• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2012 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #ifndef V8_HEAP_HEAP_INL_H_
6  #define V8_HEAP_HEAP_INL_H_
7  
8  #include <cmath>
9  
10  #include "src/base/platform/platform.h"
11  #include "src/cpu-profiler.h"
12  #include "src/heap/heap.h"
13  #include "src/heap/store-buffer.h"
14  #include "src/heap/store-buffer-inl.h"
15  #include "src/heap-profiler.h"
16  #include "src/isolate.h"
17  #include "src/list-inl.h"
18  #include "src/msan.h"
19  #include "src/objects.h"
20  
21  namespace v8 {
22  namespace internal {
23  
insert(HeapObject * target,int size)24  void PromotionQueue::insert(HeapObject* target, int size) {
25    if (emergency_stack_ != NULL) {
26      emergency_stack_->Add(Entry(target, size));
27      return;
28    }
29  
30    if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
31      NewSpacePage* rear_page =
32          NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
33      DCHECK(!rear_page->prev_page()->is_anchor());
34      rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
35    }
36  
37    if ((rear_ - 2) < limit_) {
38      RelocateQueueHead();
39      emergency_stack_->Add(Entry(target, size));
40      return;
41    }
42  
43    *(--rear_) = reinterpret_cast<intptr_t>(target);
44    *(--rear_) = size;
45  // Assert no overflow into live objects.
46  #ifdef DEBUG
47    SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
48                                reinterpret_cast<Address>(rear_));
49  #endif
50  }
51  
52  
53  template <>
IsOneByte(Vector<const char> str,int chars)54  bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
55    // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
56    return chars == str.length();
57  }
58  
59  
60  template <>
IsOneByte(String * str,int chars)61  bool inline Heap::IsOneByte(String* str, int chars) {
62    return str->IsOneByteRepresentation();
63  }
64  
65  
AllocateInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)66  AllocationResult Heap::AllocateInternalizedStringFromUtf8(
67      Vector<const char> str, int chars, uint32_t hash_field) {
68    if (IsOneByte(str, chars)) {
69      return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
70                                               hash_field);
71    }
72    return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
73  }
74  
75  
76  template <typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)77  AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
78                                                        uint32_t hash_field) {
79    if (IsOneByte(t, chars)) {
80      return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
81    }
82    return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
83  }
84  
85  
AllocateOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)86  AllocationResult Heap::AllocateOneByteInternalizedString(
87      Vector<const uint8_t> str, uint32_t hash_field) {
88    CHECK_GE(String::kMaxLength, str.length());
89    // Compute map and object size.
90    Map* map = one_byte_internalized_string_map();
91    int size = SeqOneByteString::SizeFor(str.length());
92    AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
93  
94    // Allocate string.
95    HeapObject* result;
96    {
97      AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
98      if (!allocation.To(&result)) return allocation;
99    }
100  
101    // String maps are all immortal immovable objects.
102    result->set_map_no_write_barrier(map);
103    // Set length and hash fields of the allocated string.
104    String* answer = String::cast(result);
105    answer->set_length(str.length());
106    answer->set_hash_field(hash_field);
107  
108    DCHECK_EQ(size, answer->Size());
109  
110    // Fill in the characters.
111    MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
112            str.length());
113  
114    return answer;
115  }
116  
117  
AllocateTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)118  AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
119                                                           uint32_t hash_field) {
120    CHECK_GE(String::kMaxLength, str.length());
121    // Compute map and object size.
122    Map* map = internalized_string_map();
123    int size = SeqTwoByteString::SizeFor(str.length());
124    AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
125  
126    // Allocate string.
127    HeapObject* result;
128    {
129      AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
130      if (!allocation.To(&result)) return allocation;
131    }
132  
133    result->set_map(map);
134    // Set length and hash fields of the allocated string.
135    String* answer = String::cast(result);
136    answer->set_length(str.length());
137    answer->set_hash_field(hash_field);
138  
139    DCHECK_EQ(size, answer->Size());
140  
141    // Fill in the characters.
