTempVR);
271
272 // The new non-special compiler temp must receive a unique v_reg with a negative value.
273 compiler_temp->v_reg = static_cast<int>(kVRegNonSpecialTempBaseReg) -
274 num_non_special_compiler_temps_;
275 compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
276 num_non_special_compiler_temps_++;
277
278 if (wide) {
279 // Create a new CompilerTemp for the high part.
280 CompilerTemp *compiler_temp_high =
281 static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp), kArenaAllocRegAlloc));
282 compiler_temp_high->v_reg = compiler_temp->v_reg;
283 compiler_temp_high->s_reg_low = compiler_temp->s_reg_low;
284 compiler_temps_.Insert(compiler_temp_high);
285
286 // Ensure that the two registers are consecutive. Since the virtual registers used for temps
287 // grow in a negative fashion, we need the smaller to refer to the low part. Thus, we
288 // redefine the v_reg and s_reg_low.
289 compiler_temp->v_reg--;
290 int ssa_reg_high = compiler_temp->s_reg_low;
291 compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
292 int ssa_reg_low = compiler_temp->s_reg_low;
293
294 // If needed initialize the register location for the high part.
295 // The low part is handled later in this method on a common path.
296 if (reg_location_ != nullptr) {
297 reg_location_[ssa_reg_high] = temp_loc;
298 reg_location_[ssa_reg_high].high_word = 1;
299 reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
300 reg_location_[ssa_reg_high].wide = true;
301 }
302
303 num_non_special_compiler_temps_++;
304 }
305 }
306
307 // Have we already allocated the register locations?
308 if (reg_location_ != nullptr) {
309 int ssa_reg_low = compiler_temp->s_reg_low;
310 reg_location_[ssa_reg_low] = temp_loc;
311 reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
312 reg_location_[ssa_reg_low].wide = wide;
313 }
314
315 compiler_temps_.Insert(compiler_temp);
316 return compiler_temp;
317 }
318
319 /* Do some MIR-level extended basic block optimizations */
BasicBlockOpt(BasicBlock * bb)320 bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
321 if (bb->block_type == kDead) {
322 return true;
323 }
324 // Don't do a separate LVN if we did the GVN.
325 bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u;
326 std::unique_ptr<ScopedArenaAllocator> allocator;
327 std::unique_ptr<GlobalValueNumbering> global_valnum;
328 std::unique_ptr<LocalValueNumbering> local_valnum;
329 if (use_lvn) {
330 allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
331 global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get()));
332 local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id,
333 allocator.get()));
334 }
335 while (bb != NULL) {
336 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
337 // TUNING: use the returned value number for CSE.
338 if (use_lvn) {
339 local_valnum->GetValueNumber(mir);
340 }
341 // Look for interesting opcodes, skip otherwise
342 Instruction::Code opcode = mir->dalvikInsn.opcode;
343 switch (opcode) {
344 case Instruction::CMPL_FLOAT:
345 case Instruction::CMPL_DOUBLE:
346 case Instruction::CMPG_FLOAT:
347 case Instruction::CMPG_DOUBLE:
348 case Instruction::CMP_LONG:
349 if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
350 // Bitcode doesn't allow this optimization.
351 break;
352 }
353 if (mir->next != NULL) {
354 MIR* mir_next = mir->next;
355 // Make sure result of cmp is used by next insn and nowhere else
356 if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
357 (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
358 (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
359 mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
360 switch (opcode) {
361 case Instruction::CMPL_FLOAT:
362 mir_next->dalvikInsn.opcode =
363 static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
364 break;
365 case Instruction::CMPL_DOUBLE:
366 mir_next->dalvikInsn.opcode =
367 static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
368 break;
369 case Instruction::CMPG_FLOAT:
370 mir_next->dalvikInsn.opcode =
371 static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
372 break;
373 case Instruction::CMPG_DOUBLE:
374 mir_next->dalvikInsn.opcode =
375 static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
376 break;
377 case Instruction::CMP_LONG:
378 mir_next->dalvikInsn.opcode =
379 static_cast<Instruction::Code>(kMirOpFusedCmpLong);
380 break;
381 default: LOG(ERROR) << "Unexpected opcode: " << opcode;
382 }
383 mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
384 // Copy the SSA information that is relevant.
385 mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
386 mir_next->ssa_rep->uses = mir->ssa_rep->uses;
387 mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
388 mir_next->ssa_rep->num_defs = 0;
389 mir->ssa_rep->num_uses = 0;
390 mir->ssa_rep->num_defs = 0;
391 // Copy in the decoded instruction information for potential SSA re-creation.
