1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "bit_vector.h"
18
19 namespace art {
20
21 // TODO: profile to make sure this is still a win relative to just using shifted masks.
22 static uint32_t check_masks[32] = {
23 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
24 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200,
25 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000,
26 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000,
27 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000,
28 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000,
29 0x40000000, 0x80000000 };
30
BitsToWords(uint32_t bits)31 static inline uint32_t BitsToWords(uint32_t bits) {
32 return (bits + 31) >> 5;
33 }
34
35 // TODO: replace excessive argument defaulting when we are at gcc 4.7
36 // or later on host with delegating constructor support. Specifically,
37 // starts_bits and storage_size/storage are mutually exclusive.
BitVector(uint32_t start_bits,bool expandable,Allocator * allocator,uint32_t storage_size,uint32_t * storage)38 BitVector::BitVector(uint32_t start_bits,
39 bool expandable,
40 Allocator* allocator,
41 uint32_t storage_size,
42 uint32_t* storage)
43 : allocator_(allocator),
44 expandable_(expandable),
45 storage_size_(storage_size),
46 storage_(storage) {
47 COMPILE_ASSERT(sizeof(*storage_) == kWordBytes, check_word_bytes);
48 COMPILE_ASSERT(sizeof(*storage_) * 8u == kWordBits, check_word_bits);
49 if (storage_ == nullptr) {
50 storage_size_ = BitsToWords(start_bits);
51 storage_ = static_cast<uint32_t*>(allocator_->Alloc(storage_size_ * kWordBytes));
52 }
53 }
54
~BitVector()55 BitVector::~BitVector() {
56 allocator_->Free(storage_);
57 }
58
59 /*
60 * Determine whether or not the specified bit is set.
61 */
IsBitSet(uint32_t num) const62 bool BitVector::IsBitSet(uint32_t num) const {
63 // If the index is over the size:
64 if (num >= storage_size_ * kWordBits) {
65 // Whether it is expandable or not, this bit does not exist: thus it is not set.
66 return false;
67 }
68
69 return IsBitSet(storage_, num);
70 }
71
72 // Mark all bits bit as "clear".
ClearAllBits()73 void BitVector::ClearAllBits() {
74 memset(storage_, 0, storage_size_ * kWordBytes);
75 }
76
77 // Mark the specified bit as "set".
78 /*
79 * TUNING: this could have pathologically bad growth/expand behavior. Make sure we're
80 * not using it badly or change resize mechanism.
81 */
SetBit(uint32_t num)82 void BitVector::SetBit(uint32_t num) {
83 if (num >= storage_size_ * kWordBits) {
84 DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << num;
85
86 /* Round up to word boundaries for "num+1" bits */
87 uint32_t new_size = BitsToWords(num + 1);
88 DCHECK_GT(new_size, storage_size_);
89 uint32_t *new_storage =
90 static_cast<uint32_t*>(allocator_->Alloc(new_size * kWordBytes));
91 memcpy(new_storage, storage_, storage_size_ * kWordBytes);
92 // Zero out the new storage words.
93 memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * kWordBytes);
94 // TOTO: collect stats on space wasted because of resize.
95 storage_ = new_storage;
96 storage_size_ = new_size;
97 }
98
99 storage_[num >> 5] |= check_masks[num & 0x1f];
100 }
101
102 // Mark the specified bit as "unset".
ClearBit(uint32_t num)103 void BitVector::ClearBit(uint32_t num) {
104 // If the index is over the size, we don't have to do anything, it is cleared.
105 if (num < storage_size_ * kWordBits) {
106 // Otherwise, go ahead and clear it.
107 storage_[num >> 5] &= ~check_masks[num & 0x1f];
108 }
109 }
110
SameBitsSet(const BitVector * src)111 bool BitVector::SameBitsSet(const BitVector *src) {
112 int our_highest = GetHighestBitSet();
113 int src_highest = src->GetHighestBitSet();
114
115 // If the highest bit set is different, we are different.
