1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "codegen_x86.h"
18 #include "dex/quick/mir_to_lir-inl.h"
19 #include "dex/dataflow_iterator-inl.h"
20 #include "x86_lir.h"
21 #include "dex/quick/dex_file_method_inliner.h"
22 #include "dex/quick/dex_file_to_method_inliner_map.h"
23 #include "dex/reg_storage_eq.h"
24
25 namespace art {
26
27 /* This file contains codegen for the X86 ISA */
28
OpFpRegCopy(RegStorage r_dest,RegStorage r_src)29 LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
30 int opcode;
31 /* must be both DOUBLE or both not DOUBLE */
32 DCHECK(r_dest.IsFloat() || r_src.IsFloat());
33 DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
34 if (r_dest.IsDouble()) {
35 opcode = kX86MovsdRR;
36 } else {
37 if (r_dest.IsSingle()) {
38 if (r_src.IsSingle()) {
39 opcode = kX86MovssRR;
40 } else { // Fpr <- Gpr
41 opcode = kX86MovdxrRR;
42 }
43 } else { // Gpr <- Fpr
44 DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
45 opcode = kX86MovdrxRR;
46 }
47 }
48 DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
49 LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
50 if (r_dest == r_src) {
51 res->flags.is_nop = true;
52 }
53 return res;
54 }
55
InexpensiveConstantInt(int32_t value)56 bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
57 return true;
58 }
59
InexpensiveConstantFloat(int32_t value)60 bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
61 return false;
62 }
63
InexpensiveConstantLong(int64_t value)64 bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
65 return true;
66 }
67
InexpensiveConstantDouble(int64_t value)68 bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
69 return value == 0;
70 }
71
72 /*
73 * Load a immediate using a shortcut if possible; otherwise
74 * grab from the per-translation literal pool. If target is
75 * a high register, build constant into a low register and copy.
76 *
77 * No additional register clobbering operation performed. Use this version when
78 * 1) r_dest is freshly returned from AllocTemp or
79 * 2) The codegen is under fixed register usage
80 */
LoadConstantNoClobber(RegStorage r_dest,int value)81 LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
82 RegStorage r_dest_save = r_dest;
83 if (r_dest.IsFloat()) {
84 if (value == 0) {
85 return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
86 }
87 r_dest = AllocTemp();
88 }
89
90 LIR *res;
91 if (value == 0) {
92 res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
93 } else {
94 // Note, there is no byte immediate form of a 32 bit immediate move.
95 // 64-bit immediate is not supported by LIR structure
96 res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
97 }
98
99 if (r_dest_save.IsFloat()) {
100 NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
101 FreeTemp(r_dest);
102 }
103
104 return res;
105 }
106
OpUnconditionalBranch(LIR * target)107 LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
108 LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
109 res->target = target;
110 return res;
111 }
112
OpCondBranch(ConditionCode cc,LIR * target)113 LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
114 LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
115 X86ConditionEncoding(cc));
116 branch->target = target;
117 return branch;
118 }
119
OpReg(OpKind op,RegStorage r_dest_src)120 LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
121 X86OpCode opcode = kX86Bkpt;
122 switch (op) {
123 case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
124 case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
125 case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break;
126 case kOpBlx: opcode = kX86CallR; break;
127 default:
128 LOG(FATAL) << "Bad case in OpReg " << op;
129 }
130 return NewLIR1(opcode, r_dest_src.GetReg());
131 }
132
OpRegImm(OpKind op,RegStorage r_dest_src1,int value)133 LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
134 X86OpCode opcode = kX86Bkpt;
135 bool byte_imm = IS_SIMM8(value);
136 DCHECK(!r_dest_src1.IsFloat());
137 if (r_dest_src1.Is64Bit()) {
138 switch (op) {
139 case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
140 case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
141 case kOpLsl: opcode = kX86Sal64RI; break;
142 case kOpLsr: opcode = kX86Shr64RI; break;
143 case kOpAsr: opcode = kX86Sar64RI; break;
144 case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
145 default:
146 LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
147 }
148 } else {
149 switch (op) {
150 case kOpLsl: opcode = kX86Sal32RI; break;
151 case kOpLsr: opcode = kX86Shr32RI; break;
152 case kOpAsr: opcode = kX86Sar32RI; break;
153 case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
154 case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break;
155 case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
156 // case kOpSbb: opcode = kX86Sbb32RI; break;
157 case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
158 case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
159 case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
160 case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
161 case kOpMov:
162 /*
163 * Moving the constant zero into register can be specialized as an xor of the register.