392 mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
393 mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
394 }
395 }
396 break;
397 case Instruction::GOTO:
398 case Instruction::GOTO_16:
399 case Instruction::GOTO_32:
400 case Instruction::IF_EQ:
401 case Instruction::IF_NE:
402 case Instruction::IF_LT:
403 case Instruction::IF_GE:
404 case Instruction::IF_GT:
405 case Instruction::IF_LE:
406 case Instruction::IF_EQZ:
407 case Instruction::IF_NEZ:
408 case Instruction::IF_LTZ:
409 case Instruction::IF_GEZ:
410 case Instruction::IF_GTZ:
411 case Instruction::IF_LEZ:
412 // If we've got a backwards branch to return, no need to suspend check.
413 if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
414 (IsBackedge(bb, bb->fall_through) &&
415 GetBasicBlock(bb->fall_through)->dominates_return)) {
416 mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
417 if (cu_->verbose) {
418 LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
419 << mir->offset;
420 }
421 }
422 break;
423 default:
424 break;
425 }
426 // Is this the select pattern?
427 // TODO: flesh out support for Mips. NOTE: llvm's select op doesn't quite work here.
428 // TUNING: expand to support IF_xx compare & branches
429 if (!cu_->compiler->IsPortable() &&
430 (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
431 cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
432 IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
433 BasicBlock* ft = GetBasicBlock(bb->fall_through);
434 DCHECK(ft != NULL);
435 BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
436 BasicBlock* ft_tk = GetBasicBlock(ft->taken);
437
438 BasicBlock* tk = GetBasicBlock(bb->taken);
439 DCHECK(tk != NULL);
440 BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
441 BasicBlock* tk_tk = GetBasicBlock(tk->taken);
442
443 /*
444 * In the select pattern, the taken edge goes to a block that unconditionally
445 * transfers to the rejoin block and the fall_though edge goes to a block that
446 * unconditionally falls through to the rejoin block.
447 */
448 if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
449 (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
450 /*
451 * Okay - we have the basic diamond shape. At the very least, we can eliminate the
452 * suspend check on the taken-taken branch back to the join point.
453 */
454 if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
455 tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
456 }
457
458 // TODO: Add logic for LONG.
459 // Are the block bodies something we can handle?
460 if ((ft->first_mir_insn == ft->last_mir_insn) &&
461 (tk->first_mir_insn != tk->last_mir_insn) &&
462 (tk->first_mir_insn->next == tk->last_mir_insn) &&
463 ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
464 (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
465 (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
466 (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
467 // Almost there. Are the instructions targeting the same vreg?
468 MIR* if_true = tk->first_mir_insn;
469 MIR* if_false = ft->first_mir_insn;
470 // It's possible that the target of the select isn't used - skip those (rare) cases.
471 MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
472 if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
473 /*
474 * We'll convert the IF_EQZ/IF_NEZ to a SELECT. We need to find the
475 * Phi node in the merge block and delete it (while using the SSA name
476 * of the merge as the target of the SELECT. Delete both taken and
477 * fallthrough blocks, and set fallthrough to merge block.
478 * NOTE: not updating other dataflow info (no longer used at this point).
479 * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
480 */
481 mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
482 mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
483 bool const_form = (SelectKind(if_true) == kSelectConst);
484 if ((SelectKind(if_true) == kSelectMove)) {
485 if (IsConst(if_true->ssa_rep->uses[0]) &&
486 IsConst(if_false->ssa_rep->uses[0])) {
487 const_form = true;
488 if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
489 if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
490 }
491 }
492 if (const_form) {
493 /*
494 * TODO: If both constants are the same value, then instead of generating
495 * a select, we should simply generate a const bytecode. This should be
496 * considered after inlining which can lead to CFG of this form.
497 */
498 // "true" set val in vB
499 mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
500 // "false" set val in vC
501 mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
502 } else {
503 DCHECK_EQ(SelectKind(if_true), kSelectMove);
504 DCHECK_EQ(SelectKind(if_false), kSelectMove);
505 int* src_ssa =
506 static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
507 src_ssa[0] = mir->ssa_rep->uses[0];
508 src_ssa[1] = if_true->ssa_rep->uses[0];
509 src_ssa[2] = if_false->ssa_rep->uses[0];
510 mir->ssa_rep->uses = src_ssa;
511 mir->ssa_rep->num_uses = 3;
512 }
513 mir->ssa_rep->num_defs = 1;
514 mir->ssa_rep->defs =
515 static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
516 mir->ssa_rep->fp_def =
517 static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
518 mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
519 // Match type of uses to def.
