1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "base/stringprintf.h"
17 #include "sea_ir/ir/instruction_tools.h"
18 #include "sea_ir/ir/sea.h"
19 #include "sea_ir/code_gen/code_gen.h"
20 #include "sea_ir/types/type_inference.h"
21 
22 #define MAX_REACHING_DEF_ITERERATIONS (10)
23 // TODO: When development is done, this define should not
24 // be needed, it is currently used as a cutoff
25 // for cases where the iterative fixed point algorithm
26 // does not reach a fixed point because of a bug.
27 
28 namespace sea_ir {
29 
30 int SeaNode::current_max_node_id_ = 0;
31 
Traverse(Region * region)32 void IRVisitor::Traverse(Region* region) {
33   std::vector<PhiInstructionNode*>* phis = region->GetPhiNodes();
34   for (std::vector<PhiInstructionNode*>::const_iterator cit = phis->begin();
35       cit != phis->end(); cit++) {
36     (*cit)->Accept(this);
37   }
38   std::vector<InstructionNode*>* instructions = region->GetInstructions();
39   for (std::vector<InstructionNode*>::const_iterator cit = instructions->begin();
40       cit != instructions->end(); cit++) {
41     (*cit)->Accept(this);
42   }
43 }
44 
Traverse(SeaGraph * graph)45 void IRVisitor::Traverse(SeaGraph* graph) {
46   for (std::vector<Region*>::const_iterator cit = ordered_regions_.begin();
47           cit != ordered_regions_.end(); cit++ ) {
48     (*cit)->Accept(this);
49   }
50 }
51 
GetGraph(const art::DexFile & dex_file)52 SeaGraph* SeaGraph::GetGraph(const art::DexFile& dex_file) {
53   return new SeaGraph(dex_file);
54 }
55 
AddEdge(Region * src,Region * dst) const56 void SeaGraph::AddEdge(Region* src, Region* dst) const {
57   src->AddSuccessor(dst);
58   dst->AddPredecessor(src);
59 }
60 
ComputeRPO(Region * current_region,int & current_rpo)61 void SeaGraph::ComputeRPO(Region* current_region, int& current_rpo) {
62   current_region->SetRPO(VISITING);
63   std::vector<sea_ir::Region*>* succs = current_region->GetSuccessors();
64   for (std::vector<sea_ir::Region*>::iterator succ_it = succs->begin();
65       succ_it != succs->end(); ++succ_it) {
66     if (NOT_VISITED == (*succ_it)->GetRPO()) {
67       SeaGraph::ComputeRPO(*succ_it, current_rpo);
68     }
69   }
70   current_region->SetRPO(current_rpo--);
71 }
72 
ComputeIDominators()73 void SeaGraph::ComputeIDominators() {
74   bool changed = true;
75   while (changed) {
76     changed = false;
77     // Entry node has itself as IDOM.
78     std::vector<Region*>::iterator crt_it;
79     std::set<Region*> processedNodes;
80     // Find and mark the entry node(s).
81     for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
82       if ((*crt_it)->GetPredecessors()->size() == 0) {
83         processedNodes.insert(*crt_it);
84         (*crt_it)->SetIDominator(*crt_it);
85       }
86     }
87     for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
88       if ((*crt_it)->GetPredecessors()->size() == 0) {
89         continue;
90       }
91       // NewIDom = first (processed) predecessor of b.