116 if (our_highest != src_highest) {
117 return false;
118 }
119
120 // If the highest bit set is -1, both are cleared, we are the same.
121 // If the highest bit set is 0, both have a unique bit set, we are the same.
122 if (our_highest <= 0) {
123 return true;
124 }
125
126 // Get the highest bit set's cell's index
127 // No need of highest + 1 here because it can't be 0 so BitsToWords will work here.
128 int our_highest_index = BitsToWords(our_highest);
129
130 // This memcmp is enough: we know that the highest bit set is the same for both:
131 // - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less.
132 // ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index,
133 // they are automatically at 0.
134 return (memcmp(storage_, src->GetRawStorage(), our_highest_index * kWordBytes) == 0);
135 }
136
137 // Intersect with another bit vector.
Intersect(const BitVector * src)138 void BitVector::Intersect(const BitVector* src) {
139 uint32_t src_storage_size = src->storage_size_;
140
141 // Get the minimum size between us and source.
142 uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size;
143
144 uint32_t idx;
145 for (idx = 0; idx < min_size; idx++) {
146 storage_[idx] &= src->GetRawStorageWord(idx);
147 }
148
149 // Now, due to this being an intersection, there are two possibilities:
150 // - Either src was larger than us: we don't care, all upper bits would thus be 0.
151 // - Either we are larger than src: we don't care, all upper bits would have been 0 too.
152 // So all we need to do is set all remaining bits to 0.
153 for (; idx < storage_size_; idx++) {
154 storage_[idx] = 0;
155 }
156 }
157
158 /*
159 * Union with another bit vector.
160 */
Union(const BitVector * src)161 bool BitVector::Union(const BitVector* src) {
162 // Get the highest bit to determine how much we need to expand.
163 int highest_bit = src->GetHighestBitSet();
164 bool changed = false;
165
166 // If src has no bit set, we are done: there is no need for a union with src.
167 if (highest_bit == -1) {
168 return changed;
169 }
170
171 // Update src_size to how many cells we actually care about: where the bit is + 1.
172 uint32_t src_size = BitsToWords(highest_bit + 1);
173
174 // Is the storage size smaller than src's?
175 if (storage_size_ < src_size) {
176 changed = true;
177
178 // Set it to reallocate.
179 SetBit(highest_bit);
180
181 // Paranoid: storage size should be big enough to hold this bit now.
182 DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits);
183 }
184
185 for (uint32_t idx = 0; idx < src_size; idx++) {
186 uint32_t existing = storage_[idx];
187 uint32_t update = existing | src->GetRawStorageWord(idx);
188 if (existing != update) {
189 changed = true;
190 storage_[idx] = update;
191 }
192 }
193 return changed;
194 }
195
UnionIfNotIn(const BitVector * union_with,const BitVector * not_in)196 bool BitVector::UnionIfNotIn(const BitVector* union_with, const BitVector* not_in) {
197 // Get the highest bit to determine how much we need to expand.
198 int highest_bit = union_with->GetHighestBitSet();
199 bool changed = false;
200
201 // If src has no bit set, we are done: there is no need for a union with src.
202 if (highest_bit == -1) {
203 return changed;
204 }
205
206 // Update union_with_size to how many cells we actually care about: where the bit is + 1.
207 uint32_t union_with_size = BitsToWords(highest_bit + 1);
208
209 // Is the storage size smaller than src's?
210 if (storage_size_ < union_with_size) {
211 changed = true;
212
213 // Set it to reallocate.
214 SetBit(highest_bit);
215
216 // Paranoid: storage size should be big enough to hold this bit now.