164 * However, that sets eflags while the move does not. For that reason here, always do
165 * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
166 */
167 opcode = kX86Mov32RI;
168 break;
169 case kOpMul:
170 opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
171 return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
172 case kOp2Byte:
173 opcode = kX86Mov32RI;
174 value = static_cast<int8_t>(value);
175 break;
176 case kOp2Short:
177 opcode = kX86Mov32RI;
178 value = static_cast<int16_t>(value);
179 break;
180 case kOp2Char:
181 opcode = kX86Mov32RI;
182 value = static_cast<uint16_t>(value);
183 break;
184 case kOpNeg:
185 opcode = kX86Mov32RI;
186 value = -value;
187 break;
188 default:
189 LOG(FATAL) << "Bad case in OpRegImm " << op;
190 }
191 }
192 return NewLIR2(opcode, r_dest_src1.GetReg(), value);
193 }
194
OpRegReg(OpKind op,RegStorage r_dest_src1,RegStorage r_src2)195 LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
196 bool is64Bit = r_dest_src1.Is64Bit();
197 X86OpCode opcode = kX86Nop;
198 bool src2_must_be_cx = false;
199 switch (op) {
200 // X86 unary opcodes
201 case kOpMvn:
202 OpRegCopy(r_dest_src1, r_src2);
203 return OpReg(kOpNot, r_dest_src1);
204 case kOpNeg:
205 OpRegCopy(r_dest_src1, r_src2);
206 return OpReg(kOpNeg, r_dest_src1);
207 case kOpRev:
208 OpRegCopy(r_dest_src1, r_src2);
209 return OpReg(kOpRev, r_dest_src1);
210 case kOpRevsh:
211 OpRegCopy(r_dest_src1, r_src2);
212 OpReg(kOpRev, r_dest_src1);
213 return OpRegImm(kOpAsr, r_dest_src1, 16);
214 // X86 binary opcodes
215 case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
216 case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
217 case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
218 case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
219 case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
220 case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
221 case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
222 case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
223 case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
224 case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
225 case kOpOr: opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
226 case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
227 case kOp2Byte:
228 // TODO: there are several instances of this check. A utility function perhaps?
229 // TODO: Similar to Arm's reg < 8 check. Perhaps add attribute checks to RegStorage?
230 // Use shifts instead of a byte operand if the source can't be byte accessed.
231 if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
232 NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
233 NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
234 return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
235 is64Bit ? 56 : 24);
236 } else {
237 opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
238 }
239 break;
240 case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
241 case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
242 case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
243 default:
244 LOG(FATAL) << "Bad case in OpRegReg " << op;
245 break;
246 }
247 CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
248 return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
249 }
250
OpMovRegMem(RegStorage r_dest,RegStorage r_base,int offset,MoveType move_type)251 LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
252 DCHECK(!r_base.IsFloat());
253 X86OpCode opcode = kX86Nop;
254 int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
255 switch (move_type) {
256 case kMov8GP:
257 CHECK(!r_dest.IsFloat());
258 opcode = kX86Mov8RM;
259 break;
260 case kMov16GP:
261 CHECK(!r_dest.IsFloat());
262 opcode = kX86Mov16RM;
263 break;
264 case kMov32GP:
265 CHECK(!r_dest.IsFloat());
266 opcode = kX86Mov32RM;
267 break;
268 case kMov32FP:
269 CHECK(r_dest.IsFloat());
270 opcode = kX86MovssRM;
271 break;
272 case kMov64FP:
273 CHECK(r_dest.IsFloat());
274 opcode = kX86MovsdRM;
275 break;
276 case kMovU128FP:
277 CHECK(r_dest.IsFloat());
278 opcode = kX86MovupsRM;
279 break;
280 case kMovA128FP:
281 CHECK(r_dest.IsFloat());
282 opcode = kX86MovapsRM;
283 break;
284 case kMovLo128FP:
285 CHECK(r_dest.IsFloat());
286 opcode = kX86MovlpsRM;
287 break;
288 case kMovHi128FP:
289 CHECK(r_dest.IsFloat());
290 opcode = kX86MovhpsRM;
291 break;