92       Region* new_dom = NULL;
93       std::vector<Region*>* preds = (*crt_it)->GetPredecessors();
94       DCHECK(NULL != preds);
95       Region* root_pred = NULL;
96       for (std::vector<Region*>::iterator pred_it = preds->begin();
97           pred_it != preds->end(); ++pred_it) {
98         if (processedNodes.end() != processedNodes.find((*pred_it))) {
99           root_pred = *pred_it;
100           new_dom = root_pred;
101           break;
102         }
103       }
104       // For all other predecessors p of b, if idom is not set,
105       // then NewIdom = Intersect(p, NewIdom)
106       for (std::vector<Region*>::const_iterator pred_it = preds->begin();
107           pred_it != preds->end(); ++pred_it) {
108         DCHECK(NULL != *pred_it);
109         // if IDOMS[p] != UNDEFINED
110         if ((*pred_it != root_pred) && (*pred_it)->GetIDominator() != NULL) {
111           DCHECK(NULL != new_dom);
112           new_dom = SeaGraph::Intersect(*pred_it, new_dom);
113         }
114       }
115       DCHECK(NULL != *crt_it);
116       if ((*crt_it)->GetIDominator() != new_dom) {
117         (*crt_it)->SetIDominator(new_dom);
118         changed = true;
119       }
120       processedNodes.insert(*crt_it);
121     }
122   }
123 
124   // For easily ordering of regions we need edges dominator->dominated.
125   for (std::vector<Region*>::iterator region_it = regions_.begin();
126       region_it != regions_.end(); region_it++) {
127     Region* idom = (*region_it)->GetIDominator();
128     if (idom != *region_it) {
129       idom->AddToIDominatedSet(*region_it);
130     }
131   }
132 }
133 
Intersect(Region * i,Region * j)134 Region* SeaGraph::Intersect(Region* i, Region* j) {
135   Region* finger1 = i;
136   Region* finger2 = j;
137   while (finger1 != finger2) {
138     while (finger1->GetRPO() > finger2->GetRPO()) {
139       DCHECK(NULL != finger1);
140       finger1 = finger1->GetIDominator();  // should have: finger1 != NULL
141       DCHECK(NULL != finger1);
142     }
143     while (finger1->GetRPO() < finger2->GetRPO()) {
144       DCHECK(NULL != finger2);
145       finger2 = finger2->GetIDominator();  // should have: finger1 != NULL
146       DCHECK(NULL != finger2);
147     }
148   }
149   return finger1;  // finger1 should be equal to finger2 at this point.
150 }
151 
ComputeDownExposedDefs()152 void SeaGraph::ComputeDownExposedDefs() {
153   for (std::vector<Region*>::iterator region_it = regions_.begin();
154         region_it != regions_.end(); region_it++) {
155       (*region_it)->ComputeDownExposedDefs();
156     }
157 }
158 
ComputeReachingDefs()159 void SeaGraph::ComputeReachingDefs() {
160   // Iterate until the reaching definitions set doesn't change anymore.
161   // (See Cooper & Torczon, "Engineering a Compiler", second edition, page 487)
162   bool changed = true;
163   int iteration = 0;
164   while (changed && (iteration < MAX_REACHING_DEF_ITERERATIONS)) {
165     iteration++;
166     changed = false;
167     // TODO: optimize the ordering if this becomes performance bottleneck.
168     for (std::vector<Region*>::iterator regions_it = regions_.begin();
169         regions_it != regions_.end();
170         regions_it++) {
171       changed |= (*regions_it)->UpdateReachingDefs();
172     }
173   }
174   DCHECK(!changed) << "Reaching definitions computation did not reach a fixed point.";
175 }
176 
InsertSignatureNodes(const art::DexFile::CodeItem * code_item,Region * r)177 void SeaGraph::InsertSignatureNodes(const art::DexFile::CodeItem* code_item, Region* r) {
178   // Insert a fake SignatureNode for the first parameter.
179   // TODO: Provide a register enum value for the fake parameter.
180   SignatureNode* parameter_def_node = new sea_ir::SignatureNode(0, 0);
181   AddParameterNode(parameter_def_node);
182   r->AddChild(parameter_def_node);
183   // Insert SignatureNodes for each Dalvik register parameter.
