1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "monitor.h"
18
19 #include <vector>
20
21 #include "base/mutex.h"
22 #include "base/stl_util.h"
23 #include "class_linker.h"
24 #include "dex_file-inl.h"
25 #include "dex_instruction.h"
26 #include "lock_word-inl.h"
27 #include "mirror/art_method-inl.h"
28 #include "mirror/class-inl.h"
29 #include "mirror/object-inl.h"
30 #include "mirror/object_array-inl.h"
31 #include "scoped_thread_state_change.h"
32 #include "thread.h"
33 #include "thread_list.h"
34 #include "verifier/method_verifier.h"
35 #include "well_known_classes.h"
36
37 namespace art {
38
39 static constexpr uint64_t kLongWaitMs = 100;
40
41 /*
42 * Every Object has a monitor associated with it, but not every Object is actually locked. Even
43 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
44 * or b) wait() is called on the Object.
45 *
46 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
47 * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us,
48 * though, because we have a full 32 bits to work with.
49 *
50 * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition
51 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
52 * a lock has been inflated it remains in the "fat" state indefinitely.
53 *
54 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
55 * in the LockWord value type.
56 *
57 * Monitors provide:
58 * - mutually exclusive access to resources
59 * - a way for multiple threads to wait for notification
60 *
61 * In effect, they fill the role of both mutexes and condition variables.
62 *
63 * Only one thread can own the monitor at any time. There may be several threads waiting on it
64 * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified
65 * at any given time.
66 */
67
68 bool (*Monitor::is_sensitive_thread_hook_)() = NULL;
69 uint32_t Monitor::lock_profiling_threshold_ = 0;
70
IsSensitiveThread()71 bool Monitor::IsSensitiveThread() {
72 if (is_sensitive_thread_hook_ != NULL) {
73 return (*is_sensitive_thread_hook_)();
74 }
75 return false;
76 }
77
Init(uint32_t lock_profiling_threshold,bool (* is_sensitive_thread_hook)())78 void Monitor::Init(uint32_t lock_profiling_threshold, bool (*is_sensitive_thread_hook)()) {
79 lock_profiling_threshold_ = lock_profiling_threshold;
80 is_sensitive_thread_hook_ = is_sensitive_thread_hook;
81 }
82
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)83 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
84 : monitor_lock_("a monitor lock", kMonitorLock),
85 monitor_contenders_("monitor contenders", monitor_lock_),
86 num_waiters_(0),
87 owner_(owner),
88 lock_count_(0),
89 obj_(GcRoot<mirror::Object>(obj)),
90 wait_set_(NULL),
91 hash_code_(hash_code),
92 locking_method_(NULL),
93 locking_dex_pc_(0),
94 monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
95 #ifdef __LP64__
96 DCHECK(false) << "Should not be reached in 64b";
97 next_free_ = nullptr;
98 #endif
99 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
100 // with the owner unlocking the thin-lock.
101 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
102 // The identity hash code is set for the life time of the monitor.
103 }
104
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code,MonitorId id)105 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
106 MonitorId id)
107 : monitor_lock_("a monitor lock", kMonitorLock),
108 monitor_contenders_("monitor contenders", monitor_lock_),
109 num_waiters_(0),
110 owner_(owner),
111 lock_count_(0),
112 obj_(GcRoot<mirror::Object>(obj)),
113 wait_set_(NULL),
114 hash_code_(hash_code),
115 locking_method_(NULL),
116 locking_dex_pc_(0),
117 monitor_id_(id) {
118 #ifdef __LP64__
119 next_free_ = nullptr;
120 #endif
121 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
122 // with the owner unlocking the thin-lock.
123 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
124 // The identity hash code is set for the life time of the monitor.
125 }
126
GetHashCode()127 int32_t Monitor::GetHashCode() {
128 while (!HasHashCode()) {
129 if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
130 break;
131 }
132 }
133 DCHECK(HasHashCode());
134 return hash_code_.LoadRelaxed();
135 }
136
Install(Thread * self)137 bool Monitor::Install(Thread* self) {
138 MutexLock mu(self, monitor_lock_); // Uncontended mutex acquisition as monitor isn't yet public.
139 CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
140 // Propagate the lock state.
141 LockWord lw(GetObject()->GetLockWord(false));
142 switch (lw.GetState()) {
143 case LockWord::kThinLocked: {
144 CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
145 lock_count_ = lw.ThinLockCount();
146 break;
147 }
148 case LockWord::kHashCode: {
149 CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
150 break;
151 }
152 case LockWord::kFatLocked: {
153 // The owner_ is suspended but another thread beat us to install a monitor.
154 return false;
155 }
156 case LockWord::kUnlocked: {
157 LOG(FATAL) << "Inflating unlocked lock word";
158 break;
159 }
160 default: {
161 LOG(FATAL) << "Invalid monitor state " << lw.GetState();
162 return false;
163 }
164 }
165 LockWord fat(this);
166 // Publish the updated lock word, which may race with other threads.
167 bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat);
168 // Lock profiling.
169 if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
170 // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
171 // abort.
172 locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
173 }
174 return success;
175 }
176
~Monitor()177 Monitor::~Monitor() {
178 // Deflated monitors have a null object.
179 }
180
181 /*
182 * Links a thread into a monitor's wait set. The monitor lock must be
183 * held by the caller of this routine.