217 DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits);
218 }
219
220 uint32_t not_in_size = not_in->GetStorageSize();
221
222 uint32_t idx = 0;
223 for (; idx < std::min(not_in_size, union_with_size); idx++) {
224 uint32_t existing = storage_[idx];
225 uint32_t update = existing |
226 (union_with->GetRawStorageWord(idx) & ~not_in->GetRawStorageWord(idx));
227 if (existing != update) {
228 changed = true;
229 storage_[idx] = update;
230 }
231 }
232
233 for (; idx < union_with_size; idx++) {
234 uint32_t existing = storage_[idx];
235 uint32_t update = existing | union_with->GetRawStorageWord(idx);
236 if (existing != update) {
237 changed = true;
238 storage_[idx] = update;
239 }
240 }
241 return changed;
242 }
243
Subtract(const BitVector * src)244 void BitVector::Subtract(const BitVector *src) {
245 uint32_t src_size = src->storage_size_;
246
247 // We only need to operate on bytes up to the smaller of the sizes of the two operands.
248 unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_;
249
250 // Difference until max, we know both accept it:
251 // There is no need to do more:
252 // If we are bigger than src, the upper bits are unchanged.
253 // If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted.
254 for (uint32_t idx = 0; idx < min_size; idx++) {
255 storage_[idx] &= (~(src->GetRawStorageWord(idx)));
256 }
257 }
258
259 // Count the number of bits that are set.
NumSetBits() const260 uint32_t BitVector::NumSetBits() const {
261 uint32_t count = 0;
262 for (uint32_t word = 0; word < storage_size_; word++) {
263 count += POPCOUNT(storage_[word]);
264 }
265 return count;
266 }
267
268 // Count the number of bits that are set in range [0, end).
NumSetBits(uint32_t end) const269 uint32_t BitVector::NumSetBits(uint32_t end) const {
270 DCHECK_LE(end, storage_size_ * kWordBits);
271 return NumSetBits(storage_, end);
272 }
273
274 /*
275 * Mark specified number of bits as "set". Cannot set all bits like ClearAll
276 * since there might be unused bits - setting those to one will confuse the
277 * iterator.
278 */
SetInitialBits(uint32_t num_bits)279 void BitVector::SetInitialBits(uint32_t num_bits) {
280 // If num_bits is 0, clear everything.
281 if (num_bits == 0) {
282 ClearAllBits();
283 return;
284 }
285
286 // Set the highest bit we want to set to get the BitVector allocated if need be.
287 SetBit(num_bits - 1);
288
289 uint32_t idx;
290 // We can set every storage element with -1.
291 for (idx = 0; idx < (num_bits >> 5); idx++) {
292 storage_[idx] = -1;
293 }
294
295 // Handle the potentially last few bits.
296 uint32_t rem_num_bits = num_bits & 0x1f;
297 if (rem_num_bits != 0) {
298 storage_[idx] = (1 << rem_num_bits) - 1;
299 ++idx;
300 }
301
302 // Now set the upper ones to 0.
303 for (; idx < storage_size_; idx++) {
304 storage_[idx] = 0;
305 }
306 }
307
GetHighestBitSet() const308 int BitVector::GetHighestBitSet() const {
309 unsigned int max = storage_size_;
310 for (int idx = max - 1; idx >= 0; idx--) {
311 // If not 0, we have more work: check the bits.
312 uint32_t value = storage_[idx];
313
314 if (value != 0) {
315 // Shift right for the counting.
316 value /= 2;
317
318 int cnt = 0;
319
320 // Count the bits.
321 while (value > 0) {
322 value /= 2;
323 cnt++;
324 }
325
326 // Return cnt + how many storage units still remain * the number of bits per unit.
327 int res = cnt + (idx * kWordBits);
328 return res;
329 }
330 }
331
332 // All zero, therefore return -1.
333 return -1;
334 }
335
EnsureSizeAndClear(unsigned int num)336 bool BitVector::EnsureSizeAndClear(unsigned int num) {
337 // Check if the bitvector is expandable.
338 if (IsExpandable() == false) {
339 return false;
340 }
341
342 if (num > 0) {
343 // Now try to expand by setting the last bit.
344 SetBit(num - 1);
345 }
346
347 // We must clear all bits as per our specification.
348 ClearAllBits();
349
350 return true;
351 }
352
Copy(const BitVector * src)353 void BitVector::Copy(const BitVector *src) {
354 // Get highest bit set, we only need to copy till then.