184   for (unsigned int crt_offset = 0; crt_offset < code_item->ins_size_; crt_offset++) {
185     int register_no = code_item->registers_size_ - crt_offset - 1;
186     int position = crt_offset + 1;
187     SignatureNode* parameter_def_node = new sea_ir::SignatureNode(register_no, position);
188     AddParameterNode(parameter_def_node);
189     r->AddChild(parameter_def_node);
190   }
191 }
192 
BuildMethodSeaGraph(const art::DexFile::CodeItem * code_item,const art::DexFile & dex_file,uint16_t class_def_idx,uint32_t method_idx,uint32_t method_access_flags)193 void SeaGraph::BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item,
194     const art::DexFile& dex_file, uint16_t class_def_idx,
195     uint32_t method_idx, uint32_t method_access_flags) {
196   code_item_ = code_item;
197   class_def_idx_ = class_def_idx;
198   method_idx_ = method_idx;
199   method_access_flags_ = method_access_flags;
200   const uint16_t* code = code_item->insns_;
201   const size_t size_in_code_units = code_item->insns_size_in_code_units_;
202   // This maps target instruction pointers to their corresponding region objects.
203   std::map<const uint16_t*, Region*> target_regions;
204   size_t i = 0;
205   // Pass: Find the start instruction of basic blocks
206   //         by locating targets and flow-though instructions of branches.
207   while (i < size_in_code_units) {
208     const art::Instruction* inst = art::Instruction::At(&code[i]);
209     if (inst->IsBranch() || inst->IsUnconditional()) {
210       int32_t offset = inst->GetTargetOffset();
211       if (target_regions.end() == target_regions.find(&code[i + offset])) {
212         Region* region = GetNewRegion();
213         target_regions.insert(std::pair<const uint16_t*, Region*>(&code[i + offset], region));
214       }
215       if (inst->CanFlowThrough()
216           && (target_regions.end() == target_regions.find(&code[i + inst->SizeInCodeUnits()]))) {
217         Region* region = GetNewRegion();
218         target_regions.insert(
219             std::pair<const uint16_t*, Region*>(&code[i + inst->SizeInCodeUnits()], region));
220       }
221     }
222     i += inst->SizeInCodeUnits();
223   }
224 
225 
226   Region* r = GetNewRegion();
227 
228   InsertSignatureNodes(code_item, r);
229   // Pass: Assign instructions to region nodes and
230   //         assign branches their control flow successors.
231   i = 0;
232   sea_ir::InstructionNode* last_node = NULL;
233   sea_ir::InstructionNode* node = NULL;
234   while (i < size_in_code_units) {
235     const art::Instruction* inst = art::Instruction::At(&code[i]);
236     std::vector<InstructionNode*> sea_instructions_for_dalvik =
237         sea_ir::InstructionNode::Create(inst);
238     for (std::vector<InstructionNode*>::const_iterator cit = sea_instructions_for_dalvik.begin();
239         sea_instructions_for_dalvik.end() != cit; ++cit) {
240       last_node = node;
241       node = *cit;
242 
243       if (inst->IsBranch() || inst->IsUnconditional()) {
244         int32_t offset = inst->GetTargetOffset();
245         std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i + offset]);
246         DCHECK(it != target_regions.end());
247         AddEdge(r, it->second);  // Add edge to branch target.
248       }
249       std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i]);
250       if (target_regions.end() != it) {
251         // Get the already created region because this is a branch target.
252         Region* nextRegion = it->second;
253         if (last_node->GetInstruction()->IsBranch()
254             && last_node->GetInstruction()->CanFlowThrough()) {
255           AddEdge(r, it->second);  // Add flow-through edge.
256         }
257         r = nextRegion;
258       }
259       r->AddChild(node);
260     }
261     i += inst->SizeInCodeUnits();
262   }
263 }
264 
ComputeRPO()265 void SeaGraph::ComputeRPO() {
266   int rpo_id = regions_.size() - 1;
267   for (std::vector<Region*>::const_iterator crt_it = regions_.begin(); crt_it != regions_.end();
268       ++crt_it) {
269     if ((*crt_it)->GetPredecessors()->size() == 0) {
270       ComputeRPO(*crt_it, rpo_id);
271     }
272   }
273 }
274 
275 // Performs the renaming phase in traditional SSA transformations.