184 */
AppendToWaitSet(Thread * thread)185 void Monitor::AppendToWaitSet(Thread* thread) {
186 DCHECK(owner_ == Thread::Current());
187 DCHECK(thread != NULL);
188 DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
189 if (wait_set_ == NULL) {
190 wait_set_ = thread;
191 return;
192 }
193
194 // push_back.
195 Thread* t = wait_set_;
196 while (t->GetWaitNext() != nullptr) {
197 t = t->GetWaitNext();
198 }
199 t->SetWaitNext(thread);
200 }
201
202 /*
203 * Unlinks a thread from a monitor's wait set. The monitor lock must
204 * be held by the caller of this routine.
205 */
RemoveFromWaitSet(Thread * thread)206 void Monitor::RemoveFromWaitSet(Thread *thread) {
207 DCHECK(owner_ == Thread::Current());
208 DCHECK(thread != NULL);
209 if (wait_set_ == NULL) {
210 return;
211 }
212 if (wait_set_ == thread) {
213 wait_set_ = thread->GetWaitNext();
214 thread->SetWaitNext(nullptr);
215 return;
216 }
217
218 Thread* t = wait_set_;
219 while (t->GetWaitNext() != NULL) {
220 if (t->GetWaitNext() == thread) {
221 t->SetWaitNext(thread->GetWaitNext());
222 thread->SetWaitNext(nullptr);
223 return;
224 }
225 t = t->GetWaitNext();
226 }
227 }
228
SetObject(mirror::Object * object)229 void Monitor::SetObject(mirror::Object* object) {
230 obj_ = GcRoot<mirror::Object>(object);
231 }
232
Lock(Thread * self)233 void Monitor::Lock(Thread* self) {
234 MutexLock mu(self, monitor_lock_);
235 while (true) {
236 if (owner_ == nullptr) { // Unowned.
237 owner_ = self;
238 CHECK_EQ(lock_count_, 0);
239 // When debugging, save the current monitor holder for future
240 // acquisition failures to use in sampled logging.
241 if (lock_profiling_threshold_ != 0) {
242 locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
243 }
244 return;
245 } else if (owner_ == self) { // Recursive.
246 lock_count_++;
247 return;
248 }
249 // Contended.
250 const bool log_contention = (lock_profiling_threshold_ != 0);
251 uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
252 mirror::ArtMethod* owners_method = locking_method_;
253 uint32_t owners_dex_pc = locking_dex_pc_;
254 // Do this before releasing the lock so that we don't get deflated.
255 size_t num_waiters = num_waiters_;
256 ++num_waiters_;
257 monitor_lock_.Unlock(self); // Let go of locks in order.
258 self->SetMonitorEnterObject(GetObject());
259 {
260 ScopedThreadStateChange tsc(self, kBlocked); // Change to blocked and give up mutator_lock_.
261 MutexLock mu2(self, monitor_lock_); // Reacquire monitor_lock_ without mutator_lock_ for Wait.
262 if (owner_ != NULL) { // Did the owner_ give the lock up?
263 monitor_contenders_.Wait(self); // Still contended so wait.
264 // Woken from contention.
265 if (log_contention) {
266 uint64_t wait_ms = MilliTime() - wait_start_ms;
267 uint32_t sample_percent;
268 if (wait_ms >= lock_profiling_threshold_) {
269 sample_percent = 100;
270 } else {
271 sample_percent = 100 * wait_ms / lock_profiling_threshold_;
272 }
273 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
274 const char* owners_filename;
275 uint32_t owners_line_number;
276 TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
277 if (wait_ms > kLongWaitMs && owners_method != nullptr) {
278 LOG(WARNING) << "Long monitor contention event with owner method="
279 << PrettyMethod(owners_method) << " from " << owners_filename << ":"
280 << owners_line_number << " waiters=" << num_waiters << " for "
281 << PrettyDuration(MsToNs(wait_ms));
282 }
283 LogContentionEvent(self, wait_ms, sample_percent, owners_filename, owners_line_number);
284 }
285 }
286 }
287 }
288 self->SetMonitorEnterObject(nullptr);
289 monitor_lock_.Lock(self); // Reacquire locks in order.
290 --num_waiters_;
291 }
292 }
293
294 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
295 __attribute__((format(printf, 1, 2)));
296
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)297 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
298 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
299 va_list args;
300 va_start(args, fmt);
301 Thread* self = Thread::Current();
302 ThrowLocation throw_location = self->GetCurrentLocationForThrow();
303 self->ThrowNewExceptionV(throw_location, "Ljava/lang/IllegalMonitorStateException;", fmt, args);
304 if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
305 std::ostringstream ss;
306 self->Dump(ss);
307 LOG(Runtime::Current()->IsStarted() ? INFO : ERROR)
308 << self->GetException(NULL)->Dump() << "\n" << ss.str();
309 }
310 va_end(args);
311 }
312
ThreadToString(Thread * thread)313 static std::string ThreadToString(Thread* thread) {
314 if (thread == NULL) {
315 return "NULL";
316 }
317 std::ostringstream oss;
318 // TODO: alternatively, we could just return the thread's name.
319 oss << *thread;
320 return oss.str();
321 }
322
FailedUnlock(mirror::Object * o,Thread * expected_owner,Thread * found_owner,Monitor * monitor)323 void Monitor::FailedUnlock(mirror::Object* o, Thread* expected_owner, Thread* found_owner,
324 Monitor* monitor) {
325 Thread* current_owner = NULL;
326 std::string current_owner_string;
327 std::string expected_owner_string;
328 std::string found_owner_string;
329 {
330 // TODO: isn't this too late to prevent threads from disappearing?
