1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "codegen_x86.h"
18 #include "dex/quick/mir_to_lir-inl.h"
19 #include "x86_lir.h"
20 
21 namespace art {
22 
23 #define MAX_ASSEMBLER_RETRIES 50
24 
25 const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26   { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data",  "0x!0d" },
27   { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" },
28   { kX86Nop,       kNop,     NO_OPERAND,             { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop",   "" },
29 
30 #define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                      rm8_r8, rm32_r32, \
32                      r8_rm8, r32_rm32, \
33                      ax8_i8, ax32_i32, \
34                      rm8_i8, rm8_i8_modrm, \
35                      rm32_i32, rm32_i32_modrm, \
36                      rm32_i8, rm32_i8_modrm) \
37 { kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \
38 { kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39 { kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8TR", "fs:[!0d],!1r" }, \
40 { kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RR", "!0r,!1r" }, \
41 { kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42 { kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43 { kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \
44 { kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \
45 { kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, false}, #opname "8MI", "[!0r+!1d],!2d" }, \
46 { kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, false}, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47 { kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, false}, #opname "8TI", "fs:[!0d],!1d" }, \
48   \
49 { kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \
50 { kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51 { kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16TR", "fs:[!0d],!1r" }, \
52 { kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RR", "!0r,!1r" }, \
53 { kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54 { kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55 { kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \
56 { kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \
57 { kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
58 { kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59 { kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16TI", "fs:[!0d],!1d" }, \
60 { kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16RI8", "!0r,!1d" }, \
61 { kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62 { kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63 { kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \
64   \
65 { kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \
66 { kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67 { kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32TR", "fs:[!0d],!1r" }, \
68 { kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RR", "!0r,!1r" }, \
69 { kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70 { kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71 { kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \
72 { kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \
73 { kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
74 { kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75 { kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32TI", "fs:[!0d],!1d" }, \
76 { kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32RI8", "!0r,!1d" }, \
77 { kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78 { kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79 { kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \
80   \
81 { kX86 ## opname ## 64MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \
82 { kX86 ## opname ## 64AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
83 { kX86 ## opname ## 64TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64TR", "fs:[!0d],!1r" }, \
84 { kX86 ## opname ## 64RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RR", "!0r,!1r" }, \
85 { kX86 ## opname ## 64RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \
86 { kX86 ## opname ## 64RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
87 { kX86 ## opname ## 64RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \
88 { kX86 ## opname ## 64RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \
89 { kX86 ## opname ## 64MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
90 { kX86 ## opname ## 64AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
91 { kX86 ## opname ## 64TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64TI", "fs:[!0d],!1d" }, \
92 { kX86 ## opname ## 64RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64RI8", "!0r,!1d" }, \
93 { kX86 ## opname ## 64MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \
94 { kX86 ## opname ## 64AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
95 { kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64TI8", "fs:[!0d],!1d" }
96 
97 ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
98   0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
99   0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
100   0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
101   0x80, 0x0 /* RegMem8/imm8 */,
102   0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
103 ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
104   0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
105   0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
106   0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
107   0x80, 0x1 /* RegMem8/imm8 */,
108   0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
109 ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
110   0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
111   0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
112   0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
113   0x80, 0x2 /* RegMem8/imm8 */,
114   0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
115 ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
116   0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
117   0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
118   0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
119   0x80, 0x3 /* RegMem8/imm8 */,
120   0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
121 ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
122   0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
123   0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
124   0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
125   0x80, 0x4 /* RegMem8/imm8 */,
126   0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
127 ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
128   0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
129   0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
130   0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
131   0x80, 0x5 /* RegMem8/imm8 */,
132   0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
133 ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
134   0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
135   0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
136   0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
137   0x80, 0x6 /* RegMem8/imm8 */,
138   0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
139 ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
140   0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
141   0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
142   0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
143   0x80, 0x7 /* RegMem8/imm8 */,
144   0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
145 #undef ENCODING_MAP
146 
147   { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" },
148   { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
149   { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
150 
151   { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" },
152   { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
153   { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
154   { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" },
155   { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
156   { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
157 
158   { kX86Imul64RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" },
159   { kX86Imul64RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
160   { kX86Imul64RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
161   { kX86Imul64RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" },
162   { kX86Imul64RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
163   { kX86Imul64RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
164 
165   { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" },
166   { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
167   { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" },
168   { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" },
169   { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" },
170   { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
171   { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" },
172   { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" },
173   { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8MI", "[!0r+!1d],!2d" },
174   { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
175   { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, false}, "Mov8TI", "fs:[!0d],!1d" },
176 
177   { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" },
178   { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
179   { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" },
180   { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" },
181   { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" },
182   { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
183   { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" },
184   { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" },
185   { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" },
186   { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
187   { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" },
188 
189   { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" },
190   { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
191   { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" },
192   { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" },
193   { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" },
194   { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
195   { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" },
196   { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" },
197   { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" },
198   { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
199   { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" },
200 
201   { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1,      { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" },
202   { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12,                 { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
203 
204   { kX86Mov64MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" },
205   { kX86Mov64AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
206   { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" },
207   { kX86Mov64RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" },
208   { kX86Mov64RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" },
209   { kX86Mov64RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
210   { kX86Mov64RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" },
211   { kX86Mov64RI32, kRegImm,             IS_BINARY_OP   | REG_DEF0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64RI32", "!0r,!1d" },
212   { kX86Mov64RI64, kMovRegQuadImm,      IS_TERTIARY_OP | REG_DEF0,       { REX_W,             0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI64", "!0r,!1q" },
213   { kX86Mov64MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" },
214   { kX86Mov64AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
215   { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" },
216 
217   { kX86Lea64RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1,      { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" },
218   { kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12,                 { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
219 
220   { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" },
221   { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" },
222 
223   { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
224   { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
225 
226 #define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
227 { kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \
228 { kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
229 { kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
230 { kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8RC", "!0r,cl" }, \
231 { kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8MC", "[!0r+!1d],cl" }, \
232 { kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
233   \
234 { kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \
235 { kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
236 { kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
237 { kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16RC", "!0r,cl" }, \
238 { kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16MC", "[!0r+!1d],cl" }, \
239 { kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
240   \
241 { kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \
242 { kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
243 { kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
244 { kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32RC", "!0r,cl" }, \
245 { kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32MC", "[!0r+!1d],cl" }, \
246 { kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
247   \
248 { kX86 ## opname ## 64RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \
249 { kX86 ## opname ## 64MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
250 { kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
251 { kX86 ## opname ## 64RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64RC", "!0r,cl" }, \
252 { kX86 ## opname ## 64MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64MC", "[!0r+!1d],cl" }, \
253 { kX86 ## opname ## 64AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
254 
255   SHIFT_ENCODING_MAP(Rol, 0x0),
256   SHIFT_ENCODING_MAP(Ror, 0x1),
257   SHIFT_ENCODING_MAP(Rcl, 0x2),
258   SHIFT_ENCODING_MAP(Rcr, 0x3),
259   SHIFT_ENCODING_MAP(Sal, 0x4),
260   SHIFT_ENCODING_MAP(Shr, 0x5),
261   SHIFT_ENCODING_MAP(Sar, 0x7),
262 #undef SHIFT_ENCODING_MAP
263 
264   { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" },
265   { kX86Shld32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" },
266   { kX86Shld32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
267   { kX86Shrd32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" },
268   { kX86Shrd32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
269   { kX86Shld64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" },
270   { kX86Shld64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
271   { kX86Shrd64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" },
272   { kX86Shrd64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
273 
274   { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" },
275   { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" },
276   { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
277   { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" },
278   { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" },
279   { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
280   { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" },
281   { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" },
282   { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
283   { kX86Test64RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" },
284   { kX86Test64MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" },
285   { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
286 
287   { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" },
288   { kX86Test64RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" },
289   { kX86Test32RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RM", "!0r,[!1r+!2d]" },
290 
291 #define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
292                            reg, reg_kind, reg_flags, \
293                            mem, mem_kind, mem_flags, \
294                            arr, arr_kind, arr_flags, imm, \
295                            b_flags, hw_flags, w_flags, \
296                            b_format, hw_format, w_format) \
297 { kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \
298 { kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \
299 { kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
300 { kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \
301 { kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
302 { kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
303 { kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \
304 { kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \
305 { kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
306 { kX86 ## opname ## 64 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \
307 { kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \
308 { kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
309 
310   UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
311   UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
312 
313   UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
314   UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
315   UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
316   UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
317 #undef UNARY_ENCODING_MAP
318 
319   { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { 0,     0, 0x99, 0,    0, 0, 0, 0, false }, "Cdq", "" },
320   { kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { REX_W, 0, 0x99, 0,    0, 0, 0, 0, false }, "Cqo", "" },
321   { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { 0,     0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" },
322   { kX86Bswap64R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { REX_W, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap64R", "!0r" },
323   { kX86Push32R,  kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0,     0, 0x50, 0,    0, 0, 0, 0, false }, "Push32R",  "!0r" },
324   { kX86Pop32R,   kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD,  { 0,     0, 0x58, 0,    0, 0, 0, 0, false }, "Pop32R",   "!0r" },
325 
326 #define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
327 { kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
328 { kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
329 { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
330 
331 // This is a special encoding with r8_form on the second register only
332 // for Movzx8 and Movsx8.