276 // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
RenameAsSSA()277 void SeaGraph::RenameAsSSA() {
278   utils::ScopedHashtable<int, InstructionNode*> scoped_table;
279   scoped_table.OpenScope();
280   for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
281       region_it++) {
282     if ((*region_it)->GetIDominator() == *region_it) {
283       RenameAsSSA(*region_it, &scoped_table);
284     }
285   }
286   scoped_table.CloseScope();
287 }
288 
ConvertToSSA()289 void SeaGraph::ConvertToSSA() {
290   // Pass: find global names.
291   // The map @block maps registers to the blocks in which they are defined.
292   std::map<int, std::set<Region*>> blocks;
293   // The set @globals records registers whose use
294   // is in a different block than the corresponding definition.
295   std::set<int> globals;
296   for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
297       region_it++) {
298     std::set<int> var_kill;
299     std::vector<InstructionNode*>* instructions = (*region_it)->GetInstructions();
300     for (std::vector<InstructionNode*>::iterator inst_it = instructions->begin();
301         inst_it != instructions->end(); inst_it++) {
302       std::vector<int> used_regs = (*inst_it)->GetUses();
303       for (std::size_t i = 0; i < used_regs.size(); i++) {
304         int used_reg = used_regs[i];
305         if (var_kill.find(used_reg) == var_kill.end()) {
306           globals.insert(used_reg);
307         }
308       }
309       const int reg_def = (*inst_it)->GetResultRegister();
310       if (reg_def != NO_REGISTER) {
311         var_kill.insert(reg_def);
312       }
313 
314       blocks.insert(std::pair<int, std::set<Region*>>(reg_def, std::set<Region*>()));
315       std::set<Region*>* reg_def_blocks = &(blocks.find(reg_def)->second);
316       reg_def_blocks->insert(*region_it);
317     }
318   }
319 
320   // Pass: Actually add phi-nodes to regions.
321   for (std::set<int>::const_iterator globals_it = globals.begin();
322       globals_it != globals.end(); globals_it++) {
323     int global = *globals_it;
324     // Copy the set, because we will modify the worklist as we go.
325     std::set<Region*> worklist((*(blocks.find(global))).second);
326     for (std::set<Region*>::const_iterator b_it = worklist.begin();
327         b_it != worklist.end(); b_it++) {
328       std::set<Region*>* df = (*b_it)->GetDominanceFrontier();
329       for (std::set<Region*>::const_iterator df_it = df->begin(); df_it != df->end(); df_it++) {
330         if ((*df_it)->InsertPhiFor(global)) {
331           // Check that the dominance frontier element is in the worklist already
332           // because we only want to break if the element is actually not there yet.
333           if (worklist.find(*df_it) == worklist.end()) {
334             worklist.insert(*df_it);
335             b_it = worklist.begin();
336             break;
337           }
338         }
339       }
340     }
341   }
342   // Pass: Build edges to the definition corresponding to each use.
343   // (This corresponds to the renaming phase in traditional SSA transformations.
344   // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
345   RenameAsSSA();
346 }
347 
RenameAsSSA(Region * crt_region,utils::ScopedHashtable<int,InstructionNode * > * scoped_table)348 void SeaGraph::RenameAsSSA(Region* crt_region,
349     utils::ScopedHashtable<int, InstructionNode*>* scoped_table) {
350   scoped_table->OpenScope();
351   // Rename phi nodes defined in the current region.