292 case kMov64GP:
293 case kMovLo64FP:
294 case kMovHi64FP:
295 default:
296 LOG(FATAL) << "Bad case in OpMovRegMem";
297 break;
298 }
299
300 return NewLIR3(opcode, dest, r_base.GetReg(), offset);
301 }
302
OpMovMemReg(RegStorage r_base,int offset,RegStorage r_src,MoveType move_type)303 LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
304 DCHECK(!r_base.IsFloat());
305 int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
306
307 X86OpCode opcode = kX86Nop;
308 switch (move_type) {
309 case kMov8GP:
310 CHECK(!r_src.IsFloat());
311 opcode = kX86Mov8MR;
312 break;
313 case kMov16GP:
314 CHECK(!r_src.IsFloat());
315 opcode = kX86Mov16MR;
316 break;
317 case kMov32GP:
318 CHECK(!r_src.IsFloat());
319 opcode = kX86Mov32MR;
320 break;
321 case kMov32FP:
322 CHECK(r_src.IsFloat());
323 opcode = kX86MovssMR;
324 break;
325 case kMov64FP:
326 CHECK(r_src.IsFloat());
327 opcode = kX86MovsdMR;
328 break;
329 case kMovU128FP:
330 CHECK(r_src.IsFloat());
331 opcode = kX86MovupsMR;
332 break;
333 case kMovA128FP:
334 CHECK(r_src.IsFloat());
335 opcode = kX86MovapsMR;
336 break;
337 case kMovLo128FP:
338 CHECK(r_src.IsFloat());
339 opcode = kX86MovlpsMR;
340 break;
341 case kMovHi128FP:
342 CHECK(r_src.IsFloat());
343 opcode = kX86MovhpsMR;
344 break;
345 case kMov64GP:
346 case kMovLo64FP:
347 case kMovHi64FP:
348 default:
349 LOG(FATAL) << "Bad case in OpMovMemReg";
350 break;
351 }
352
353 return NewLIR3(opcode, r_base.GetReg(), offset, src);
354 }
355
OpCondRegReg(OpKind op,ConditionCode cc,RegStorage r_dest,RegStorage r_src)356 LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
357 // The only conditional reg to reg operation supported is Cmov
358 DCHECK_EQ(op, kOpCmov);
359 DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
360 return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(),
361 r_src.GetReg(), X86ConditionEncoding(cc));
362 }
363
OpRegMem(OpKind op,RegStorage r_dest,RegStorage r_base,int offset)364 LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
365 bool is64Bit = r_dest.Is64Bit();
366 X86OpCode opcode = kX86Nop;
367 switch (op) {
368 // X86 binary opcodes
369 case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
370 case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
371 case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
372 case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
373 case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
374 case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
375 case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
376 case kOp2Byte: opcode = kX86Movsx8RM; break;
377 case kOp2Short: opcode = kX86Movsx16RM; break;
378 case kOp2Char: opcode = kX86Movzx16RM; break;
379 case kOpMul:
380 default:
381 LOG(FATAL) << "Bad case in OpRegMem " << op;
382 break;
383 }
384 LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
385 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
386 DCHECK(r_base == rs_rX86_SP);
387 AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
388 }
389 return l;
390 }
391
OpMemReg(OpKind op,RegLocation rl_dest,int r_value)392 LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
393 DCHECK_NE(rl_dest.location, kLocPhysReg);
394 int displacement = SRegOffset(rl_dest.s_reg_low);
395 bool is64Bit = rl_dest.wide != 0;
396 X86OpCode opcode = kX86Nop;
397 switch (op) {
398 case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
399 case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
400 case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
401 case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
402 case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
403 case kOpOr: opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
404 case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
405 case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
406 case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
407 case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
408 default:
409 LOG(FATAL) << "Bad case in OpMemReg " << op;
410 break;
411 }
412 LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
413 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
414 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
415 AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
416 }
417 return l;
418 }
419
OpRegMem(OpKind op,RegStorage r_dest,RegLocation rl_value)420 LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