142    MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
143            str.length() * kUC16Size);
144  
145    return answer;
146  }
147  
CopyFixedArray(FixedArray * src)148  AllocationResult Heap::CopyFixedArray(FixedArray* src) {
149    if (src->length() == 0) return src;
150    return CopyFixedArrayWithMap(src, src->map());
151  }
152  
153  
CopyFixedDoubleArray(FixedDoubleArray * src)154  AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
155    if (src->length() == 0) return src;
156    return CopyFixedDoubleArrayWithMap(src, src->map());
157  }
158  
159  
CopyConstantPoolArray(ConstantPoolArray * src)160  AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
161    if (src->length() == 0) return src;
162    return CopyConstantPoolArrayWithMap(src, src->map());
163  }
164  
165  
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationSpace retry_space)166  AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
167                                     AllocationSpace retry_space) {
168    DCHECK(AllowHandleAllocation::IsAllowed());
169    DCHECK(AllowHeapAllocation::IsAllowed());
170    DCHECK(gc_state_ == NOT_IN_GC);
171  #ifdef DEBUG
172    if (FLAG_gc_interval >= 0 && AllowAllocationFailure::IsAllowed(isolate_) &&
173        Heap::allocation_timeout_-- <= 0) {
174      return AllocationResult::Retry(space);
175    }
176    isolate_->counters()->objs_since_last_full()->Increment();
177    isolate_->counters()->objs_since_last_young()->Increment();
178  #endif
179  
180    HeapObject* object;
181    AllocationResult allocation;
182    if (NEW_SPACE == space) {
183      allocation = new_space_.AllocateRaw(size_in_bytes);
184      if (always_allocate() && allocation.IsRetry() && retry_space != NEW_SPACE) {
185        space = retry_space;
186      } else {
187        if (allocation.To(&object)) {
188          OnAllocationEvent(object, size_in_bytes);
189        }
190        return allocation;
191      }
192    }
193  
194    if (OLD_POINTER_SPACE == space) {
195      allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
196    } else if (OLD_DATA_SPACE == space) {
197      allocation = old_data_space_->AllocateRaw(size_in_bytes);
198    } else if (CODE_SPACE == space) {
199      if (size_in_bytes <= code_space()->AreaSize()) {
200        allocation = code_space_->AllocateRaw(size_in_bytes);
201      } else {
202        // Large code objects are allocated in large object space.
203        allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
204      }
205    } else if (LO_SPACE == space) {
206      allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
207    } else if (CELL_SPACE == space) {
208      allocation = cell_space_->AllocateRaw(size_in_bytes);
209    } else if (PROPERTY_CELL_SPACE == space) {
210      allocation = property_cell_space_->AllocateRaw(size_in_bytes);
211    } else {
212      DCHECK(MAP_SPACE == space);
213      allocation = map_space_->AllocateRaw(size_in_bytes);
214    }
215    if (allocation.To(&object)) {
216      OnAllocationEvent(object, size_in_bytes);
217    } else {
218      old_gen_exhausted_ = true;
219    }
220    return allocation;
221  }
222  
223  
OnAllocationEvent(HeapObject * object,int size_in_bytes)224  void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
225    HeapProfiler* profiler = isolate_->heap_profiler();
226    if (profiler->is_tracking_allocations()) {
227      profiler->AllocationEvent(object->address(), size_in_bytes);
228    }
229  
230    if (FLAG_verify_predictable) {
231      ++allocations_count_;
232  
233      UpdateAllocationsHash(object);
234      UpdateAllocationsHash(size_in_bytes);
235  
236      if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
237          (--dump_allocations_hash_countdown_ == 0)) {
238        dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
239        PrintAlloctionsHash();
240      }
241    }
242  }
243  
244  
OnMoveEvent(HeapObject * target,HeapObject * source,int size_in_bytes)245  void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
246                         int size_in_bytes) {
247    HeapProfiler* heap_profiler = isolate_->heap_profiler();
248    if (heap_profiler->is_tracking_object_moves()) {
249      heap_profiler->ObjectMoveEvent(source->address(), target->address(),
250                                     size_in_bytes);
251    }
252  
253    if (isolate_->logger()->is_logging_code_events() ||
254        isolate_->cpu_profiler()->is_profiling()) {
255      if (target->IsSharedFunctionInfo()) {
256        PROFILE(isolate_, SharedFunctionInfoMoveEvent(source->address(),
257                                                      target->address()));
258      }
259    }
260  
261    if (FLAG_verify_predictable) {
262      ++allocations_count_;
263  
264      UpdateAllocationsHash(source);
265      UpdateAllocationsHash(target);
266      UpdateAllocationsHash(size_in_bytes);
267  
268      if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
269          (--dump_allocations_hash_countdown_ == 0)) {
270        dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
271        PrintAlloctionsHash();
272      }
273    }
274  }
275  
276  
UpdateAllocationsHash(HeapObject * object)277  void Heap::UpdateAllocationsHash(HeapObject* object) {
278    Address object_address = object->address();
279    MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
280    AllocationSpace allocation_space = memory_chunk->owner()->identity();
281  
282    STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
283    uint32_t value =
284        static_cast<uint32_t>(object_address - memory_chunk->address()) |
285        (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
286  
287    UpdateAllocationsHash(value);
288  }
289  
290  
UpdateAllocationsHash(uint32_t value)291  void Heap::UpdateAllocationsHash(uint32_t value) {
292    uint16_t c1 = static_cast<uint16_t>(value);
293    uint16_t c2 = static_cast<uint16_t>(value >> 16);
294    raw_allocations_hash_ =
295        StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
296    raw_allocations_hash_ =
297        StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
298  }
299  
300  
PrintAlloctionsHash()301  void Heap::PrintAlloctionsHash() {
302    uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
303    PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
304  }
305  
306  
FinalizeExternalString(String * string)307  void Heap::FinalizeExternalString(String* string) {
308    DCHECK(string->IsExternalString());
309    v8::String::ExternalStringResourceBase** resource_addr =
310        reinterpret_cast<v8::String::ExternalStringResourceBase**>(
311            reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
312            kHeapObjectTag);
313  
314    // Dispose of the C++ object if it has not already been disposed.