333 #define EXT_0F_R8_FORM_ENCODING_MAP(opname, prefix, opcode, reg_def) \
334 { kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, true }, #opname "RR", "!0r,!1r" }, \
335 { kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
336 { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
337 
338 #define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \
339 { kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
340 { kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
341 { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
342 
343 #define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \
344 { kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
345 { kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
346 { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
347 
348   EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
349   { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" },
350   { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
351 
352   EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
353   { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" },
354   { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
355 
356   EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
357   EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
358   EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd,  0xF2, 0x2A, REG_DEF0),
359   EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss,  0xF3, 0x2A, REG_DEF0),
360   EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
361   EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
362   EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0),
363   EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0),
364   EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
365   EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
366   EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES|REG_USE0),
367   EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES|REG_USE0),
368   EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES|REG_USE0),
369   EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES|REG_USE0),
370   EXT_0F_ENCODING_MAP(Orpd,      0x66, 0x56, REG_DEF0_USE0),
371   EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0_USE0),
372   EXT_0F_ENCODING_MAP(Andpd,     0x66, 0x54, REG_DEF0_USE0),
373   EXT_0F_ENCODING_MAP(Andps,     0x00, 0x54, REG_DEF0_USE0),
374   EXT_0F_ENCODING_MAP(Xorpd,     0x66, 0x57, REG_DEF0_USE0),
375   EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0_USE0),
376   EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0_USE0),
377   EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0_USE0),
378   EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0_USE0),
379   EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0_USE0),
380   EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
381   EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
382   EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0_USE0),
383   EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0_USE0),
384   EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0_USE0),
385   EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0_USE0),
386   EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0_USE0),
387   EXT_0F_ENCODING_MAP(Sqrtsd,    0xF2, 0x51, REG_DEF0_USE0),
388   EXT_0F_ENCODING2_MAP(Pmulld,   0x66, 0x38, 0x40, REG_DEF0_USE0),
389   EXT_0F_ENCODING_MAP(Pmullw,    0x66, 0xD5, REG_DEF0_USE0),
390   EXT_0F_ENCODING_MAP(Mulps,     0x00, 0x59, REG_DEF0_USE0),
391   EXT_0F_ENCODING_MAP(Mulpd,     0x66, 0x59, REG_DEF0_USE0),
392   EXT_0F_ENCODING_MAP(Paddb,     0x66, 0xFC, REG_DEF0_USE0),
393   EXT_0F_ENCODING_MAP(Paddw,     0x66, 0xFD, REG_DEF0_USE0),
394   EXT_0F_ENCODING_MAP(Paddd,     0x66, 0xFE, REG_DEF0_USE0),
395   EXT_0F_ENCODING_MAP(Addps,     0x00, 0x58, REG_DEF0_USE0),
396   EXT_0F_ENCODING_MAP(Addpd,     0xF2, 0x58, REG_DEF0_USE0),
397   EXT_0F_ENCODING_MAP(Psubb,     0x66, 0xF8, REG_DEF0_USE0),
398   EXT_0F_ENCODING_MAP(Psubw,     0x66, 0xF9, REG_DEF0_USE0),
399   EXT_0F_ENCODING_MAP(Psubd,     0x66, 0xFA, REG_DEF0_USE0),
400   EXT_0F_ENCODING_MAP(Subps,     0x00, 0x5C, REG_DEF0_USE0),
401   EXT_0F_ENCODING_MAP(Subpd,     0x66, 0x5C, REG_DEF0_USE0),
402   EXT_0F_ENCODING_MAP(Pand,      0x66, 0xDB, REG_DEF0_USE0),
403   EXT_0F_ENCODING_MAP(Por,       0x66, 0xEB, REG_DEF0_USE0),
404   EXT_0F_ENCODING_MAP(Pxor,      0x66, 0xEF, REG_DEF0_USE0),
405   EXT_0F_ENCODING2_MAP(Phaddw,   0x66, 0x38, 0x01, REG_DEF0_USE0),
406   EXT_0F_ENCODING2_MAP(Phaddd,   0x66, 0x38, 0x02, REG_DEF0_USE0),
407   EXT_0F_ENCODING_MAP(Haddpd,    0x66, 0x7C, REG_DEF0_USE0),
408   EXT_0F_ENCODING_MAP(Haddps,    0xF2, 0x7C, REG_DEF0_USE0),
409 
410   { kX86PextrbRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" },
411   { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" },
412   { kX86PextrdRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" },
413   { kX86PextrbMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrbMRI", "[!0r+!1d],!2r,!3d" },
414   { kX86PextrwMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrwMRI", "[!0r+!1d],!2r,!3d" },
415   { kX86PextrdMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrdMRI", "[!0r+!1d],!2r,!3d" },
416 
417   { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" },
418   { kX86PshufdRRI,  kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" },
419 
420   { kX86ShufpsRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x00, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpsRRI", "!0r,!1r,!2d" },
421   { kX86ShufpdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpdRRI", "!0r,!1r,!2d" },
422 
423   { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" },
424   { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" },
425   { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" },
426   { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" },
427   { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" },
428   { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" },
429   { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" },
430   { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" },
431 
432   { kX86Fild32M,  kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M",  "[!0r,!1d]" },
433   { kX86Fild64M,  kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M",  "[!0r,!1d]" },
434   { kX86Fld32M,   kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 0, 0, 0, false }, "Fld32M",   "[!0r,!1d]" },
435   { kX86Fld64M,   kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 0, 0, 0, false }, "Fld64M",   "[!0r,!1d]" },
436   { kX86Fstp32M,  kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 3, 0, 0, false }, "Fstps32M", "[!0r,!1d]" },
437   { kX86Fstp64M,  kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 3, 0, 0, false }, "Fstpd64M", "[!0r,!1d]" },
438   { kX86Fst32M,   kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 2, 0, 0, false }, "Fsts32M",  "[!0r,!1d]" },
439   { kX86Fst64M,   kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 2, 0, 0, false }, "Fstd64M",  "[!0r,!1d]" },
440   { kX86Fprem,    kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xD9, 0,    0xF8, 0,    0, 0, 0, 0, false }, "Fprem64",  "" },
441   { kX86Fucompp,  kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xDA, 0,    0xE9, 0,    0, 0, 0, 0, false }, "Fucompp",  "" },
442   { kX86Fstsw16R, kNullary, NO_OPERAND | REG_DEFA | USE_FP_STACK,               { 0x9B, 0xDF, 0xE0, 0,    0, 0, 0, 0, false }, "Fstsw16R", "ax" },
443 
444   EXT_0F_ENCODING_MAP(Mova128,    0x66, 0x6F, REG_DEF0),
445   { kX86Mova128MR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128MR", "[!0r+!1d],!2r" },
446   { kX86Mova128AR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128AR", "[!0r+!1r<<!2d+!3d],!4r" },
447 
448 
449   EXT_0F_ENCODING_MAP(Movups,    0x0, 0x10, REG_DEF0),
450   { kX86MovupsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" },
451   { kX86MovupsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
452 
453   EXT_0F_ENCODING_MAP(Movaps,    0x0, 0x28, REG_DEF0),
454   { kX86MovapsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" },
455   { kX86MovapsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
456 
457   { kX86MovlpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" },
458   { kX86MovlpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
459   { kX86MovlpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" },
460   { kX86MovlpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
461 
462   { kX86MovhpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" },
463   { kX86MovhpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
464   { kX86MovhpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" },
465   { kX86MovhpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
466 
467   EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
468   EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0),
469   { kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" },
470   { kX86MovqrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" },
471   { kX86MovqrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
472 
473   { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" },
474   { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" },
475   { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
476 
477   { kX86MovsxdRR, kRegReg,      IS_BINARY_OP | REG_DEF0 | REG_USE1,              { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" },
478   { kX86MovsxdRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1,  { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" },
479   { kX86MovsxdRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" },
480 
481   { kX86Set8R, kRegCond,   IS_BINARY_OP | REG_DEF0   | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true  }, "Set8R", "!1c !0r" },
482   { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" },
483   { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
484 
485   // TODO: load/store?