331 // Acquire thread list lock so threads won't disappear from under us.
332 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
333 // Re-read owner now that we hold lock.
334 current_owner = (monitor != NULL) ? monitor->GetOwner() : NULL;
335 // Get short descriptions of the threads involved.
336 current_owner_string = ThreadToString(current_owner);
337 expected_owner_string = ThreadToString(expected_owner);
338 found_owner_string = ThreadToString(found_owner);
339 }
340 if (current_owner == NULL) {
341 if (found_owner == NULL) {
342 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
343 " on thread '%s'",
344 PrettyTypeOf(o).c_str(),
345 expected_owner_string.c_str());
346 } else {
347 // Race: the original read found an owner but now there is none
348 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
349 " (where now the monitor appears unowned) on thread '%s'",
350 found_owner_string.c_str(),
351 PrettyTypeOf(o).c_str(),
352 expected_owner_string.c_str());
353 }
354 } else {
355 if (found_owner == NULL) {
356 // Race: originally there was no owner, there is now
357 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
358 " (originally believed to be unowned) on thread '%s'",
359 current_owner_string.c_str(),
360 PrettyTypeOf(o).c_str(),
361 expected_owner_string.c_str());
362 } else {
363 if (found_owner != current_owner) {
364 // Race: originally found and current owner have changed
365 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
366 " owned by '%s') on object of type '%s' on thread '%s'",
367 found_owner_string.c_str(),
368 current_owner_string.c_str(),
369 PrettyTypeOf(o).c_str(),
370 expected_owner_string.c_str());
371 } else {
372 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
373 " on thread '%s",
374 current_owner_string.c_str(),
375 PrettyTypeOf(o).c_str(),
376 expected_owner_string.c_str());
377 }
378 }
379 }
380 }
381
Unlock(Thread * self)382 bool Monitor::Unlock(Thread* self) {
383 DCHECK(self != NULL);
384 MutexLock mu(self, monitor_lock_);
385 Thread* owner = owner_;
386 if (owner == self) {
387 // We own the monitor, so nobody else can be in here.
388 if (lock_count_ == 0) {
389 owner_ = NULL;
390 locking_method_ = NULL;
391 locking_dex_pc_ = 0;
392 // Wake a contender.
393 monitor_contenders_.Signal(self);
394 } else {
395 --lock_count_;
396 }
397 } else {
398 // We don't own this, so we're not allowed to unlock it.
399 // The JNI spec says that we should throw IllegalMonitorStateException
400 // in this case.
401 FailedUnlock(GetObject(), self, owner, this);
402 return false;
403 }
404 return true;
405 }
406
407 /*
408 * Wait on a monitor until timeout, interrupt, or notification. Used for
409 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
410 *
411 * If another thread calls Thread.interrupt(), we throw InterruptedException
412 * and return immediately if one of the following are true:
413 * - blocked in wait(), wait(long), or wait(long, int) methods of Object
414 * - blocked in join(), join(long), or join(long, int) methods of Thread
415 * - blocked in sleep(long), or sleep(long, int) methods of Thread
416 * Otherwise, we set the "interrupted" flag.
417 *
418 * Checks to make sure that "ns" is in the range 0-999999
419 * (i.e. fractions of a millisecond) and throws the appropriate
420 * exception if it isn't.
421 *
422 * The spec allows "spurious wakeups", and recommends that all code using
423 * Object.wait() do so in a loop. This appears to derive from concerns
424 * about pthread_cond_wait() on multiprocessor systems. Some commentary
425 * on the web casts doubt on whether these can/should occur.
426 *
427 * Since we're allowed to wake up "early", we clamp extremely long durations
428 * to return at the end of the 32-bit time epoch.
429 */
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)430 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
431 bool interruptShouldThrow, ThreadState why) {
432 DCHECK(self != NULL);
433 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
434
435 monitor_lock_.Lock(self);
436
437 // Make sure that we hold the lock.
438 if (owner_ != self) {
439 monitor_lock_.Unlock(self);
440 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
441 return;
442 }
443
444 // We need to turn a zero-length timed wait into a regular wait because
445 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
446 if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
447 why = kWaiting;
448 }
449
450 // Enforce the timeout range.
451 if (ms < 0 || ns < 0 || ns > 999999) {
452 monitor_lock_.Unlock(self);
453 ThrowLocation throw_location = self->GetCurrentLocationForThrow();
454 self->ThrowNewExceptionF(throw_location, "Ljava/lang/IllegalArgumentException;",
455 "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
456 return;
457 }
458
459 /*
460 * Add ourselves to the set of threads waiting on this monitor, and
461 * release our hold. We need to let it go even if we're a few levels
462 * deep in a recursive lock, and we need to restore that later.
463 *
464 * We append to the wait set ahead of clearing the count and owner
465 * fields so the subroutine can check that the calling thread owns
466 * the monitor. Aside from that, the order of member updates is
467 * not order sensitive as we hold the pthread mutex.
468 */
469 AppendToWaitSet(self);
470 ++num_waiters_;
471 int prev_lock_count = lock_count_;
472 lock_count_ = 0;
473 owner_ = NULL;
474 mirror::ArtMethod* saved_method = locking_method_;
475 locking_method_ = NULL;
476 uintptr_t saved_dex_pc = locking_dex_pc_;
477 locking_dex_pc_ = 0;
478
479 /*
480 * Update thread state. If the GC wakes up, it'll ignore us, knowing
481 * that we won't touch any references in this state, and we'll check
482 * our suspend mode before we transition out.