315    if (*resource_addr != NULL) {
316      (*resource_addr)->Dispose();
317      *resource_addr = NULL;
318    }
319  }
320  
321  
InNewSpace(Object * object)322  bool Heap::InNewSpace(Object* object) {
323    bool result = new_space_.Contains(object);
324    DCHECK(!result ||                 // Either not in new space
325           gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
326           InToSpace(object));        // ... or in to-space (where we allocate).
327    return result;
328  }
329  
330  
InNewSpace(Address address)331  bool Heap::InNewSpace(Address address) { return new_space_.Contains(address); }
332  
333  
InFromSpace(Object * object)334  bool Heap::InFromSpace(Object* object) {
335    return new_space_.FromSpaceContains(object);
336  }
337  
338  
InToSpace(Object * object)339  bool Heap::InToSpace(Object* object) {
340    return new_space_.ToSpaceContains(object);
341  }
342  
343  
InOldPointerSpace(Address address)344  bool Heap::InOldPointerSpace(Address address) {
345    return old_pointer_space_->Contains(address);
346  }
347  
348  
InOldPointerSpace(Object * object)349  bool Heap::InOldPointerSpace(Object* object) {
350    return InOldPointerSpace(reinterpret_cast<Address>(object));
351  }
352  
353  
InOldDataSpace(Address address)354  bool Heap::InOldDataSpace(Address address) {
355    return old_data_space_->Contains(address);
356  }
357  
358  
InOldDataSpace(Object * object)359  bool Heap::InOldDataSpace(Object* object) {
360    return InOldDataSpace(reinterpret_cast<Address>(object));
361  }
362  
363  
OldGenerationAllocationLimitReached()364  bool Heap::OldGenerationAllocationLimitReached() {
365    if (!incremental_marking()->IsStopped()) return false;
366    return OldGenerationSpaceAvailable() < 0;
367  }
368  
369  
ShouldBePromoted(Address old_address,int object_size)370  bool Heap::ShouldBePromoted(Address old_address, int object_size) {
371    NewSpacePage* page = NewSpacePage::FromAddress(old_address);
372    Address age_mark = new_space_.age_mark();
373    return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
374           (!page->ContainsLimit(age_mark) || old_address < age_mark);
375  }
376  
377  
RecordWrite(Address address,int offset)378  void Heap::RecordWrite(Address address, int offset) {
379    if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
380  }
381  
382  
RecordWrites(Address address,int start,int len)383  void Heap::RecordWrites(Address address, int start, int len) {
384    if (!InNewSpace(address)) {
385      for (int i = 0; i < len; i++) {
386        store_buffer_.Mark(address + start + i * kPointerSize);
387      }
388    }
389  }
390  
391  
TargetSpace(HeapObject * object)392  OldSpace* Heap::TargetSpace(HeapObject* object) {
393    InstanceType type = object->map()->instance_type();
394    AllocationSpace space = TargetSpaceId(type);
395    return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_;
396  }
397  
398  
TargetSpaceId(InstanceType type)399  AllocationSpace Heap::TargetSpaceId(InstanceType type) {
400    // Heap numbers and sequential strings are promoted to old data space, all
401    // other object types are promoted to old pointer space.  We do not use
402    // object->IsHeapNumber() and object->IsSeqString() because we already
403    // know that object has the heap object tag.
