1 /* 2 * Written by Doug Lea with assistance from members of JCP JSR-166 3 * Expert Group and released to the public domain, as explained at 4 * http://creativecommons.org/publicdomain/zero/1.0/ 5 */ 6 7 package java.util.concurrent; 8 import java.util.*; 9 import java.util.concurrent.atomic.AtomicInteger; 10 import java.security.AccessControlContext; 11 import java.security.AccessController; 12 import java.security.PrivilegedAction; 13 import java.security.PrivilegedExceptionAction; 14 import java.security.PrivilegedActionException; 15 16 // BEGIN android-note 17 // removed security manager docs 18 // END android-note 19 /** 20 * Factory and utility methods for {@link Executor}, {@link 21 * ExecutorService}, {@link ScheduledExecutorService}, {@link 22 * ThreadFactory}, and {@link Callable} classes defined in this 23 * package. This class supports the following kinds of methods: 24 * 25 * <ul> 26 * <li> Methods that create and return an {@link ExecutorService} 27 * set up with commonly useful configuration settings. 28 * <li> Methods that create and return a {@link ScheduledExecutorService} 29 * set up with commonly useful configuration settings. 30 * <li> Methods that create and return a "wrapped" ExecutorService, that 31 * disables reconfiguration by making implementation-specific methods 32 * inaccessible. 33 * <li> Methods that create and return a {@link ThreadFactory} 34 * that sets newly created threads to a known state. 35 * <li> Methods that create and return a {@link Callable} 36 * out of other closure-like forms, so they can be used 37 * in execution methods requiring {@code Callable}. 38 * </ul> 39 * 40 * @since 1.5 41 * @author Doug Lea 42 */ 43 public class Executors { 44 45 /** 46 * Creates a thread pool that reuses a fixed number of threads 47 * operating off a shared unbounded queue. At any point, at most 48 * {@code nThreads} threads will be active processing tasks. 49 * If additional tasks are submitted when all threads are active, 50 * they will wait in the queue until a thread is available. 51 * If any thread terminates due to a failure during execution 52 * prior to shutdown, a new one will take its place if needed to 53 * execute subsequent tasks. The threads in the pool will exist 54 * until it is explicitly {@link ExecutorService#shutdown shutdown}. 55 * 56 * @param nThreads the number of threads in the pool 57 * @return the newly created thread pool 58 * @throws IllegalArgumentException if {@code nThreads <= 0} 59 */ newFixedThreadPool(int nThreads)60 public static ExecutorService newFixedThreadPool(int nThreads) { 61 return new ThreadPoolExecutor(nThreads, nThreads, 62 0L, TimeUnit.MILLISECONDS, 63 new LinkedBlockingQueue<Runnable>()); 64 } 65 66 /** 67 * Creates a thread pool that maintains enough threads to support 68 * the given parallelism level, and may use multiple queues to 69 * reduce contention. The parallelism level corresponds to the 70 * maximum number of threads actively engaged in, or available to 71 * engage in, task processing. The actual number of threads may 72 * grow and shrink dynamically. A work-stealing pool makes no 73 * guarantees about the order in which submitted tasks are 74 * executed. 75 * 76 * @param parallelism the targeted parallelism level 77 * @return the newly created thread pool 78 * @throws IllegalArgumentException if {@code parallelism <= 0} 79 * @since 1.8 80 * @hide 81 */ newWorkStealingPool(int parallelism)82 public static ExecutorService newWorkStealingPool(int parallelism) { 83 return new ForkJoinPool 84 (parallelism, 85 ForkJoinPool.defaultForkJoinWorkerThreadFactory, 86 null, true); 87 } 88 89 /** 90 * Creates a work-stealing thread pool using all 91 * {@link Runtime#availableProcessors available processors} 92 * as its target parallelism level. 