483 */
484 self->TransitionFromRunnableToSuspended(why);
485
486 bool was_interrupted = false;
487 {
488 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
489 MutexLock mu(self, *self->GetWaitMutex());
490
491 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
492 // non-NULL a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
493 // up.
494 DCHECK(self->GetWaitMonitor() == nullptr);
495 self->SetWaitMonitor(this);
496
497 // Release the monitor lock.
498 monitor_contenders_.Signal(self);
499 monitor_lock_.Unlock(self);
500
501 // Handle the case where the thread was interrupted before we called wait().
502 if (self->IsInterruptedLocked()) {
503 was_interrupted = true;
504 } else {
505 // Wait for a notification or a timeout to occur.
506 if (why == kWaiting) {
507 self->GetWaitConditionVariable()->Wait(self);
508 } else {
509 DCHECK(why == kTimedWaiting || why == kSleeping) << why;
510 self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
511 }
512 if (self->IsInterruptedLocked()) {
513 was_interrupted = true;
514 }
515 self->SetInterruptedLocked(false);
516 }
517 }
518
519 // Set self->status back to kRunnable, and self-suspend if needed.
520 self->TransitionFromSuspendedToRunnable();
521
522 {
523 // We reset the thread's wait_monitor_ field after transitioning back to runnable so
524 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
525 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
526 // are waiting on "null".)
527 MutexLock mu(self, *self->GetWaitMutex());
528 DCHECK(self->GetWaitMonitor() != nullptr);
529 self->SetWaitMonitor(nullptr);
530 }
531
532 // Re-acquire the monitor and lock.
533 Lock(self);
534 monitor_lock_.Lock(self);
535 self->GetWaitMutex()->AssertNotHeld(self);
536
537 /*
538 * We remove our thread from wait set after restoring the count
539 * and owner fields so the subroutine can check that the calling
540 * thread owns the monitor. Aside from that, the order of member
541 * updates is not order sensitive as we hold the pthread mutex.
542 */
543 owner_ = self;
544 lock_count_ = prev_lock_count;
545 locking_method_ = saved_method;
546 locking_dex_pc_ = saved_dex_pc;
547 --num_waiters_;
548 RemoveFromWaitSet(self);
549
550 monitor_lock_.Unlock(self);
551
552 if (was_interrupted) {
553 /*
554 * We were interrupted while waiting, or somebody interrupted an
555 * un-interruptible thread earlier and we're bailing out immediately.
556 *
557 * The doc sayeth: "The interrupted status of the current thread is
558 * cleared when this exception is thrown."
559 */
560 {
561 MutexLock mu(self, *self->GetWaitMutex());
562 self->SetInterruptedLocked(false);
563 }
564 if (interruptShouldThrow) {
565 ThrowLocation throw_location = self->GetCurrentLocationForThrow();
566 self->ThrowNewException(throw_location, "Ljava/lang/InterruptedException;", NULL);
567 }
568 }
569 }
570
Notify(Thread * self)571 void Monitor::Notify(Thread* self) {
572 DCHECK(self != NULL);
573 MutexLock mu(self, monitor_lock_);
574 // Make sure that we hold the lock.
575 if (owner_ != self) {
576 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
577 return;
578 }
579 // Signal the first waiting thread in the wait set.
580 while (wait_set_ != NULL) {
581 Thread* thread = wait_set_;
582 wait_set_ = thread->GetWaitNext();
583 thread->SetWaitNext(nullptr);
584
585 // Check to see if the thread is still waiting.
586 MutexLock mu(self, *thread->GetWaitMutex());
587 if (thread->GetWaitMonitor() != nullptr) {
588 thread->GetWaitConditionVariable()->Signal(self);
589 return;
590 }
591 }
592 }
593
NotifyAll(Thread * self)594 void Monitor::NotifyAll(Thread* self) {
595 DCHECK(self != NULL);
596 MutexLock mu(self, monitor_lock_);
597 // Make sure that we hold the lock.
598 if (owner_ != self) {
599 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
600 return;
601 }
602 // Signal all threads in the wait set.
603 while (wait_set_ != NULL) {
604 Thread* thread = wait_set_;
605 wait_set_ = thread->GetWaitNext();
606 thread->SetWaitNext(nullptr);
607 thread->Notify();
608 }
609 }
610
Deflate(Thread * self,mirror::Object * obj)611 bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
612 DCHECK(obj != nullptr);
613 // Don't need volatile since we only deflate with mutators suspended.
614 LockWord lw(obj->GetLockWord(false));
615 // If the lock isn't an inflated monitor, then we don't need to deflate anything.
616 if (lw.GetState() == LockWord::kFatLocked) {
617 Monitor* monitor = lw.FatLockMonitor();
618 DCHECK(monitor != nullptr);
619 MutexLock mu(self, monitor->monitor_lock_);
620 // Can't deflate if we have anybody waiting on the CV.
621 if (monitor->num_waiters_ > 0) {
622 return false;
623 }
624 Thread* owner = monitor->owner_;
625 if (owner != nullptr) {
626 // Can't deflate if we are locked and have a hash code.
627 if (monitor->HasHashCode()) {
628 return false;
629 }
630 // Can't deflate if our lock count is too high.