486   // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
487   { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" },
488 
489   EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
490   EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
491   EXT_0F_ENCODING_MAP(Imul64,  REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
492 
493   { kX86CmpxchgRR, kRegRegStore,  IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES,   { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" },
494   { kX86CmpxchgMR, kMemReg,       IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" },
495   { kX86CmpxchgAR, kArrayReg,     IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
496   { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
497   { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
498   { kX86LockCmpxchg64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, REX_W, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
499   { kX86LockCmpxchg64M, kMem,     IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" },
500   { kX86LockCmpxchg64A, kArray,   IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES,  { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
501   { kX86XchgMR, kMemReg,          IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02,          { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" },
502 
503   EXT_0F_R8_FORM_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
504   EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
505   EXT_0F_R8_FORM_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
506   EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
507   EXT_0F_ENCODING_MAP(Movzx8q,  REX_W, 0xB6, REG_DEF0),
508   EXT_0F_ENCODING_MAP(Movzx16q, REX_W, 0xB7, REG_DEF0),
509   EXT_0F_ENCODING_MAP(Movsx8q,  REX, 0xBE, REG_DEF0),
510   EXT_0F_ENCODING_MAP(Movsx16q, REX_W, 0xBF, REG_DEF0),
511 #undef EXT_0F_ENCODING_MAP
512 
513   { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0, false }, "Jcc8",  "!1c !0t" },
514   { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" },
515   { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0, false }, "Jmp8",  "!0t" },
516   { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0, false }, "Jmp32", "!0t" },
517   { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpR",  "!0r" },
518   { kX86Jecxz8, kJmp, NO_OPERAND   | IS_BRANCH | NEEDS_FIXUP | REG_USEC,    { 0,             0, 0xE3, 0,    0, 0, 0, 0, false }, "Jecxz", "!0t" },
519   { kX86JmpT,  kJmp,  IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpT",  "fs:[!0d]" },
520   { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0, false }, "CallR", "!0r" },
521   { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" },
522   { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" },
523   { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0, false }, "CallT", "fs:[!0d]" },
524   { kX86CallI, kCall, IS_UNARY_OP  | IS_BRANCH,                             { 0,             0, 0xE8, 0,    0, 0, 0, 4, false }, "CallI", "!0d" },
525   { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0, false }, "Ret", "" },
526 
527   { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0, false }, "StartOfMethod", "!0r" },
528   { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
529   { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr",      "!0r,!1d" },
530   { kX86RepneScasw,    kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" },
531 };
532 
NeedsRex(int32_t raw_reg)533 static bool NeedsRex(int32_t raw_reg) {
534   return RegStorage::RegNum(raw_reg) > 7;
535 }
536 
LowRegisterBits(int32_t raw_reg)537 static uint8_t LowRegisterBits(int32_t raw_reg) {
538   uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32;  // 3 bits
539   DCHECK_LT(low_reg, 8);
540   return low_reg;
541 }
542 
HasModrm(const X86EncodingMap * entry)543 static bool HasModrm(const X86EncodingMap* entry) {
544   switch (entry->kind) {
545     case kNullary: return false;
546     case kRegOpcode: return false;
547     default: return true;
548   }
549 }
550 
HasSib(const X86EncodingMap * entry)551 static bool HasSib(const X86EncodingMap* entry) {
552   switch (entry->kind) {
553     case kArray: return true;
554     case kArrayReg: return true;
555     case kRegArray: return true;
556     case kArrayImm: return true;
557     case kRegArrayImm: return true;
558     case kShiftArrayImm: return true;
559     case kShiftArrayCl: return true;
560     case kArrayCond: return true;
561     case kCall:
562       switch (entry->opcode) {
563         case kX86CallA: return true;
564         default: return false;
565       }
566     case kPcRel: return true;
567        switch (entry->opcode) {
568          case kX86PcRelLoadRA: return true;
569          default: return false;
570         }
571     default: return false;
572   }
573 }
574 
ModrmIsRegReg(const X86EncodingMap * entry)575 static bool ModrmIsRegReg(const X86EncodingMap* entry) {
576   switch (entry->kind) {
577     // There is no modrm for this kind of instruction, therefore the reg doesn't form part of the
578     // modrm:
579     case kNullary: return true;
580     case kRegOpcode: return true;
581     case kMovRegImm: return true;
582     // Regular modrm value of 3 cases, when there is one register the other register holds an
583     // opcode so the base register is special.
584     case kReg: return true;
585     case kRegReg: return true;
586     case kRegRegStore: return true;
587     case kRegImm: return true;
588     case kRegRegImm: return true;
589     case kRegRegImmStore: return true;
590     case kShiftRegImm: return true;
591     case kShiftRegCl: return true;
592     case kRegCond: return true;
593     case kRegRegCond: return true;
594     case kJmp:
595       switch (entry->opcode) {
596         case kX86JmpR: return true;
597         default: return false;
598       }
599     case kCall:
600       switch (entry->opcode) {
601         case kX86CallR: return true;
602         default: return false;
603       }
604     default: return false;
605   }
606 }
607 
IsByteSecondOperand(const X86EncodingMap * entry)608 static bool IsByteSecondOperand(const X86EncodingMap* entry) {
609   return StartsWith(entry->name, "Movzx8") || StartsWith(entry->name, "Movsx8");
610 }
611 
ComputeSize(const X86EncodingMap * entry,int32_t raw_reg,int32_t raw_index,int32_t raw_base,int32_t displacement)612 size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
613                                int32_t raw_base, int32_t displacement) {
614   bool has_modrm = HasModrm(entry);
615   bool has_sib = HasSib(entry);
616   bool r8_form = entry->skeleton.r8_form;
617   bool modrm_is_reg_reg = ModrmIsRegReg(entry);
618   if (has_sib) {
619     DCHECK(!modrm_is_reg_reg);
620   }
621   size_t size = 0;
622   if (entry->skeleton.prefix1 > 0) {
623     ++size;
624     if (entry->skeleton.prefix2 > 0) {
625       ++size;
626     }
627   }
628   if (cu_->target64 || kIsDebugBuild) {
629     bool registers_need_rex_prefix = NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base);
630     if (r8_form) {
631       // Do we need an empty REX prefix to normalize byte registers?
632       registers_need_rex_prefix = registers_need_rex_prefix ||
633           (RegStorage::RegNum(raw_reg) >= 4 && !IsByteSecondOperand(entry));
634       registers_need_rex_prefix = registers_need_rex_prefix ||
635           (modrm_is_reg_reg && (RegStorage::RegNum(raw_base) >= 4));
636     }
637     if (registers_need_rex_prefix) {
638       DCHECK(cu_->target64) << "Attempt to use a 64-bit only addressable register "
639           << RegStorage::RegNum(raw_reg) << " with instruction " << entry->name;
640       if (entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W
641          && entry->skeleton.prefix1 != REX && entry->skeleton.prefix2 != REX) {
642         ++size;  // rex
643       }
644     }
645   }
646   ++size;  // opcode
647   if (entry->skeleton.opcode == 0x0F) {
648     ++size;
649     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
650       ++size;
651     }
652   }
653   if (has_modrm) {
654     ++size;  // modrm
655   }
656   if (!modrm_is_reg_reg) {
657     if (has_sib || LowRegisterBits(raw_base) == rs_rX86_SP.GetRegNum()
658         || (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX)) {
659       // SP requires a SIB byte.
660       // GS access also needs a SIB byte for absolute adressing in 64-bit mode.
661       ++size;
662     }
663     if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) {
664       // BP requires an explicit displacement, even when it's 0.
665       if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA) {
666         DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name;
667       }
668       size += IS_SIMM8(displacement) ? 1 : 4;
669     }
670   }
671   size += entry->skeleton.immediate_bytes;
672   return size;
673 }
674 
GetInsnSize(LIR * lir)675 size_t X86Mir2Lir::GetInsnSize(LIR* lir) {
676   DCHECK(!IsPseudoLirOp(lir->opcode));
677   const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
678   DCHECK_EQ(entry->opcode, lir->opcode) << entry->name;
679 
680   switch (entry->kind) {
681     case kData:
682       return 4;  // 4 bytes of data.
683     case kNop:
684       return lir->operands[0];  // Length of nop is sole operand.
685     case kNullary:
686       return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0);
687     case kRegOpcode:  // lir operands - 0: reg
688       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
689     case kReg:  // lir operands - 0: reg
690       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
691     case kMem:  // lir operands - 0: base, 1: disp
692       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
693     case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
694       return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
695     case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
696       return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
697     case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
698       return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
699     case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
700       return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
701                          lir->operands[3]);
702     case kThreadReg:  // lir operands - 0: disp, 1: reg
703       // Thread displacement size is always 32bit.
704       return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, 0x12345678);
705     case kRegReg:  // lir operands - 0: reg1, 1: reg2
706       return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
707     case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
708       return ComputeSize(entry, lir->operands[1], NO_REG, lir->operands[0], 0);
709     case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
710       return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
711     case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
712       return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
713                          lir->operands[4]);
714     case kRegThread:  // lir operands - 0: reg, 1: disp
715       // Thread displacement size is always 32bit.
716       return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0x12345678);
717     case kRegImm: {  // lir operands - 0: reg, 1: immediate
718       size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
719       // AX opcodes don't require the modrm byte.
720       if (entry->skeleton.ax_opcode == 0) {
721         return size;
722       } else {
723         return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
724       }
725     }
726     case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
727       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
728     case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
729       return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
730     case kThreadImm:  // lir operands - 0: disp, 1: imm
731       // Thread displacement size is always 32bit.
732       return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
733     case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
734       // Note: RegRegImm form passes reg2 as index but encodes it using base.
735       return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, 0);
736     case kRegRegImmStore:  // lir operands - 0: reg2, 1: reg1, 2: imm
737       // Note: RegRegImmStore form passes reg1 as index but encodes it using base.
738       return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG, 0);
739     case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
740       return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
741     case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
742       return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
743                          lir->operands[4]);
744     case kMovRegImm:  // lir operands - 0: reg, 1: immediate
745     case kMovRegQuadImm:
746       return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 +
747           entry->skeleton.immediate_bytes;
748     case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
749       // Shift by immediate one has a shorter opcode.
750       return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0) -
751           (lir->operands[1] == 1 ? 1 : 0);
752     case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
753       // Shift by immediate one has a shorter opcode.
754       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]) -
755           (lir->operands[2] == 1 ? 1 : 0);
756     case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
757       // Shift by immediate one has a shorter opcode.
758       return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]) -
759           (lir->operands[4] == 1 ? 1 : 0);
760     case kShiftRegCl:  // lir operands - 0: reg, 1: cl
761       DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1]));
762       // Note: ShiftRegCl form passes reg as reg but encodes it using base.
763       return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
764     case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
765       DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
766       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
767     case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl
768       DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4]));
769       return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
770                          lir->operands[3]);
771     case kRegCond:  // lir operands - 0: reg, 1: cond
772       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
773     case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
774       return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
775     case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
776       DCHECK_EQ(false, entry->skeleton.r8_form);
777       return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
778     case kRegRegCond:  // lir operands - 0: reg1, 1: reg2, 2: cond
779       DCHECK_EQ(false, entry->skeleton.r8_form);
780       return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
781     case kRegMemCond:  // lir operands - 0: reg, 1: base, 2: disp, 3:cond
782       DCHECK_EQ(false, entry->skeleton.r8_form);
783       return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
784     case kJcc:
785       if (lir->opcode == kX86Jcc8) {
786         return 2;  // opcode + rel8
787       } else {
788         DCHECK(lir->opcode == kX86Jcc32);
789         return 6;  // 2 byte opcode + rel32
790       }
791     case kJmp:
792       if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) {
793         return 2;  // opcode + rel8
794       } else if (lir->opcode == kX86Jmp32) {
795         return 5;  // opcode + rel32
796       } else if (lir->opcode == kX86JmpT) {
797         // Thread displacement size is always 32bit.