404  
405    // These objects are never allocated in new space.
406    DCHECK(type != MAP_TYPE);
407    DCHECK(type != CODE_TYPE);
408    DCHECK(type != ODDBALL_TYPE);
409    DCHECK(type != CELL_TYPE);
410    DCHECK(type != PROPERTY_CELL_TYPE);
411  
412    if (type <= LAST_NAME_TYPE) {
413      if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
414      DCHECK(type < FIRST_NONSTRING_TYPE);
415      // There are four string representations: sequential strings, external
416      // strings, cons strings, and sliced strings.
417      // Only the latter two contain non-map-word pointers to heap objects.
418      return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
419                 ? OLD_POINTER_SPACE
420                 : OLD_DATA_SPACE;
421    } else {
422      return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
423    }
424  }
425  
426  
AllowedToBeMigrated(HeapObject * obj,AllocationSpace dst)427  bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
428    // Object migration is governed by the following rules:
429    //
430    // 1) Objects in new-space can be migrated to one of the old spaces
431    //    that matches their target space or they stay in new-space.
432    // 2) Objects in old-space stay in the same space when migrating.
433    // 3) Fillers (two or more words) can migrate due to left-trimming of
434    //    fixed arrays in new-space, old-data-space and old-pointer-space.
435    // 4) Fillers (one word) can never migrate, they are skipped by
436    //    incremental marking explicitly to prevent invalid pattern.
437    // 5) Short external strings can end up in old pointer space when a cons
438    //    string in old pointer space is made external (String::MakeExternal).
439    //
440    // Since this function is used for debugging only, we do not place
441    // asserts here, but check everything explicitly.
442    if (obj->map() == one_pointer_filler_map()) return false;
443    InstanceType type = obj->map()->instance_type();
444    MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
445    AllocationSpace src = chunk->owner()->identity();
446    switch (src) {
447      case NEW_SPACE:
448        return dst == src || dst == TargetSpaceId(type);
449      case OLD_POINTER_SPACE:
450        return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
451                              obj->IsExternalString());
452      case OLD_DATA_SPACE:
453        return dst == src && dst == TargetSpaceId(type);
454      case CODE_SPACE:
455        return dst == src && type == CODE_TYPE;
456      case MAP_SPACE:
457      case CELL_SPACE:
458      case PROPERTY_CELL_SPACE:
459      case LO_SPACE:
460        return false;
461      case INVALID_SPACE:
462        break;
463    }
464    UNREACHABLE();
465    return false;
466  }
467  
468  
CopyBlock(Address dst,Address src,int byte_size)469  void Heap::CopyBlock(Address dst, Address src, int byte_size) {
470    CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
471              static_cast<size_t>(byte_size / kPointerSize));
472  }
473  
474  
MoveBlock(Address dst,Address src,int byte_size)475  void Heap::MoveBlock(Address dst, Address src, int byte_size) {
476    DCHECK(IsAligned(byte_size, kPointerSize));
477  
478    int size_in_words = byte_size / kPointerSize;
479  
480    if ((dst < src) || (dst >= (src + byte_size))) {
481      Object** src_slot = reinterpret_cast<Object**>(src);
482      Object** dst_slot = reinterpret_cast<Object**>(dst);
483      Object** end_slot = src_slot + size_in_words;
484  
485      while (src_slot != end_slot) {
486        *dst_slot++ = *src_slot++;
487      }
488    } else {
489      MemMove(dst, src, static_cast<size_t>(byte_size));
490    }
491  }
492  
493  
ScavengePointer(HeapObject ** p)494  void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); }
495  
496  
FindAllocationMemento(HeapObject * object)497  AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
498    // Check if there is potentially a memento behind the object. If
499    // the last word of the memento is on another page we return
500    // immediately.
501    Address object_address = object->address();
502    Address memento_address = object_address + object->Size();
503    Address last_memento_word_address = memento_address + kPointerSize;
504    if (!NewSpacePage::OnSamePage(object_address, last_memento_word_address)) {
505      return NULL;
506    }
507  
508    HeapObject* candidate = HeapObject::FromAddress(memento_address);
509    Map* candidate_map = candidate->map();
510    // This fast check may peek at an uninitialized word. However, the slow check
511    // below (memento_address == top) ensures that this is safe. Mark the word as
512    // initialized to silence MemorySanitizer warnings.