421 DCHECK_NE(rl_value.location, kLocPhysReg);
422 bool is64Bit = r_dest.Is64Bit();
423 int displacement = SRegOffset(rl_value.s_reg_low);
424 X86OpCode opcode = kX86Nop;
425 switch (op) {
426 case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
427 case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
428 case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
429 case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
430 case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
431 case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
432 case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
433 case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
434 default:
435 LOG(FATAL) << "Bad case in OpRegMem " << op;
436 break;
437 }
438 LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
439 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
440 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
441 }
442 return l;
443 }
444
OpRegRegReg(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2)445 LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
446 RegStorage r_src2) {
447 bool is64Bit = r_dest.Is64Bit();
448 if (r_dest != r_src1 && r_dest != r_src2) {
449 if (op == kOpAdd) { // lea special case, except can't encode rbp as base
450 if (r_src1 == r_src2) {
451 OpRegCopy(r_dest, r_src1);
452 return OpRegImm(kOpLsl, r_dest, 1);
453 } else if (r_src1 != rs_rBP) {
454 return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
455 r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
456 0 /* scale */, 0 /* disp */);
457 } else {
458 return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
459 r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
460 0 /* scale */, 0 /* disp */);
461 }
462 } else {
463 OpRegCopy(r_dest, r_src1);
464 return OpRegReg(op, r_dest, r_src2);
465 }
466 } else if (r_dest == r_src1) {
467 return OpRegReg(op, r_dest, r_src2);
468 } else { // r_dest == r_src2
469 switch (op) {
470 case kOpSub: // non-commutative
471 OpReg(kOpNeg, r_dest);
472 op = kOpAdd;
473 break;
474 case kOpSbc:
475 case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
476 RegStorage t_reg = AllocTemp();
477 OpRegCopy(t_reg, r_src1);
478 OpRegReg(op, t_reg, r_src2);
479 LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
480 AppendLIR(res);
481 FreeTemp(t_reg);
482 return res;
483 }
484 case kOpAdd: // commutative
485 case kOpOr:
486 case kOpAdc:
487 case kOpAnd:
488 case kOpXor:
489 break;
490 default:
491 LOG(FATAL) << "Bad case in OpRegRegReg " << op;
492 }
493 return OpRegReg(op, r_dest, r_src1);
494 }
495 }
496
OpRegRegImm(OpKind op,RegStorage r_dest,RegStorage r_src,int value)497 LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
498 if (op == kOpMul && !cu_->target64) {
499 X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
500 return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
501 } else if (op == kOpAnd && !cu_->target64) {
502 if (value == 0xFF && r_src.Low4()) {
503 return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
504 } else if (value == 0xFFFF) {
505 return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
506 }
507 }
508 if (r_dest != r_src) {
509 if (false && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case
510 // TODO: fix bug in LEA encoding when disp == 0
511 return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r5sib_no_base /* base */,
512 r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
513 } else if (op == kOpAdd) { // lea add special case
514 return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
515 r_src.GetReg() /* base */, rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */,
516 0 /* scale */, value /* disp */);
517 }
518 OpRegCopy(r_dest, r_src);
519 }
520 return OpRegImm(op, r_dest, value);
521 }
522
OpThreadMem(OpKind op,ThreadOffset<4> thread_offset)523 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
524 DCHECK_EQ(kX86, cu_->instruction_set);
525 X86OpCode opcode = kX86Bkpt;
526 switch (op) {
527 case kOpBlx: opcode = kX86CallT; break;
528 case kOpBx: opcode = kX86JmpT; break;
529 default:
530 LOG(FATAL) << "Bad opcode: " << op;
531 break;
532 }
533 return NewLIR1(opcode, thread_offset.Int32Value());
534 }
535
OpThreadMem(OpKind op,ThreadOffset<8> thread_offset)536 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
537 DCHECK_EQ(kX86_64, cu_->instruction_set);