798         return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
799       } else {
800         DCHECK(lir->opcode == kX86JmpR);
801         if (NeedsRex(lir->operands[0])) {
802           return 3;  // REX.B + opcode + modrm
803         } else {
804           return 2;  // opcode + modrm
805         }
806       }
807     case kCall:
808       switch (lir->opcode) {
809         case kX86CallI: return 5;  // opcode 0:disp
810         case kX86CallR: return 2;  // opcode modrm
811         case kX86CallM:  // lir operands - 0: base, 1: disp
812           return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
813         case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
814           return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
815         case kX86CallT:  // lir operands - 0: disp
816           // Thread displacement size is always 32bit.
817           return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
818         default:
819           break;
820       }
821       break;
822     case kPcRel:
823       if (entry->opcode == kX86PcRelLoadRA) {
824         // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
825         // Force the displacement size to 32bit, it will hold a computed offset later.
826         return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
827                            0x12345678);
828       } else {
829         DCHECK_EQ(entry->opcode, kX86PcRelAdr);
830         return 5;  // opcode with reg + 4 byte immediate
831       }
832     case kMacro:  // lir operands - 0: reg
833       DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
834       return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
835           ComputeSize(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI],
836                       lir->operands[0], NO_REG, NO_REG, 0) -
837               // Shorter ax encoding.
838               (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum()  ? 1 : 0);
839     case kUnimplemented:
840       break;
841   }
842   UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
843   return 0;
844 }
845 
ModrmForDisp(int base,int disp)846 static uint8_t ModrmForDisp(int base, int disp) {
847   // BP requires an explicit disp, so do not omit it in the 0 case
848   if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
849     return 0;
850   } else if (IS_SIMM8(disp)) {
851     return 1;
852   } else {
853     return 2;
854   }
855 }
856 
CheckValidByteRegister(const X86EncodingMap * entry,int32_t raw_reg)857 void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) {
858   if (kIsDebugBuild) {
859     // Sanity check r8_form is correctly specified.
860     if (entry->skeleton.r8_form) {
861       CHECK(strchr(entry->name, '8') != nullptr) << entry->name;
862     } else {
863       if (entry->skeleton.immediate_bytes != 1) {  // Ignore ...I8 instructions.
864         if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8")
865            && !StartsWith(entry->name, "Movzx8q") && !StartsWith(entry->name, "Movsx8q")) {
866           CHECK(strchr(entry->name, '8') == nullptr) << entry->name;
867         }
868       }
869     }
870     if (RegStorage::RegNum(raw_reg) >= 4) {
871       // ah, bh, ch and dh are not valid registers in 32-bit.
872       CHECK(cu_->target64 || !entry->skeleton.r8_form)
873                << "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg))
874                << " for instruction " << entry->name << " in "
875                << PrettyMethod(cu_->method_idx, *cu_->dex_file);
876     }
877   }
878 }
879 
EmitPrefix(const X86EncodingMap * entry,int32_t raw_reg_r,int32_t raw_reg_x,int32_t raw_reg_b)880 void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
881                             int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
882   // REX.WRXB
883   // W - 64-bit operand
884   // R - MODRM.reg
885   // X - SIB.index
886   // B - MODRM.rm/SIB.base
887   bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W);
888   bool r = NeedsRex(raw_reg_r);
889   bool x = NeedsRex(raw_reg_x);
890   bool b = NeedsRex(raw_reg_b);
891   bool r8_form = entry->skeleton.r8_form;
892   bool modrm_is_reg_reg = ModrmIsRegReg(entry);
893 
894   uint8_t rex = 0;
895   if (r8_form) {
896     // Do we need an empty REX prefix to normalize byte register addressing?
897     if (RegStorage::RegNum(raw_reg_r) >= 4 && !IsByteSecondOperand(entry)) {
898       rex |= 0x40;  // REX.0000
899     } else if (modrm_is_reg_reg && RegStorage::RegNum(raw_reg_b) >= 4) {
900       rex |= 0x40;  // REX.0000
901     }
902   }
903   if (w) {
904     rex |= 0x48;  // REX.W000
905   }
906   if (r) {
907     rex |= 0x44;  // REX.0R00
908   }
909   if (x) {
910     rex |= 0x42;  // REX.00X0
911   }
912   if (b) {
913     rex |= 0x41;  // REX.000B
914   }
915   if (entry->skeleton.prefix1 != 0) {
916     if (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX) {
917       // 64 bit addresses by GS, not FS.
918       code_buffer_.push_back(THREAD_PREFIX_GS);
919     } else {
920       if (entry->skeleton.prefix1 == REX_W || entry->skeleton.prefix1 == REX) {
921         DCHECK(cu_->target64);
922         rex |= entry->skeleton.prefix1;
923         code_buffer_.push_back(rex);
924         rex = 0;
925       } else {
926         code_buffer_.push_back(entry->skeleton.prefix1);
927       }
928     }
929     if (entry->skeleton.prefix2 != 0) {
930       if (entry->skeleton.prefix2 == REX_W || entry->skeleton.prefix1 == REX) {
931         DCHECK(cu_->target64);
932         rex |= entry->skeleton.prefix2;
933         code_buffer_.push_back(rex);
934         rex = 0;
935       } else {
936         code_buffer_.push_back(entry->skeleton.prefix2);
937       }
938     }
939   } else {
940     DCHECK_EQ(0, entry->skeleton.prefix2);
941   }
942   if (rex != 0) {
943     DCHECK(cu_->target64);
944     code_buffer_.push_back(rex);
945   }
946 }
947 
EmitOpcode(const X86EncodingMap * entry)948 void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
949   code_buffer_.push_back(entry->skeleton.opcode);
950   if (entry->skeleton.opcode == 0x0F) {
951     code_buffer_.push_back(entry->skeleton.extra_opcode1);
952     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
953       code_buffer_.push_back(entry->skeleton.extra_opcode2);
954     } else {
955       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
956     }
957   } else {
958     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
959     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
960   }
961 }
962 
EmitPrefixAndOpcode(const X86EncodingMap * entry,int32_t raw_reg_r,int32_t raw_reg_x,int32_t raw_reg_b)963 void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry,
964                                      int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
965   EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b);
966   EmitOpcode(entry);
967 }
968 
EmitDisp(uint8_t base,int32_t disp)969 void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) {
970   // BP requires an explicit disp, so do not omit it in the 0 case
971   if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
972     return;
973   } else if (IS_SIMM8(disp)) {
974     code_buffer_.push_back(disp & 0xFF);
975   } else {
976     code_buffer_.push_back(disp & 0xFF);
977     code_buffer_.push_back((disp >> 8) & 0xFF);
978     code_buffer_.push_back((disp >> 16) & 0xFF);
979     code_buffer_.push_back((disp >> 24) & 0xFF);
980   }
981 }
982 
EmitModrmThread(uint8_t reg_or_opcode)983 void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) {
984   if (cu_->target64) {
985     // Absolute adressing for GS access.
