1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mir_graph.h"
18
19 #include <inttypes.h>
20 #include <queue>
21
22 #include "base/stl_util.h"
23 #include "compiler_internals.h"
24 #include "dex_file-inl.h"
25 #include "dex_instruction-inl.h"
26 #include "dex/global_value_numbering.h"
27 #include "dex/quick/dex_file_to_method_inliner_map.h"
28 #include "dex/quick/dex_file_method_inliner.h"
29 #include "leb128.h"
30 #include "pass_driver_me_post_opt.h"
31 #include "utils/scoped_arena_containers.h"
32
33 namespace art {
34
35 #define MAX_PATTERN_LEN 5
36
37 const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = {
38 "Phi",
39 "Copy",
40 "FusedCmplFloat",
41 "FusedCmpgFloat",
42 "FusedCmplDouble",
43 "FusedCmpgDouble",
44 "FusedCmpLong",
45 "Nop",
46 "OpNullCheck",
47 "OpRangeCheck",
48 "OpDivZeroCheck",
49 "Check1",
50 "Check2",
51 "Select",
52 "ConstVector",
53 "MoveVector",
54 "PackedMultiply",
55 "PackedAddition",
56 "PackedSubtract",
57 "PackedShiftLeft",
58 "PackedSignedShiftRight",
59 "PackedUnsignedShiftRight",
60 "PackedAnd",
61 "PackedOr",
62 "PackedXor",
63 "PackedAddReduce",
64 "PackedReduce",
65 "PackedSet",
66 "ReserveVectorRegisters",
67 "ReturnVectorRegisters",
68 };
69
MIRGraph(CompilationUnit * cu,ArenaAllocator * arena)70 MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena)
71 : reg_location_(NULL),
72 block_id_map_(std::less<unsigned int>(), arena->Adapter()),
73 cu_(cu),
74 ssa_base_vregs_(NULL),
75 ssa_subscripts_(NULL),
76 vreg_to_ssa_map_(NULL),
77 ssa_last_defs_(NULL),
78 is_constant_v_(NULL),
79 constant_values_(NULL),
80 use_counts_(arena, 256, kGrowableArrayMisc),
81 raw_use_counts_(arena, 256, kGrowableArrayMisc),
82 num_reachable_blocks_(0),
83 max_num_reachable_blocks_(0),
84 dfs_order_(NULL),
85 dfs_post_order_(NULL),
86 dom_post_order_traversal_(NULL),
87 topological_order_(nullptr),
88 topological_order_loop_ends_(nullptr),
89 topological_order_indexes_(nullptr),
90 topological_order_loop_head_stack_(nullptr),
91 i_dom_list_(NULL),
92 def_block_matrix_(NULL),
93 temp_scoped_alloc_(),
94 temp_insn_data_(nullptr),
95 temp_bit_vector_size_(0u),
96 temp_bit_vector_(nullptr),
97 temp_gvn_(),
98 block_list_(arena, 100, kGrowableArrayBlockList),
99 try_block_addr_(NULL),
100 entry_block_(NULL),
101 exit_block_(NULL),
102 num_blocks_(0),
103 current_code_item_(NULL),
104 dex_pc_to_block_map_(arena, 0, kGrowableArrayMisc),
105 m_units_(arena->Adapter()),
106 method_stack_(arena->Adapter()),
107 current_method_(kInvalidEntry),
108 current_offset_(kInvalidEntry),
109 def_count_(0),
110 opcode_count_(NULL),
111 num_ssa_regs_(0),
112 extended_basic_blocks_(arena->Adapter()),
113 method_sreg_(0),
114 attributes_(METHOD_IS_LEAF), // Start with leaf assumption, change on encountering invoke.
115 checkstats_(NULL),
116 arena_(arena),
117 backward_branches_(0),
118 forward_branches_(0),
119 compiler_temps_(arena, 6, kGrowableArrayMisc),
120 num_non_special_compiler_temps_(0),
121 max_available_non_special_compiler_temps_(0),
122 punt_to_interpreter_(false),
123 merged_df_flags_(0u),
124 ifield_lowering_infos_(arena, 0u),
125 sfield_lowering_infos_(arena, 0u),
126 method_lowering_infos_(arena, 0u),
127 gen_suspend_test_list_(arena, 0u) {
128 try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */);
129 max_available_special_compiler_temps_ = std::abs(static_cast<int>(kVRegNonSpecialTempBaseReg))
130 - std::abs(static_cast<int>(kVRegTempBaseReg));
131 }
132
~MIRGraph()133 MIRGraph::~MIRGraph() {
134 STLDeleteElements(&m_units_);
135 }
136
137 /*
138 * Parse an instruction, return the length of the instruction
139 */
ParseInsn(const uint16_t * code_ptr,MIR::DecodedInstruction * decoded_instruction)140 int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {
141 const Instruction* inst = Instruction::At(code_ptr);
142 decoded_instruction->opcode = inst->Opcode();
143 decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;
144 decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;
145 decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;
146 decoded_instruction->vC = inst->HasVRegC() ? inst->VRegC() : 0;
147 if (inst->HasVarArgs()) {
148 inst->GetVarArgs(decoded_instruction->arg);
149 }
150 return inst->SizeInCodeUnits();
151 }
152
153
154 /* Split an existing block from the specified code offset into two */
SplitBlock(DexOffset code_offset,BasicBlock * orig_block,BasicBlock ** immed_pred_block_p)155 BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset,
156 BasicBlock* orig_block, BasicBlock** immed_pred_block_p) {
157 DCHECK_GT(code_offset, orig_block->start_offset);
158 MIR* insn = orig_block->first_mir_insn;
159 MIR* prev = NULL;
160 while (insn) {
161 if (insn->offset == code_offset) break;
162 prev = insn;
163 insn = insn->next;
164 }
165 if (insn == NULL) {
166 LOG(FATAL) << "Break split failed";
167 }
168 BasicBlock* bottom_block = NewMemBB(kDalvikByteCode, num_blocks_++);
169 block_list_.Insert(bottom_block);
170
171 bottom_block->start_offset = code_offset;
172 bottom_block->first_mir_insn = insn;
173 bottom_block->last_mir_insn = orig_block->last_mir_insn;
174
175 /* If this block was terminated by a return, the flag needs to go with the bottom block */
176 bottom_block->terminated_by_return = orig_block->terminated_by_return;
177 orig_block->terminated_by_return = false;
178
179 /* Handle the taken path */
180 bottom_block->taken = orig_block->taken;
181 if (bottom_block->taken != NullBasicBlockId) {
182 orig_block->taken = NullBasicBlockId;
183 BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken);
184 bb_taken->predecessors->Delete(orig_block->id);
185 bb_taken->predecessors->Insert(bottom_block->id);
186 }
187
188 /* Handle the fallthrough path */
189 bottom_block->fall_through = orig_block->fall_through;
190 orig_block->fall_through = bottom_block->id;
191 bottom_block->predecessors->Insert(orig_block->id);
192 if (bottom_block->fall_through != NullBasicBlockId) {
193 BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through);
194 bb_fall_through->predecessors->Delete(orig_block->id);
195 bb_fall_through->predecessors->Insert(bottom_block->id);
196 }
197
198 /* Handle the successor list */
199 if (orig_block->successor_block_list_type != kNotUsed) {
200 bottom_block->successor_block_list_type = orig_block->successor_block_list_type;
201 bottom_block->successor_blocks = orig_block->successor_blocks;
202 orig_block->successor_block_list_type = kNotUsed;
203 orig_block->successor_blocks = nullptr;
204 GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bottom_block->successor_blocks);
205 while (true) {
206 SuccessorBlockInfo* successor_block_info = iterator.Next();
207 if (successor_block_info == nullptr) break;
208 BasicBlock* bb = GetBasicBlock(successor_block_info->block);
209 if (bb != nullptr) {
210 bb->predecessors->Delete(orig_block->id);
211 bb->predecessors->Insert(bottom_block->id);
212 }
213 }
214 }
215
216 orig_block->last_mir_insn = prev;
217 prev->next = nullptr;
218
219 /*
220 * Update the immediate predecessor block pointer so that outgoing edges
221 * can be applied to the proper block.
222 */
223 if (immed_pred_block_p) {
224 DCHECK_EQ(*immed_pred_block_p, orig_block);
225 *immed_pred_block_p = bottom_block;
226 }
227
228 // Associate dex instructions in the bottom block with the new container.
229 DCHECK(insn != nullptr);
230 DCHECK(insn != orig_block->first_mir_insn);
231 DCHECK(insn == bottom_block->first_mir_insn);
232 DCHECK_EQ(insn->offset, bottom_block->start_offset);
233 DCHECK(static_cast<int>(insn->dalvikInsn.opcode) == kMirOpCheck ||
234 !MIR::DecodedInstruction::IsPseudoMirOp(insn->dalvikInsn.opcode));
235 DCHECK_EQ(dex_pc_to_block_map_.Get(insn->offset), orig_block->id);
236 MIR* p = insn;
237 dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
238 while (p != bottom_block->last_mir_insn) {
239 p = p->next;
240 DCHECK(p != nullptr);
241 p->bb = bottom_block->id;
242 int opcode = p->dalvikInsn.opcode;
243 /*
244 * Some messiness here to ensure that we only enter real opcodes and only the
245 * first half of a potentially throwing instruction that has been split into
246 * CHECK and work portions. Since the 2nd half of a split operation is always
247 * the first in a BasicBlock, we can't hit it here.
248 */
249 if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
250 DCHECK_EQ(dex_pc_to_block_map_.Get(p->offset), orig_block->id);
251 dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
252 }
253 }
254
255 return bottom_block;
256 }
257
258 /*
259 * Given a code offset, find out the block that starts with it. If the offset
260 * is in the middle of an existing block, split it into two. If immed_pred_block_p
261 * is not non-null and is the block being split, update *immed_pred_block_p to
262 * point to the bottom block so that outgoing edges can be set up properly
263 * (by the caller)
264 * Utilizes a map for fast lookup of the typical cases.
265 */
FindBlock(DexOffset code_offset,bool split,bool create,BasicBlock ** immed_pred_block_p)266 BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool split, bool create,
267 BasicBlock** immed_pred_block_p) {
268 if (code_offset >= cu_->code_item->insns_size_in_code_units_) {
269 return NULL;
270 }
271
272 int block_id = dex_pc_to_block_map_.Get(code_offset);
273 BasicBlock* bb = (block_id == 0) ? NULL : block_list_.Get(block_id);
274
275 if ((bb != NULL) && (bb->start_offset == code_offset)) {
276 // Does this containing block start with the desired instruction?