520 mir->ssa_rep->fp_use =
521 static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
522 kArenaAllocDFInfo));
523 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
524 mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
525 }
526 /*
527 * There is usually a Phi node in the join block for our two cases. If the
528 * Phi node only contains our two cases as input, we will use the result
529 * SSA name of the Phi node as our select result and delete the Phi. If
530 * the Phi node has more than two operands, we will arbitrarily use the SSA
531 * name of the "true" path, delete the SSA name of the "false" path from the
532 * Phi node (and fix up the incoming arc list).
533 */
534 if (phi->ssa_rep->num_uses == 2) {
535 mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
536 phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
537 } else {
538 int dead_def = if_false->ssa_rep->defs[0];
539 int live_def = if_true->ssa_rep->defs[0];
540 mir->ssa_rep->defs[0] = live_def;
541 BasicBlockId* incoming = phi->meta.phi_incoming;
542 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
543 if (phi->ssa_rep->uses[i] == live_def) {
544 incoming[i] = bb->id;
545 }
546 }
547 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
548 if (phi->ssa_rep->uses[i] == dead_def) {
549 int last_slot = phi->ssa_rep->num_uses - 1;
550 phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
551 incoming[i] = incoming[last_slot];
552 }
553 }
554 }
555 phi->ssa_rep->num_uses--;
556 bb->taken = NullBasicBlockId;
557 tk->block_type = kDead;
558 for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
559 tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
560 }
561 }
562 }
563 }
564 }
565 }
566 bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
567 }
568 if (use_lvn && UNLIKELY(!global_valnum->Good())) {
569 LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
570 }
571
572 return true;
573 }
574
575 /* Collect stats on number of checks removed */
CountChecks(struct BasicBlock * bb)576 void MIRGraph::CountChecks(struct BasicBlock* bb) {
577 if (bb->data_flow_info != NULL) {
578 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
579 if (mir->ssa_rep == NULL) {
580 continue;
581 }
582 uint64_t df_attributes = GetDataFlowAttributes(mir);
583 if (df_attributes & DF_HAS_NULL_CHKS) {
584 checkstats_->null_checks++;
585 if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
586 checkstats_->null_checks_eliminated++;
587 }
588 }
589 if (df_attributes & DF_HAS_RANGE_CHKS) {
590 checkstats_->range_checks++;
591 if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
592 checkstats_->range_checks_eliminated++;
593 }
594 }
595 }
596 }
597 }
598
599 /* Try to make common case the fallthrough path. */
LayoutBlocks(BasicBlock * bb)600 bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
601 // TODO: For now, just looking for direct throws. Consider generalizing for profile feedback.
602 if (!bb->explicit_throw) {
603 return false;
604 }
605
606 // If we visited it, we are done.
607 if (bb->visited) {
608 return false;
609 }
610 bb->visited = true;
611
612 BasicBlock* walker = bb;
613 while (true) {
614 // Check termination conditions.
615 if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
616 break;
617 }
618 BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));
619
620 // If we visited the predecessor, we are done.
621 if (prev->visited) {
622 return false;
623 }
624 prev->visited = true;
625
626 if (prev->conditional_branch) {
627 if (GetBasicBlock(prev->fall_through) == walker) {
628 // Already done - return.
629 break;
630 }
631 DCHECK_EQ(walker, GetBasicBlock(prev->taken));
632 // Got one. Flip it and exit.
633 Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
634 switch (opcode) {
635 case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
636 case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
637 case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
638 case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
639 case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
640 case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
641 case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
642 case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
643 case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
644 case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
645 case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
646 case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
647 default: LOG(FATAL) << "Unexpected opcode " << opcode;
648 }
649 prev->last_mir_insn->dalvikInsn.opcode = opcode;
650 BasicBlockId t_bb = prev->taken;
651 prev->taken = prev->fall_through;
652 prev->fall_through = t_bb;
653 break;
654 }
655 walker = prev;
656 }
657 return false;
658 }
659
660 /* Combine any basic blocks terminated by instructions that we now know can't throw */
CombineBlocks(struct BasicBlock * bb)661 void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
662 // Loop here to allow combining a sequence of blocks
663 while (true) {
664 // Check termination conditions
665 if ((bb->first_mir_insn == NULL)
666 || (bb->data_flow_info == NULL)
667 || (bb->block_type == kExceptionHandling)
668 || (bb->block_type == kExitBlock)
669 || (bb->block_type == kDead)
670 || (bb->taken == NullBasicBlockId)
671 || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
672 || (bb->successor_block_list_type != kNotUsed)
673 || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
674 break;
675 }
676
677 // Test the kMirOpCheck instruction
678 MIR* mir = bb->last_mir_insn;
679 // Grab the attributes from the paired opcode
680 MIR* throw_insn = mir->meta.throw_insn;
681 uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
682 bool can_combine = true;
683 if (df_attributes & DF_HAS_NULL_CHKS) {
684 can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
685 }
686 if (df_attributes & DF_HAS_RANGE_CHKS) {
687 can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
688 }
689 if (!can_combine) {
690 break;
691 }
692 // OK - got one. Combine
693 BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
694 DCHECK(!bb_next->catch_entry);
695 DCHECK_EQ(Predecessors(bb_next), 1U);
696 // Overwrite the kOpCheck insn with the paired opcode
697 DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
698 *bb->last_mir_insn = *throw_insn;
699 // Use the successor info from the next block
700 bb->successor_block_list_type = bb_next->successor_block_list_type;
701 bb->successor_blocks = bb_next->successor_blocks;
702 // Use the ending block linkage from the next block
703 bb->fall_through = bb_next->fall_through;
704 GetBasicBlock(bb->taken)->block_type = kDead; // Kill the unused exception block
705 bb->taken = bb_next->taken;
706 // Include the rest of the instructions
707 bb->last_mir_insn = bb_next->last_mir_insn;
708 /*
709 * If lower-half of pair of blocks to combine contained a return, move the flag
710 * to the newly combined block.