355 int highest_bit = src->GetHighestBitSet();
356
357 // If nothing is set, clear everything.
358 if (highest_bit == -1) {
359 ClearAllBits();
360 return;
361 }
362
363 // Set upper bit to ensure right size before copy.
364 SetBit(highest_bit);
365
366 // Now set until highest bit's storage.
367 uint32_t size = 1 + (highest_bit / kWordBits);
368 memcpy(storage_, src->GetRawStorage(), kWordBytes * size);
369
370 // Set upper bits to 0.
371 uint32_t left = storage_size_ - size;
372
373 if (left > 0) {
374 memset(storage_ + size, 0, kWordBytes * left);
375 }
376 }
377
IsBitSet(const uint32_t * storage,uint32_t num)378 bool BitVector::IsBitSet(const uint32_t* storage, uint32_t num) {
379 uint32_t val = storage[num >> 5] & check_masks[num & 0x1f];
380 return (val != 0);
381 }
382
NumSetBits(const uint32_t * storage,uint32_t end)383 uint32_t BitVector::NumSetBits(const uint32_t* storage, uint32_t end) {
384 uint32_t word_end = end >> 5;
385 uint32_t partial_word_bits = end & 0x1f;
386
387 uint32_t count = 0u;
388 for (uint32_t word = 0u; word < word_end; word++) {
389 count += POPCOUNT(storage[word]);
390 }
391 if (partial_word_bits != 0u) {
392 count += POPCOUNT(storage[word_end] & ~(0xffffffffu << partial_word_bits));
393 }
394 return count;
395 }
396
Dump(std::ostream & os,const char * prefix) const397 void BitVector::Dump(std::ostream& os, const char *prefix) const {
398 std::ostringstream buffer;
399 DumpHelper(prefix, buffer);
400 os << buffer.str() << std::endl;
401 }
402
403
DumpDotHelper(bool last_entry,FILE * file,std::ostringstream & buffer) const404 void BitVector::DumpDotHelper(bool last_entry, FILE* file, std::ostringstream& buffer) const {
405 // Now print it to the file.
406 fprintf(file, " {%s}", buffer.str().c_str());
407
408 // If it isn't the last entry, add a |.
409 if (last_entry == false) {
410 fprintf(file, "|");
411 }
412
413 // Add the \n.
414 fprintf(file, "\\\n");
415 }
416
DumpDot(FILE * file,const char * prefix,bool last_entry) const417 void BitVector::DumpDot(FILE* file, const char* prefix, bool last_entry) const {
418 std::ostringstream buffer;
419 DumpHelper(prefix, buffer);
420 DumpDotHelper(last_entry, file, buffer);
421 }
422
DumpIndicesDot(FILE * file,const char * prefix,bool last_entry) const423 void BitVector::DumpIndicesDot(FILE* file, const char* prefix, bool last_entry) const {
424 std::ostringstream buffer;
425 DumpIndicesHelper(prefix, buffer);
426 DumpDotHelper(last_entry, file, buffer);
427 }
428
DumpIndicesHelper(const char * prefix,std::ostringstream & buffer) const429 void BitVector::DumpIndicesHelper(const char* prefix, std::ostringstream& buffer) const {
430 // Initialize it.
431 if (prefix != nullptr) {
432 buffer << prefix;
433 }
434
435 for (size_t i = 0; i < storage_size_ * kWordBits; i++) {
436 if (IsBitSet(i)) {
437 buffer << i << " ";
438 }
439 }
440 }
441
DumpHelper(const char * prefix,std::ostringstream & buffer) const442 void BitVector::DumpHelper(const char* prefix, std::ostringstream& buffer) const {
443 // Initialize it.
444 if (prefix != nullptr) {
445 buffer << prefix;
446 }
447
448 buffer << '(';
449 for (size_t i = 0; i < storage_size_ * kWordBits; i++) {
450 buffer << IsBitSet(i);
451 }
452 buffer << ')';
453 }
454
455 } // namespace art
456