352   std::vector<PhiInstructionNode*>* phis = crt_region->GetPhiNodes();
353   for (std::vector<PhiInstructionNode*>::iterator phi_it = phis->begin();
354       phi_it != phis->end(); phi_it++) {
355     int reg_no = (*phi_it)->GetRegisterNumber();
356     scoped_table->Add(reg_no, (*phi_it));
357   }
358   // Rename operands of instructions from the current region.
359   std::vector<InstructionNode*>* instructions = crt_region->GetInstructions();
360   for (std::vector<InstructionNode*>::const_iterator instructions_it = instructions->begin();
361       instructions_it != instructions->end(); instructions_it++) {
362     InstructionNode* current_instruction = (*instructions_it);
363     // Rename uses.
364     std::vector<int> used_regs = current_instruction->GetUses();
365     for (std::vector<int>::const_iterator reg_it = used_regs.begin();
366         reg_it != used_regs.end(); reg_it++) {
367       int current_used_reg = (*reg_it);
368       InstructionNode* definition = scoped_table->Lookup(current_used_reg);
369       current_instruction->RenameToSSA(current_used_reg, definition);
370     }
371     // Update scope table with latest definitions.
372     std::vector<int> def_regs = current_instruction->GetDefinitions();
373     for (std::vector<int>::const_iterator reg_it = def_regs.begin();
374             reg_it != def_regs.end(); reg_it++) {
375       int current_defined_reg = (*reg_it);
376       scoped_table->Add(current_defined_reg, current_instruction);
377     }
378   }
379   // Fill in uses of phi functions in CFG successor regions.
380   const std::vector<Region*>* successors = crt_region->GetSuccessors();
381   for (std::vector<Region*>::const_iterator successors_it = successors->begin();
382       successors_it != successors->end(); successors_it++) {
383     Region* successor = (*successors_it);
384     successor->SetPhiDefinitionsForUses(scoped_table, crt_region);
385   }
386 
387   // Rename all successors in the dominators tree.
388   const std::set<Region*>* dominated_nodes = crt_region->GetIDominatedSet();
389   for (std::set<Region*>::const_iterator dominated_nodes_it = dominated_nodes->begin();
390       dominated_nodes_it != dominated_nodes->end(); dominated_nodes_it++) {
391     Region* dominated_node = (*dominated_nodes_it);
392     RenameAsSSA(dominated_node, scoped_table);
393   }
394   scoped_table->CloseScope();
395 }
396 
GenerateLLVM(const std::string & function_name,const art::DexFile & dex_file)397 CodeGenData* SeaGraph::GenerateLLVM(const std::string& function_name,
398     const art::DexFile& dex_file) {
399   // Pass: Generate LLVM IR.
400   CodeGenPrepassVisitor code_gen_prepass_visitor(function_name);
401   std::cout << "Generating code..." << std::endl;
402   Accept(&code_gen_prepass_visitor);
403   CodeGenVisitor code_gen_visitor(code_gen_prepass_visitor.GetData(),  dex_file);
404   Accept(&code_gen_visitor);
405   CodeGenPostpassVisitor code_gen_postpass_visitor(code_gen_visitor.GetData());
406   Accept(&code_gen_postpass_visitor);
407   return code_gen_postpass_visitor.GetData();
408 }
409 
CompileMethod(const std::string & function_name,const art::DexFile::CodeItem * code_item,uint16_t class_def_idx,uint32_t method_idx,uint32_t method_access_flags,const art::DexFile & dex_file)410 CodeGenData* SeaGraph::CompileMethod(
411     const std::string& function_name,
412     const art::DexFile::CodeItem* code_item, uint16_t class_def_idx,
413     uint32_t method_idx, uint32_t method_access_flags, const art::DexFile& dex_file) {
414   // Two passes: Builds the intermediate structure (non-SSA) of the sea-ir for the function.
415   BuildMethodSeaGraph(code_item, dex_file, class_def_idx, method_idx, method_access_flags);
416   // Pass: Compute reverse post-order of regions.
417   ComputeRPO();
418   // Multiple passes: compute immediate dominators.