538 X86OpCode opcode = kX86Bkpt;
539 switch (op) {
540 case kOpBlx: opcode = kX86CallT; break;
541 case kOpBx: opcode = kX86JmpT; break;
542 default:
543 LOG(FATAL) << "Bad opcode: " << op;
544 break;
545 }
546 return NewLIR1(opcode, thread_offset.Int32Value());
547 }
548
OpMem(OpKind op,RegStorage r_base,int disp)549 LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
550 X86OpCode opcode = kX86Bkpt;
551 switch (op) {
552 case kOpBlx: opcode = kX86CallM; break;
553 default:
554 LOG(FATAL) << "Bad opcode: " << op;
555 break;
556 }
557 return NewLIR2(opcode, r_base.GetReg(), disp);
558 }
559
LoadConstantWide(RegStorage r_dest,int64_t value)560 LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
561 int32_t val_lo = Low32Bits(value);
562 int32_t val_hi = High32Bits(value);
563 int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
564 LIR *res;
565 bool is_fp = r_dest.IsFloat();
566 // TODO: clean this up once we fully recognize 64-bit storage containers.
567 if (is_fp) {
568 DCHECK(r_dest.IsDouble());
569 if (value == 0) {
570 return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
571 } else if (base_of_code_ != nullptr) {
572 // We will load the value from the literal area.
573 LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
574 if (data_target == NULL) {
575 data_target = AddWideData(&literal_list_, val_lo, val_hi);
576 }
577
578 // Address the start of the method
579 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
580 if (rl_method.wide) {
581 rl_method = LoadValueWide(rl_method, kCoreReg);
582 } else {
583 rl_method = LoadValue(rl_method, kCoreReg);
584 }
585
586 // Load the proper value from the literal area.
587 // We don't know the proper offset for the value, so pick one that will force
588 // 4 byte offset. We will fix this up in the assembler later to have the right
589 // value.
590 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
591 res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::FloatSolo64(low_reg_val),
592 kDouble, kNotVolatile);
593 res->target = data_target;
594 res->flags.fixup = kFixupLoad;
595 Clobber(rl_method.reg);
596 store_method_addr_used_ = true;
597 } else {
598 if (r_dest.IsPair()) {
599 if (val_lo == 0) {
600 res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
601 } else {
602 res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
603 }
604 if (val_hi != 0) {
605 RegStorage r_dest_hi = AllocTempDouble();
606 LoadConstantNoClobber(r_dest_hi, val_hi);
607 NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
608 FreeTemp(r_dest_hi);
609 }
610 } else {
611 RegStorage r_temp = AllocTypedTempWide(false, kCoreReg);
612 res = LoadConstantWide(r_temp, value);
613 OpRegCopyWide(r_dest, r_temp);
614 FreeTemp(r_temp);
615 }
616 }
617 } else {
618 if (r_dest.IsPair()) {
619 res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
620 LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
621 } else {
622 if (value == 0) {
623 res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
624 } else if (value >= INT_MIN && value <= INT_MAX) {
625 res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo);
626 } else {
627 res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo);
628 }
629 }
630 }
631 return res;
632 }
633
LoadBaseIndexedDisp(RegStorage r_base,RegStorage r_index,int scale,int displacement,RegStorage r_dest,OpSize size)634 LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
635 int displacement, RegStorage r_dest, OpSize size) {
636 LIR *load = NULL;
637 LIR *load2 = NULL;
638 bool is_array = r_index.Valid();
639 bool pair = r_dest.IsPair();
640 bool is64bit = ((size == k64) || (size == kDouble));
641 X86OpCode opcode = kX86Nop;
642 switch (size) {
643 case k64:
644 case kDouble:
645 if (r_dest.IsFloat()) {
646 opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
647 } else if (!pair) {
648 opcode = is_array ? kX86Mov64RA : kX86Mov64RM;
649 } else {
650 opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
651 }
652 // TODO: double store is to unaligned address
653 DCHECK_EQ((displacement & 0x3), 0);
654 break;
655 case kWord:
656 if (cu_->target64) {
657 opcode = is_array ? kX86Mov64RA : kX86Mov64RM;
658 CHECK_EQ(is_array, false);
659 CHECK_EQ(r_dest.IsFloat(), false);
660 break;
661 } // else fall-through to k32 case
662 case k32:
663 case kSingle:
664 case kReference: // TODO: update for reference decompression on 64-bit targets.