711 */
712 bb->terminated_by_return = bb_next->terminated_by_return;
713
714 /*
715 * NOTE: we aren't updating all dataflow info here. Should either make sure this pass
716 * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
717 */
718
719 // Kill bb_next and remap now-dead id to parent
720 bb_next->block_type = kDead;
721 block_id_map_.Overwrite(bb_next->id, bb->id);
722
723 // Now, loop back and see if we can keep going
724 }
725 }
726
EliminateNullChecksAndInferTypesStart()727 void MIRGraph::EliminateNullChecksAndInferTypesStart() {
728 if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
729 if (kIsDebugBuild) {
730 AllNodesIterator iter(this);
731 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
732 CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
733 }
734 }
735
736 DCHECK(temp_scoped_alloc_.get() == nullptr);
737 temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
738 temp_bit_vector_size_ = GetNumSSARegs();
739 temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
740 temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
741 }
742 }
743
744 /*
745 * Eliminate unnecessary null checks for a basic block. Also, while we're doing
746 * an iterative walk go ahead and perform type and size inference.
747 */
EliminateNullChecksAndInferTypes(BasicBlock * bb)748 bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
749 if (bb->data_flow_info == NULL) return false;
750 bool infer_changed = false;
751 bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);
752
753 ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
754 if (do_nce) {
755 /*
756 * Set initial state. Catch blocks don't need any special treatment.
757 */
758 if (bb->block_type == kEntryBlock) {
759 ssa_regs_to_check->ClearAllBits();
760 // Assume all ins are objects.
761 for (uint16_t in_reg = cu_->num_dalvik_registers - cu_->num_ins;
762 in_reg < cu_->num_dalvik_registers; in_reg++) {
763 ssa_regs_to_check->SetBit(in_reg);
764 }
765 if ((cu_->access_flags & kAccStatic) == 0) {
766 // If non-static method, mark "this" as non-null
767 int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
768 ssa_regs_to_check->ClearBit(this_reg);
769 }
770 } else if (bb->predecessors->Size() == 1) {
771 BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
772 // pred_bb must have already been processed at least once.
773 DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
774 ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
775 if (pred_bb->block_type == kDalvikByteCode) {
776 // Check to see if predecessor had an explicit null-check.
777 MIR* last_insn = pred_bb->last_mir_insn;
778 if (last_insn != nullptr) {
779 Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
780 if (last_opcode == Instruction::IF_EQZ) {
781 if (pred_bb->fall_through == bb->id) {
782 // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
783 // it can't be null.
784 ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
785 }
786 } else if (last_opcode == Instruction::IF_NEZ) {
787 if (pred_bb->taken == bb->id) {
788 // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
789 // null.
790 ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
791 }
792 }
793 }
794 }
795 } else {
796 // Starting state is union of all incoming arcs
797 GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
798 BasicBlock* pred_bb = GetBasicBlock(iter.Next());
799 CHECK(pred_bb != NULL);
800 while (pred_bb->data_flow_info->ending_check_v == nullptr) {
801 pred_bb = GetBasicBlock(iter.Next());
802 // At least one predecessor must have been processed before this bb.
