1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
19 
20 #include <stdint.h>
21 
22 #include <iosfwd>
23 #include <string>
24 
25 #include "base/logging.h"
26 #include "base/mutex.h"
27 #include "gc_root.h"
28 #include "mem_map.h"
29 #include "object_callbacks.h"
30 #include "offsets.h"
31 #include "read_barrier_option.h"
32 
33 namespace art {
34 
35 class RootInfo;
36 
37 namespace mirror {
38 class Object;
39 }  // namespace mirror
40 
41 /*
42  * Maintain a table of indirect references.  Used for local/global JNI
43  * references.
44  *
45  * The table contains object references that are part of the GC root set.
46  * When an object is added we return an IndirectRef that is not a valid
47  * pointer but can be used to find the original value in O(1) time.
48  * Conversions to and from indirect references are performed on upcalls
49  * and downcalls, so they need to be very fast.
50  *
51  * To be efficient for JNI local variable storage, we need to provide
52  * operations that allow us to operate on segments of the table, where
53  * segments are pushed and popped as if on a stack.  For example, deletion
54  * of an entry should only succeed if it appears in the current segment,
55  * and we want to be able to strip off the current segment quickly when
56  * a method returns.  Additions to the table must be made in the current
57  * segment even if space is available in an earlier area.
58  *
59  * A new segment is created when we call into native code from interpreted
60  * code, or when we handle the JNI PushLocalFrame function.
61  *
62  * The GC must be able to scan the entire table quickly.
63  *
64  * In summary, these must be very fast:
65  *  - adding or removing a segment
66  *  - adding references to a new segment
67  *  - converting an indirect reference back to an Object
68  * These can be a little slower, but must still be pretty quick:
69  *  - adding references to a "mature" segment
70  *  - removing individual references
71  *  - scanning the entire table straight through
72  *
73  * If there's more than one segment, we don't guarantee that the table
74  * will fill completely before we fail due to lack of space.  We do ensure
75  * that the current segment will pack tightly, which should satisfy JNI
76  * requirements (e.g. EnsureLocalCapacity).
77  *
78  * To make everything fit nicely in 32-bit integers, the maximum size of
79  * the table is capped at 64K.
80  *
81  * Only SynchronizedGet is synchronized.
82  */
83 
84 /*
85  * Indirect reference definition.  This must be interchangeable with JNI's
86  * jobject, and it's convenient to let null be null, so we use void*.
87  *
88  * We need a 16-bit table index and a 2-bit reference type (global, local,
89  * weak global).  Real object pointers will have zeroes in the low 2 or 3
90  * bits (4- or 8-byte alignment), so it's useful to put the ref type
91  * in the low bits and reserve zero as an invalid value.
92  *
93  * The remaining 14 bits can be used to detect stale indirect references.
94  * For example, if objects don't move, we can use a hash of the original
95  * Object* to make sure the entry hasn't been re-used.  (If the Object*
96  * we find there doesn't match because of heap movement, we could do a
97  * secondary check on the preserved hash value; this implies that creating
98  * a global/local ref queries the hash value and forces it to be saved.)
99  *
100  * A more rigorous approach would be to put a serial number in the extra
101  * bits, and keep a copy of the serial number in a parallel table.  This is
102  * easier when objects can move, but requires 2x the memory and additional
103  * memory accesses on add/get.  It will catch additional problems, e.g.:
104  * create iref1 for obj, delete iref1, create iref2 for same obj, lookup
105  * iref1.  A pattern based on object bits will miss this.
106  */
107 typedef void* IndirectRef;
108 
109 // Magic failure values; must not pass Heap::ValidateObject() or Heap::IsHeapAddress().
110 static mirror::Object* const kInvalidIndirectRefObject = reinterpret_cast<mirror::Object*>(0xdead4321);
111 static mirror::Object* const kClearedJniWeakGlobal = reinterpret_cast<mirror::Object*>(0xdead1234);
112 
113 /*
114  * Indirect reference kind, used as the two low bits of IndirectRef.
115  *
116  * For convenience these match up with enum jobjectRefType from jni.h.
117  */
118 enum IndirectRefKind {
119   kHandleScopeOrInvalid = 0,  // <<stack indirect reference table or invalid reference>>
120   kLocal         = 1,  // <<local reference>>
121   kGlobal        = 2,  // <<global reference>>
122   kWeakGlobal    = 3   // <<weak global reference>>
123 };
124 std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs);
125 
126 /*
127  * Determine what kind of indirect reference this is.
128  */
GetIndirectRefKind(IndirectRef iref)129 static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) {
130   return static_cast<IndirectRefKind>(reinterpret_cast<uintptr_t>(iref) & 0x03);
131 }
132 
133 /* use as initial value for "cookie", and when table has only one segment */
134 static const uint32_t IRT_FIRST_SEGMENT = 0;
135 
136 /*
137  * Table definition.