986     uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rX86_SP.GetRegNum();
987     code_buffer_.push_back(modrm);
988     uint8_t sib = (0/*TIMES_1*/ << 6) | (rs_rX86_SP.GetRegNum() << 3) | rs_rBP.GetRegNum();
989     code_buffer_.push_back(sib);
990   } else {
991     uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rBP.GetRegNum();
992     code_buffer_.push_back(modrm);
993   }
994 }
995 
EmitModrmDisp(uint8_t reg_or_opcode,uint8_t base,int32_t disp)996 void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) {
997   DCHECK_LT(reg_or_opcode, 8);
998   DCHECK_LT(base, 8);
999   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
1000   code_buffer_.push_back(modrm);
1001   if (base == rs_rX86_SP.GetRegNum()) {
1002     // Special SIB for SP base
1003     code_buffer_.push_back(0 << 6 | rs_rX86_SP.GetRegNum() << 3 | rs_rX86_SP.GetRegNum());
1004   }
1005   EmitDisp(base, disp);
1006 }
1007 
EmitModrmSibDisp(uint8_t reg_or_opcode,uint8_t base,uint8_t index,int scale,int32_t disp)1008 void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
1009                                   int scale, int32_t disp) {
1010   DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
1011   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 |
1012       rs_rX86_SP.GetRegNum();
1013   code_buffer_.push_back(modrm);
1014   DCHECK_LT(scale, 4);
1015   DCHECK_LT(RegStorage::RegNum(index), 8);
1016   DCHECK_LT(RegStorage::RegNum(base), 8);
1017   uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base);
1018   code_buffer_.push_back(sib);
1019   EmitDisp(base, disp);
1020 }
1021 
EmitImm(const X86EncodingMap * entry,int64_t imm)1022 void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
1023   switch (entry->skeleton.immediate_bytes) {
1024     case 1:
1025       DCHECK(IS_SIMM8(imm));
1026       code_buffer_.push_back(imm & 0xFF);
1027       break;
1028     case 2:
1029       DCHECK(IS_SIMM16(imm));
1030       code_buffer_.push_back(imm & 0xFF);
1031       code_buffer_.push_back((imm >> 8) & 0xFF);
1032       break;
1033     case 4:
1034       DCHECK(IS_SIMM32(imm));
1035       code_buffer_.push_back(imm & 0xFF);
1036       code_buffer_.push_back((imm >> 8) & 0xFF);
1037       code_buffer_.push_back((imm >> 16) & 0xFF);
1038       code_buffer_.push_back((imm >> 24) & 0xFF);
1039       break;
1040     case 8:
1041       code_buffer_.push_back(imm & 0xFF);
1042       code_buffer_.push_back((imm >> 8) & 0xFF);
1043       code_buffer_.push_back((imm >> 16) & 0xFF);
1044       code_buffer_.push_back((imm >> 24) & 0xFF);
1045       code_buffer_.push_back((imm >> 32) & 0xFF);
1046       code_buffer_.push_back((imm >> 40) & 0xFF);
1047       code_buffer_.push_back((imm >> 48) & 0xFF);
1048       code_buffer_.push_back((imm >> 56) & 0xFF);
1049       break;
1050     default:
1051       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
1052                  << ") for instruction: " << entry->name;
1053       break;
1054   }
1055 }
1056 
EmitNullary(const X86EncodingMap * entry)1057 void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) {
1058   DCHECK_EQ(false, entry->skeleton.r8_form);
1059   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1060   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1061   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1062   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1063 }
1064 
EmitOpRegOpcode(const X86EncodingMap * entry,int32_t raw_reg)1065 void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) {
1066   DCHECK_EQ(false, entry->skeleton.r8_form);
1067   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1068   // There's no 3-byte instruction with +rd
1069   DCHECK(entry->skeleton.opcode != 0x0F ||
1070          (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
1071   DCHECK(!RegStorage::IsFloat(raw_reg));
1072   uint8_t low_reg = LowRegisterBits(raw_reg);
1073   code_buffer_.back() += low_reg;
1074   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1075   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1076 }
1077 
EmitOpReg(const X86EncodingMap * entry,int32_t raw_reg)1078 void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) {
1079   CheckValidByteRegister(entry, raw_reg);
1080   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1081   uint8_t low_reg = LowRegisterBits(raw_reg);
1082   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1083   code_buffer_.push_back(modrm);
1084   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1085   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1086 }
1087 
EmitOpMem(const X86EncodingMap * entry,int32_t raw_base,int32_t disp)1088 void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1089   DCHECK_EQ(false, entry->skeleton.r8_form);
1090   EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1091   code_buffer_.push_back(entry->skeleton.opcode);
1092   DCHECK_NE(0x0F, entry->skeleton.opcode);
1093   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1094   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1095   uint8_t low_base = LowRegisterBits(raw_base);
1096   EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1097   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1098   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1099 }
1100 
EmitOpArray(const X86EncodingMap * entry,int32_t raw_base,int32_t raw_index,int scale,int32_t disp)1101 void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1102                              int scale, int32_t disp) {
1103   DCHECK_EQ(false, entry->skeleton.r8_form);
1104   EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1105   uint8_t low_index = LowRegisterBits(raw_index);
1106   uint8_t low_base = LowRegisterBits(raw_base);
1107   EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1108   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1109   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1110 }
1111 
EmitMemReg(const X86EncodingMap * entry,int32_t raw_base,int32_t disp,int32_t raw_reg)1112 void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1113                             int32_t raw_reg) {
1114   CheckValidByteRegister(entry, raw_reg);
1115   EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1116   uint8_t low_reg = LowRegisterBits(raw_reg);
1117   uint8_t low_base = LowRegisterBits(raw_base);
1118   EmitModrmDisp(low_reg, low_base, disp);
1119   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1120   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1121   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1122 }
1123 
EmitRegMem(const X86EncodingMap * entry,int32_t raw_reg,int32_t raw_base,int32_t disp)1124 void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1125                             int32_t disp) {
1126   // Opcode will flip operands.
1127   EmitMemReg(entry, raw_base, disp, raw_reg);
1128 }
1129 
EmitRegArray(const X86EncodingMap * entry,int32_t raw_reg,int32_t raw_base,int32_t raw_index,int scale,int32_t disp)1130 void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1131                               int32_t raw_index, int scale, int32_t disp) {
1132   CheckValidByteRegister(entry, raw_reg);
1133   EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base);
1134   uint8_t low_reg = LowRegisterBits(raw_reg);
1135   uint8_t low_index = LowRegisterBits(raw_index);
1136   uint8_t low_base = LowRegisterBits(raw_base);
1137   EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp);
1138   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1139   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1140   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1141 }
1142 
EmitArrayReg(const X86EncodingMap * entry,int32_t raw_base,int32_t raw_index,int scale,int32_t disp,int32_t raw_reg)1143 void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1144                               int scale, int32_t disp, int32_t raw_reg) {
1145   // Opcode will flip operands.
1146   EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp);
1147 }
1148 
EmitMemImm(const X86EncodingMap * entry,int32_t raw_base,int32_t disp,int32_t imm)1149 void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1150                             int32_t imm) {
1151   DCHECK_EQ(false, entry->skeleton.r8_form);
1152   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1153   uint8_t low_base = LowRegisterBits(raw_base);
1154   EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1155   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1156   EmitImm(entry, imm);
1157 }
1158 
EmitArrayImm(const X86EncodingMap * entry,int32_t raw_base,int32_t raw_index,int scale,int32_t disp,int32_t imm)1159 void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry,
1160                               int32_t raw_base, int32_t raw_index, int scale, int32_t disp,
1161                               int32_t imm) {
1162   DCHECK_EQ(false, entry->skeleton.r8_form);
1163   EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1164   uint8_t low_index = LowRegisterBits(raw_index);
1165   uint8_t low_base = LowRegisterBits(raw_base);
1166   EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1167   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1168   EmitImm(entry, imm);
1169 }
1170 
EmitRegThread(const X86EncodingMap * entry,int32_t raw_reg,int32_t disp)1171 void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) {
1172   DCHECK_EQ(false, entry->skeleton.r8_form);
1173   DCHECK_NE(entry->skeleton.prefix1, 0);
1174   EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG);
1175   uint8_t low_reg = LowRegisterBits(raw_reg);
1176   EmitModrmThread(low_reg);
1177   code_buffer_.push_back(disp & 0xFF);
1178   code_buffer_.push_back((disp >> 8) & 0xFF);
1179   code_buffer_.push_back((disp >> 16) & 0xFF);
1180   code_buffer_.push_back((disp >> 24) & 0xFF);
1181   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1182   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1183   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1184 }
1185 
EmitRegReg(const X86EncodingMap * entry,int32_t raw_reg1,int32_t raw_reg2)1186 void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) {
1187   if (!IsByteSecondOperand(entry)) {
1188     CheckValidByteRegister(entry, raw_reg1);
1189   }
1190   CheckValidByteRegister(entry, raw_reg2);
1191   EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1192   uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1193   uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1194   uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1195   code_buffer_.push_back(modrm);
1196   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1197   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1198   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1199 }
1200 
EmitRegRegImm(const X86EncodingMap * entry,int32_t raw_reg1,int32_t raw_reg2,int32_t imm)1201 void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1202                                int32_t imm) {
1203   DCHECK_EQ(false, entry->skeleton.r8_form);
1204   EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1205   uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1206   uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1207   uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1208   code_buffer_.push_back(modrm);
1209   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1210   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1211   EmitImm(entry, imm);
1212 }
1213 
EmitRegMemImm(const X86EncodingMap * entry,int32_t raw_reg,int32_t raw_base,int disp,int32_t imm)1214 void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
1215                                int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) {
1216   DCHECK(!RegStorage::IsFloat(raw_reg));
1217   CheckValidByteRegister(entry, raw_reg);
1218   EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1219   uint8_t low_reg = LowRegisterBits(raw_reg);
1220   uint8_t low_base = LowRegisterBits(raw_base);
1221   EmitModrmDisp(low_reg, low_base, disp);
1222   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1223   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1224   EmitImm(entry, imm);
1225 }
1226 
EmitMemRegImm(const X86EncodingMap * entry,int32_t raw_base,int32_t disp,int32_t raw_reg,int32_t imm)1227 void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry,
1228                                int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) {
1229   // Opcode will flip operands.