277 return bb;
278 }
279
280 // No direct hit.
281 if (!create) {
282 return NULL;
283 }
284
285 if (bb != NULL) {
286 // The target exists somewhere in an existing block.
287 return SplitBlock(code_offset, bb, bb == *immed_pred_block_p ? immed_pred_block_p : NULL);
288 }
289
290 // Create a new block.
291 bb = NewMemBB(kDalvikByteCode, num_blocks_++);
292 block_list_.Insert(bb);
293 bb->start_offset = code_offset;
294 dex_pc_to_block_map_.Put(bb->start_offset, bb->id);
295 return bb;
296 }
297
298
299 /* Identify code range in try blocks and set up the empty catch blocks */
ProcessTryCatchBlocks()300 void MIRGraph::ProcessTryCatchBlocks() {
301 int tries_size = current_code_item_->tries_size_;
302 DexOffset offset;
303
304 if (tries_size == 0) {
305 return;
306 }
307
308 for (int i = 0; i < tries_size; i++) {
309 const DexFile::TryItem* pTry =
310 DexFile::GetTryItems(*current_code_item_, i);
311 DexOffset start_offset = pTry->start_addr_;
312 DexOffset end_offset = start_offset + pTry->insn_count_;
313 for (offset = start_offset; offset < end_offset; offset++) {
314 try_block_addr_->SetBit(offset);
315 }
316 }
317
318 // Iterate over each of the handlers to enqueue the empty Catch blocks.
319 const byte* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0);
320 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
321 for (uint32_t idx = 0; idx < handlers_size; idx++) {
322 CatchHandlerIterator iterator(handlers_ptr);
323 for (; iterator.HasNext(); iterator.Next()) {
324 uint32_t address = iterator.GetHandlerAddress();
325 FindBlock(address, false /* split */, true /*create*/,
326 /* immed_pred_block_p */ NULL);
327 }
328 handlers_ptr = iterator.EndDataPointer();
329 }
330 }
331
IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,NarrowDexOffset catch_offset)332 bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,
333 NarrowDexOffset catch_offset) {
334 // Catches for monitor-exit during stack unwinding have the pattern
335 // move-exception (move)* (goto)? monitor-exit throw
336 // In the currently generated dex bytecode we see these catching a bytecode range including
337 // either its own or an identical monitor-exit, http://b/15745363 . This function checks if
338 // it's the case for a given monitor-exit and catch block so that we can ignore it.
339 // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized
340 // block in a try-block and catch the NPE, Error or Throwable and we should let it through;
341 // even though a throwing monitor-exit certainly indicates a bytecode error.)
342 const Instruction* monitor_exit = Instruction::At(cu_->code_item->insns_ + monitor_exit_offset);
343 DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT);
344 int monitor_reg = monitor_exit->VRegA_11x();
345 const Instruction* check_insn = Instruction::At(cu_->code_item->insns_ + catch_offset);
346 DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION);
347 if (check_insn->VRegA_11x() == monitor_reg) {
348 // Unexpected move-exception to the same register. Probably not the pattern we're looking for.
349 return false;
350 }
351 check_insn = check_insn->Next();
352 while (true) {
353 int dest = -1;
354 bool wide = false;
355 switch (check_insn->Opcode()) {
356 case Instruction::MOVE_WIDE:
357 wide = true;
358 // Intentional fall-through.
359 case Instruction::MOVE_OBJECT:
360 case Instruction::MOVE:
361 dest = check_insn->VRegA_12x();
362 break;
363
364 case Instruction::MOVE_WIDE_FROM16:
365 wide = true;
366 // Intentional fall-through.
367 case Instruction::MOVE_OBJECT_FROM16:
368 case Instruction::MOVE_FROM16:
369 dest = check_insn->VRegA_22x();
370 break;
371
372 case Instruction::MOVE_WIDE_16:
373 wide = true;
374 // Intentional fall-through.
375 case Instruction::MOVE_OBJECT_16:
376 case Instruction::MOVE_16:
377 dest = check_insn->VRegA_32x();
378 break;
379
380 case Instruction::GOTO:
381 case Instruction::GOTO_16:
382 case Instruction::GOTO_32:
383 check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset());
384 // Intentional fall-through.
385 default:
386 return check_insn->Opcode() == Instruction::MONITOR_EXIT &&
387 check_insn->VRegA_11x() == monitor_reg;
388 }
389
390 if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) {
391 return false;
392 }
393
394 check_insn = check_insn->Next();
395 }
396 }
397
398 /* Process instructions with the kBranch flag */
ProcessCanBranch(BasicBlock * cur_block,MIR * insn,DexOffset cur_offset,int width,int flags,const uint16_t * code_ptr,const uint16_t * code_end)399 BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
400 int width, int flags, const uint16_t* code_ptr,
401 const uint16_t* code_end) {
402 DexOffset target = cur_offset;
403 switch (insn->dalvikInsn.opcode) {
404 case Instruction::GOTO:
405 case Instruction::GOTO_16:
406 case Instruction::GOTO_32:
407 target += insn->dalvikInsn.vA;
408 break;
409 case Instruction::IF_EQ:
410 case Instruction::IF_NE:
411 case Instruction::IF_LT:
412 case Instruction::IF_GE:
413 case Instruction::IF_GT:
414 case Instruction::IF_LE:
415 cur_block->conditional_branch = true;
416 target += insn->dalvikInsn.vC;
417 break;
418 case Instruction::IF_EQZ:
419 case Instruction::IF_NEZ:
420 case Instruction::IF_LTZ:
421 case Instruction::IF_GEZ:
422 case Instruction::IF_GTZ:
423 case Instruction::IF_LEZ:
424 cur_block->conditional_branch = true;
425 target += insn->dalvikInsn.vB;
426 break;
427 default:
428 LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
429 }
430 CountBranch(target);
431 BasicBlock* taken_block = FindBlock(target, /* split */ true, /* create */ true,
432 /* immed_pred_block_p */ &cur_block);
433 cur_block->taken = taken_block->id;
434 taken_block->predecessors->Insert(cur_block->id);
435
436 /* Always terminate the current block for conditional branches */
437 if (flags & Instruction::kContinue) {
438 BasicBlock* fallthrough_block = FindBlock(cur_offset + width,
439 /*
440 * If the method is processed
441 * in sequential order from the
442 * beginning, we don't need to
443 * specify split for continue
444 * blocks. However, this
445 * routine can be called by
446 * compileLoop, which starts
447 * parsing the method from an
448 * arbitrary address in the
449 * method body.
450 */
451 true,
452 /* create */
453 true,
454 /* immed_pred_block_p */
455 &cur_block);
456 cur_block->fall_through = fallthrough_block->id;
457 fallthrough_block->predecessors->Insert(cur_block->id);
458 } else if (code_ptr < code_end) {
459 FindBlock(cur_offset + width, /* split */ false, /* create */ true,
460 /* immed_pred_block_p */ NULL);
461 }
462 return cur_block;
463 }
464
465 /* Process instructions with the kSwitch flag */
ProcessCanSwitch(BasicBlock * cur_block,MIR * insn,DexOffset cur_offset,int width,int flags)466 BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
467 int width, int flags) {
468 const uint16_t* switch_data =
469 reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB);
470 int size;
471 const int* keyTable;
472 const int* target_table;
473 int i;
474 int first_key;
475
476 /*
477 * Packed switch data format:
478 * ushort ident = 0x0100 magic value
479 * ushort size number of entries in the table
480 * int first_key first (and lowest) switch case value
481 * int targets[size] branch targets, relative to switch opcode
482 *
483 * Total size is (4+size*2) 16-bit code units.
484 */
485 if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
486 DCHECK_EQ(static_cast<int>(switch_data[0]),
487 static_cast<int>(Instruction::kPackedSwitchSignature));
488 size = switch_data[1];
489 first_key = switch_data[2] | (switch_data[3] << 16);
490 target_table = reinterpret_cast<const int*>(&switch_data[4]);
491 keyTable = NULL; // Make the compiler happy.
492 /*
493 * Sparse switch data format:
494 * ushort ident = 0x0200 magic value
495 * ushort size number of entries in the table; > 0
496 * int keys[size] keys, sorted low-to-high; 32-bit aligned
497 * int targets[size] branch targets, relative to switch opcode
498 *
499 * Total size is (2+size*4) 16-bit code units.
500 */
501 } else {
502 DCHECK_EQ(static_cast<int>(switch_data[0]),
503 static_cast<int>(Instruction::kSparseSwitchSignature));
504 size = switch_data[1];
505 keyTable = reinterpret_cast<const int*>(&switch_data[2]);
506 target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
507 first_key = 0; // To make the compiler happy.
508 }
509
510 if (cur_block->successor_block_list_type != kNotUsed) {
511 LOG(FATAL) << "Successor block list already in use: "
512 << static_cast<int>(cur_block->successor_block_list_type);
513 }
514 cur_block->successor_block_list_type =
515 (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ? kPackedSwitch : kSparseSwitch;
516 cur_block->successor_blocks =
517 new (arena_) GrowableArray<SuccessorBlockInfo*>(arena_, size, kGrowableArraySuccessorBlocks);
518
519 for (i = 0; i < size; i++) {
520 BasicBlock* case_block = FindBlock(cur_offset + target_table[i], /* split */ true,
521 /* create */ true, /* immed_pred_block_p */ &cur_block);
522 SuccessorBlockInfo* successor_block_info =
523 static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo),
524 kArenaAllocSuccessor));
525 successor_block_info->block = case_block->id;
526 successor_block_info->key =
527 (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
528 first_key + i : keyTable[i];
529 cur_block->successor_blocks->Insert(successor_block_info);
530 case_block->predecessors->Insert(cur_block->id);
531 }
532
533 /* Fall-through case */
534 BasicBlock* fallthrough_block = FindBlock(cur_offset + width, /* split */ false,
535 /* create */ true, /* immed_pred_block_p */ NULL);
536 cur_block->fall_through = fallthrough_block->id;
537 fallthrough_block->predecessors->Insert(cur_block->id);
538 return cur_block;
539 }
540
541 /* Process instructions with the kThrow flag */
ProcessCanThrow(BasicBlock * cur_block,MIR * insn,DexOffset cur_offset,int width,int flags,ArenaBitVector * try_block_addr,const uint16_t * code_ptr,const uint16_t * code_end)542 BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
543 int width, int flags, ArenaBitVector* try_block_addr,
544 const uint16_t* code_ptr, const uint16_t* code_end) {
545 bool in_try_block = try_block_addr->IsBitSet(cur_offset);
546 bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW);
547 bool build_all_edges =
548 (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block;
549
550 /* In try block */
551 if (in_try_block) {
552 CatchHandlerIterator iterator(*current_code_item_, cur_offset);
553
554 if (cur_block->successor_block_list_type != kNotUsed) {
555 LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
556 LOG(FATAL) << "Successor block list already in use: "
557 << static_cast<int>(cur_block->successor_block_list_type);
558 }
559
560 for (; iterator.HasNext(); iterator.Next()) {
561 BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* split*/,
562 false /* creat */, NULL /* immed_pred_block_p */);
563 if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT &&
564 IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) {
565 // Don't allow monitor-exit to catch its own exception, http://b/15745363 .