138  *
139  * For the global reference table, the expected common operations are
140  * adding a new entry and removing a recently-added entry (usually the
141  * most-recently-added entry).  For JNI local references, the common
142  * operations are adding a new entry and removing an entire table segment.
143  *
144  * If "alloc_entries_" is not equal to "max_entries_", the table may expand
145  * when entries are added, which means the memory may move.  If you want
146  * to keep pointers into "table" rather than offsets, you must use a
147  * fixed-size table.
148  *
149  * If we delete entries from the middle of the list, we will be left with
150  * "holes".  We track the number of holes so that, when adding new elements,
151  * we can quickly decide to do a trivial append or go slot-hunting.
152  *
153  * When the top-most entry is removed, any holes immediately below it are
154  * also removed.  Thus, deletion of an entry may reduce "topIndex" by more
155  * than one.
156  *
157  * To get the desired behavior for JNI locals, we need to know the bottom
158  * and top of the current "segment".  The top is managed internally, and
159  * the bottom is passed in as a function argument.  When we call a native method or
160  * push a local frame, the current top index gets pushed on, and serves
161  * as the new bottom.  When we pop a frame off, the value from the stack
162  * becomes the new top index, and the value stored in the previous frame
163  * becomes the new bottom.
164  *
165  * To avoid having to re-scan the table after a pop, we want to push the
166  * number of holes in the table onto the stack.  Because of our 64K-entry
167  * cap, we can combine the two into a single unsigned 32-bit value.
168  * Instead of a "bottom" argument we take a "cookie", which includes the
169  * bottom index and the count of holes below the bottom.
170  *
171  * Common alternative implementation: make IndirectRef a pointer to the
172  * actual reference slot.  Instead of getting a table and doing a lookup,
173  * the lookup can be done instantly.  Operations like determining the
174  * type and deleting the reference are more expensive because the table
175  * must be hunted for (i.e. you have to do a pointer comparison to see
176  * which table it's in), you can't move the table when expanding it (so
177  * realloc() is out), and tricks like serial number checking to detect
178  * stale references aren't possible (though we may be able to get similar
179  * benefits with other approaches).
180  *
181  * TODO: consider a "lastDeleteIndex" for quick hole-filling when an
182  * add immediately follows a delete; must invalidate after segment pop
183  * (which could increase the cost/complexity of method call/return).
184  * Might be worth only using it for JNI globals.
185  *
186  * TODO: may want completely different add/remove algorithms for global
187  * and local refs to improve performance.  A large circular buffer might
188  * reduce the amortized cost of adding global references.
189  *
190  */
191 union IRTSegmentState {
192   uint32_t          all;
193   struct {
194     uint32_t      topIndex:16;            /* index of first unused entry */
195     uint32_t      numHoles:16;            /* #of holes in entire table */
196   } parts;
197 };
198 
199 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2.
200 // Contains multiple entries but only one active one, this helps us detect use after free errors
201 // since the serial stored in the indirect ref wont match.
202 static const size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3;
203 class PACKED(4) IrtEntry {
204  public:
Add(mirror::Object * obj)205   void Add(mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
206     ++serial_;
207     if (serial_ == kIRTPrevCount) {
208       serial_ = 0;
209     }
210     references_[serial_] = GcRoot<mirror::Object>(obj);
211   }
GetReference()212   GcRoot<mirror::Object>* GetReference() {
213     DCHECK_LT(serial_, kIRTPrevCount);
214     return &references_[serial_];
215   }
GetSerial()216   uint32_t GetSerial() const {
217     return serial_;
218   }
219 
220  private:
221   uint32_t serial_;
222   GcRoot<mirror::Object> references_[kIRTPrevCount];
223 };
224 
225 class IrtIterator {
226  public:
IrtIterator(IrtEntry * table,size_t i,size_t capacity)227   explicit IrtIterator(IrtEntry* table, size_t i, size_t capacity)
228       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
229       : table_(table), i_(i), capacity_(capacity) {
230     SkipNullsAndTombstones();
231   }
232 
233   IrtIterator& operator++() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
234     ++i_;
235     SkipNullsAndTombstones();
236     return *this;
237   }
238 
239   mirror::Object** operator*() {
240     // This does not have a read barrier as this is used to visit roots.
241     return table_[i_].GetReference()->AddressWithoutBarrier();
242   }
243 
equals(const IrtIterator & rhs)244   bool equals(const IrtIterator& rhs) const {
245     return (i_ == rhs.i_ && table_ == rhs.table_);
246   }
247 
248  private:
SkipNullsAndTombstones()249   void SkipNullsAndTombstones() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
250     // We skip NULLs and tombstones. Clients don't want to see implementation details.