1230   EmitRegMemImm(entry, raw_reg, raw_base, disp, imm);
1231 }
1232 
EmitRegImm(const X86EncodingMap * entry,int32_t raw_reg,int32_t imm)1233 void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1234   CheckValidByteRegister(entry, raw_reg);
1235   EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1236   if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
1237     code_buffer_.push_back(entry->skeleton.ax_opcode);
1238   } else {
1239     uint8_t low_reg = LowRegisterBits(raw_reg);
1240     EmitOpcode(entry);
1241     uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1242     code_buffer_.push_back(modrm);
1243   }
1244   EmitImm(entry, imm);
1245 }
1246 
EmitThreadImm(const X86EncodingMap * entry,int32_t disp,int32_t imm)1247 void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) {
1248   DCHECK_EQ(false, entry->skeleton.r8_form);
1249   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1250   EmitModrmThread(entry->skeleton.modrm_opcode);
1251   code_buffer_.push_back(disp & 0xFF);
1252   code_buffer_.push_back((disp >> 8) & 0xFF);
1253   code_buffer_.push_back((disp >> 16) & 0xFF);
1254   code_buffer_.push_back((disp >> 24) & 0xFF);
1255   EmitImm(entry, imm);
1256   DCHECK_EQ(entry->skeleton.ax_opcode, 0);
1257 }
1258 
EmitMovRegImm(const X86EncodingMap * entry,int32_t raw_reg,int64_t imm)1259 void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) {
1260   DCHECK_EQ(false, entry->skeleton.r8_form);
1261   EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1262   uint8_t low_reg = LowRegisterBits(raw_reg);
1263   code_buffer_.push_back(0xB8 + low_reg);
1264   switch (entry->skeleton.immediate_bytes) {
1265     case 4:
1266       code_buffer_.push_back(imm & 0xFF);
1267       code_buffer_.push_back((imm >> 8) & 0xFF);
1268       code_buffer_.push_back((imm >> 16) & 0xFF);
1269       code_buffer_.push_back((imm >> 24) & 0xFF);
1270       break;
1271     case 8:
1272       code_buffer_.push_back(imm & 0xFF);
1273       code_buffer_.push_back((imm >> 8) & 0xFF);
1274       code_buffer_.push_back((imm >> 16) & 0xFF);
1275       code_buffer_.push_back((imm >> 24) & 0xFF);
1276       code_buffer_.push_back((imm >> 32) & 0xFF);
1277       code_buffer_.push_back((imm >> 40) & 0xFF);
1278       code_buffer_.push_back((imm >> 48) & 0xFF);
1279       code_buffer_.push_back((imm >> 56) & 0xFF);
1280       break;
1281     default:
1282       LOG(FATAL) << "Unsupported immediate size for EmitMovRegImm: "
1283                  << static_cast<uint32_t>(entry->skeleton.immediate_bytes);
1284   }
1285 }
1286 
EmitShiftRegImm(const X86EncodingMap * entry,int32_t raw_reg,int32_t imm)1287 void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1288   CheckValidByteRegister(entry, raw_reg);
1289   EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1290   if (imm != 1) {
1291     code_buffer_.push_back(entry->skeleton.opcode);
1292   } else {
1293     // Shorter encoding for 1 bit shift
1294     code_buffer_.push_back(entry->skeleton.ax_opcode);
1295   }
1296   DCHECK_NE(0x0F, entry->skeleton.opcode);
1297   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1298   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1299   uint8_t low_reg = LowRegisterBits(raw_reg);
1300   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1301   code_buffer_.push_back(modrm);
1302   if (imm != 1) {
1303     DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1304     DCHECK(IS_SIMM8(imm));
1305     code_buffer_.push_back(imm & 0xFF);
1306   }
1307 }
1308 
EmitShiftRegCl(const X86EncodingMap * entry,int32_t raw_reg,int32_t raw_cl)1309 void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) {
1310   CheckValidByteRegister(entry, raw_reg);
1311   DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1312   EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1313   code_buffer_.push_back(entry->skeleton.opcode);
1314   DCHECK_NE(0x0F, entry->skeleton.opcode);
1315   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1316   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1317   uint8_t low_reg = LowRegisterBits(raw_reg);
1318   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1319   code_buffer_.push_back(modrm);
1320   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1321   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1322 }
1323 
EmitShiftMemCl(const X86EncodingMap * entry,int32_t raw_base,int32_t displacement,int32_t raw_cl)1324 void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base,
1325                                 int32_t displacement, int32_t raw_cl) {
1326   DCHECK_EQ(false, entry->skeleton.r8_form);
1327   DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1328   EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1329   code_buffer_.push_back(entry->skeleton.opcode);
1330   DCHECK_NE(0x0F, entry->skeleton.opcode);
1331   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1332   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1333   uint8_t low_base = LowRegisterBits(raw_base);
1334   EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement);
1335   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1336   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1337 }
1338 
EmitShiftMemImm(const X86EncodingMap * entry,int32_t raw_base,int32_t disp,int32_t imm)1339 void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1340                                  int32_t imm) {
1341   DCHECK_EQ(false, entry->skeleton.r8_form);
1342   EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1343   if (imm != 1) {
1344     code_buffer_.push_back(entry->skeleton.opcode);
1345   } else {
1346     // Shorter encoding for 1 bit shift
1347     code_buffer_.push_back(entry->skeleton.ax_opcode);
1348   }
1349   DCHECK_NE(0x0F, entry->skeleton.opcode);
1350   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1351   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1352   uint8_t low_base = LowRegisterBits(raw_base);
1353   EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1354   if (imm != 1) {
1355     DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1356     DCHECK(IS_SIMM8(imm));
1357     code_buffer_.push_back(imm & 0xFF);
1358   }
1359 }
1360 
EmitRegCond(const X86EncodingMap * entry,int32_t raw_reg,int32_t cc)1361 void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) {
1362   CheckValidByteRegister(entry, raw_reg);
1363   EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1364   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1365   DCHECK_EQ(0x0F, entry->skeleton.opcode);
1366   code_buffer_.push_back(0x0F);
1367   DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1368   DCHECK_GE(cc, 0);
1369   DCHECK_LT(cc, 16);
1370   code_buffer_.push_back(0x90 | cc);
1371   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1372   uint8_t low_reg = LowRegisterBits(raw_reg);
1373   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1374   code_buffer_.push_back(modrm);
1375   DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1376 }
1377 
EmitMemCond(const X86EncodingMap * entry,int32_t raw_base,int32_t disp,int32_t cc)1378 void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1379                              int32_t cc) {
1380   DCHECK_EQ(false, entry->skeleton.r8_form);
1381   if (entry->skeleton.prefix1 != 0) {
1382     code_buffer_.push_back(entry->skeleton.prefix1);
1383     if (entry->skeleton.prefix2 != 0) {
1384       code_buffer_.push_back(entry->skeleton.prefix2);
1385     }
1386   } else {
1387     DCHECK_EQ(0, entry->skeleton.prefix2);
1388   }
1389   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1390   DCHECK_EQ(0x0F, entry->skeleton.opcode);
1391   code_buffer_.push_back(0x0F);
1392   DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1393   DCHECK_GE(cc, 0);
1394   DCHECK_LT(cc, 16);
1395   code_buffer_.push_back(0x90 | cc);
1396   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1397   uint8_t low_base = LowRegisterBits(raw_base);
1398   EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1399   DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1400 }
1401 
EmitRegRegCond(const X86EncodingMap * entry,int32_t raw_reg1,int32_t raw_reg2,int32_t cc)1402 void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1403                                 int32_t cc) {
1404   // Generate prefix and opcode without the condition.
1405   DCHECK_EQ(false, entry->skeleton.r8_form);
1406   EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1407 
1408   // Now add the condition. The last byte of opcode is the one that receives it.
1409   DCHECK_GE(cc, 0);
1410   DCHECK_LT(cc, 16);
1411   code_buffer_.back() += cc;
1412 
1413   // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1414   // two registers.
1415   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1416   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1417 
1418   // For register to register encoding, the mod is 3.
1419   const uint8_t mod = (3 << 6);
1420 
1421   // Encode the ModR/M byte now.
1422   uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1423   uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1424   const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2;
1425   code_buffer_.push_back(modrm);
1426 }
1427 
EmitRegMemCond(const X86EncodingMap * entry,int32_t raw_reg1,int32_t raw_base,int32_t disp,int32_t cc)1428 void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base,
1429                                 int32_t disp, int32_t cc) {
1430   // Generate prefix and opcode without the condition.
1431   DCHECK_EQ(false, entry->skeleton.r8_form);
1432   EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base);
1433 
1434   // Now add the condition. The last byte of opcode is the one that receives it.
1435   DCHECK_GE(cc, 0);
1436   DCHECK_LT(cc, 16);
1437   code_buffer_.back() += cc;
1438 
1439   // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1440   // two registers.