631 if (monitor->lock_count_ > LockWord::kThinLockMaxCount) {
632 return false;
633 }
634 // Deflate to a thin lock.
635 obj->SetLockWord(LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_), false);
636 VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
637 << monitor->lock_count_;
638 } else if (monitor->HasHashCode()) {
639 obj->SetLockWord(LockWord::FromHashCode(monitor->GetHashCode()), false);
640 VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
641 } else {
642 // No lock and no hash, just put an empty lock word inside the object.
643 obj->SetLockWord(LockWord(), false);
644 VLOG(monitor) << "Deflated" << obj << " to empty lock word";
645 }
646 // The monitor is deflated, mark the object as nullptr so that we know to delete it during the
647 // next GC.
648 monitor->obj_ = GcRoot<mirror::Object>(nullptr);
649 }
650 return true;
651 }
652
Inflate(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)653 void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
654 DCHECK(self != nullptr);
655 DCHECK(obj != nullptr);
656 // Allocate and acquire a new monitor.
657 Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
658 DCHECK(m != nullptr);
659 if (m->Install(self)) {
660 if (owner != nullptr) {
661 VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
662 << " created monitor " << m << " for object " << obj;
663 } else {
664 VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
665 << " created monitor " << m << " for object " << obj;
666 }
667 Runtime::Current()->GetMonitorList()->Add(m);
668 CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
669 } else {
670 MonitorPool::ReleaseMonitor(self, m);
671 }
672 }
673
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)674 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
675 uint32_t hash_code) {
676 DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
677 uint32_t owner_thread_id = lock_word.ThinLockOwner();
678 if (owner_thread_id == self->GetThreadId()) {
679 // We own the monitor, we can easily inflate it.
680 Inflate(self, self, obj.Get(), hash_code);
681 } else {
682 ThreadList* thread_list = Runtime::Current()->GetThreadList();
683 // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
684 self->SetMonitorEnterObject(obj.Get());
685 bool timed_out;
686 Thread* owner;
687 {
688 ScopedThreadStateChange tsc(self, kBlocked);
689 // Take suspend thread lock to avoid races with threads trying to suspend this one.
690 MutexLock mu(self, *Locks::thread_list_suspend_thread_lock_);
691 owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
692 }
693 if (owner != nullptr) {
694 // We succeeded in suspending the thread, check the lock's status didn't change.
695 lock_word = obj->GetLockWord(true);
696 if (lock_word.GetState() == LockWord::kThinLocked &&
697 lock_word.ThinLockOwner() == owner_thread_id) {
698 // Go ahead and inflate the lock.
699 Inflate(self, owner, obj.Get(), hash_code);
700 }
701 thread_list->Resume(owner, false);
702 }
703 self->SetMonitorEnterObject(nullptr);
704 }
705 }
706
707 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(mirror::Object * obj)708 static mirror::Object* FakeLock(mirror::Object* obj)
709 EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
710 return obj;
711 }
712
713 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(mirror::Object * obj)714 static mirror::Object* FakeUnlock(mirror::Object* obj)
715 UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
716 return obj;
717 }
718
MonitorEnter(Thread * self,mirror::Object * obj)719 mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj) {
720 DCHECK(self != NULL);
721 DCHECK(obj != NULL);
722 obj = FakeLock(obj);
723 uint32_t thread_id = self->GetThreadId();
724 size_t contention_count = 0;
725 StackHandleScope<1> hs(self);
726 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
727 while (true) {
728 LockWord lock_word = h_obj->GetLockWord(true);
729 switch (lock_word.GetState()) {
730 case LockWord::kUnlocked: {
731 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0));
732 if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
733 // CasLockWord enforces more than the acquire ordering we need here.
734 return h_obj.Get(); // Success!
735 }
736 continue; // Go again.
737 }
738 case LockWord::kThinLocked: {
739 uint32_t owner_thread_id = lock_word.ThinLockOwner();
740 if (owner_thread_id == thread_id) {
741 // We own the lock, increase the recursion count.
742 uint32_t new_count = lock_word.ThinLockCount() + 1;
743 if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
744 LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count));
745 h_obj->SetLockWord(thin_locked, true);
746 return h_obj.Get(); // Success!
747 } else {
748 // We'd overflow the recursion count, so inflate the monitor.
749 InflateThinLocked(self, h_obj, lock_word, 0);
750 }
751 } else {
752 // Contention.
753 contention_count++;
754 Runtime* runtime = Runtime::Current();
755 if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) {
756 // TODO: Consider switching the thread state to kBlocked when we are yielding.
757 // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
758 // parameter you pass in. This can cause thread suspension to take excessively long
759 // and make long pauses. See b/16307460.
760 sched_yield();
761 } else {
762 contention_count = 0;
763 InflateThinLocked(self, h_obj, lock_word, 0);
764 }
765 }
766 continue; // Start from the beginning.
767 }
768 case LockWord::kFatLocked: {
769 Monitor* mon = lock_word.FatLockMonitor();
770 mon->Lock(self);
771 return h_obj.Get(); // Success!
772 }
773 case LockWord::kHashCode:
774 // Inflate with the existing hashcode.
775 Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
776 continue; // Start from the beginning.