566 continue;
567 }
568 if (cur_block->successor_block_list_type == kNotUsed) {
569 cur_block->successor_block_list_type = kCatch;
570 cur_block->successor_blocks = new (arena_) GrowableArray<SuccessorBlockInfo*>(
571 arena_, 2, kGrowableArraySuccessorBlocks);
572 }
573 catch_block->catch_entry = true;
574 if (kIsDebugBuild) {
575 catches_.insert(catch_block->start_offset);
576 }
577 SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
578 (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
579 successor_block_info->block = catch_block->id;
580 successor_block_info->key = iterator.GetHandlerTypeIndex();
581 cur_block->successor_blocks->Insert(successor_block_info);
582 catch_block->predecessors->Insert(cur_block->id);
583 }
584 in_try_block = (cur_block->successor_block_list_type != kNotUsed);
585 }
586 if (!in_try_block && build_all_edges) {
587 BasicBlock* eh_block = NewMemBB(kExceptionHandling, num_blocks_++);
588 cur_block->taken = eh_block->id;
589 block_list_.Insert(eh_block);
590 eh_block->start_offset = cur_offset;
591 eh_block->predecessors->Insert(cur_block->id);
592 }
593
594 if (is_throw) {
595 cur_block->explicit_throw = true;
596 if (code_ptr < code_end) {
597 // Force creation of new block following THROW via side-effect.
598 FindBlock(cur_offset + width, /* split */ false, /* create */ true,
599 /* immed_pred_block_p */ NULL);
600 }
601 if (!in_try_block) {
602 // Don't split a THROW that can't rethrow - we're done.
603 return cur_block;
604 }
605 }
606
607 if (!build_all_edges) {
608 /*
609 * Even though there is an exception edge here, control cannot return to this
610 * method. Thus, for the purposes of dataflow analysis and optimization, we can
611 * ignore the edge. Doing this reduces compile time, and increases the scope
612 * of the basic-block level optimization pass.
613 */
614 return cur_block;
615 }
616
617 /*
618 * Split the potentially-throwing instruction into two parts.
619 * The first half will be a pseudo-op that captures the exception
620 * edges and terminates the basic block. It always falls through.
621 * Then, create a new basic block that begins with the throwing instruction
622 * (minus exceptions). Note: this new basic block must NOT be entered into
623 * the block_map. If the potentially-throwing instruction is the target of a
624 * future branch, we need to find the check psuedo half. The new
625 * basic block containing the work portion of the instruction should
626 * only be entered via fallthrough from the block containing the
627 * pseudo exception edge MIR. Note also that this new block is
628 * not automatically terminated after the work portion, and may
629 * contain following instructions.
630 *
631 * Note also that the dex_pc_to_block_map_ entry for the potentially
632 * throwing instruction will refer to the original basic block.
633 */
634 BasicBlock* new_block = NewMemBB(kDalvikByteCode, num_blocks_++);
635 block_list_.Insert(new_block);
636 new_block->start_offset = insn->offset;
637 cur_block->fall_through = new_block->id;
638 new_block->predecessors->Insert(cur_block->id);
639 MIR* new_insn = NewMIR();
640 *new_insn = *insn;
641 insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck);
642 // Associate the two halves.
643 insn->meta.throw_insn = new_insn;
644 new_block->AppendMIR(new_insn);
645 return new_block;
646 }
647
648 /* Parse a Dex method and insert it into the MIRGraph at the current insert point. */
InlineMethod(const DexFile::CodeItem * code_item,uint32_t access_flags,InvokeType invoke_type,uint16_t class_def_idx,uint32_t method_idx,jobject class_loader,const DexFile & dex_file)649 void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
650 InvokeType invoke_type, uint16_t class_def_idx,
651 uint32_t method_idx, jobject class_loader, const DexFile& dex_file) {
652 current_code_item_ = code_item;
653 method_stack_.push_back(std::make_pair(current_method_, current_offset_));
654 current_method_ = m_units_.size();
655 current_offset_ = 0;
656 // TODO: will need to snapshot stack image and use that as the mir context identification.
657 m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(),
658 dex_file, current_code_item_, class_def_idx, method_idx, access_flags,
659 cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx)));
660 const uint16_t* code_ptr = current_code_item_->insns_;
661 const uint16_t* code_end =
662 current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_;
663
664 // TODO: need to rework expansion of block list & try_block_addr when inlining activated.
665 // TUNING: use better estimate of basic blocks for following resize.
666 block_list_.Resize(block_list_.Size() + current_code_item_->insns_size_in_code_units_);
667 dex_pc_to_block_map_.SetSize(dex_pc_to_block_map_.Size() + current_code_item_->insns_size_in_code_units_);
668
669 // TODO: replace with explicit resize routine. Using automatic extension side effect for now.
670 try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_);
671 try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_);
672
673 // If this is the first method, set up default entry and exit blocks.
674 if (current_method_ == 0) {
675 DCHECK(entry_block_ == NULL);
676 DCHECK(exit_block_ == NULL);
677 DCHECK_EQ(num_blocks_, 0U);
678 // Use id 0 to represent a null block.
679 BasicBlock* null_block = NewMemBB(kNullBlock, num_blocks_++);
680 DCHECK_EQ(null_block->id, NullBasicBlockId);
681 null_block->hidden = true;
682 block_list_.Insert(null_block);
683 entry_block_ = NewMemBB(kEntryBlock, num_blocks_++);
684 block_list_.Insert(entry_block_);
685 exit_block_ = NewMemBB(kExitBlock, num_blocks_++);
686 block_list_.Insert(exit_block_);
687 // TODO: deprecate all "cu->" fields; move what's left to wherever CompilationUnit is allocated.
688 cu_->dex_file = &dex_file;
689 cu_->class_def_idx = class_def_idx;
690 cu_->method_idx = method_idx;
691 cu_->access_flags = access_flags;
692 cu_->invoke_type = invoke_type;
693 cu_->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
694 cu_->num_ins = current_code_item_->ins_size_;
695 cu_->num_regs = current_code_item_->registers_size_ - cu_->num_ins;
696 cu_->num_outs = current_code_item_->outs_size_;
697 cu_->num_dalvik_registers = current_code_item_->registers_size_;
698 cu_->insns = current_code_item_->insns_;
699 cu_->code_item = current_code_item_;
700 } else {
701 UNIMPLEMENTED(FATAL) << "Nested inlining not implemented.";
702 /*
703 * Will need to manage storage for ins & outs, push prevous state and update
704 * insert point.
705 */
706 }
707
708 /* Current block to record parsed instructions */
709 BasicBlock* cur_block = NewMemBB(kDalvikByteCode, num_blocks_++);
710 DCHECK_EQ(current_offset_, 0U);
711 cur_block->start_offset = current_offset_;
712 block_list_.Insert(cur_block);
713 // TODO: for inlining support, insert at the insert point rather than entry block.
714 entry_block_->fall_through = cur_block->id;
715 cur_block->predecessors->Insert(entry_block_->id);
716
717 /* Identify code range in try blocks and set up the empty catch blocks */
718 ProcessTryCatchBlocks();
719
720 uint64_t merged_df_flags = 0u;
721
722 /* Parse all instructions and put them into containing basic blocks */
723 while (code_ptr < code_end) {
724 MIR *insn = NewMIR();
725 insn->offset = current_offset_;
726 insn->m_unit_index = current_method_;
727 int width = ParseInsn(code_ptr, &insn->dalvikInsn);
728 Instruction::Code opcode = insn->dalvikInsn.opcode;
729 if (opcode_count_ != NULL) {
730 opcode_count_[static_cast<int>(opcode)]++;
731 }
732
733 int flags = Instruction::FlagsOf(insn->dalvikInsn.opcode);
734 int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode);
735
736 uint64_t df_flags = GetDataFlowAttributes(insn);
737 merged_df_flags |= df_flags;
738
739 if (df_flags & DF_HAS_DEFS) {
740 def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1;
741 }
742
743 if (df_flags & DF_LVN) {
744 cur_block->use_lvn = true; // Run local value numbering on this basic block.
745 }
746
747 // Check for inline data block signatures.
748 if (opcode == Instruction::NOP) {
749 // A simple NOP will have a width of 1 at this point, embedded data NOP > 1.
750 if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) {
751 // Could be an aligning nop. If an embedded data NOP follows, treat pair as single unit.
752 uint16_t following_raw_instruction = code_ptr[1];
753 if ((following_raw_instruction == Instruction::kSparseSwitchSignature) ||
754 (following_raw_instruction == Instruction::kPackedSwitchSignature) ||
755 (following_raw_instruction == Instruction::kArrayDataSignature)) {
756 width += Instruction::At(code_ptr + 1)->SizeInCodeUnits();
757 }
758 }
759 if (width == 1) {
760 // It is a simple nop - treat normally.
761 cur_block->AppendMIR(insn);
762 } else {
763 DCHECK(cur_block->fall_through == NullBasicBlockId);
764 DCHECK(cur_block->taken == NullBasicBlockId);
765 // Unreachable instruction, mark for no continuation and end basic block.
766 flags &= ~Instruction::kContinue;
767 FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
768 /* immed_pred_block_p */ NULL);
769 }
770 } else {
771 cur_block->AppendMIR(insn);
772 }
773
774 // Associate the starting dex_pc for this opcode with its containing basic block.
775 dex_pc_to_block_map_.Put(insn->offset, cur_block->id);
776
777 code_ptr += width;
778
779 if (flags & Instruction::kBranch) {
780 cur_block = ProcessCanBranch(cur_block, insn, current_offset_,
781 width, flags, code_ptr, code_end);
782 } else if (flags & Instruction::kReturn) {
783 cur_block->terminated_by_return = true;
784 cur_block->fall_through = exit_block_->id;
785 exit_block_->predecessors->Insert(cur_block->id);
786 /*
787 * Terminate the current block if there are instructions
788 * afterwards.