419   ComputeIDominators();
420   // Pass: compute downward-exposed definitions.
421   ComputeDownExposedDefs();
422   // Multiple Passes (iterative fixed-point algorithm): Compute reaching definitions
423   ComputeReachingDefs();
424   // Pass (O(nlogN)): Compute the dominance frontier for region nodes.
425   ComputeDominanceFrontier();
426   // Two Passes: Phi node insertion.
427   ConvertToSSA();
428   // Pass: type inference
429   ti_->ComputeTypes(this);
430   // Pass: Generate LLVM IR.
431   CodeGenData* cgd = GenerateLLVM(function_name, dex_file);
432   return cgd;
433 }
434 
ComputeDominanceFrontier()435 void SeaGraph::ComputeDominanceFrontier() {
436   for (std::vector<Region*>::iterator region_it = regions_.begin();
437       region_it != regions_.end(); region_it++) {
438     std::vector<Region*>* preds = (*region_it)->GetPredecessors();
439     if (preds->size() > 1) {
440       for (std::vector<Region*>::iterator pred_it = preds->begin();
441           pred_it != preds->end(); pred_it++) {
442         Region* runner = *pred_it;
443         while (runner != (*region_it)->GetIDominator()) {
444           runner->AddToDominanceFrontier(*region_it);
445           runner = runner->GetIDominator();
446         }
447       }
448     }
449   }
450 }
451 
GetNewRegion()452 Region* SeaGraph::GetNewRegion() {
453   Region* new_region = new Region();
454   AddRegion(new_region);
455   return new_region;
456 }
457 
AddRegion(Region * r)458 void SeaGraph::AddRegion(Region* r) {
459   DCHECK(r) << "Tried to add NULL region to SEA graph.";
460   regions_.push_back(r);
461 }
462 
SeaGraph(const art::DexFile & df)463 SeaGraph::SeaGraph(const art::DexFile& df)
464     :ti_(new TypeInference()), class_def_idx_(0), method_idx_(0),  method_access_flags_(),
465      regions_(), parameters_(), dex_file_(df), code_item_(NULL) { }
466 
AddChild(sea_ir::InstructionNode * instruction)467 void Region::AddChild(sea_ir::InstructionNode* instruction) {
468   DCHECK(instruction) << "Tried to add NULL instruction to region node.";
469   instructions_.push_back(instruction);
470   instruction->SetRegion(this);
471 }
472 
GetLastChild() const473 SeaNode* Region::GetLastChild() const {
474   if (instructions_.size() > 0) {
475     return instructions_.back();
476   }
477   return NULL;
478 }
479 
ComputeDownExposedDefs()480 void Region::ComputeDownExposedDefs() {
481   for (std::vector<InstructionNode*>::const_iterator inst_it = instructions_.begin();
482       inst_it != instructions_.end(); inst_it++) {
483     int reg_no = (*inst_it)->GetResultRegister();
484     std::map<int, InstructionNode*>::iterator res = de_defs_.find(reg_no);
485     if ((reg_no != NO_REGISTER) && (res == de_defs_.end())) {
486       de_defs_.insert(std::pair<int, InstructionNode*>(reg_no, *inst_it));
487     } else {
488       res->second = *inst_it;
489     }
490   }
491   for (std::map<int, sea_ir::InstructionNode*>::const_iterator cit = de_defs_.begin();
492       cit != de_defs_.end(); cit++) {
493     (*cit).second->MarkAsDEDef();
494   }
495 }
496 
GetDownExposedDefs() const497 const std::map<int, sea_ir::InstructionNode*>* Region::GetDownExposedDefs() const {
498   return &de_defs_;
499 }
500 
GetReachingDefs()501 std::map<int, std::set<sea_ir::InstructionNode*>* >* Region::GetReachingDefs() {
502   return &reaching_defs_;
503 }
504 
UpdateReachingDefs()505 bool Region::UpdateReachingDefs() {
506   std::map<int, std::set<sea_ir::InstructionNode*>* > new_reaching;
507   for (std::vector<Region*>::const_iterator pred_it = predecessors_.begin();
508       pred_it != predecessors_.end(); pred_it++) {
509     // The reaching_defs variable will contain reaching defs __for current predecessor only__
510     std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs;
511     std::map<int, std::set<sea_ir::InstructionNode*>* >* pred_reaching =
512         (*pred_it)->GetReachingDefs();
513     const std::map<int, InstructionNode*>* de_defs = (*pred_it)->GetDownExposedDefs();
514 
515     // The definitions from the reaching set of the predecessor
516     // may be shadowed by downward exposed definitions from the predecessor,
517     // otherwise the defs from the reaching set are still good.