803 DCHECK(pred_bb != nullptr);
804 DCHECK(pred_bb->data_flow_info != nullptr);
805 }
806 ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
807 while (true) {
808 pred_bb = GetBasicBlock(iter.Next());
809 if (!pred_bb) break;
810 DCHECK(pred_bb->data_flow_info != nullptr);
811 if (pred_bb->data_flow_info->ending_check_v == nullptr) {
812 continue;
813 }
814 ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
815 }
816 }
817 // At this point, ssa_regs_to_check shows which sregs have an object definition with
818 // no intervening uses.
819 }
820
821 // Walk through the instruction in the block, updating as necessary
822 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
823 if (mir->ssa_rep == NULL) {
824 continue;
825 }
826
827 // Propagate type info.
828 infer_changed = InferTypeAndSize(bb, mir, infer_changed);
829 if (!do_nce) {
830 continue;
831 }
832
833 uint64_t df_attributes = GetDataFlowAttributes(mir);
834
835 // Might need a null check?
836 if (df_attributes & DF_HAS_NULL_CHKS) {
837 int src_idx;
838 if (df_attributes & DF_NULL_CHK_1) {
839 src_idx = 1;
840 } else if (df_attributes & DF_NULL_CHK_2) {
841 src_idx = 2;
842 } else {
843 src_idx = 0;
844 }
845 int src_sreg = mir->ssa_rep->uses[src_idx];
846 if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
847 // Eliminate the null check.
848 mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
849 } else {
850 // Do the null check.
851 mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
852 // Mark s_reg as null-checked
853 ssa_regs_to_check->ClearBit(src_sreg);
854 }
855 }
856
857 if ((df_attributes & DF_A_WIDE) ||
858 (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
859 continue;
860 }
861
862 /*
863 * First, mark all object definitions as requiring null check.
864 * Note: we can't tell if a CONST definition might be used as an object, so treat
865 * them all as object definitions.
866 */
867 if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
868 (df_attributes & DF_SETS_CONST)) {
869 ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
870 }
871
872 // Now, remove mark from all object definitions we know are non-null.
873 if (df_attributes & DF_NON_NULL_DST) {
874 // Mark target of NEW* as non-null
875 ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
876 }
877
878 // Mark non-null returns from invoke-style NEW*
879 if (df_attributes & DF_NON_NULL_RET) {
880 MIR* next_mir = mir->next;
881 // Next should be an MOVE_RESULT_OBJECT
882 if (next_mir &&
883 next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
884 // Mark as null checked
885 ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
886 } else {
887 if (next_mir) {
888 LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
889 } else if (bb->fall_through != NullBasicBlockId) {
890 // Look in next basic block
891 struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
892 for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
893 tmir =tmir->next) {
894 if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) {
895 continue;
896 }
897 // First non-pseudo should be MOVE_RESULT_OBJECT
898 if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
899 // Mark as null checked
900 ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
901 } else {
902 LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
903 }
904 break;
905 }
906 }
907 }
908 }
909
910 /*
911 * Propagate nullcheck state on register copies (including
912 * Phi pseudo copies. For the latter, nullcheck state is
913 * the "or" of all the Phi's operands.
914 */
915 if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
916 int tgt_sreg = mir->ssa_rep->defs[0];
917 int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
918 mir->ssa_rep->num_uses;
919 bool needs_null_check = false;
920 for (int i = 0; i < operands; i++) {
921 needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
922 }
923 if (needs_null_check) {
924 ssa_regs_to_check->SetBit(tgt_sreg);
925 } else {
926 ssa_regs_to_check->ClearBit(tgt_sreg);
927 }
928 }
929 }
930
931 // Did anything change?
932 bool nce_changed = false;
933 if (do_nce) {
934 if (bb->data_flow_info->ending_check_v == nullptr) {
935 DCHECK(temp_scoped_alloc_.get() != nullptr);
936 bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
937 temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
938 nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
939 bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
940 } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
941 nce_changed = true;
942 bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
943 }
944 }
945 return infer_changed | nce_changed;
946 }
947
EliminateNullChecksAndInferTypesEnd()948 void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
949 if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
950 // Clean up temporaries.
951 temp_bit_vector_size_ = 0u;
952 temp_bit_vector_ = nullptr;
953 AllNodesIterator iter(this);
954 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
955 if (bb->data_flow_info != nullptr) {
956 bb->data_flow_info->ending_check_v = nullptr;
957 }
958 }
959 DCHECK(temp_scoped_alloc_.get() != nullptr);
960 temp_scoped_alloc_.reset();
961 }
962 }
963
EliminateClassInitChecksGate()964 bool MIRGraph::EliminateClassInitChecksGate() {
965 if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
966 !cu_->mir_graph->HasStaticFieldAccess()) {
967 return false;
968 }
969
970 if (kIsDebugBuild) {
971 AllNodesIterator iter(this);
972 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
973 CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
974 }
975 }
976
977 DCHECK(temp_scoped_alloc_.get() == nullptr);
978 temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
979
980 // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
981 const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
982 temp_insn_data_ = static_cast<uint16_t*>(
983 temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
984
985 uint32_t unique_class_count = 0u;
986 {
987 // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
988 // ScopedArenaAllocator.