789 */
790 if (code_ptr < code_end) {
791 /*
792 * Create a fallthrough block for real instructions
793 * (incl. NOP).
794 */
795 FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
796 /* immed_pred_block_p */ NULL);
797 }
798 } else if (flags & Instruction::kThrow) {
799 cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_,
800 code_ptr, code_end);
801 } else if (flags & Instruction::kSwitch) {
802 cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, flags);
803 }
804 if (verify_flags & Instruction::kVerifyVarArgRange ||
805 verify_flags & Instruction::kVerifyVarArgRangeNonZero) {
806 /*
807 * The Quick backend's runtime model includes a gap between a method's
808 * argument ("in") vregs and the rest of its vregs. Handling a range instruction
809 * which spans the gap is somewhat complicated, and should not happen
810 * in normal usage of dx. Punt to the interpreter.
811 */
812 int first_reg_in_range = insn->dalvikInsn.vC;
813 int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1;
814 if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) {
815 punt_to_interpreter_ = true;
816 }
817 }
818 current_offset_ += width;
819 BasicBlock* next_block = FindBlock(current_offset_, /* split */ false, /* create */
820 false, /* immed_pred_block_p */ NULL);
821 if (next_block) {
822 /*
823 * The next instruction could be the target of a previously parsed
824 * forward branch so a block is already created. If the current
825 * instruction is not an unconditional branch, connect them through
826 * the fall-through link.
827 */
828 DCHECK(cur_block->fall_through == NullBasicBlockId ||
829 GetBasicBlock(cur_block->fall_through) == next_block ||
830 GetBasicBlock(cur_block->fall_through) == exit_block_);
831
832 if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) {
833 cur_block->fall_through = next_block->id;
834 next_block->predecessors->Insert(cur_block->id);
835 }
836 cur_block = next_block;
837 }
838 }
839 merged_df_flags_ = merged_df_flags;
840
841 if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
842 DumpCFG("/sdcard/1_post_parse_cfg/", true);
843 }
844
845 if (cu_->verbose) {
846 DumpMIRGraph();
847 }
848 }
849
ShowOpcodeStats()850 void MIRGraph::ShowOpcodeStats() {
851 DCHECK(opcode_count_ != NULL);
852 LOG(INFO) << "Opcode Count";
853 for (int i = 0; i < kNumPackedOpcodes; i++) {
854 if (opcode_count_[i] != 0) {
855 LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i))
856 << " " << opcode_count_[i];
857 }
858 }
859 }
860
GetDataFlowAttributes(Instruction::Code opcode)861 uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) {
862 DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0])));
863 return oat_data_flow_attributes_[opcode];
864 }
865
GetDataFlowAttributes(MIR * mir)866 uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) {
867 DCHECK(mir != nullptr);
868 Instruction::Code opcode = mir->dalvikInsn.opcode;
869 return GetDataFlowAttributes(opcode);
870 }
871
872 // TODO: use a configurable base prefix, and adjust callers to supply pass name.
873 /* Dump the CFG into a DOT graph */
DumpCFG(const char * dir_prefix,bool all_blocks,const char * suffix)874 void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) {
875 FILE* file;
876 static AtomicInteger cnt(0);
877
878 // Increment counter to get a unique file number.
879 cnt++;
880
881 std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
882 ReplaceSpecialChars(fname);
883 fname = StringPrintf("%s%s%x%s_%d.dot", dir_prefix, fname.c_str(),
884 GetBasicBlock(GetEntryBlock()->fall_through)->start_offset,
885 suffix == nullptr ? "" : suffix,
886 cnt.LoadRelaxed());
887 file = fopen(fname.c_str(), "w");
888 if (file == NULL) {
889 return;
890 }
891 fprintf(file, "digraph G {\n");
892
893 fprintf(file, " rankdir=TB\n");
894
895 int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_;
896 int idx;
897
898 for (idx = 0; idx < num_blocks; idx++) {
899 int block_idx = all_blocks ? idx : dfs_order_->Get(idx);
900 BasicBlock* bb = GetBasicBlock(block_idx);
901 if (bb == NULL) continue;
902 if (bb->block_type == kDead) continue;
903 if (bb->hidden) continue;
904 if (bb->block_type == kEntryBlock) {
905 fprintf(file, " entry_%d [shape=Mdiamond];\n", bb->id);
906 } else if (bb->block_type == kExitBlock) {
907 fprintf(file, " exit_%d [shape=Mdiamond];\n", bb->id);
908 } else if (bb->block_type == kDalvikByteCode) {
909 fprintf(file, " block%04x_%d [shape=record,label = \"{ \\\n",
910 bb->start_offset, bb->id);
911 const MIR* mir;
912 fprintf(file, " {block id %d\\l}%s\\\n", bb->id,
913 bb->first_mir_insn ? " | " : " ");
914 for (mir = bb->first_mir_insn; mir; mir = mir->next) {
915 int opcode = mir->dalvikInsn.opcode;
916 if (opcode > kMirOpSelect && opcode < kMirOpLast) {
917 if (opcode == kMirOpConstVector) {
918 fprintf(file, " {%04x %s %d %d %d %d %d %d\\l}%s\\\n", mir->offset,
919 extended_mir_op_names_[kMirOpConstVector - kMirOpFirst],
920 mir->dalvikInsn.vA,
921 mir->dalvikInsn.vB,
922 mir->dalvikInsn.arg[0],
923 mir->dalvikInsn.arg[1],
924 mir->dalvikInsn.arg[2],
925 mir->dalvikInsn.arg[3],
926 mir->next ? " | " : " ");
927 } else {
928 fprintf(file, " {%04x %s %d %d %d\\l}%s\\\n", mir->offset,
929 extended_mir_op_names_[opcode - kMirOpFirst],
930 mir->dalvikInsn.vA,
931 mir->dalvikInsn.vB,
932 mir->dalvikInsn.vC,
933 mir->next ? " | " : " ");
934 }
935 } else {
936 fprintf(file, " {%04x %s %s %s %s\\l}%s\\\n", mir->offset,
937 mir->ssa_rep ? GetDalvikDisassembly(mir) :
938 !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ?
939 Instruction::Name(mir->dalvikInsn.opcode) :
940 extended_mir_op_names_[opcode - kMirOpFirst],
941 (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
942 (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
943 (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ",
944 mir->next ? " | " : " ");
945 }
946 }
947 fprintf(file, " }\"];\n\n");
948 } else if (bb->block_type == kExceptionHandling) {
949 char block_name[BLOCK_NAME_LEN];
950
951 GetBlockName(bb, block_name);
952 fprintf(file, " %s [shape=invhouse];\n", block_name);
953 }
954
955 char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
956
957 if (bb->taken != NullBasicBlockId) {
958 GetBlockName(bb, block_name1);
959 GetBlockName(GetBasicBlock(bb->taken), block_name2);
960 fprintf(file, " %s:s -> %s:n [style=dotted]\n",
961 block_name1, block_name2);
962 }
963 if (bb->fall_through != NullBasicBlockId) {
964 GetBlockName(bb, block_name1);
965 GetBlockName(GetBasicBlock(bb->fall_through), block_name2);
966 fprintf(file, " %s:s -> %s:n\n", block_name1, block_name2);
967 }
968
969 if (bb->successor_block_list_type != kNotUsed) {
970 fprintf(file, " succ%04x_%d [shape=%s,label = \"{ \\\n",
971 bb->start_offset, bb->id,
972 (bb->successor_block_list_type == kCatch) ? "Mrecord" : "record");
973 GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bb->successor_blocks);
974 SuccessorBlockInfo* successor_block_info = iterator.Next();
975
976 int succ_id = 0;
977 while (true) {
978 if (successor_block_info == NULL) break;
979
980 BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
981 SuccessorBlockInfo *next_successor_block_info = iterator.Next();
982
983 fprintf(file, " {<f%d> %04x: %04x\\l}%s\\\n",
984 succ_id++,
985 successor_block_info->key,
986 dest_block->start_offset,
987 (next_successor_block_info != NULL) ? " | " : " ");
988
989 successor_block_info = next_successor_block_info;
990 }
991 fprintf(file, " }\"];\n\n");
992
993 GetBlockName(bb, block_name1);
994 fprintf(file, " %s:s -> succ%04x_%d:n [style=dashed]\n",
995 block_name1, bb->start_offset, bb->id);
996
997 // Link the successor pseudo-block with all of its potential targets.
998 GrowableArray<SuccessorBlockInfo*>::Iterator iter(bb->successor_blocks);
999
1000 succ_id = 0;
1001 while (true) {
1002 SuccessorBlockInfo* successor_block_info = iter.Next();
1003 if (successor_block_info == NULL) break;
1004
1005 BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
1006
1007 GetBlockName(dest_block, block_name2);
1008 fprintf(file, " succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
1009 bb->id, succ_id++, block_name2);
1010 }
1011 }
1012 fprintf(file, "\n");
1013
1014 if (cu_->verbose) {
1015 /* Display the dominator tree */
1016 GetBlockName(bb, block_name1);
1017 fprintf(file, " cfg%s [label=\"%s\", shape=none];\n",
1018 block_name1, block_name1);
1019 if (bb->i_dom) {
1020 GetBlockName(GetBasicBlock(bb->i_dom), block_name2);
1021 fprintf(file, " cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
1022 }
1023 }
1024 }
1025 fprintf(file, "}\n");
1026 fclose(file);
1027 }
1028
1029 /* Insert an MIR instruction to the end of a basic block. */
AppendMIR(MIR * mir)1030 void BasicBlock::AppendMIR(MIR* mir) {
1031 // Insert it after the last MIR.
1032 InsertMIRListAfter(last_mir_insn, mir, mir);
1033 }
1034
AppendMIRList(MIR * first_list_mir,MIR * last_list_mir)1035 void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1036 // Insert it after the last MIR.
1037 InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir);
1038 }
1039
AppendMIRList(const std::vector<MIR * > & insns)1040 void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) {
1041 for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) {
1042 MIR* new_mir = *it;
1043
1044 // Add a copy of each MIR.
1045 InsertMIRListAfter(last_mir_insn, new_mir, new_mir);
1046 }
1047 }
1048
1049 /* Insert a MIR instruction after the specified MIR. */
InsertMIRAfter(MIR * current_mir,MIR * new_mir)1050 void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) {
1051 InsertMIRListAfter(current_mir, new_mir, new_mir);
1052 }
1053
InsertMIRListAfter(MIR * insert_after,MIR * first_list_mir,MIR * last_list_mir)1054 void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) {
1055 // If no MIR, we are done.