1441   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1442   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1443 
1444   uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1445   uint8_t low_base = LowRegisterBits(raw_base);
1446   EmitModrmDisp(low_reg1, low_base, disp);
1447 }
1448 
EmitJmp(const X86EncodingMap * entry,int32_t rel)1449 void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) {
1450   if (entry->opcode == kX86Jmp8) {
1451     DCHECK(IS_SIMM8(rel));
1452     code_buffer_.push_back(0xEB);
1453     code_buffer_.push_back(rel & 0xFF);
1454   } else if (entry->opcode == kX86Jmp32) {
1455     code_buffer_.push_back(0xE9);
1456     code_buffer_.push_back(rel & 0xFF);
1457     code_buffer_.push_back((rel >> 8) & 0xFF);
1458     code_buffer_.push_back((rel >> 16) & 0xFF);
1459     code_buffer_.push_back((rel >> 24) & 0xFF);
1460   } else if (entry->opcode == kX86Jecxz8) {
1461     DCHECK(IS_SIMM8(rel));
1462     code_buffer_.push_back(0xE3);
1463     code_buffer_.push_back(rel & 0xFF);
1464   } else {
1465     DCHECK(entry->opcode == kX86JmpR);
1466     DCHECK_EQ(false, entry->skeleton.r8_form);
1467     EmitPrefix(entry, NO_REG, NO_REG, rel);
1468     code_buffer_.push_back(entry->skeleton.opcode);
1469     uint8_t low_reg = LowRegisterBits(rel);
1470     uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1471     code_buffer_.push_back(modrm);
1472   }
1473 }
1474 
EmitJcc(const X86EncodingMap * entry,int32_t rel,int32_t cc)1475 void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) {
1476   DCHECK_GE(cc, 0);
1477   DCHECK_LT(cc, 16);
1478   if (entry->opcode == kX86Jcc8) {
1479     DCHECK(IS_SIMM8(rel));
1480     code_buffer_.push_back(0x70 | cc);
1481     code_buffer_.push_back(rel & 0xFF);
1482   } else {
1483     DCHECK(entry->opcode == kX86Jcc32);
1484     code_buffer_.push_back(0x0F);
1485     code_buffer_.push_back(0x80 | cc);
1486     code_buffer_.push_back(rel & 0xFF);
1487     code_buffer_.push_back((rel >> 8) & 0xFF);
1488     code_buffer_.push_back((rel >> 16) & 0xFF);
1489     code_buffer_.push_back((rel >> 24) & 0xFF);
1490   }
1491 }
1492 
EmitCallMem(const X86EncodingMap * entry,int32_t raw_base,int32_t disp)1493 void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1494   DCHECK_EQ(false, entry->skeleton.r8_form);
1495   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1496   uint8_t low_base = LowRegisterBits(raw_base);
1497   EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1498   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1499   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1500 }
1501 
EmitCallImmediate(const X86EncodingMap * entry,int32_t disp)1502 void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) {
1503   DCHECK_EQ(false, entry->skeleton.r8_form);
1504   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1505   DCHECK_EQ(4, entry->skeleton.immediate_bytes);
1506   code_buffer_.push_back(disp & 0xFF);
1507   code_buffer_.push_back((disp >> 8) & 0xFF);
1508   code_buffer_.push_back((disp >> 16) & 0xFF);
1509   code_buffer_.push_back((disp >> 24) & 0xFF);
1510   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1511 }
1512 
EmitCallThread(const X86EncodingMap * entry,int32_t disp)1513 void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) {
1514   DCHECK_EQ(false, entry->skeleton.r8_form);
1515   DCHECK_NE(entry->skeleton.prefix1, 0);
1516   EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1517   EmitModrmThread(entry->skeleton.modrm_opcode);
1518   code_buffer_.push_back(disp & 0xFF);
1519   code_buffer_.push_back((disp >> 8) & 0xFF);
1520   code_buffer_.push_back((disp >> 16) & 0xFF);
1521   code_buffer_.push_back((disp >> 24) & 0xFF);
1522   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1523   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1524 }
1525 
EmitPcRel(const X86EncodingMap * entry,int32_t raw_reg,int32_t raw_base_or_table,int32_t raw_index,int scale,int32_t table_or_disp)1526 void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
1527                            int32_t raw_index, int scale, int32_t table_or_disp) {
1528   int disp;
1529   if (entry->opcode == kX86PcRelLoadRA) {
1530     Mir2Lir::EmbeddedData *tab_rec =
1531         reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
1532     disp = tab_rec->offset;
1533   } else {
1534     DCHECK(entry->opcode == kX86PcRelAdr);
1535     Mir2Lir::EmbeddedData *tab_rec =
1536         reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(raw_base_or_table));
1537     disp = tab_rec->offset;
1538   }
1539   if (entry->opcode == kX86PcRelLoadRA) {
1540     DCHECK_EQ(false, entry->skeleton.r8_form);
1541     EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table);
1542     code_buffer_.push_back(entry->skeleton.opcode);
1543     DCHECK_NE(0x0F, entry->skeleton.opcode);
1544     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1545     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1546     uint8_t low_reg = LowRegisterBits(raw_reg);
1547     uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP.GetRegNum();
1548     code_buffer_.push_back(modrm);
1549     DCHECK_LT(scale, 4);
1550     uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table);
1551     uint8_t low_index = LowRegisterBits(raw_index);
1552     uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table;
1553     code_buffer_.push_back(sib);
1554     DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1555   } else {
1556     uint8_t low_reg = LowRegisterBits(raw_reg);
1557     code_buffer_.push_back(entry->skeleton.opcode + low_reg);
1558   }
1559   code_buffer_.push_back(disp & 0xFF);
1560   code_buffer_.push_back((disp >> 8) & 0xFF);
1561   code_buffer_.push_back((disp >> 16) & 0xFF);
1562   code_buffer_.push_back((disp >> 24) & 0xFF);
1563   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1564   DCHECK_EQ(0, entry->skeleton.ax_opcode);
1565 }
1566 
EmitMacro(const X86EncodingMap * entry,int32_t raw_reg,int32_t offset)1567 void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset) {
1568   DCHECK_EQ(entry->opcode, kX86StartOfMethod) << entry->name;
1569   DCHECK_EQ(false, entry->skeleton.r8_form);
1570   EmitPrefix(entry, raw_reg, NO_REG, NO_REG);
1571   code_buffer_.push_back(0xE8);  // call +0
1572   code_buffer_.push_back(0);
1573   code_buffer_.push_back(0);
1574   code_buffer_.push_back(0);
1575   code_buffer_.push_back(0);
1576 
1577   uint8_t low_reg = LowRegisterBits(raw_reg);
1578   code_buffer_.push_back(0x58 + low_reg);  // pop reg
1579 
1580   EmitRegImm(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI],
1581              raw_reg, offset + 5 /* size of call +0 */);
1582 }
1583 
EmitUnimplemented(const X86EncodingMap * entry,LIR * lir)1584 void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1585   UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1586                          << BuildInsnString(entry->fmt, lir, 0);
1587   for (size_t i = 0; i < GetInsnSize(lir); ++i) {
1588     code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1589   }
1590 }
1591 
1592 /*
1593  * Assemble the LIR into binary instruction format.  Note that we may
1594  * discover that pc-relative displacements may not fit the selected
1595  * instruction.  In those cases we will try to substitute a new code
1596  * sequence or request that the trace be shortened and retried.
1597  */
AssembleInstructions(CodeOffset start_addr)1598 AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
1599   LIR *lir;
1600   AssemblerStatus res = kSuccess;  // Assume success
1601 
1602   const bool kVerbosePcFixup = false;
1603   for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1604     if (IsPseudoLirOp(lir->opcode)) {
1605       continue;
1606     }
1607 
1608     if (lir->flags.is_nop) {
1609       continue;
1610     }
1611 
1612     if (lir->flags.fixup != kFixupNone) {
1613       switch (lir->opcode) {
1614         case kX86Jcc8: {
1615           LIR *target_lir = lir->target;
1616           DCHECK(target_lir != NULL);
1617           int delta = 0;
1618           CodeOffset pc;
1619           if (IS_SIMM8(lir->operands[0])) {
1620             pc = lir->offset + 2 /* opcode + rel8 */;
1621           } else {
1622             pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1623           }
1624           CodeOffset target = target_lir->offset;
1625           delta = target - pc;
1626           if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1627             if (kVerbosePcFixup) {
1628               LOG(INFO) << "Retry for JCC growth at " << lir->offset
1629                   << " delta: " << delta << " old delta: " << lir->operands[0];
1630             }
1631             lir->opcode = kX86Jcc32;
1632             lir->flags.size = GetInsnSize(lir);
1633             DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1634             DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1635             res = kRetryAll;
1636           }
1637           if (kVerbosePcFixup) {
1638             LOG(INFO) << "Source:";
1639             DumpLIRInsn(lir, 0);
1640             LOG(INFO) << "Target:";
1641             DumpLIRInsn(target_lir, 0);
1642             LOG(INFO) << "Delta " << delta;
1643           }
1644           lir->operands[0] = delta;
1645           break;
1646         }
1647         case kX86Jcc32: {
1648           LIR *target_lir = lir->target;
1649           DCHECK(target_lir != NULL);
1650           CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1651           CodeOffset target = target_lir->offset;
1652           int delta = target - pc;
1653           if (kVerbosePcFixup) {
1654             LOG(INFO) << "Source:";
1655             DumpLIRInsn(lir, 0);
1656             LOG(INFO) << "Target:";
1657             DumpLIRInsn(target_lir, 0);
1658             LOG(INFO) << "Delta " << delta;
1659           }
1660           lir->operands[0] = delta;
1661           break;
1662         }
1663         case kX86Jecxz8: {
1664           LIR *target_lir = lir->target;
1665           DCHECK(target_lir != NULL);
1666           CodeOffset pc;
1667           pc = lir->offset + 2;  // opcode + rel8
1668           CodeOffset target = target_lir->offset;
1669           int delta = target - pc;
1670           lir->operands[0] = delta;
1671           DCHECK(IS_SIMM8(delta));
1672           break;
1673         }
1674         case kX86Jmp8: {
1675           LIR *target_lir = lir->target;
1676           DCHECK(target_lir != NULL);
1677           int delta = 0;
1678           CodeOffset pc;
1679           if (IS_SIMM8(lir->operands[0])) {
1680             pc = lir->offset + 2 /* opcode + rel8 */;
1681           } else {
1682             pc = lir->offset + 5 /* opcode + rel32 */;
1683           }
1684           CodeOffset target = target_lir->offset;
1685           delta = target - pc;
1686           if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1687             // Useless branch
1688             NopLIR(lir);
1689             if (kVerbosePcFixup) {
1690               LOG(INFO) << "Retry for useless branch at " << lir->offset;
1691             }
1692             res = kRetryAll;
1693           } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1694             if (kVerbosePcFixup) {
1695               LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1696             }
1697             lir->opcode = kX86Jmp32;
1698             lir->flags.size = GetInsnSize(lir);
1699             DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1700             DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1701             res = kRetryAll;
1702           }
1703           lir->operands[0] = delta;
1704           break;
1705         }
1706         case kX86Jmp32: {
1707           LIR *target_lir = lir->target;
1708           DCHECK(target_lir != NULL);
1709           CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1710           CodeOffset target = target_lir->offset;
1711           int delta = target - pc;
1712           lir->operands[0] = delta;
1713           break;
1714         }
1715         default:
1716           if (lir->flags.fixup == kFixupLoad) {
1717             LIR *target_lir = lir->target;
1718             DCHECK(target_lir != NULL);
1719             CodeOffset target = target_lir->offset;
1720             lir->operands[2] = target;
1721             int newSize = GetInsnSize(lir);
1722             if (newSize != lir->flags.size) {
1723               lir->flags.size = newSize;
1724               res = kRetryAll;
1725             }
1726           }
1727           break;
1728       }
1729     }
1730 
1731     /*
1732      * If one of the pc-relative instructions expanded we'll have
1733      * to make another pass.  Don't bother to fully assemble the
1734      * instruction.