513    MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
514    if (candidate_map != allocation_memento_map()) return NULL;
515  
516    // Either the object is the last object in the new space, or there is another
517    // object of at least word size (the header map word) following it, so
518    // suffices to compare ptr and top here. Note that technically we do not have
519    // to compare with the current top pointer of the from space page during GC,
520    // since we always install filler objects above the top pointer of a from
521    // space page when performing a garbage collection. However, always performing
522    // the test makes it possible to have a single, unified version of
523    // FindAllocationMemento that is used both by the GC and the mutator.
524    Address top = NewSpaceTop();
525    DCHECK(memento_address == top ||
526           memento_address + HeapObject::kHeaderSize <= top ||
527           !NewSpacePage::OnSamePage(memento_address, top));
528    if (memento_address == top) return NULL;
529  
530    AllocationMemento* memento = AllocationMemento::cast(candidate);
531    if (!memento->IsValid()) return NULL;
532    return memento;
533  }
534  
535  
UpdateAllocationSiteFeedback(HeapObject * object,ScratchpadSlotMode mode)536  void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
537                                          ScratchpadSlotMode mode) {
538    Heap* heap = object->GetHeap();
539    DCHECK(heap->InFromSpace(object));
540  
541    if (!FLAG_allocation_site_pretenuring ||
542        !AllocationSite::CanTrack(object->map()->instance_type()))
543      return;
544  
545    AllocationMemento* memento = heap->FindAllocationMemento(object);
546    if (memento == NULL) return;
547  
548    if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
549      heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
550    }
551  }
552  
553  
ScavengeObject(HeapObject ** p,HeapObject * object)554  void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
555    DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
556  
557    // We use the first word (where the map pointer usually is) of a heap
558    // object to record the forwarding pointer.  A forwarding pointer can
559    // point to an old space, the code space, or the to space of the new
560    // generation.
561    MapWord first_word = object->map_word();
562  
563    // If the first word is a forwarding address, the object has already been
564    // copied.
565    if (first_word.IsForwardingAddress()) {
566      HeapObject* dest = first_word.ToForwardingAddress();
567      DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
568      *p = dest;
569      return;
570    }
571  
572    UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
573  
574    // AllocationMementos are unrooted and shouldn't survive a scavenge
575    DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
576    // Call the slow part of scavenge object.
577    return ScavengeObjectSlow(p, object);
578  }
579  
580  
CollectGarbage(AllocationSpace space,const char * gc_reason,const v8::GCCallbackFlags callbackFlags)581  bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
582                            const v8::GCCallbackFlags callbackFlags) {
583    const char* collector_reason = NULL;
584    GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
585    return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
586  }
587  
588  
isolate()589  Isolate* Heap::isolate() {
590    return reinterpret_cast<Isolate*>(
591        reinterpret_cast<intptr_t>(this) -
592        reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
593  }
594  
595  
596  // Calls the FUNCTION_CALL function and retries it up to three times
597  // to guarantee that any allocations performed during the call will
598  // succeed if there's enough memory.
599  
600  // Warning: Do not use the identifiers __object__, __maybe_object__ or
601  // __scope__ in a call to this macro.
602  
603  #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
604    if (__allocation__.To(&__object__)) {                   \
605      DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
606      RETURN_VALUE;                                         \
607    }
608  
609  #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)    \
610    do {                                                                        \
611      AllocationResult __allocation__ = FUNCTION_CALL;                          \
612      Object* __object__ = NULL;                                                \
613      RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
614      (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),            \
615                                        "allocation failure");                  \
616      __allocation__ = FUNCTION_CALL;                                           \
617      RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
618      (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();        \
619      (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");          \
620      {                                                                         \
621        AlwaysAllocateScope __scope__(ISOLATE);                                 \
622        __allocation__ = FUNCTION_CALL;                                         \
623      }                                                                         \
624      RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
625      /* TODO(1181417): Fix this. */                                            \
626      v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
627      RETURN_EMPTY;                                                             \
628    } while (false)
629  
630  #define CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, RETURN_VALUE, \
631                                RETURN_EMPTY)                         \
632    CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)
633  
634  #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
635    CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL,                               \
636                          return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
637                          return Handle<TYPE>())
638  
639  
640  #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
641    CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
642  
643  
AddString(String * string)644  void ExternalStringTable::AddString(String* string) {
645    DCHECK(string->IsExternalString());
646    if (heap_->InNewSpace(string)) {
647      new_space_strings_.Add(string);
648    } else {
649      old_space_strings_.Add(string);
650    }
651  }
652  
653  
Iterate(ObjectVisitor * v)654  void ExternalStringTable::Iterate(ObjectVisitor* v) {
655    if (!new_space_strings_.is_empty()) {
656      Object** start = &new_space_strings_[0];
657      v->VisitPointers(start, start + new_space_strings_.length());
658    }
659    if (!old_space_strings_.is_empty()) {
660      Object** start = &old_space_strings_[0];
661      v->VisitPointers(start, start + old_space_strings_.length());
662    }
663  }
664  
665  
666  // Verify() is inline to avoid ifdef-s around its calls in release
667  // mode.