1056 if (first_list_mir == nullptr || last_list_mir == nullptr) {
1057 return;
1058 }
1059
1060 // If insert_after is null, assume BB is empty.
1061 if (insert_after == nullptr) {
1062 first_mir_insn = first_list_mir;
1063 last_mir_insn = last_list_mir;
1064 last_list_mir->next = nullptr;
1065 } else {
1066 MIR* after_list = insert_after->next;
1067 insert_after->next = first_list_mir;
1068 last_list_mir->next = after_list;
1069 if (after_list == nullptr) {
1070 last_mir_insn = last_list_mir;
1071 }
1072 }
1073
1074 // Set this BB to be the basic block of the MIRs.
1075 MIR* last = last_list_mir->next;
1076 for (MIR* mir = first_list_mir; mir != last; mir = mir->next) {
1077 mir->bb = id;
1078 }
1079 }
1080
1081 /* Insert an MIR instruction to the head of a basic block. */
PrependMIR(MIR * mir)1082 void BasicBlock::PrependMIR(MIR* mir) {
1083 InsertMIRListBefore(first_mir_insn, mir, mir);
1084 }
1085
PrependMIRList(MIR * first_list_mir,MIR * last_list_mir)1086 void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1087 // Insert it before the first MIR.
1088 InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir);
1089 }
1090
PrependMIRList(const std::vector<MIR * > & to_add)1091 void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) {
1092 for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) {
1093 MIR* mir = *it;
1094
1095 InsertMIRListBefore(first_mir_insn, mir, mir);
1096 }
1097 }
1098
1099 /* Insert a MIR instruction before the specified MIR. */
InsertMIRBefore(MIR * current_mir,MIR * new_mir)1100 void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) {
1101 // Insert as a single element list.
1102 return InsertMIRListBefore(current_mir, new_mir, new_mir);
1103 }
1104
FindPreviousMIR(MIR * mir)1105 MIR* BasicBlock::FindPreviousMIR(MIR* mir) {
1106 MIR* current = first_mir_insn;
1107
1108 while (current != nullptr) {
1109 MIR* next = current->next;
1110
1111 if (next == mir) {
1112 return current;
1113 }
1114
1115 current = next;
1116 }
1117
1118 return nullptr;
1119 }
1120
InsertMIRListBefore(MIR * insert_before,MIR * first_list_mir,MIR * last_list_mir)1121 void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) {
1122 // If no MIR, we are done.
1123 if (first_list_mir == nullptr || last_list_mir == nullptr) {
1124 return;
1125 }
1126
1127 // If insert_before is null, assume BB is empty.
1128 if (insert_before == nullptr) {
1129 first_mir_insn = first_list_mir;
1130 last_mir_insn = last_list_mir;
1131 last_list_mir->next = nullptr;
1132 } else {
1133 if (first_mir_insn == insert_before) {
1134 last_list_mir->next = first_mir_insn;
1135 first_mir_insn = first_list_mir;
1136 } else {
1137 // Find the preceding MIR.
1138 MIR* before_list = FindPreviousMIR(insert_before);
1139 DCHECK(before_list != nullptr);
1140 before_list->next = first_list_mir;
1141 last_list_mir->next = insert_before;
1142 }
1143 }
1144
1145 // Set this BB to be the basic block of the MIRs.
1146 for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1147 mir->bb = id;
1148 }
1149 }
1150
RemoveMIR(MIR * mir)1151 bool BasicBlock::RemoveMIR(MIR* mir) {
1152 // Remove as a single element list.
1153 return RemoveMIRList(mir, mir);
1154 }
1155
RemoveMIRList(MIR * first_list_mir,MIR * last_list_mir)1156 bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1157 if (first_list_mir == nullptr) {
1158 return false;
1159 }
1160
1161 // Try to find the MIR.
1162 MIR* before_list = nullptr;
1163 MIR* after_list = nullptr;
1164
1165 // If we are removing from the beginning of the MIR list.
1166 if (first_mir_insn == first_list_mir) {
1167 before_list = nullptr;
1168 } else {
1169 before_list = FindPreviousMIR(first_list_mir);
1170 if (before_list == nullptr) {
1171 // We did not find the mir.
1172 return false;
1173 }
1174 }
1175
1176 // Remove the BB information and also find the after_list.
1177 for (MIR* mir = first_list_mir; mir != last_list_mir; mir = mir->next) {
1178 mir->bb = NullBasicBlockId;
1179 }
1180
1181 after_list = last_list_mir->next;
1182
1183 // If there is nothing before the list, after_list is the first_mir.
1184 if (before_list == nullptr) {
1185 first_mir_insn = after_list;
1186 } else {
1187 before_list->next = after_list;
1188 }
1189
1190 // If there is nothing after the list, before_list is last_mir.
1191 if (after_list == nullptr) {
1192 last_mir_insn = before_list;
1193 }
1194
1195 return true;
1196 }
1197
GetNextUnconditionalMir(MIRGraph * mir_graph,MIR * current)1198 MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) {
1199 MIR* next_mir = nullptr;
1200
1201 if (current != nullptr) {
1202 next_mir = current->next;
1203 }
1204
1205 if (next_mir == nullptr) {
1206 // Only look for next MIR that follows unconditionally.
1207 if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) {
1208 next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn;
1209 }
1210 }
1211
1212 return next_mir;
1213 }
1214
GetDalvikDisassembly(const MIR * mir)1215 char* MIRGraph::GetDalvikDisassembly(const MIR* mir) {
1216 MIR::DecodedInstruction insn = mir->dalvikInsn;
1217 std::string str;
1218 int flags = 0;
1219 int opcode = insn.opcode;
1220 char* ret;
1221 bool nop = false;
1222 SSARepresentation* ssa_rep = mir->ssa_rep;
1223 Instruction::Format dalvik_format = Instruction::k10x; // Default to no-operand format.
1224 int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
1225 int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
1226
1227 // Handle special cases.
1228 if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
1229 str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1230 str.append(": ");
1231 // Recover the original Dex instruction.
1232 insn = mir->meta.throw_insn->dalvikInsn;
1233 ssa_rep = mir->meta.throw_insn->ssa_rep;
1234 defs = ssa_rep->num_defs;
1235 uses = ssa_rep->num_uses;
1236 opcode = insn.opcode;
1237 } else if (opcode == kMirOpNop) {
1238 str.append("[");
1239 // Recover original opcode.
1240 insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode();
1241 opcode = insn.opcode;
1242 nop = true;
1243 }
1244
1245 if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
1246 str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1247 } else {
1248 dalvik_format = Instruction::FormatOf(insn.opcode);
1249 flags = Instruction::FlagsOf(insn.opcode);
1250 str.append(Instruction::Name(insn.opcode));
1251 }
1252
1253 if (opcode == kMirOpPhi) {
1254 BasicBlockId* incoming = mir->meta.phi_incoming;
1255 str.append(StringPrintf(" %s = (%s",
1256 GetSSANameWithConst(ssa_rep->defs[0], true).c_str(),
1257 GetSSANameWithConst(ssa_rep->uses[0], true).c_str()));
1258 str.append(StringPrintf(":%d", incoming[0]));
1259 int i;
1260 for (i = 1; i < uses; i++) {
1261 str.append(StringPrintf(", %s:%d",
1262 GetSSANameWithConst(ssa_rep->uses[i], true).c_str(),
1263 incoming[i]));
1264 }
1265 str.append(")");
1266 } else if ((flags & Instruction::kBranch) != 0) {
1267 // For branches, decode the instructions to print out the branch targets.
1268 int offset = 0;
1269 switch (dalvik_format) {
1270 case Instruction::k21t:
1271 str.append(StringPrintf(" %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1272 offset = insn.vB;
1273 break;
1274 case Instruction::k22t:
1275 str.append(StringPrintf(" %s, %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str(),
1276 GetSSANameWithConst(ssa_rep->uses[1], false).c_str()));
1277 offset = insn.vC;
1278 break;
1279 case Instruction::k10t:
1280 case Instruction::k20t:
1281 case Instruction::k30t:
1282 offset = insn.vA;
1283 break;
1284 default:
1285 LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
1286 }
1287 str.append(StringPrintf(" 0x%x (%c%x)", mir->offset + offset,
1288 offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
1289 } else {
1290 // For invokes-style formats, treat wide regs as a pair of singles.
1291 bool show_singles = ((dalvik_format == Instruction::k35c) ||
1292 (dalvik_format == Instruction::k3rc));
1293 if (defs != 0) {
1294 str.append(StringPrintf(" %s", GetSSANameWithConst(ssa_rep->defs[0], false).c_str()));
1295 if (uses != 0) {
1296 str.append(", ");
1297 }
1298 }
1299 for (int i = 0; i < uses; i++) {
1300 str.append(
1301 StringPrintf(" %s", GetSSANameWithConst(ssa_rep->uses[i], show_singles).c_str()));
1302 if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) {
1303 // For the listing, skip the high sreg.
1304 i++;
1305 }
1306 if (i != (uses -1)) {
1307 str.append(",");
1308 }
1309 }
1310 switch (dalvik_format) {
1311 case Instruction::k11n: // Add one immediate from vB.
1312 case Instruction::k21s:
1313 case Instruction::k31i:
1314 case Instruction::k21h:
1315 str.append(StringPrintf(", #%d", insn.vB));
1316 break;
1317 case Instruction::k51l: // Add one wide immediate.
1318 str.append(StringPrintf(", #%" PRId64, insn.vB_wide));
1319 break;
1320 case Instruction::k21c: // One register, one string/type/method index.
1321 case Instruction::k31c:
1322 str.append(StringPrintf(", index #%d", insn.vB));
1323 break;
1324 case Instruction::k22c: // Two registers, one string/type/method index.
1325 str.append(StringPrintf(", index #%d", insn.vC));
1326 break;
1327 case Instruction::k22s: // Add one immediate from vC.
1328 case Instruction::k22b:
1329 str.append(StringPrintf(", #%d", insn.vC));
1330 break;
1331 default: {
1332 // Nothing left to print.