1735      */
1736     if (res != kSuccess) {
1737       continue;
1738     }
1739     CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1740     const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1741     size_t starting_cbuf_size = code_buffer_.size();
1742     switch (entry->kind) {
1743       case kData:  // 4 bytes of data
1744         code_buffer_.push_back(lir->operands[0]);
1745         break;
1746       case kNullary:  // 1 byte of opcode and possible prefixes.
1747         EmitNullary(entry);
1748         break;
1749       case kRegOpcode:  // lir operands - 0: reg
1750         EmitOpRegOpcode(entry, lir->operands[0]);
1751         break;
1752       case kReg:  // lir operands - 0: reg
1753         EmitOpReg(entry, lir->operands[0]);
1754         break;
1755       case kMem:  // lir operands - 0: base, 1: disp
1756         EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1757         break;
1758       case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
1759         EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1760         break;
1761       case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1762         EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1763         break;
1764       case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
1765         EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1766         break;
1767       case kArrayImm:  // lir operands - 0: base, 1: index, 2: disp, 3:scale, 4:immediate
1768         EmitArrayImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1769                      lir->operands[3], lir->operands[4]);
1770         break;
1771       case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1772         EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1773                      lir->operands[3], lir->operands[4]);
1774         break;
1775       case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1776         EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1777         break;
1778       case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1779         EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1780                      lir->operands[3], lir->operands[4]);
1781         break;
1782       case kRegThread:  // lir operands - 0: reg, 1: disp
1783         EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1784         break;
1785       case kRegReg:  // lir operands - 0: reg1, 1: reg2
1786         EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1787         break;
1788       case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1789         EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1790         break;
1791       case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
1792         EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1793                       lir->operands[3]);
1794         break;
1795       case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
1796         EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1797         break;
1798       case kRegRegImmStore:   // lir operands - 0: reg2, 1: reg1, 2: imm
1799         EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
1800         break;
1801       case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
1802         EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1803                       lir->operands[3]);
1804         break;
1805       case kRegImm:  // lir operands - 0: reg, 1: immediate
1806         EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1807         break;
1808       case kThreadImm:  // lir operands - 0: disp, 1: immediate
1809         EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1810         break;
1811       case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1812         EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1813         break;
1814       case kMovRegQuadImm: {
1815           int64_t value = static_cast<int64_t>(static_cast<int64_t>(lir->operands[1]) << 32 |
1816                           static_cast<uint32_t>(lir->operands[2]));
1817           EmitMovRegImm(entry, lir->operands[0], value);
1818         }
1819         break;
1820       case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1821         EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1822         break;
1823       case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2:immediate
1824         EmitShiftMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1825         break;
1826       case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1827         EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1828         break;
1829       case kShiftMemCl:  // lir operands - 0: base, 1:displacement, 2: cl
1830         EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1831         break;
1832       case kRegCond:  // lir operands - 0: reg, 1: condition
1833         EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1834         break;
1835       case kMemCond:  // lir operands - 0: base, 1: displacement, 2: condition
1836         EmitMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1837         break;
1838       case kRegRegCond:  // lir operands - 0: reg, 1: reg, 2: condition
1839         EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1840         break;
1841       case kRegMemCond:  // lir operands - 0: reg, 1: reg, displacement, 3: condition
1842         EmitRegMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1843                        lir->operands[3]);
1844         break;
1845       case kJmp:  // lir operands - 0: rel
1846         if (entry->opcode == kX86JmpT) {
1847           // This works since the instruction format for jmp and call is basically the same and
1848           // EmitCallThread loads opcode info.
1849           EmitCallThread(entry, lir->operands[0]);
1850         } else {
1851           EmitJmp(entry, lir->operands[0]);
1852         }
1853         break;
1854       case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1855         EmitJcc(entry, lir->operands[0], lir->operands[1]);
1856         break;
1857       case kCall:
1858         switch (entry->opcode) {
1859           case kX86CallI:  // lir operands - 0: disp
1860             EmitCallImmediate(entry, lir->operands[0]);
1861             break;
1862           case kX86CallM:  // lir operands - 0: base, 1: disp
1863             EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1864             break;
1865           case kX86CallT:  // lir operands - 0: disp
1866             EmitCallThread(entry, lir->operands[0]);
1867             break;
1868           default:
1869             EmitUnimplemented(entry, lir);
1870             break;
1871         }
1872         break;
1873       case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1874         EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1875                   lir->operands[3], lir->operands[4]);
1876         break;
1877       case kMacro:  // lir operands - 0: reg
1878         EmitMacro(entry, lir->operands[0], lir->offset);
1879         break;
1880       case kNop:  // TODO: these instruction kinds are missing implementations.
1881       case kThreadReg:
1882       case kRegArrayImm:
1883       case kShiftArrayImm:
1884       case kShiftArrayCl:
1885       case kArrayCond:
1886       case kUnimplemented:
1887         EmitUnimplemented(entry, lir);
1888         break;
1889     }
1890     DCHECK_EQ(lir->flags.size, GetInsnSize(lir));
1891     CHECK_EQ(lir->flags.size, code_buffer_.size() - starting_cbuf_size)
1892         << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1893   }
1894   return res;
1895 }
1896 
1897 // LIR offset assignment.
1898 // TODO: consolidate w/ Arm assembly mechanism.
AssignInsnOffsets()1899 int X86Mir2Lir::AssignInsnOffsets() {
1900   LIR* lir;
1901   int offset = 0;
1902 
1903   for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1904     lir->offset = offset;
1905     if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
1906       if (!lir->flags.is_nop) {
1907         offset += lir->flags.size;
1908       }
1909     } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1910       if (offset & 0x2) {
1911         offset += 2;
1912         lir->operands[0] = 1;
1913       } else {
1914         lir->operands[0] = 0;
1915       }
1916     }
1917     /* Pseudo opcodes don't consume space */
1918   }
1919   return offset;
1920 }
1921 
1922 /*
1923  * Walk the compilation unit and assign offsets to instructions
1924  * and literals and compute the total size of the compiled unit.
1925  * TODO: consolidate w/ Arm assembly mechanism.
1926  */
AssignOffsets()1927 void X86Mir2Lir::AssignOffsets() {
1928   int offset = AssignInsnOffsets();
1929 
1930   if (const_vectors_ != nullptr) {
1931     /* assign offsets to vector literals */
1932 
1933     // First, get offset to 12 mod 16 to align to 16 byte boundary.
1934     // This will ensure that the vector is 16 byte aligned, as the procedure is
1935     // always aligned at at 4 mod 16.
1936     int align_size = (16-4) - (offset & 0xF);
1937     if (align_size < 0) {
1938       align_size += 16;
1939     }
1940 
1941     offset += align_size;
1942 
1943     // Now assign each literal the right offset.
1944     for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1945       p->offset = offset;
1946       offset += 16;
1947     }
1948   }
1949 
1950   /* Const values have to be word aligned */
1951   offset = RoundUp(offset, 4);
1952 
1953   /* Set up offsets for literals */
1954   data_offset_ = offset;
1955 
1956   offset = AssignLiteralOffset(offset);
1957 
1958   offset = AssignSwitchTablesOffset(offset);
1959 
1960   offset = AssignFillArrayDataOffset(offset);
1961 
1962   total_size_ = offset;
1963 }
1964 
1965 /*
1966  * Go over each instruction in the list and calculate the offset from the top
1967  * before sending them off to the assembler. If out-of-range branch distance is
1968  * seen rearrange the instructions a bit to correct it.
1969  * TODO: consolidate w/ Arm assembly mechanism.
1970  */
AssembleLIR()1971 void X86Mir2Lir::AssembleLIR() {
1972   cu_->NewTimingSplit("Assemble");
1973 
1974   // We will remove the method address if we never ended up using it
1975   if (store_method_addr_ && !store_method_addr_used_) {
1976     setup_method_address_[0]->flags.is_nop = true;
1977     setup_method_address_[1]->flags.is_nop = true;
1978   }
1979 
1980   AssignOffsets();
1981   int assembler_retries = 0;
1982   /*
1983    * Assemble here.  Note that we generate code with optimistic assumptions
1984    * and if found now to work, we'll have to redo the sequence and retry.
1985    */
1986 
1987   while (true) {
1988     AssemblerStatus res = AssembleInstructions(0);
1989     if (res == kSuccess) {
1990       break;
1991     } else {
1992       assembler_retries++;
1993       if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1994         CodegenDump();
1995         LOG(FATAL) << "Assembler error - too many retries";
1996       }
1997       // Redo offsets and try again
1998       AssignOffsets();
1999       code_buffer_.clear();
2000     }
2001   }
2002 
2003   // Install literals
2004   InstallLiteralPools();
2005 
2006   // Install switch tables
2007   InstallSwitchTables();
2008 
2009   // Install fill array data
2010   InstallFillArrayData();
2011 
2012   // Create the mapping table and native offset to reference map.
2013   cu_->NewTimingSplit("PcMappingTable");
2014   CreateMappingTables();
2015 
2016   cu_->NewTimingSplit("GcMap");
2017   CreateNativeGcMap();
2018 }
2019 
2020 }  // namespace art
2021