989
990 // Embed the map value in the entry to save space.
991 struct MapEntry {
992 // Map key: the class identified by the declaring dex file and type index.
993 const DexFile* declaring_dex_file;
994 uint16_t declaring_class_idx;
995 // Map value: index into bit vectors of classes requiring initialization checks.
996 uint16_t index;
997 };
998 struct MapEntryComparator {
999 bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
1000 if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
1001 return lhs.declaring_class_idx < rhs.declaring_class_idx;
1002 }
1003 return lhs.declaring_dex_file < rhs.declaring_dex_file;
1004 }
1005 };
1006
1007 ScopedArenaAllocator allocator(&cu_->arena_stack);
1008 ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
1009 allocator.Adapter());
1010
1011 // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
1012 AllNodesIterator iter(this);
1013 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1014 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1015 DCHECK(bb->data_flow_info != nullptr);
1016 if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1017 mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1018 const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1019 uint16_t index = 0xffffu;
1020 if (!field_info.IsInitialized()) {
1021 DCHECK_LT(class_to_index_map.size(), 0xffffu);
1022 MapEntry entry = {
1023 // Treat unresolved fields as if each had its own class.
1024 field_info.IsResolved() ? field_info.DeclaringDexFile()
1025 : nullptr,
1026 field_info.IsResolved() ? field_info.DeclaringClassIndex()
1027 : field_info.FieldIndex(),
1028 static_cast<uint16_t>(class_to_index_map.size())
1029 };
1030 index = class_to_index_map.insert(entry).first->index;
1031 }
1032 // Using offset/2 for index into temp_insn_data_.
1033 temp_insn_data_[mir->offset / 2u] = index;
1034 }
1035 }
1036 }
1037 unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
1038 }
1039
1040 if (unique_class_count == 0u) {
1041 // All SGET/SPUTs refer to initialized classes. Nothing to do.
1042 temp_insn_data_ = nullptr;
1043 temp_scoped_alloc_.reset();
1044 return false;
1045 }
1046
1047 temp_bit_vector_size_ = unique_class_count;
1048 temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1049 temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1050 DCHECK_GT(temp_bit_vector_size_, 0u);
1051 return true;
1052 }
1053
1054 /*
1055 * Eliminate unnecessary class initialization checks for a basic block.
1056 */
EliminateClassInitChecks(BasicBlock * bb)1057 bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1058 DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1059 if (bb->data_flow_info == NULL) {
1060 return false;
1061 }
1062
1063 /*
1064 * Set initial state. Catch blocks don't need any special treatment.
1065 */
1066 ArenaBitVector* classes_to_check = temp_bit_vector_;
1067 DCHECK(classes_to_check != nullptr);
1068 if (bb->block_type == kEntryBlock) {
1069 classes_to_check->SetInitialBits(temp_bit_vector_size_);
1070 } else if (bb->predecessors->Size() == 1) {
1071 BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
1072 // pred_bb must have already been processed at least once.
1073 DCHECK(pred_bb != nullptr);
1074 DCHECK(pred_bb->data_flow_info != nullptr);
1075 DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
1076 classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1077 } else {
1078 // Starting state is union of all incoming arcs
1079 GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1080 BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1081 DCHECK(pred_bb != NULL);
1082 DCHECK(pred_bb->data_flow_info != NULL);
1083 while (pred_bb->data_flow_info->ending_check_v == nullptr) {
1084 pred_bb = GetBasicBlock(iter.Next());
1085 // At least one predecessor must have been processed before this bb.
1086 DCHECK(pred_bb != nullptr);
1087 DCHECK(pred_bb->data_flow_info != nullptr);
1088 }
1089 classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1090 while (true) {
1091 pred_bb = GetBasicBlock(iter.Next());
1092 if (!pred_bb) break;
1093 DCHECK(pred_bb->data_flow_info != nullptr);
1094 if (pred_bb->data_flow_info->ending_check_v == nullptr) {
1095 continue;
1096 }
1097 classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
1098 }
1099 }
1100 // At this point, classes_to_check shows which classes need clinit checks.
1101
1102 // Walk through the instruction in the block, updating as necessary
1103 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1104 if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1105 mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1106 uint16_t index = temp_insn_data_[mir->offset / 2u];
1107 if (index != 0xffffu) {
1108 if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1109 mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1110 if (!classes_to_check->IsBitSet(index)) {
1111 // Eliminate the class init check.