1333 }
1334 }
1335 }
1336 if (nop) {
1337 str.append("]--optimized away");
1338 }
1339 int length = str.length() + 1;
1340 ret = static_cast<char*>(arena_->Alloc(length, kArenaAllocDFInfo));
1341 strncpy(ret, str.c_str(), length);
1342 return ret;
1343 }
1344
1345 /* Turn method name into a legal Linux file name */
ReplaceSpecialChars(std::string & str)1346 void MIRGraph::ReplaceSpecialChars(std::string& str) {
1347 static const struct { const char before; const char after; } match[] = {
1348 {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'},
1349 {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='}
1350 };
1351 for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
1352 std::replace(str.begin(), str.end(), match[i].before, match[i].after);
1353 }
1354 }
1355
GetSSAName(int ssa_reg)1356 std::string MIRGraph::GetSSAName(int ssa_reg) {
1357 // TODO: This value is needed for LLVM and debugging. Currently, we compute this and then copy to
1358 // the arena. We should be smarter and just place straight into the arena, or compute the
1359 // value more lazily.
1360 return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1361 }
1362
1363 // Similar to GetSSAName, but if ssa name represents an immediate show that as well.
GetSSANameWithConst(int ssa_reg,bool singles_only)1364 std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) {
1365 if (reg_location_ == NULL) {
1366 // Pre-SSA - just use the standard name.
1367 return GetSSAName(ssa_reg);
1368 }
1369 if (IsConst(reg_location_[ssa_reg])) {
1370 if (!singles_only && reg_location_[ssa_reg].wide) {
1371 return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1372 ConstantValueWide(reg_location_[ssa_reg]));
1373 } else {
1374 return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1375 ConstantValue(reg_location_[ssa_reg]));
1376 }
1377 } else {
1378 return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1379 }
1380 }
1381
GetBlockName(BasicBlock * bb,char * name)1382 void MIRGraph::GetBlockName(BasicBlock* bb, char* name) {
1383 switch (bb->block_type) {
1384 case kEntryBlock:
1385 snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
1386 break;
1387 case kExitBlock:
1388 snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
1389 break;
1390 case kDalvikByteCode:
1391 snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
1392 break;
1393 case kExceptionHandling:
1394 snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
1395 bb->id);
1396 break;
1397 default:
1398 snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
1399 break;
1400 }
1401 }
1402
GetShortyFromTargetIdx(int target_idx)1403 const char* MIRGraph::GetShortyFromTargetIdx(int target_idx) {
1404 // TODO: for inlining support, use current code unit.
1405 const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(target_idx);
1406 return cu_->dex_file->GetShorty(method_id.proto_idx_);
1407 }
1408
1409 /* Debug Utility - dump a compilation unit */
DumpMIRGraph()1410 void MIRGraph::DumpMIRGraph() {
1411 BasicBlock* bb;
1412 const char* block_type_names[] = {
1413 "Null Block",
1414 "Entry Block",
1415 "Code Block",
1416 "Exit Block",
1417 "Exception Handling",
1418 "Catch Block"
1419 };
1420
1421 LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1422 LOG(INFO) << cu_->insns << " insns";
1423 LOG(INFO) << GetNumBlocks() << " blocks in total";
1424 GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1425
1426 while (true) {
1427 bb = iterator.Next();
1428 if (bb == NULL) break;
1429 LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
1430 bb->id,
1431 block_type_names[bb->block_type],
1432 bb->start_offset,
1433 bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
1434 bb->last_mir_insn ? "" : " empty");
1435 if (bb->taken != NullBasicBlockId) {
1436 LOG(INFO) << " Taken branch: block " << bb->taken
1437 << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")";
1438 }
1439 if (bb->fall_through != NullBasicBlockId) {
1440 LOG(INFO) << " Fallthrough : block " << bb->fall_through
1441 << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")";
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Build an array of location records for the incoming arguments.
1448 * Note: one location record per word of arguments, with dummy
1449 * high-word loc for wide arguments. Also pull up any following
1450 * MOVE_RESULT and incorporate it into the invoke.
1451 */
NewMemCallInfo(BasicBlock * bb,MIR * mir,InvokeType type,bool is_range)1452 CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type,
1453 bool is_range) {
1454 CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo),
1455 kArenaAllocMisc));
1456 MIR* move_result_mir = FindMoveResult(bb, mir);
1457 if (move_result_mir == NULL) {
1458 info->result.location = kLocInvalid;
1459 } else {
1460 info->result = GetRawDest(move_result_mir);
1461 move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
1462 }
1463 info->num_arg_words = mir->ssa_rep->num_uses;
1464 info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
1465 (arena_->Alloc(sizeof(RegLocation) * info->num_arg_words, kArenaAllocMisc));
1466 for (int i = 0; i < info->num_arg_words; i++) {
1467 info->args[i] = GetRawSrc(mir, i);
1468 }
1469 info->opt_flags = mir->optimization_flags;
1470 info->type = type;
1471 info->is_range = is_range;
1472 info->index = mir->dalvikInsn.vB;
1473 info->offset = mir->offset;
1474 info->mir = mir;
1475 return info;
1476 }
1477
1478 // Allocate a new MIR.
NewMIR()1479 MIR* MIRGraph::NewMIR() {
1480 MIR* mir = new (arena_) MIR();
1481 return mir;
1482 }
1483
1484 // Allocate a new basic block.
NewMemBB(BBType block_type,int block_id)1485 BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {
1486 BasicBlock* bb = new (arena_) BasicBlock();
1487
1488 bb->block_type = block_type;
1489 bb->id = block_id;
1490 // TUNING: better estimate of the exit block predecessors?
1491 bb->predecessors = new (arena_) GrowableArray<BasicBlockId>(arena_,
1492 (block_type == kExitBlock) ? 2048 : 2,
1493 kGrowableArrayPredecessors);
1494 bb->successor_block_list_type = kNotUsed;
1495 block_id_map_.Put(block_id, block_id);
1496 return bb;
1497 }
1498
InitializeConstantPropagation()1499 void MIRGraph::InitializeConstantPropagation() {
1500 is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
1501 constant_values_ = static_cast<int*>(arena_->Alloc(sizeof(int) * GetNumSSARegs(), kArenaAllocDFInfo));
1502 }
1503
InitializeMethodUses()1504 void MIRGraph::InitializeMethodUses() {
1505 // The gate starts by initializing the use counts.
1506 int num_ssa_regs = GetNumSSARegs();
1507 use_counts_.Resize(num_ssa_regs + 32);
1508 raw_use_counts_.Resize(num_ssa_regs + 32);
1509 // Initialize list.
1510 for (int i = 0; i < num_ssa_regs; i++) {
1511 use_counts_.Insert(0);
1512 raw_use_counts_.Insert(0);
1513 }
1514 }
1515
SSATransformationStart()1516 void MIRGraph::SSATransformationStart() {
1517 DCHECK(temp_scoped_alloc_.get() == nullptr);
1518 temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1519 temp_bit_vector_size_ = cu_->num_dalvik_registers;
1520 temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1521 temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapRegisterV);
1522
1523 // Update the maximum number of reachable blocks.
1524 max_num_reachable_blocks_ = num_reachable_blocks_;
1525 }
1526
SSATransformationEnd()1527 void MIRGraph::SSATransformationEnd() {
1528 // Verify the dataflow information after the pass.
1529 if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
1530 VerifyDataflow();
1531 }
1532
1533 temp_bit_vector_size_ = 0u;
1534 temp_bit_vector_ = nullptr;
1535 DCHECK(temp_scoped_alloc_.get() != nullptr);
1536 temp_scoped_alloc_.reset();
1537 }
1538
SelectTopologicalSortOrderFallBack(MIRGraph * mir_graph,const ArenaBitVector * current_loop,const ScopedArenaVector<size_t> * visited_cnt_values,ScopedArenaAllocator * allocator,ScopedArenaVector<BasicBlockId> * tmp_stack)1539 static BasicBlock* SelectTopologicalSortOrderFallBack(
1540 MIRGraph* mir_graph, const ArenaBitVector* current_loop,
1541 const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator,
1542 ScopedArenaVector<BasicBlockId>* tmp_stack) {
1543 // No true loop head has been found but there may be true loop heads after the mess we need
1544 // to resolve. To avoid taking one of those, pick the candidate with the highest number of
1545 // reachable unvisited nodes. That candidate will surely be a part of a loop.
1546 BasicBlock* fall_back = nullptr;
1547 size_t fall_back_num_reachable = 0u;
1548 // Reuse the same bit vector for each candidate to mark reachable unvisited blocks.
1549 ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc);
1550 AllNodesIterator iter(mir_graph);
1551 for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) {
1552 if (candidate->hidden || // Hidden, or
1553 candidate->visited || // already processed, or
1554 (*visited_cnt_values)[candidate->id] == 0u || // no processed predecessors, or
1555 (current_loop != nullptr && // outside current loop.
1556 !current_loop->IsBitSet(candidate->id))) {
1557 continue;
1558 }
1559 DCHECK(tmp_stack->empty());
1560 tmp_stack->push_back(candidate->id);
1561 candidate_reachable.ClearAllBits();
1562 size_t num_reachable = 0u;
1563 while (!tmp_stack->empty()) {
1564 BasicBlockId current_id = tmp_stack->back();
1565 tmp_stack->pop_back();
1566 BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1567 DCHECK(current_bb != nullptr);
1568 ChildBlockIterator child_iter(current_bb, mir_graph);
1569 BasicBlock* child_bb = child_iter.Next();
1570 for ( ; child_bb != nullptr; child_bb = child_iter.Next()) {
1571 DCHECK(!child_bb->hidden);
1572 if (child_bb->visited || // Already processed, or
1573 (current_loop != nullptr && // outside current loop.
1574 !current_loop->IsBitSet(child_bb->id))) {
1575 continue;
1576 }
1577 if (!candidate_reachable.IsBitSet(child_bb->id)) {
1578 candidate_reachable.SetBit(child_bb->id);
1579 tmp_stack->push_back(child_bb->id);
1580 num_reachable += 1u;
1581 }
1582 }
1583 }
1584 if (fall_back_num_reachable < num_reachable) {
1585 fall_back_num_reachable = num_reachable;
1586 fall_back = candidate;
1587 }
1588 }
1589 return fall_back;
1590 }
1591
1592 // Compute from which unvisited blocks is bb_id reachable through unvisited blocks.
ComputeUnvisitedReachableFrom(MIRGraph * mir_graph,BasicBlockId bb_id,ArenaBitVector * reachable,ScopedArenaVector<BasicBlockId> * tmp_stack)1593 static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id,
1594 ArenaBitVector* reachable,
1595 ScopedArenaVector<BasicBlockId>* tmp_stack) {
1596 // NOTE: Loop heads indicated by the "visited" flag.