777 default: {
778 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
779 return h_obj.Get();
780 }
781 }
782 }
783 }
784
MonitorExit(Thread * self,mirror::Object * obj)785 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
786 DCHECK(self != NULL);
787 DCHECK(obj != NULL);
788 obj = FakeUnlock(obj);
789 LockWord lock_word = obj->GetLockWord(true);
790 StackHandleScope<1> hs(self);
791 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
792 switch (lock_word.GetState()) {
793 case LockWord::kHashCode:
794 // Fall-through.
795 case LockWord::kUnlocked:
796 FailedUnlock(h_obj.Get(), self, nullptr, nullptr);
797 return false; // Failure.
798 case LockWord::kThinLocked: {
799 uint32_t thread_id = self->GetThreadId();
800 uint32_t owner_thread_id = lock_word.ThinLockOwner();
801 if (owner_thread_id != thread_id) {
802 // TODO: there's a race here with the owner dying while we unlock.
803 Thread* owner =
804 Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
805 FailedUnlock(h_obj.Get(), self, owner, nullptr);
806 return false; // Failure.
807 } else {
808 // We own the lock, decrease the recursion count.
809 if (lock_word.ThinLockCount() != 0) {
810 uint32_t new_count = lock_word.ThinLockCount() - 1;
811 LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count));
812 h_obj->SetLockWord(thin_locked, true);
813 } else {
814 h_obj->SetLockWord(LockWord(), true);
815 }
816 return true; // Success!
817 }
818 }
819 case LockWord::kFatLocked: {
820 Monitor* mon = lock_word.FatLockMonitor();
821 return mon->Unlock(self);
822 }
823 default: {
824 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
825 return false;
826 }
827 }
828 }
829
830 /*
831 * Object.wait(). Also called for class init.
832 */
Wait(Thread * self,mirror::Object * obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)833 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
834 bool interruptShouldThrow, ThreadState why) {
835 DCHECK(self != nullptr);
836 DCHECK(obj != nullptr);
837 LockWord lock_word = obj->GetLockWord(true);
838 while (lock_word.GetState() != LockWord::kFatLocked) {
839 switch (lock_word.GetState()) {
840 case LockWord::kHashCode:
841 // Fall-through.
842 case LockWord::kUnlocked:
843 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
844 return; // Failure.
845 case LockWord::kThinLocked: {
846 uint32_t thread_id = self->GetThreadId();
847 uint32_t owner_thread_id = lock_word.ThinLockOwner();
848 if (owner_thread_id != thread_id) {
849 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
850 return; // Failure.
851 } else {
852 // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
853 // re-load.
854 Inflate(self, self, obj, 0);
855 lock_word = obj->GetLockWord(true);
856 }
857 break;
858 }
859 case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through.
860 default: {
861 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
862 return;
863 }
864 }
865 }
866 Monitor* mon = lock_word.FatLockMonitor();
867 mon->Wait(self, ms, ns, interruptShouldThrow, why);
868 }
869
DoNotify(Thread * self,mirror::Object * obj,bool notify_all)870 void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
871 DCHECK(self != nullptr);
872 DCHECK(obj != nullptr);
873 LockWord lock_word = obj->GetLockWord(true);
874 switch (lock_word.GetState()) {
875 case LockWord::kHashCode:
876 // Fall-through.
877 case LockWord::kUnlocked:
878 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
879 return; // Failure.
880 case LockWord::kThinLocked: {
881 uint32_t thread_id = self->GetThreadId();
882 uint32_t owner_thread_id = lock_word.ThinLockOwner();
883 if (owner_thread_id != thread_id) {
884 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
885 return; // Failure.
886 } else {
887 // We own the lock but there's no Monitor and therefore no waiters.
888 return; // Success.
889 }
890 }
891 case LockWord::kFatLocked: {
892 Monitor* mon = lock_word.FatLockMonitor();
893 if (notify_all) {
894 mon->NotifyAll(self);
895 } else {
896 mon->Notify(self);
897 }
898 return; // Success.
899 }
900 default: {
901 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
902 return;
903 }
904 }
905 }
906
GetLockOwnerThreadId(mirror::Object * obj)907 uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
908 DCHECK(obj != nullptr);
909 LockWord lock_word = obj->GetLockWord(true);
910 switch (lock_word.GetState()) {
911 case LockWord::kHashCode:
912 // Fall-through.
913 case LockWord::kUnlocked:
914 return ThreadList::kInvalidThreadId;
915 case LockWord::kThinLocked:
916 return lock_word.ThinLockOwner();
917 case LockWord::kFatLocked: {
918 Monitor* mon = lock_word.FatLockMonitor();
919 return mon->GetOwnerThreadId();
920 }
921 default: {
922 LOG(FATAL) << "Unreachable";
923 return ThreadList::kInvalidThreadId;
924 }
925 }
926 }
927
DescribeWait(std::ostream & os,const Thread * thread)928 void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
929 // Determine the wait message and object we're waiting or blocked upon.
930 mirror::Object* pretty_object = nullptr;
931 const char* wait_message = nullptr;
932 uint32_t lock_owner = ThreadList::kInvalidThreadId;
933 ThreadState state = thread->GetState();
934 if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
935 wait_message = (state == kSleeping) ? " - sleeping on " : " - waiting on ";
936 Thread* self = Thread::Current();
937 MutexLock mu(self, *thread->GetWaitMutex());
938 Monitor* monitor = thread->GetWaitMonitor();
939 if (monitor != nullptr) {
940 pretty_object = monitor->GetObject();
941 }
942 } else if (state == kBlocked) {
943 wait_message = " - waiting to lock ";
944 pretty_object = thread->GetMonitorEnterObject();
945 if (pretty_object != nullptr) {
946 lock_owner = pretty_object->GetLockOwnerThreadId();
947 }
948 }
949
950 if (wait_message != nullptr) {
951 if (pretty_object == nullptr) {
952 os << wait_message << "an unknown object";
953 } else {
954 if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
955 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
956 // Getting the identity hashcode here would result in lock inflation and suspension of the
957 // current thread, which isn't safe if this is the only runnable thread.