1112 mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
1113 } else {
1114 // Do the class init check.
1115 mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
1116 }
1117 }
1118 // Mark the class as initialized.
1119 classes_to_check->ClearBit(index);
1120 }
1121 }
1122 }
1123
1124 // Did anything change?
1125 bool changed = false;
1126 if (bb->data_flow_info->ending_check_v == nullptr) {
1127 DCHECK(temp_scoped_alloc_.get() != nullptr);
1128 DCHECK(bb->data_flow_info != nullptr);
1129 bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
1130 temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1131 changed = classes_to_check->GetHighestBitSet() != -1;
1132 bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1133 } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
1134 changed = true;
1135 bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1136 }
1137 return changed;
1138 }
1139
EliminateClassInitChecksEnd()1140 void MIRGraph::EliminateClassInitChecksEnd() {
1141 // Clean up temporaries.
1142 temp_bit_vector_size_ = 0u;
1143 temp_bit_vector_ = nullptr;
1144 AllNodesIterator iter(this);
1145 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1146 if (bb->data_flow_info != nullptr) {
1147 bb->data_flow_info->ending_check_v = nullptr;
1148 }
1149 }
1150
1151 DCHECK(temp_insn_data_ != nullptr);
1152 temp_insn_data_ = nullptr;
1153 DCHECK(temp_scoped_alloc_.get() != nullptr);
1154 temp_scoped_alloc_.reset();
1155 }
1156
ApplyGlobalValueNumberingGate()1157 bool MIRGraph::ApplyGlobalValueNumberingGate() {
1158 if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) {
1159 return false;
1160 }
1161
1162 DCHECK(temp_scoped_alloc_ == nullptr);
1163 temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1164 DCHECK(temp_gvn_ == nullptr);
1165 temp_gvn_.reset(
1166 new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get()));
1167 return true;
1168 }
1169
ApplyGlobalValueNumbering(BasicBlock * bb)1170 bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
1171 DCHECK(temp_gvn_ != nullptr);
1172 LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1173 if (lvn != nullptr) {
1174 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1175 lvn->GetValueNumber(mir);
1176 }
1177 }
1178 bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb);
1179 return change;
1180 }
1181
ApplyGlobalValueNumberingEnd()1182 void MIRGraph::ApplyGlobalValueNumberingEnd() {
1183 // Perform modifications.
1184 if (temp_gvn_->Good()) {
1185 temp_gvn_->AllowModifications();
1186 PreOrderDfsIterator iter(this);
1187 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1188 ScopedArenaAllocator allocator(&cu_->arena_stack); // Reclaim memory after each LVN.
1189 LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb, &allocator);
1190 if (lvn != nullptr) {
1191 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1192 lvn->GetValueNumber(mir);
1193 }
1194 bool change = temp_gvn_->FinishBasicBlock(bb);
1195 DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1196 }
1197 }
1198 } else {
1199 LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1200 }
1201
1202 DCHECK(temp_gvn_ != nullptr);
1203 temp_gvn_.reset();
1204 DCHECK(temp_scoped_alloc_ != nullptr);
1205 temp_scoped_alloc_.reset();
1206 }
1207
ComputeInlineIFieldLoweringInfo(uint16_t field_idx,MIR * invoke,MIR * iget_or_iput)1208 void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1209 uint32_t method_index = invoke->meta.method_lowering_info;
1210 if (temp_bit_vector_->IsBitSet(method_index)) {
1211 iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
1212 DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1213 return;
1214 }
1215
1216 const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1217 MethodReference target = method_info.GetTargetMethod();
1218 DexCompilationUnit inlined_unit(
1219 cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1220 nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1221 0u /* access_flags not used */, nullptr /* verified_method not used */);
1222 MirIFieldLoweringInfo inlined_field_info(field_idx);
1223 MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1224 DCHECK(inlined_field_info.IsResolved());
1225
1226 uint32_t field_info_index = ifield_lowering_infos_.Size();
1227 ifield_lowering_infos_.Insert(inlined_field_info);
1228 temp_bit_vector_->SetBit(method_index);
1229 temp_insn_data_[method_index] = field_info_index;
1230 iget_or_iput->meta.ifield_lowering_info = field_info_index;
1231 }
1232
InlineSpecialMethodsGate()1233 bool MIRGraph::InlineSpecialMethodsGate() {
1234 if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1235 method_lowering_infos_.Size() == 0u) {
1236 return false;
1237 }
1238 if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1239 // This isn't the Quick compiler.