1597 DCHECK(tmp_stack->empty());
1598 reachable->ClearAllBits();
1599 tmp_stack->push_back(bb_id);
1600 while (!tmp_stack->empty()) {
1601 BasicBlockId current_id = tmp_stack->back();
1602 tmp_stack->pop_back();
1603 BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1604 DCHECK(current_bb != nullptr);
1605 GrowableArray<BasicBlockId>::Iterator iter(current_bb->predecessors);
1606 BasicBlock* pred_bb = mir_graph->GetBasicBlock(iter.Next());
1607 for ( ; pred_bb != nullptr; pred_bb = mir_graph->GetBasicBlock(iter.Next())) {
1608 if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) {
1609 reachable->SetBit(pred_bb->id);
1610 tmp_stack->push_back(pred_bb->id);
1611 }
1612 }
1613 }
1614 }
1615
ComputeTopologicalSortOrder()1616 void MIRGraph::ComputeTopologicalSortOrder() {
1617 ScopedArenaAllocator allocator(&cu_->arena_stack);
1618 unsigned int num_blocks = GetNumBlocks();
1619
1620 ScopedArenaQueue<BasicBlock*> q(allocator.Adapter());
1621 ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter());
1622 ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter());
1623 size_t max_nested_loops = 0u;
1624 ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc);
1625 loop_exit_blocks.ClearAllBits();
1626
1627 // Count the number of blocks to process and add the entry block(s).
1628 GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1629 unsigned int num_blocks_to_process = 0u;
1630 for (BasicBlock* bb = iterator.Next(); bb != nullptr; bb = iterator.Next()) {
1631 if (bb->hidden == true) {
1632 continue;
1633 }
1634
1635 num_blocks_to_process += 1u;
1636
1637 if (bb->predecessors->Size() == 0u) {
1638 // Add entry block to the queue.
1639 q.push(bb);
1640 }
1641 }
1642
1643 // Create the topological order if need be.
1644 if (topological_order_ == nullptr) {
1645 topological_order_ = new (arena_) GrowableArray<BasicBlockId>(arena_, num_blocks);
1646 topological_order_loop_ends_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
1647 topological_order_indexes_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
1648 }
1649 topological_order_->Reset();
1650 topological_order_loop_ends_->Reset();
1651 topological_order_indexes_->Reset();
1652 topological_order_loop_ends_->Resize(num_blocks);
1653 topological_order_indexes_->Resize(num_blocks);
1654 for (BasicBlockId i = 0; i != num_blocks; ++i) {
1655 topological_order_loop_ends_->Insert(0u);
1656 topological_order_indexes_->Insert(static_cast<uint16_t>(-1));
1657 }
1658
1659 // Mark all blocks as unvisited.
1660 ClearAllVisitedFlags();
1661
1662 // For loop heads, keep track from which blocks they are reachable not going through other
1663 // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children
1664 // in this set go into the loop body, the other children are jumping over the loop.
1665 ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter());
1666 loop_head_reachable_from.resize(num_blocks, nullptr);
1667 // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id].
1668 ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter());
1669
1670 while (num_blocks_to_process != 0u) {
1671 BasicBlock* bb = nullptr;
1672 if (!q.empty()) {
1673 num_blocks_to_process -= 1u;
1674 // Get top.
1675 bb = q.front();
1676 q.pop();
1677 if (bb->visited) {
1678 // Loop head: it was already processed, mark end and copy exit blocks to the queue.
1679 DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1680 uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
1681 topological_order_loop_ends_->Put(topological_order_indexes_->Get(bb->id), idx);
1682 DCHECK_EQ(loop_head_stack.back(), bb->id);
1683 loop_head_stack.pop_back();
1684 ArenaBitVector* reachable =
1685 loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1686 for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) {
1687 if (reachable == nullptr || reachable->IsBitSet(candidate_id)) {
1688 q.push(GetBasicBlock(candidate_id));
1689 // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
1690 // so clearing the bit has no effect on the iterator.
1691 loop_exit_blocks.ClearBit(candidate_id);
1692 }
1693 }
1694 continue;
1695 }
1696 } else {
1697 // Find the new loop head.
1698 AllNodesIterator iter(this);
1699 while (true) {
1700 BasicBlock* candidate = iter.Next();
1701 if (candidate == nullptr) {
1702 // We did not find a true loop head, fall back to a reachable block in any loop.
1703 ArenaBitVector* current_loop =
1704 loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1705 bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values,
1706 &allocator, &tmp_stack);
1707 DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1708 if (kIsDebugBuild && cu_->dex_file != nullptr) {
1709 LOG(INFO) << "Topological sort order: Using fall-back in "
1710 << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id
1711 << " @0x" << std::hex << bb->start_offset
1712 << ", num_blocks = " << std::dec << num_blocks;
1713 }
1714 break;
1715 }
1716 if (candidate->hidden || // Hidden, or
1717 candidate->visited || // already processed, or
1718 visited_cnt_values[candidate->id] == 0u || // no processed predecessors, or
1719 (!loop_head_stack.empty() && // outside current loop.
1720 !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) {
1721 continue;
1722 }
1723
1724 GrowableArray<BasicBlockId>::Iterator pred_iter(candidate->predecessors);
1725 BasicBlock* pred_bb = GetBasicBlock(pred_iter.Next());
1726 for ( ; pred_bb != nullptr; pred_bb = GetBasicBlock(pred_iter.Next())) {
1727 if (pred_bb != candidate && !pred_bb->visited &&
1728 !pred_bb->dominators->IsBitSet(candidate->id)) {
1729 break; // Keep non-null pred_bb to indicate failure.
1730 }
1731 }
1732 if (pred_bb == nullptr) {
1733 bb = candidate;
1734 break;
1735 }
1736 }
1737 // Compute blocks from which the loop head is reachable and process those blocks first.
1738 ArenaBitVector* reachable =
1739 new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc);
1740 loop_head_reachable_from[bb->id] = reachable;
1741 ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack);
1742 // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.)
1743 loop_head_stack.push_back(bb->id);
1744 max_nested_loops = std::max(max_nested_loops, loop_head_stack.size());
1745 }
1746
1747 DCHECK_EQ(bb->hidden, false);
1748 DCHECK_EQ(bb->visited, false);
1749 bb->visited = true;
1750
1751 // Now add the basic block.
1752 uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
1753 topological_order_indexes_->Put(bb->id, idx);
1754 topological_order_->Insert(bb->id);
1755
1756 // Update visited_cnt_values for children.
1757 ChildBlockIterator succIter(bb, this);
1758 BasicBlock* successor = succIter.Next();
1759 for ( ; successor != nullptr; successor = succIter.Next()) {
1760 if (successor->hidden) {
1761 continue;
1762 }
1763
1764 // One more predecessor was visited.
1765 visited_cnt_values[successor->id] += 1u;
1766 if (visited_cnt_values[successor->id] == successor->predecessors->Size()) {
1767 if (loop_head_stack.empty() ||
1768 loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) {
1769 q.push(successor);
1770 } else {
1771 DCHECK(!loop_exit_blocks.IsBitSet(successor->id));
1772 loop_exit_blocks.SetBit(successor->id);
1773 }
1774 }
1775 }
1776 }
1777
1778 // Prepare the loop head stack for iteration.
1779 topological_order_loop_head_stack_ =
1780 new (arena_) GrowableArray<std::pair<uint16_t, bool>>(arena_, max_nested_loops);
1781 }
1782
IsExceptionBlock() const1783 bool BasicBlock::IsExceptionBlock() const {
1784 if (block_type == kExceptionHandling) {
1785 return true;
1786 }
1787 return false;
1788 }
1789
HasSuspendTestBetween(BasicBlock * source,BasicBlockId target_id)1790 bool MIRGraph::HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id) {
1791 BasicBlock* target = GetBasicBlock(target_id);
1792
1793 if (source == nullptr || target == nullptr)
1794 return false;
1795
1796 int idx;
1797 for (idx = gen_suspend_test_list_.Size() - 1; idx >= 0; idx--) {
1798 BasicBlock* bb = gen_suspend_test_list_.Get(idx);
1799 if (bb == source)
1800 return true; // The block has been inserted by a suspend check before.
1801 if (source->dominators->IsBitSet(bb->id) && bb->dominators->IsBitSet(target_id))
1802 return true;
1803 }
1804
1805 return false;
1806 }
1807
ChildBlockIterator(BasicBlock * bb,MIRGraph * mir_graph)1808 ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph)
1809 : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false),
1810 visited_taken_(false), have_successors_(false) {
1811 // Check if we actually do have successors.
1812 if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) {
1813 have_successors_ = true;
1814 successor_iter_.Reset(basic_block_->successor_blocks);
1815 }
1816 }
1817
Next()1818 BasicBlock* ChildBlockIterator::Next() {
1819 // We check if we have a basic block. If we don't we cannot get next child.
1820 if (basic_block_ == nullptr) {
1821 return nullptr;
1822 }
1823
1824 // If we haven't visited fallthrough, return that.
1825 if (visited_fallthrough_ == false) {
1826 visited_fallthrough_ = true;
1827
1828 BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through);
1829 if (result != nullptr) {
1830 return result;
1831 }
1832 }
1833
1834 // If we haven't visited taken, return that.
1835 if (visited_taken_ == false) {
1836 visited_taken_ = true;
1837
1838 BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken);
1839 if (result != nullptr) {
1840 return result;
1841 }
1842 }
1843
1844 // We visited both taken and fallthrough. Now check if we have successors we need to visit.
1845 if (have_successors_ == true) {
1846 // Get information about next successor block.
1847 for (SuccessorBlockInfo* successor_block_info = successor_iter_.Next();
1848 successor_block_info != nullptr;
1849 successor_block_info = successor_iter_.Next()) {
1850 // If block was replaced by zero block, take next one.
1851 if (successor_block_info->block != NullBasicBlockId) {
1852 return mir_graph_->GetBasicBlock(successor_block_info->block);
1853 }
1854 }
1855 }
1856
1857 // We do not have anything.
1858 return nullptr;
1859 }
1860
Copy(CompilationUnit * c_unit)1861 BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) {
1862 MIRGraph* mir_graph = c_unit->mir_graph.get();
1863 return Copy(mir_graph);
1864 }
1865
Copy(MIRGraph * mir_graph)1866 BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) {
1867 BasicBlock* result_bb = mir_graph->CreateNewBB(block_type);
1868
1869 // We don't do a memcpy style copy here because it would lead to a lot of things
1870 // to clean up. Let us do it by hand instead.
1871 // Copy in taken and fallthrough.
1872 result_bb->fall_through = fall_through;
1873 result_bb->taken = taken;
1874
1875 // Copy successor links if needed.