958 os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
959 reinterpret_cast<intptr_t>(pretty_object),
960 PrettyTypeOf(pretty_object).c_str());
961 } else {
962 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
963 os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
964 PrettyTypeOf(pretty_object).c_str());
965 }
966 }
967 // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
968 if (lock_owner != ThreadList::kInvalidThreadId) {
969 os << " held by thread " << lock_owner;
970 }
971 os << "\n";
972 }
973 }
974
GetContendedMonitor(Thread * thread)975 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
976 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
977 // definition of contended that includes a monitor a thread is trying to enter...
978 mirror::Object* result = thread->GetMonitorEnterObject();
979 if (result == NULL) {
980 // ...but also a monitor that the thread is waiting on.
981 MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
982 Monitor* monitor = thread->GetWaitMonitor();
983 if (monitor != NULL) {
984 result = monitor->GetObject();
985 }
986 }
987 return result;
988 }
989
VisitLocks(StackVisitor * stack_visitor,void (* callback)(mirror::Object *,void *),void * callback_context,bool abort_on_failure)990 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
991 void* callback_context, bool abort_on_failure) {
992 mirror::ArtMethod* m = stack_visitor->GetMethod();
993 CHECK(m != NULL);
994
995 // Native methods are an easy special case.
996 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
997 if (m->IsNative()) {
998 if (m->IsSynchronized()) {
999 mirror::Object* jni_this = stack_visitor->GetCurrentHandleScope()->GetReference(0);
1000 callback(jni_this, callback_context);
1001 }
1002 return;
1003 }
1004
1005 // Proxy methods should not be synchronized.
1006 if (m->IsProxyMethod()) {
1007 CHECK(!m->IsSynchronized());
1008 return;
1009 }
1010
1011 // Is there any reason to believe there's any synchronization in this method?
1012 const DexFile::CodeItem* code_item = m->GetCodeItem();
1013 CHECK(code_item != NULL) << PrettyMethod(m);
1014 if (code_item->tries_size_ == 0) {
1015 return; // No "tries" implies no synchronization, so no held locks to report.
1016 }
1017
1018 // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1019 // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1020 // inconsistent stack anyways.
1021 uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1022 if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) {
1023 LOG(ERROR) << "Could not find dex_pc for " << PrettyMethod(m);
1024 return;
1025 }
1026
1027 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1028 // the locks held in this stack frame.
1029 std::vector<uint32_t> monitor_enter_dex_pcs;
1030 verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
1031 if (monitor_enter_dex_pcs.empty()) {
1032 return;
1033 }
1034
1035 for (size_t i = 0; i < monitor_enter_dex_pcs.size(); ++i) {
1036 // The verifier works in terms of the dex pcs of the monitor-enter instructions.
1037 // We want the registers used by those instructions (so we can read the values out of them).
1038 uint32_t dex_pc = monitor_enter_dex_pcs[i];
1039 uint16_t monitor_enter_instruction = code_item->insns_[dex_pc];
1040
1041 // Quick sanity check.
1042 if ((monitor_enter_instruction & 0xff) != Instruction::MONITOR_ENTER) {
1043 LOG(FATAL) << "expected monitor-enter @" << dex_pc << "; was "
1044 << reinterpret_cast<void*>(monitor_enter_instruction);
1045 }
1046
1047 uint16_t monitor_register = ((monitor_enter_instruction >> 8) & 0xff);
1048 mirror::Object* o = reinterpret_cast<mirror::Object*>(stack_visitor->GetVReg(m, monitor_register,
1049 kReferenceVReg));
1050 callback(o, callback_context);
1051 }
1052 }
1053
IsValidLockWord(LockWord lock_word)1054 bool Monitor::IsValidLockWord(LockWord lock_word) {
1055 switch (lock_word.GetState()) {
1056 case LockWord::kUnlocked:
1057 // Nothing to check.
1058 return true;
1059 case LockWord::kThinLocked:
1060 // Basic sanity check of owner.
1061 return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1062 case LockWord::kFatLocked: {
1063 // Check the monitor appears in the monitor list.
1064 Monitor* mon = lock_word.FatLockMonitor();
1065 MonitorList* list = Runtime::Current()->GetMonitorList();
1066 MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1067 for (Monitor* list_mon : list->list_) {
1068 if (mon == list_mon) {
1069 return true; // Found our monitor.
1070 }
1071 }
1072 return false; // Fail - unowned monitor in an object.