1240 return false;
1241 }
1242 return true;
1243 }
1244
InlineSpecialMethodsStart()1245 void MIRGraph::InlineSpecialMethodsStart() {
1246 // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1247 // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1248
1249 DCHECK(temp_scoped_alloc_.get() == nullptr);
1250 temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1251 temp_bit_vector_size_ = method_lowering_infos_.Size();
1252 temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1253 temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
1254 temp_bit_vector_->ClearAllBits();
1255 temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
1256 temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
1257 }
1258
InlineSpecialMethods(BasicBlock * bb)1259 void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
1260 if (bb->block_type != kDalvikByteCode) {
1261 return;
1262 }
1263 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1264 if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1265 continue;
1266 }
1267 if (!(Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke)) {
1268 continue;
1269 }
1270 const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1271 if (!method_info.FastPath()) {
1272 continue;
1273 }
1274 InvokeType sharp_type = method_info.GetSharpType();
1275 if ((sharp_type != kDirect) &&
1276 (sharp_type != kStatic || method_info.NeedsClassInitialization())) {
1277 continue;
1278 }
1279 DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1280 MethodReference target = method_info.GetTargetMethod();
1281 if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1282 ->GenInline(this, bb, mir, target.dex_method_index)) {
1283 if (cu_->verbose || cu_->print_pass) {
1284 LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
1285 << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file)
1286 << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1287 << "\" @0x" << std::hex << mir->offset;
1288 }
1289 }
1290 }
1291 }
1292
InlineSpecialMethodsEnd()1293 void MIRGraph::InlineSpecialMethodsEnd() {
1294 DCHECK(temp_insn_data_ != nullptr);
1295 temp_insn_data_ = nullptr;
1296 DCHECK(temp_bit_vector_ != nullptr);
1297 temp_bit_vector_ = nullptr;
1298 DCHECK(temp_scoped_alloc_.get() != nullptr);
1299 temp_scoped_alloc_.reset();
1300 }
1301
DumpCheckStats()1302 void MIRGraph::DumpCheckStats() {
1303 Checkstats* stats =
1304 static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1305 checkstats_ = stats;
1306 AllNodesIterator iter(this);
1307 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1308 CountChecks(bb);
1309 }
1310 if (stats->null_checks > 0) {
1311 float eliminated = static_cast<float>(stats->null_checks_eliminated);
1312 float checks = static_cast<float>(stats->null_checks);
1313 LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1314 << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1315 << (eliminated/checks) * 100.0 << "%";
1316 }
1317 if (stats->range_checks > 0) {
1318 float eliminated = static_cast<float>(stats->range_checks_eliminated);
1319 float checks = static_cast<float>(stats->range_checks);
1320 LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1321 << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1322 << (eliminated/checks) * 100.0 << "%";
1323 }
1324 }
1325
BuildExtendedBBList(struct BasicBlock * bb)1326 bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
1327 if (bb->visited) return false;
1328 if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1329 || (bb->block_type == kExitBlock))) {
1330 // Ignore special blocks
1331 bb->visited = true;
1332 return false;
1333 }
1334 // Must be head of extended basic block.
1335 BasicBlock* start_bb = bb;
1336 extended_basic_blocks_.push_back(bb->id);
1337 bool terminated_by_return = false;
1338 bool do_local_value_numbering = false;
1339 // Visit blocks strictly dominated by this head.
1340 while (bb != NULL) {
1341 bb->visited = true;
1342 terminated_by_return |= bb->terminated_by_return;
1343 do_local_value_numbering |= bb->use_lvn;
1344 bb = NextDominatedBlock(bb);
1345 }
1346 if (terminated_by_return || do_local_value_numbering) {
1347 // Do lvn for all blocks in this extended set.
1348 bb = start_bb;
1349 while (bb != NULL) {
1350 bb->use_lvn = do_local_value_numbering;
1351 bb->dominates_return = terminated_by_return;
1352 bb = NextDominatedBlock(bb);
1353 }
1354 }
1355 return false; // Not iterative - return value will be ignored
1356 }
1357
BasicBlockOptimization()1358 void MIRGraph::BasicBlockOptimization() {
1359 if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1360 ClearAllVisitedFlags();
1361 PreOrderDfsIterator iter2(this);
1362 for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
1363 BuildExtendedBBList(bb);
1364 }
1365 // Perform extended basic block optimizations.
1366 for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1367 BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1368 }
1369 } else {
1370 PreOrderDfsIterator iter(this);
1371 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1372 BasicBlockOpt(bb);
1373 }
1374 }
1375 }
1376
1377 } // namespace art
1378