251     while (i_ < capacity_ &&
252            (table_[i_].GetReference()->IsNull() ||
253             table_[i_].GetReference()->Read<kWithoutReadBarrier>() == kClearedJniWeakGlobal)) {
254       ++i_;
255     }
256   }
257 
258   IrtEntry* const table_;
259   size_t i_;
260   size_t capacity_;
261 };
262 
263 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) {
264   return lhs.equals(rhs);
265 }
266 
267 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) {
268   return !lhs.equals(rhs);
269 }
270 
271 class IndirectReferenceTable {
272  public:
273   IndirectReferenceTable(size_t initialCount, size_t maxCount, IndirectRefKind kind);
274 
275   ~IndirectReferenceTable();
276 
277   /*
278    * Add a new entry.  "obj" must be a valid non-NULL object reference.
279    *
280    * Returns NULL if the table is full (max entries reached, or alloc
281    * failed during expansion).
282    */
283   IndirectRef Add(uint32_t cookie, mirror::Object* obj)
284       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
285 
286   /*
287    * Given an IndirectRef in the table, return the Object it refers to.
288    *
289    * Returns kInvalidIndirectRefObject if iref is invalid.
290    */
291   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
292   mirror::Object* Get(IndirectRef iref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
293       ALWAYS_INLINE;
294 
295   // Synchronized get which reads a reference, acquiring a lock if necessary.
296   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
SynchronizedGet(Thread *,ReaderWriterMutex *,IndirectRef iref)297   mirror::Object* SynchronizedGet(Thread* /*self*/, ReaderWriterMutex* /*mutex*/,
298                                   IndirectRef iref) const
299       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
300     return Get<kReadBarrierOption>(iref);
301   }
302 
303   /*
304    * Remove an existing entry.
305    *
306    * If the entry is not between the current top index and the bottom index
307    * specified by the cookie, we don't remove anything.  This is the behavior
308    * required by JNI's DeleteLocalRef function.
309    *
310    * Returns "false" if nothing was removed.
311    */
312   bool Remove(uint32_t cookie, IndirectRef iref);
313 
314   void AssertEmpty();
315 
316   void Dump(std::ostream& os) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
317 
318   /*
319    * Return the #of entries in the entire table.  This includes holes, and
320    * so may be larger than the actual number of "live" entries.
321    */
Capacity()322   size_t Capacity() const {
323     return segment_state_.parts.topIndex;
324   }
325 
326   // Note IrtIterator does not have a read barrier as it's used to visit roots.
begin()327   IrtIterator begin() {
328     return IrtIterator(table_, 0, Capacity());
329   }
330 
end()331   IrtIterator end() {
332     return IrtIterator(table_, Capacity(), Capacity());
333   }
334 
335   void VisitRoots(RootCallback* callback, void* arg, const RootInfo& root_info)
336       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
337 
GetSegmentState()338   uint32_t GetSegmentState() const {
339     return segment_state_.all;
340   }
341 
SetSegmentState(uint32_t new_state)342   void SetSegmentState(uint32_t new_state) {
343     segment_state_.all = new_state;
344   }
345 
SegmentStateOffset()346   static Offset SegmentStateOffset() {
347     return Offset(OFFSETOF_MEMBER(IndirectReferenceTable, segment_state_));
348   }
349 
350   // Release pages past the end of the table that may have previously held references.
351   void Trim() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
352 
353  private:
354   // Extract the table index from an indirect reference.
ExtractIndex(IndirectRef iref)355   static uint32_t ExtractIndex(IndirectRef iref) {
356     uintptr_t uref = reinterpret_cast<uintptr_t>(iref);
357     return (uref >> 2) & 0xffff;
358   }
359 
360   /*
361    * The object pointer itself is subject to relocation in some GC
362    * implementations, so we shouldn't really be using it here.
363    */
ToIndirectRef(uint32_t tableIndex)364   IndirectRef ToIndirectRef(uint32_t tableIndex) const {
365     DCHECK_LT(tableIndex, 65536U);
366     uint32_t serialChunk = table_[tableIndex].GetSerial();
367     uintptr_t uref = (serialChunk << 20) | (tableIndex << 2) | kind_;
368     return reinterpret_cast<IndirectRef>(uref);
369   }
370 
371   // Abort if check_jni is not enabled.
372   static void AbortIfNoCheckJNI();
373 
374   /* extra debugging checks */
375   bool GetChecked(IndirectRef) const;
376   bool CheckEntry(const char*, IndirectRef, int) const;
377 
378   /* semi-public - read/write by jni down calls */
379   IRTSegmentState segment_state_;
380 
381   // Mem map where we store the indirect refs.
382   std::unique_ptr<MemMap> table_mem_map_;
383   // bottom of the stack. Do not directly access the object references
384   // in this as they are roots. Use Get() that has a read barrier.
385   IrtEntry* table_;
386   /* bit mask, ORed into all irefs */
387   const IndirectRefKind kind_;
388   /* max #of entries allowed */
389   const size_t max_entries_;
390 };
391 
392 }  // namespace art
393 
394 #endif  // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
395