93 * @return the newly created thread pool 94 * @since 1.8 95 * @hide 96 */ newWorkStealingPool()97 public static ExecutorService newWorkStealingPool() { 98 return new ForkJoinPool 99 (Runtime.getRuntime().availableProcessors(), 100 ForkJoinPool.defaultForkJoinWorkerThreadFactory, 101 null, true); 102 } 103 104 /** 105 * Creates a thread pool that reuses a fixed number of threads 106 * operating off a shared unbounded queue, using the provided 107 * ThreadFactory to create new threads when needed. At any point, 108 * at most {@code nThreads} threads will be active processing 109 * tasks. If additional tasks are submitted when all threads are 110 * active, they will wait in the queue until a thread is 111 * available. If any thread terminates due to a failure during 112 * execution prior to shutdown, a new one will take its place if 113 * needed to execute subsequent tasks. The threads in the pool will 114 * exist until it is explicitly {@link ExecutorService#shutdown 115 * shutdown}. 116 * 117 * @param nThreads the number of threads in the pool 118 * @param threadFactory the factory to use when creating new threads 119 * @return the newly created thread pool 120 * @throws NullPointerException if threadFactory is null 121 * @throws IllegalArgumentException if {@code nThreads <= 0} 122 */ newFixedThreadPool(int nThreads, ThreadFactory threadFactory)123 public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { 124 return new ThreadPoolExecutor(nThreads, nThreads, 125 0L, TimeUnit.MILLISECONDS, 126 new LinkedBlockingQueue<Runnable>(), 127 threadFactory); 128 } 129 130 /** 131 * Creates an Executor that uses a single worker thread operating 132 * off an unbounded queue. (Note however that if this single 133 * thread terminates due to a failure during execution prior to 134 * shutdown, a new one will take its place if needed to execute 135 * subsequent tasks.) Tasks are guaranteed to execute 136 * sequentially, and no more than one task will be active at any 137 * given time. Unlike the otherwise equivalent 138 * {@code newFixedThreadPool(1)} the returned executor is 139 * guaranteed not to be reconfigurable to use additional threads. 140 * 141 * @return the newly created single-threaded Executor 142 */ newSingleThreadExecutor()143 public static ExecutorService newSingleThreadExecutor() { 144 return new FinalizableDelegatedExecutorService 145 (new ThreadPoolExecutor(1, 1, 146 0L, TimeUnit.MILLISECONDS, 147 new LinkedBlockingQueue<Runnable>())); 148 } 149 150 /** 151 * Creates an Executor that uses a single worker thread operating 152 * off an unbounded queue, and uses the provided ThreadFactory to 153 * create a new thread when needed. Unlike the otherwise 154 * equivalent {@code newFixedThreadPool(1, threadFactory)} the 155 * returned executor is guaranteed not to be reconfigurable to use 156 * additional threads. 157 * 158 * @param threadFactory the factory to use when creating new 159 * threads 160 * 161 * @return the newly created single-threaded Executor 162 * @throws NullPointerException if threadFactory is null 163 */ newSingleThreadExecutor(ThreadFactory threadFactory)164 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) { 165 return new FinalizableDelegatedExecutorService 166 (new ThreadPoolExecutor(1, 1, 167 0L, TimeUnit.MILLISECONDS, 168 new LinkedBlockingQueue<Runnable>(), 169 threadFactory)); 170 } 171 172 /** 173 * Creates a thread pool that creates new threads as needed, but 174 * will reuse previously constructed threads when they are 175 * available. These pools will typically improve the performance 176 * of programs that execute many short-lived asynchronous tasks. 177 * Calls to {@code execute} will reuse previously constructed 178 * threads if available. If no existing thread is available, a new 179 * thread will be created and added to the pool. Threads that have 180 * not been used for sixty seconds are terminated and removed from 181 * the cache. Thus, a pool that remains idle for long enough will 182 * not consume any resources. Note that pools with similar 183 * properties but different details (for example, timeout parameters) 184 * may be created using {@link ThreadPoolExecutor} constructors. 185 * 186 * @return the newly created thread pool 187 */ newCachedThreadPool()188 public static ExecutorService newCachedThreadPool() { 189 return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 190 60L, TimeUnit.SECONDS, 191 new SynchronousQueue<Runnable>()); 192 } 193 194 /** 195 * Creates a thread pool that creates new threads as needed, but 196 * will reuse previously constructed threads when they are 197 * available, and uses the provided 198 * ThreadFactory to create new threads when needed. 