Verify()668  void ExternalStringTable::Verify() {
669  #ifdef DEBUG
670    for (int i = 0; i < new_space_strings_.length(); ++i) {
671      Object* obj = Object::cast(new_space_strings_[i]);
672      DCHECK(heap_->InNewSpace(obj));
673      DCHECK(obj != heap_->the_hole_value());
674    }
675    for (int i = 0; i < old_space_strings_.length(); ++i) {
676      Object* obj = Object::cast(old_space_strings_[i]);
677      DCHECK(!heap_->InNewSpace(obj));
678      DCHECK(obj != heap_->the_hole_value());
679    }
680  #endif
681  }
682  
683  
AddOldString(String * string)684  void ExternalStringTable::AddOldString(String* string) {
685    DCHECK(string->IsExternalString());
686    DCHECK(!heap_->InNewSpace(string));
687    old_space_strings_.Add(string);
688  }
689  
690  
ShrinkNewStrings(int position)691  void ExternalStringTable::ShrinkNewStrings(int position) {
692    new_space_strings_.Rewind(position);
693  #ifdef VERIFY_HEAP
694    if (FLAG_verify_heap) {
695      Verify();
696    }
697  #endif
698  }
699  
700  
ClearInstanceofCache()701  void Heap::ClearInstanceofCache() {
702    set_instanceof_cache_function(the_hole_value());
703  }
704  
705  
ToBoolean(bool condition)706  Object* Heap::ToBoolean(bool condition) {
707    return condition ? true_value() : false_value();
708  }
709  
710  
CompletelyClearInstanceofCache()711  void Heap::CompletelyClearInstanceofCache() {
712    set_instanceof_cache_map(the_hole_value());
713    set_instanceof_cache_function(the_hole_value());
714  }
715  
716  
AlwaysAllocateScope(Isolate * isolate)717  AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
718      : heap_(isolate->heap()), daf_(isolate) {
719    // We shouldn't hit any nested scopes, because that requires
720    // non-handle code to call handle code. The code still works but
721    // performance will degrade, so we want to catch this situation
722    // in debug mode.
723    DCHECK(heap_->always_allocate_scope_depth_ == 0);
724    heap_->always_allocate_scope_depth_++;
725  }
726  
727  
~AlwaysAllocateScope()728  AlwaysAllocateScope::~AlwaysAllocateScope() {
729    heap_->always_allocate_scope_depth_--;
730    DCHECK(heap_->always_allocate_scope_depth_ == 0);
731  }
732  
733  
734  #ifdef VERIFY_HEAP
NoWeakObjectVerificationScope()735  NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
736    Isolate* isolate = Isolate::Current();
737    isolate->heap()->no_weak_object_verification_scope_depth_++;
738  }
739  
740  
~NoWeakObjectVerificationScope()741  NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
742    Isolate* isolate = Isolate::Current();
743    isolate->heap()->no_weak_object_verification_scope_depth_--;
744  }
745  #endif
746  
747  
GCCallbacksScope(Heap * heap)748  GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
749    heap_->gc_callbacks_depth_++;
750  }
751  
752  
~GCCallbacksScope()753  GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; }
754  
755  
CheckReenter()756  bool GCCallbacksScope::CheckReenter() {
757    return heap_->gc_callbacks_depth_ == 1;
758  }
759  
760  
VisitPointers(Object ** start,Object ** end)761  void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
762    for (Object** current = start; current < end; current++) {
763      if ((*current)->IsHeapObject()) {
764        HeapObject* object = HeapObject::cast(*current);
765        CHECK(object->GetIsolate()->heap()->Contains(object));
766        CHECK(object->map()->IsMap());
767      }
768    }
769  }
770  
771  
VisitPointers(Object ** start,Object ** end)772  void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
773    for (Object** current = start; current < end; current++) {
774      CHECK((*current)->IsSmi());
775    }
776  }
777  }
778  }  // namespace v8::internal
779  
780  #endif  // V8_HEAP_HEAP_INL_H_
781