1073 }
1074 case LockWord::kHashCode:
1075 return true;
1076 default:
1077 LOG(FATAL) << "Unreachable";
1078 return false;
1079 }
1080 }
1081
IsLocked()1082 bool Monitor::IsLocked() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1083 MutexLock mu(Thread::Current(), monitor_lock_);
1084 return owner_ != nullptr;
1085 }
1086
TranslateLocation(mirror::ArtMethod * method,uint32_t dex_pc,const char ** source_file,uint32_t * line_number) const1087 void Monitor::TranslateLocation(mirror::ArtMethod* method, uint32_t dex_pc,
1088 const char** source_file, uint32_t* line_number) const {
1089 // If method is null, location is unknown
1090 if (method == NULL) {
1091 *source_file = "";
1092 *line_number = 0;
1093 return;
1094 }
1095 *source_file = method->GetDeclaringClassSourceFile();
1096 if (*source_file == NULL) {
1097 *source_file = "";
1098 }
1099 *line_number = method->GetLineNumFromDexPC(dex_pc);
1100 }
1101
GetOwnerThreadId()1102 uint32_t Monitor::GetOwnerThreadId() {
1103 MutexLock mu(Thread::Current(), monitor_lock_);
1104 Thread* owner = owner_;
1105 if (owner != NULL) {
1106 return owner->GetThreadId();
1107 } else {
1108 return ThreadList::kInvalidThreadId;
1109 }
1110 }
1111
MonitorList()1112 MonitorList::MonitorList()
1113 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1114 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1115 }
1116
~MonitorList()1117 MonitorList::~MonitorList() {
1118 Thread* self = Thread::Current();
1119 MutexLock mu(self, monitor_list_lock_);
1120 // Release all monitors to the pool.
1121 // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1122 // clear faster in the pool.
1123 MonitorPool::ReleaseMonitors(self, &list_);
1124 }
1125
DisallowNewMonitors()1126 void MonitorList::DisallowNewMonitors() {
1127 MutexLock mu(Thread::Current(), monitor_list_lock_);
1128 allow_new_monitors_ = false;
1129 }
1130
AllowNewMonitors()1131 void MonitorList::AllowNewMonitors() {
1132 Thread* self = Thread::Current();
1133 MutexLock mu(self, monitor_list_lock_);
1134 allow_new_monitors_ = true;
1135 monitor_add_condition_.Broadcast(self);
1136 }
1137
Add(Monitor * m)1138 void MonitorList::Add(Monitor* m) {
1139 Thread* self = Thread::Current();
1140 MutexLock mu(self, monitor_list_lock_);
1141 while (UNLIKELY(!allow_new_monitors_)) {
1142 monitor_add_condition_.WaitHoldingLocks(self);
1143 }
1144 list_.push_front(m);
1145 }
1146
SweepMonitorList(IsMarkedCallback * callback,void * arg)1147 void MonitorList::SweepMonitorList(IsMarkedCallback* callback, void* arg) {
1148 Thread* self = Thread::Current();
1149 MutexLock mu(self, monitor_list_lock_);
1150 for (auto it = list_.begin(); it != list_.end(); ) {
1151 Monitor* m = *it;
1152 // Disable the read barrier in GetObject() as this is called by GC.
1153 mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
1154 // The object of a monitor can be null if we have deflated it.
1155 mirror::Object* new_obj = obj != nullptr ? callback(obj, arg) : nullptr;
1156 if (new_obj == nullptr) {
1157 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1158 << obj;
1159 MonitorPool::ReleaseMonitor(self, m);
1160 it = list_.erase(it);
1161 } else {
1162 m->SetObject(new_obj);
1163 ++it;
1164 }
1165 }
1166 }
1167
1168 struct MonitorDeflateArgs {
MonitorDeflateArgsart::MonitorDeflateArgs1169 MonitorDeflateArgs() : self(Thread::Current()), deflate_count(0) {}
1170 Thread* const self;
1171 size_t deflate_count;
1172 };
1173
MonitorDeflateCallback(mirror::Object * object,void * arg)1174 static mirror::Object* MonitorDeflateCallback(mirror::Object* object, void* arg)
1175 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1176 MonitorDeflateArgs* args = reinterpret_cast<MonitorDeflateArgs*>(arg);
1177 if (Monitor::Deflate(args->self, object)) {
1178 DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1179 ++args->deflate_count;
1180 // If we deflated, return nullptr so that the monitor gets removed from the array.
1181 return nullptr;
1182 }
1183 return object; // Monitor was not deflated.
1184 }
1185
DeflateMonitors()1186 size_t MonitorList::DeflateMonitors() {
1187 MonitorDeflateArgs args;
1188 Locks::mutator_lock_->AssertExclusiveHeld(args.self);
1189 SweepMonitorList(MonitorDeflateCallback, &args);
1190 return args.deflate_count;
1191 }
1192
MonitorInfo(mirror::Object * obj)1193 MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(NULL), entry_count_(0) {
1194 DCHECK(obj != nullptr);
1195 LockWord lock_word = obj->GetLockWord(true);
1196 switch (lock_word.GetState()) {
1197 case LockWord::kUnlocked:
1198 // Fall-through.
1199 case LockWord::kForwardingAddress:
1200 // Fall-through.
1201 case LockWord::kHashCode:
1202 break;
1203 case LockWord::kThinLocked:
1204 owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1205 entry_count_ = 1 + lock_word.ThinLockCount();
1206 // Thin locks have no waiters.
1207 break;
1208 case LockWord::kFatLocked: {
1209 Monitor* mon = lock_word.FatLockMonitor();
1210 owner_ = mon->owner_;
1211 entry_count_ = 1 + mon->lock_count_;
1212 for (Thread* waiter = mon->wait_set_; waiter != NULL; waiter = waiter->GetWaitNext()) {
1213 waiters_.push_back(waiter);
1214 }
1215 break;
1216 }
1217 }
1218 }
1219
1220 } // namespace art
1221