199 * @param threadFactory the factory to use when creating new threads 200 * @return the newly created thread pool 201 * @throws NullPointerException if threadFactory is null 202 */ newCachedThreadPool(ThreadFactory threadFactory)203 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { 204 return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 205 60L, TimeUnit.SECONDS, 206 new SynchronousQueue<Runnable>(), 207 threadFactory); 208 } 209 210 /** 211 * Creates a single-threaded executor that can schedule commands 212 * to run after a given delay, or to execute periodically. 213 * (Note however that if this single 214 * thread terminates due to a failure during execution prior to 215 * shutdown, a new one will take its place if needed to execute 216 * subsequent tasks.) Tasks are guaranteed to execute 217 * sequentially, and no more than one task will be active at any 218 * given time. Unlike the otherwise equivalent 219 * {@code newScheduledThreadPool(1)} the returned executor is 220 * guaranteed not to be reconfigurable to use additional threads. 221 * @return the newly created scheduled executor 222 */ newSingleThreadScheduledExecutor()223 public static ScheduledExecutorService newSingleThreadScheduledExecutor() { 224 return new DelegatedScheduledExecutorService 225 (new ScheduledThreadPoolExecutor(1)); 226 } 227 228 /** 229 * Creates a single-threaded executor that can schedule commands 230 * to run after a given delay, or to execute periodically. (Note 231 * however that if this single thread terminates due to a failure 232 * during execution prior to shutdown, a new one will take its 233 * place if needed to execute subsequent tasks.) Tasks are 234 * guaranteed to execute sequentially, and no more than one task 235 * will be active at any given time. Unlike the otherwise 236 * equivalent {@code newScheduledThreadPool(1, threadFactory)} 237 * the returned executor is guaranteed not to be reconfigurable to 238 * use additional threads. 239 * @param threadFactory the factory to use when creating new 240 * threads 241 * @return a newly created scheduled executor 242 * @throws NullPointerException if threadFactory is null 243 */ newSingleThreadScheduledExecutor(ThreadFactory threadFactory)244 public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) { 245 return new DelegatedScheduledExecutorService 246 (new ScheduledThreadPoolExecutor(1, threadFactory)); 247 } 248 249 /** 250 * Creates a thread pool that can schedule commands to run after a 251 * given delay, or to execute periodically. 252 * @param corePoolSize the number of threads to keep in the pool, 253 * even if they are idle 254 * @return a newly created scheduled thread pool 255 * @throws IllegalArgumentException if {@code corePoolSize < 0} 256 */ newScheduledThreadPool(int corePoolSize)257 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { 258 return new ScheduledThreadPoolExecutor(corePoolSize); 259 } 260 261 /** 262 * Creates a thread pool that can schedule commands to run after a 263 * given delay, or to execute periodically. 264 * @param corePoolSize the number of threads to keep in the pool, 265 * even if they are idle 266 * @param threadFactory the factory to use when the executor 267 * creates a new thread 268 * @return a newly created scheduled thread pool 269 * @throws IllegalArgumentException if {@code corePoolSize < 0} 270 * @throws NullPointerException if threadFactory is null 271 */ newScheduledThreadPool( int corePoolSize, ThreadFactory threadFactory)272 public static ScheduledExecutorService newScheduledThreadPool( 273 int corePoolSize, ThreadFactory threadFactory) { 274 return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory); 275 } 276 277 /** 278 * Returns an object that delegates all defined {@link 279 * ExecutorService} methods to the given executor, but not any 280 * other methods that might otherwise be accessible using 281 * casts. This provides a way to safely "freeze" configuration and 282 * disallow tuning of a given concrete implementation. 