518     for (std::map<int, InstructionNode*>::const_iterator de_def = de_defs->begin();
519         de_def != de_defs->end(); de_def++) {
520       std::set<InstructionNode*>* solo_def;
521       solo_def = new std::set<InstructionNode*>();
522       solo_def->insert(de_def->second);
523       reaching_defs.insert(
524           std::pair<int const, std::set<InstructionNode*>*>(de_def->first, solo_def));
525     }
526     reaching_defs.insert(pred_reaching->begin(), pred_reaching->end());
527 
528     // Now we combine the reaching map coming from the current predecessor (reaching_defs)
529     // with the accumulated set from all predecessors so far (from new_reaching).
530     std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it =
531         reaching_defs.begin();
532     for (; reaching_it != reaching_defs.end(); reaching_it++) {
533       std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator crt_entry =
534           new_reaching.find(reaching_it->first);
535       if (new_reaching.end() != crt_entry) {
536         crt_entry->second->insert(reaching_it->second->begin(), reaching_it->second->end());
537       } else {
538         new_reaching.insert(
539             std::pair<int, std::set<sea_ir::InstructionNode*>*>(
540                 reaching_it->first,
541                 reaching_it->second) );
542       }
543     }
544   }
545   bool changed = false;
546   // Because the sets are monotonically increasing,
547   // we can compare sizes instead of using set comparison.
548   // TODO: Find formal proof.
549   int old_size = 0;
550   if (-1 == reaching_defs_size_) {
551     std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it =
552         reaching_defs_.begin();
553     for (; reaching_it != reaching_defs_.end(); reaching_it++) {
554       old_size += (*reaching_it).second->size();
555     }
556   } else {
557     old_size = reaching_defs_size_;
558   }
559   int new_size = 0;
560   std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = new_reaching.begin();
561   for (; reaching_it != new_reaching.end(); reaching_it++) {
562     new_size += (*reaching_it).second->size();
563   }
564   if (old_size != new_size) {
565     changed = true;
566   }
567   if (changed) {
568     reaching_defs_ = new_reaching;
569     reaching_defs_size_ = new_size;
570   }
571   return changed;
572 }
573 
InsertPhiFor(int reg_no)574 bool Region::InsertPhiFor(int reg_no) {
575   if (!ContainsPhiFor(reg_no)) {
576     phi_set_.insert(reg_no);
577     PhiInstructionNode* new_phi = new PhiInstructionNode(reg_no);
578     new_phi->SetRegion(this);
579     phi_instructions_.push_back(new_phi);
580     return true;
581   }
582   return false;
583 }
584 
SetPhiDefinitionsForUses(const utils::ScopedHashtable<int,InstructionNode * > * scoped_table,Region * predecessor)585 void Region::SetPhiDefinitionsForUses(
586     const utils::ScopedHashtable<int, InstructionNode*>* scoped_table, Region* predecessor) {
587   int predecessor_id = -1;
588   for (unsigned int crt_pred_id = 0; crt_pred_id < predecessors_.size(); crt_pred_id++) {
589     if (predecessors_.at(crt_pred_id) == predecessor) {
590       predecessor_id = crt_pred_id;
591     }
592   }
593   DCHECK_NE(-1, predecessor_id);
594   for (std::vector<PhiInstructionNode*>::iterator phi_it = phi_instructions_.begin();
595       phi_it != phi_instructions_.end(); phi_it++) {
596     PhiInstructionNode* phi = (*phi_it);