1876 ArenaAllocator* arena = mir_graph->GetArena();
1877
1878 result_bb->successor_block_list_type = successor_block_list_type;
1879 if (result_bb->successor_block_list_type != kNotUsed) {
1880 size_t size = successor_blocks->Size();
1881 result_bb->successor_blocks = new (arena) GrowableArray<SuccessorBlockInfo*>(arena, size, kGrowableArraySuccessorBlocks);
1882 GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
1883 while (true) {
1884 SuccessorBlockInfo* sbi_old = iterator.Next();
1885 if (sbi_old == nullptr) {
1886 break;
1887 }
1888 SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>(arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
1889 memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo));
1890 result_bb->successor_blocks->Insert(sbi_new);
1891 }
1892 }
1893
1894 // Copy offset, method.
1895 result_bb->start_offset = start_offset;
1896
1897 // Now copy instructions.
1898 for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) {
1899 // Get a copy first.
1900 MIR* copy = mir->Copy(mir_graph);
1901
1902 // Append it.
1903 result_bb->AppendMIR(copy);
1904 }
1905
1906 return result_bb;
1907 }
1908
Copy(MIRGraph * mir_graph)1909 MIR* MIR::Copy(MIRGraph* mir_graph) {
1910 MIR* res = mir_graph->NewMIR();
1911 *res = *this;
1912
1913 // Remove links
1914 res->next = nullptr;
1915 res->bb = NullBasicBlockId;
1916 res->ssa_rep = nullptr;
1917
1918 return res;
1919 }
1920
Copy(CompilationUnit * c_unit)1921 MIR* MIR::Copy(CompilationUnit* c_unit) {
1922 return Copy(c_unit->mir_graph.get());
1923 }
1924
GetStartUseIndex(Instruction::Code opcode)1925 uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) {
1926 // Default result.
1927 int res = 0;
1928
1929 // We are basically setting the iputs to their igets counterparts.
1930 switch (opcode) {
1931 case Instruction::IPUT:
1932 case Instruction::IPUT_OBJECT:
1933 case Instruction::IPUT_BOOLEAN:
1934 case Instruction::IPUT_BYTE:
1935 case Instruction::IPUT_CHAR:
1936 case Instruction::IPUT_SHORT:
1937 case Instruction::IPUT_QUICK:
1938 case Instruction::IPUT_OBJECT_QUICK:
1939 case Instruction::APUT:
1940 case Instruction::APUT_OBJECT:
1941 case Instruction::APUT_BOOLEAN:
1942 case Instruction::APUT_BYTE:
1943 case Instruction::APUT_CHAR:
1944 case Instruction::APUT_SHORT:
1945 case Instruction::SPUT:
1946 case Instruction::SPUT_OBJECT:
1947 case Instruction::SPUT_BOOLEAN:
1948 case Instruction::SPUT_BYTE:
1949 case Instruction::SPUT_CHAR:
1950 case Instruction::SPUT_SHORT:
1951 // Skip the VR containing what to store.
1952 res = 1;
1953 break;
1954 case Instruction::IPUT_WIDE:
1955 case Instruction::IPUT_WIDE_QUICK:
1956 case Instruction::APUT_WIDE:
1957 case Instruction::SPUT_WIDE:
1958 // Skip the two VRs containing what to store.
1959 res = 2;
1960 break;
1961 default:
1962 // Do nothing in the general case.
1963 break;
1964 }
1965
1966 return res;
1967 }
1968
1969 /**
1970 * @brief Given a decoded instruction, it checks whether the instruction
1971 * sets a constant and if it does, more information is provided about the
1972 * constant being set.
1973 * @param ptr_value pointer to a 64-bit holder for the constant.
1974 * @param wide Updated by function whether a wide constant is being set by bytecode.
1975 * @return Returns false if the decoded instruction does not represent a constant bytecode.
1976 */
GetConstant(int64_t * ptr_value,bool * wide) const1977 bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const {
1978 bool sets_const = true;
1979 int64_t value = vB;
1980
1981 DCHECK(ptr_value != nullptr);
1982 DCHECK(wide != nullptr);
1983
1984 switch (opcode) {
1985 case Instruction::CONST_4:
1986 case Instruction::CONST_16:
1987 case Instruction::CONST:
1988 *wide = false;
1989 value <<= 32; // In order to get the sign extend.
1990 value >>= 32;
1991 break;
1992 case Instruction::CONST_HIGH16:
1993 *wide = false;
1994 value <<= 48; // In order to get the sign extend.
1995 value >>= 32;
1996 break;
1997 case Instruction::CONST_WIDE_16:
1998 case Instruction::CONST_WIDE_32:
1999 *wide = true;
2000 value <<= 32; // In order to get the sign extend.
2001 value >>= 32;
2002 break;
2003 case Instruction::CONST_WIDE:
2004 *wide = true;
2005 value = vB_wide;
2006 break;
2007 case Instruction::CONST_WIDE_HIGH16:
2008 *wide = true;
2009 value <<= 48; // In order to get the sign extend.
2010 break;
2011 default:
2012 sets_const = false;
2013 break;
2014 }
2015
2016 if (sets_const) {
2017 *ptr_value = value;
2018 }
2019
2020 return sets_const;
2021 }
2022
ResetOptimizationFlags(uint16_t reset_flags)2023 void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) {
2024 // Reset flags for all MIRs in bb.
2025 for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) {
2026 mir->optimization_flags &= (~reset_flags);
2027 }
2028 }
2029
Hide(CompilationUnit * c_unit)2030 void BasicBlock::Hide(CompilationUnit* c_unit) {
2031 // First lets make it a dalvik bytecode block so it doesn't have any special meaning.
2032 block_type = kDalvikByteCode;
2033
2034 // Mark it as hidden.
2035 hidden = true;
2036
2037 // Detach it from its MIRs so we don't generate code for them. Also detached MIRs
2038 // are updated to know that they no longer have a parent.
2039 for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2040 mir->bb = NullBasicBlockId;
2041 }
2042 first_mir_insn = nullptr;
2043 last_mir_insn = nullptr;
2044
2045 GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
2046
2047 MIRGraph* mir_graph = c_unit->mir_graph.get();
2048 while (true) {
2049 BasicBlock* pred_bb = mir_graph->GetBasicBlock(iterator.Next());
2050 if (pred_bb == nullptr) {
2051 break;
2052 }
2053
2054 // Sadly we have to go through the children by hand here.
2055 pred_bb->ReplaceChild(id, NullBasicBlockId);
2056 }
2057
2058 // Iterate through children of bb we are hiding.
2059 ChildBlockIterator successorChildIter(this, mir_graph);
2060
2061 for (BasicBlock* childPtr = successorChildIter.Next(); childPtr != 0; childPtr = successorChildIter.Next()) {
2062 // Replace child with null child.
2063 childPtr->predecessors->Delete(id);
2064 }
2065 }
2066
IsSSALiveOut(const CompilationUnit * c_unit,int ssa_reg)2067 bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) {
2068 // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember
2069 // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg,
2070 // then it is not live out of this BB.
2071 int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg);
2072
2073 int last_ssa_reg = -1;
2074
2075 // Walk through the MIRs backwards.
2076 for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2077 // Get ssa rep.
2078 SSARepresentation *ssa_rep = mir->ssa_rep;
2079
2080 // Go through the defines for this MIR.
2081 for (int i = 0; i < ssa_rep->num_defs; i++) {
2082 DCHECK(ssa_rep->defs != nullptr);
2083
2084 // Get the ssa reg.
2085 int def_ssa_reg = ssa_rep->defs[i];
2086
2087 // Get dalvik reg.
2088 int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg);
2089
2090 // Compare dalvik regs.
2091 if (dalvik_reg == def_dalvik_reg) {
2092 // We found a def of the register that we are being asked about.
2093 // Remember it.
2094 last_ssa_reg = def_ssa_reg;
2095 }
2096 }
2097 }
2098
2099 if (last_ssa_reg == -1) {
2100 // If we get to this point we couldn't find a define of register user asked about.
2101 // Let's assume the user knows what he's doing so we can be safe and say that if we
2102 // couldn't find a def, it is live out.
2103 return true;
2104 }
2105
2106 // If it is not -1, we found a match, is it ssa_reg?
2107 return (ssa_reg == last_ssa_reg);
2108 }
2109
ReplaceChild(BasicBlockId old_bb,BasicBlockId new_bb)2110 bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) {
2111 // We need to check taken, fall_through, and successor_blocks to replace.
2112 bool found = false;
2113 if (taken == old_bb) {
2114 taken = new_bb;
2115 found = true;
2116 }
2117
2118 if (fall_through == old_bb) {
2119 fall_through = new_bb;
2120 found = true;
2121 }
2122
2123 if (successor_block_list_type != kNotUsed) {
2124 GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
2125 while (true) {
2126 SuccessorBlockInfo* successor_block_info = iterator.Next();
2127 if (successor_block_info == nullptr) {
2128 break;
2129 }
2130 if (successor_block_info->block == old_bb) {
2131 successor_block_info->block = new_bb;
2132 found = true;
2133 }
2134 }
2135 }
2136
2137 return found;
2138 }
2139
UpdatePredecessor(BasicBlockId old_parent,BasicBlockId new_parent)2140 void BasicBlock::UpdatePredecessor(BasicBlockId old_parent, BasicBlockId new_parent) {
2141 GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
2142 bool found = false;
2143
2144 while (true) {
2145 BasicBlockId pred_bb_id = iterator.Next();
2146
2147 if (pred_bb_id == NullBasicBlockId) {
2148 break;
2149 }
2150
2151 if (pred_bb_id == old_parent) {
2152 size_t idx = iterator.GetIndex() - 1;
2153 predecessors->Put(idx, new_parent);
2154 found = true;
2155 break;
2156 }
2157 }
2158
2159 // If not found, add it.
2160 if (found == false) {
2161 predecessors->Insert(new_parent);
2162 }
2163 }
2164
2165 // Create a new basic block with block_id as num_blocks_ that is
2166 // post-incremented.
CreateNewBB(BBType block_type)2167 BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {
2168 BasicBlock* res = NewMemBB(block_type, num_blocks_++);
2169 block_list_.Insert(res);
2170 return res;
2171 }
2172
CalculateBasicBlockInformation()2173 void MIRGraph::CalculateBasicBlockInformation() {
2174 PassDriverMEPostOpt driver(cu_);
2175 driver.Launch();
2176 }
2177
InitializeBasicBlockData()2178 void MIRGraph::InitializeBasicBlockData() {
2179 num_blocks_ = block_list_.Size();
2180 }
2181
2182 } // namespace art
2183