283 * @param executor the underlying implementation 284 * @return an {@code ExecutorService} instance 285 * @throws NullPointerException if executor null 286 */ unconfigurableExecutorService(ExecutorService executor)287 public static ExecutorService unconfigurableExecutorService(ExecutorService executor) { 288 if (executor == null) 289 throw new NullPointerException(); 290 return new DelegatedExecutorService(executor); 291 } 292 293 /** 294 * Returns an object that delegates all defined {@link 295 * ScheduledExecutorService} methods to the given executor, but 296 * not any other methods that might otherwise be accessible using 297 * casts. This provides a way to safely "freeze" configuration and 298 * disallow tuning of a given concrete implementation. 299 * @param executor the underlying implementation 300 * @return a {@code ScheduledExecutorService} instance 301 * @throws NullPointerException if executor null 302 */ unconfigurableScheduledExecutorService(ScheduledExecutorService executor)303 public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) { 304 if (executor == null) 305 throw new NullPointerException(); 306 return new DelegatedScheduledExecutorService(executor); 307 } 308 309 /** 310 * Returns a default thread factory used to create new threads. 311 * This factory creates all new threads used by an Executor in the 312 * same {@link ThreadGroup}. Each new 313 * thread is created as a non-daemon thread with priority set to 314 * the smaller of {@code Thread.NORM_PRIORITY} and the maximum 315 * priority permitted in the thread group. New threads have names 316 * accessible via {@link Thread#getName} of 317 * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence 318 * number of this factory, and <em>M</em> is the sequence number 319 * of the thread created by this factory. 320 * @return a thread factory 321 */ defaultThreadFactory()322 public static ThreadFactory defaultThreadFactory() { 323 return new DefaultThreadFactory(); 324 } 325 326 /** 327 * Legacy security code; do not use. 328 */ privilegedThreadFactory()329 public static ThreadFactory privilegedThreadFactory() { 330 return new PrivilegedThreadFactory(); 331 } 332 333 /** 334 * Returns a {@link Callable} object that, when 335 * called, runs the given task and returns the given result. This 336 * can be useful when applying methods requiring a 337 * {@code Callable} to an otherwise resultless action. 338 * @param task the task to run 339 * @param result the result to return 340 * @return a callable object 341 * @throws NullPointerException if task null 342 */ callable(Runnable task, T result)343 public static <T> Callable<T> callable(Runnable task, T result) { 344 if (task == null) 345 throw new NullPointerException(); 346 return new RunnableAdapter<T>(task, result); 347 } 348 349 /** 350 * Returns a {@link Callable} object that, when 351 * called, runs the given task and returns {@code null}. 352 * @param task the task to run 353 * @return a callable object 354 * @throws NullPointerException if task null 355 */ callable(Runnable task)356 public static Callable<Object> callable(Runnable task) { 357 if (task == null) 358 throw new NullPointerException(); 359 return new RunnableAdapter<Object>(task, null); 360 } 361 362 /** 363 * Returns a {@link Callable} object that, when 364 * called, runs the given privileged action and returns its result. 365 * @param action the privileged action to run 366 * @return a callable object 367 * @throws NullPointerException if action null 368 */ callable(final PrivilegedAction<?> action)369 public static Callable<Object> callable(final PrivilegedAction<?> action) { 370 if (action == null) 371 throw new NullPointerException(); 372 return new Callable<Object>() { 373 public Object call() { return action.run(); }}; 374 } 375 376 /** 377 * Returns a {@link Callable} object that, when 378 * called, runs the given privileged exception action and returns 379 * its result. 