597     int reg_no = phi->GetRegisterNumber();
598     InstructionNode* definition = scoped_table->Lookup(reg_no);
599     phi->RenameToSSA(reg_no, definition, predecessor_id);
600   }
601 }
602 
Create(const art::Instruction * in)603 std::vector<InstructionNode*> InstructionNode::Create(const art::Instruction* in) {
604   std::vector<InstructionNode*> sea_instructions;
605   switch (in->Opcode()) {
606     case art::Instruction::CONST_4:
607       sea_instructions.push_back(new ConstInstructionNode(in));
608       break;
609     case art::Instruction::RETURN:
610       sea_instructions.push_back(new ReturnInstructionNode(in));
611       break;
612     case art::Instruction::IF_NE:
613       sea_instructions.push_back(new IfNeInstructionNode(in));
614       break;
615     case art::Instruction::ADD_INT_LIT8:
616       sea_instructions.push_back(new UnnamedConstInstructionNode(in, in->VRegC_22b()));
617       sea_instructions.push_back(new AddIntLitInstructionNode(in));
618       break;
619     case art::Instruction::MOVE_RESULT:
620       sea_instructions.push_back(new MoveResultInstructionNode(in));
621       break;
622     case art::Instruction::INVOKE_STATIC:
623       sea_instructions.push_back(new InvokeStaticInstructionNode(in));
624       break;
625     case art::Instruction::ADD_INT:
626       sea_instructions.push_back(new AddIntInstructionNode(in));
627       break;
628     case art::Instruction::GOTO:
629       sea_instructions.push_back(new GotoInstructionNode(in));
630       break;
631     case art::Instruction::IF_EQZ:
632       sea_instructions.push_back(new IfEqzInstructionNode(in));
633       break;
634     default:
635       // Default, generic IR instruction node; default case should never be reached
636       // when support for all instructions ahs been added.
637       sea_instructions.push_back(new InstructionNode(in));
638   }
639   return sea_instructions;
640 }
641 
MarkAsDEDef()642 void InstructionNode::MarkAsDEDef() {
643   de_def_ = true;
644 }
645 
GetResultRegister() const646 int InstructionNode::GetResultRegister() const {
647   if (instruction_->HasVRegA() && InstructionTools::IsDefinition(instruction_)) {
648     return instruction_->VRegA();
649   }
650   return NO_REGISTER;
651 }
652 
GetDefinitions() const653 std::vector<int> InstructionNode::GetDefinitions() const {
654   // TODO: Extend this to handle instructions defining more than one register (if any)
655   // The return value should be changed to pointer to field then; for now it is an object
656   // so that we avoid possible memory leaks from allocating objects dynamically.
657   std::vector<int> definitions;
658   int result = GetResultRegister();
659   if (NO_REGISTER != result) {
660     definitions.push_back(result);
661   }
662   return definitions;
663 }
664 
GetUses() const665 std::vector<int> InstructionNode::GetUses() const {
666   std::vector<int> uses;  // Using vector<> instead of set<> because order matters.
667   if (!InstructionTools::IsDefinition(instruction_) && (instruction_->HasVRegA())) {
668     int vA = instruction_->VRegA();
669     uses.push_back(vA);
670   }
671   if (instruction_->HasVRegB()) {
672     int vB = instruction_->VRegB();
673     uses.push_back(vB);
674   }
675   if (instruction_->HasVRegC()) {
676     int vC = instruction_->VRegC();
677     uses.push_back(vC);
678   }
679   return uses;
680 }
681 }  // namespace sea_ir
682