380 * @param action the privileged exception action to run 381 * @return a callable object 382 * @throws NullPointerException if action null 383 */ 384 public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) { 385 if (action == null) 386 throw new NullPointerException(); 387 return new Callable<Object>() { 388 public Object call() throws Exception { return action.run(); }}; 389 } 390 391 /** 392 * Legacy security code; do not use. 393 */ 394 public static <T> Callable<T> privilegedCallable(Callable<T> callable) { 395 if (callable == null) 396 throw new NullPointerException(); 397 return new PrivilegedCallable<T>(callable); 398 } 399 400 /** 401 * Legacy security code; do not use. 402 */ 403 public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) { 404 if (callable == null) 405 throw new NullPointerException(); 406 return new PrivilegedCallableUsingCurrentClassLoader<T>(callable); 407 } 408 409 // Non-public classes supporting the public methods 410 411 /** 412 * A callable that runs given task and returns given result 413 */ 414 static final class RunnableAdapter<T> implements Callable<T> { 415 final Runnable task; 416 final T result; 417 RunnableAdapter(Runnable task, T result) { 418 this.task = task; 419 this.result = result; 420 } 421 public T call() { 422 task.run(); 423 return result; 424 } 425 } 426 427 /** 428 * A callable that runs under established access control settings 429 */ 430 static final class PrivilegedCallable<T> implements Callable<T> { 431 private final Callable<T> task; 432 private final AccessControlContext acc; 433 434 PrivilegedCallable(Callable<T> task) { 435 this.task = task; 436 this.acc = AccessController.getContext(); 437 } 438 439 public T call() throws Exception { 440 try { 441 return AccessController.doPrivileged( 442 new PrivilegedExceptionAction<T>() { 443 public T run() throws Exception { 444 return task.call(); 445 } 446 }, acc); 447 } catch (PrivilegedActionException e) { 448 throw e.getException(); 449 } 450 } 451 } 452 453 /** 454 * A callable that runs under established access control settings and 455 * current ClassLoader 456 */ 457 static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> { 458 private final Callable<T> task; 459 private final AccessControlContext acc; 460 private final ClassLoader ccl; 461 462 PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) { 463 // BEGIN android-removed 464 // SecurityManager sm = System.getSecurityManager(); 465 // if (sm != null) { 466 // // Calls to getContextClassLoader from this class 467 // // never trigger a security check, but we check 468 // // whether our callers have this permission anyways. 469 // sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); 470 // 471 // // Whether setContextClassLoader turns out to be necessary 472 // // or not, we fail fast if permission is not available. 473 // sm.checkPermission(new RuntimePermission("setContextClassLoader")); 474 // } 475 // END android-removed 476 this.task = task; 477 this.acc = AccessController.getContext(); 478 this.ccl = Thread.currentThread().getContextClassLoader(); 479 } 480 481 public T call() throws Exception { 482 try { 483 return AccessController.doPrivileged( 484 new PrivilegedExceptionAction<T>() { 485 public T run() throws Exception { 486 Thread t = Thread.currentThread(); 487 ClassLoader cl = t.getContextClassLoader(); 488 if (ccl == cl) { 489 return task.call(); 490 } else { 491 t.setContextClassLoader(ccl); 492 try { 493 return task.call(); 494 } finally { 495 t.setContextClassLoader(cl); 496 } 497 } 498 } 499 }, acc); 500 } catch (PrivilegedActionException e) { 501 throw e.getException(); 502 } 503 } 504 } 505 506 /** 507 * The default thread factory 508 */ 509 static class DefaultThreadFactory implements ThreadFactory { 510 private static final AtomicInteger poolNumber = new AtomicInteger(1); 511 private final ThreadGroup group; 512 private final AtomicInteger threadNumber = new AtomicInteger(1); 513 private final String namePrefix; 514 515 DefaultThreadFactory() { 516 SecurityManager s = System.getSecurityManager(); 517 group = (s != null) ? s.getThreadGroup() : 518 Thread.currentThread().getThreadGroup(); 519 namePrefix = "pool-" + 520 poolNumber.getAndIncrement() + 521 "-thread-"; 522 } 523 524 public Thread newThread(Runnable r) { 525 Thread t = new Thread(group, r, 526 namePrefix + threadNumber.getAndIncrement(), 527 0); 528 if (t.isDaemon()) 529 t.setDaemon(false); 530 if (t.getPriority() != Thread.NORM_PRIORITY) 531 t.setPriority(Thread.NORM_PRIORITY); 532 return t; 533 } 534 } 535 536 /** 537 * Thread factory capturing access control context and class loader 538 */ 539 static class PrivilegedThreadFactory extends DefaultThreadFactory { 540 private final AccessControlContext acc; 541 private final ClassLoader ccl; 542 543 PrivilegedThreadFactory() { 544 super(); 545 // BEGIN android-removed 546 // SecurityManager sm = System.getSecurityManager(); 547 // if (sm != null) { 548 // // Calls to getContextClassLoader from this class 549 // // never trigger a security check, but we check 550 // // whether our callers have this permission anyways. 551 // sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); 552 // 553 // // Fail fast 554 // sm.checkPermission(new RuntimePermission("setContextClassLoader")); 555 // } 556 // END android-removed 557 this.acc = AccessController.getContext(); 558 this.ccl = Thread.currentThread().getContextClassLoader(); 559 } 560 561 public Thread newThread(final Runnable r) { 562 return super.newThread(new Runnable() { 563 public void run() { 564 AccessController.doPrivileged(new PrivilegedAction<Void>() { 565 public Void run() { 566 Thread.currentThread().setContextClassLoader(ccl); 567 r.run(); 568 return null; 569 } 570 }, acc); 571 } 572 }); 573 } 574 } 575 576 /** 577 * A wrapper class that exposes only the ExecutorService methods 578 * of an ExecutorService implementation. 579 */ 580 static class DelegatedExecutorService extends AbstractExecutorService { 581 private final ExecutorService e; 582 DelegatedExecutorService(ExecutorService executor) { e = executor; } 583 public void execute(Runnable command) { e.execute(command); } 584 public void shutdown() { e.shutdown(); } 585 public List<Runnable> shutdownNow() { return e.shutdownNow(); } 586 public boolean isShutdown() { return e.isShutdown(); } 587 public boolean isTerminated() { return e.isTerminated(); } 588 public boolean awaitTermination(long timeout, TimeUnit unit) 589 throws InterruptedException { 590 return e.awaitTermination(timeout, unit); 591 } 592 public Future<?> submit(Runnable task) { 593 return e.submit(task); 594 } 595 public <T> Future<T> submit(Callable<T> task) { 596 return e.submit(task); 597 } 598 public <T> Future<T> submit(Runnable task, T result) { 599 return e.submit(task, result); 600 } 601 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) 602 throws InterruptedException { 603 return e.invokeAll(tasks); 604 } 605 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, 606 long timeout, TimeUnit unit) 607 throws InterruptedException { 608 return e.invokeAll(tasks, timeout, unit); 609 } 610 public <T> T invokeAny(Collection<? extends Callable<T>> tasks) 611 throws InterruptedException, ExecutionException { 612 return e.invokeAny(tasks); 613 } 614 public <T> T invokeAny(Collection<? extends Callable<T>> tasks, 615 long timeout, TimeUnit unit) 616 throws InterruptedException, ExecutionException, TimeoutException { 617 return e.invokeAny(tasks, timeout, unit); 618 } 619 } 620 621 static class FinalizableDelegatedExecutorService 622 extends DelegatedExecutorService { 623 FinalizableDelegatedExecutorService(ExecutorService executor) { 624 super(executor); 625 } 626 protected void finalize() { 627 super.shutdown(); 628 } 629 } 630 631 /** 632 * A wrapper class that exposes only the ScheduledExecutorService 633 * methods of a ScheduledExecutorService implementation. 634 */ 635 static class DelegatedScheduledExecutorService 636 extends DelegatedExecutorService 637 implements ScheduledExecutorService { 638 private final ScheduledExecutorService e; 639 DelegatedScheduledExecutorService(ScheduledExecutorService executor) { 640 super(executor); 641 e = executor; 642 } 643 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) { 644 return e.schedule(command, delay, unit); 645 } 646 public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) { 647 return e.schedule(callable, delay, unit); 648 } 649 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) { 650 return e.scheduleAtFixedRate(command, initialDelay, period, unit); 651 } 652 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) { 653 return e.scheduleWithFixedDelay(command, initialDelay, delay, unit); 654 } 655 } 656 657 /** Cannot instantiate. */ 658 private Executors() {} 659 } 660