665 opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
666 if (r_dest.IsFloat()) {
667 opcode = is_array ? kX86MovssRA : kX86MovssRM;
668 DCHECK(r_dest.IsFloat());
669 }
670 DCHECK_EQ((displacement & 0x3), 0);
671 break;
672 case kUnsignedHalf:
673 opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
674 DCHECK_EQ((displacement & 0x1), 0);
675 break;
676 case kSignedHalf:
677 opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
678 DCHECK_EQ((displacement & 0x1), 0);
679 break;
680 case kUnsignedByte:
681 opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
682 break;
683 case kSignedByte:
684 opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
685 break;
686 default:
687 LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
688 }
689
690 if (!is_array) {
691 if (!pair) {
692 load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
693 } else {
694 DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here.
695 if (r_base == r_dest.GetLow()) {
696 load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
697 displacement + HIWORD_OFFSET);
698 load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
699 } else {
700 load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
701 load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
702 displacement + HIWORD_OFFSET);
703 }
704 }
705 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
706 DCHECK(r_base == rs_rX86_SP);
707 AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
708 true /* is_load */, is64bit);
709 if (pair) {
710 AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
711 true /* is_load */, is64bit);
712 }
713 }
714 } else {
715 if (!pair) {
716 load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
717 displacement + LOWORD_OFFSET);
718 } else {
719 DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here.
720 if (r_base == r_dest.GetLow()) {
721 if (r_dest.GetHigh() == r_index) {
722 // We can't use either register for the first load.
723 RegStorage temp = AllocTemp();
724 load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
725 displacement + HIWORD_OFFSET);
726 load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
727 displacement + LOWORD_OFFSET);
728 OpRegCopy(r_dest.GetHigh(), temp);
729 FreeTemp(temp);
730 } else {
731 load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
732 displacement + HIWORD_OFFSET);
733 load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
734 displacement + LOWORD_OFFSET);
735 }
736 } else {
737 if (r_dest.GetLow() == r_index) {
738 // We can't use either register for the first load.
739 RegStorage temp = AllocTemp();
740 load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
741 displacement + LOWORD_OFFSET);
742 load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
743 displacement + HIWORD_OFFSET);
744 OpRegCopy(r_dest.GetLow(), temp);
745 FreeTemp(temp);
746 } else {
747 load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
748 displacement + LOWORD_OFFSET);
749 load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
750 displacement + HIWORD_OFFSET);
751 }
752 }
753 }
754 }
755
756 // Always return first load generated as this might cause a fault if base is nullptr.
757 return load;
758 }
759
760 /* Load value from base + scaled index. */
LoadBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_dest,int scale,OpSize size)761 LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
762 int scale, OpSize size) {
763 return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
764 }
765
LoadBaseDisp(RegStorage r_base,int displacement,RegStorage r_dest,OpSize size,VolatileKind is_volatile)766 LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
767 OpSize size, VolatileKind is_volatile) {
768 // LoadBaseDisp() will emit correct insn for atomic load on x86
769 // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
770
771 LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
772 size);
773
774 if (UNLIKELY(is_volatile == kVolatile)) {
775 GenMemBarrier(kLoadAny); // Only a scheduling barrier.
776 }
777
778 return load;
779 }
780
StoreBaseIndexedDisp(RegStorage r_base,RegStorage r_index,int scale,int displacement,RegStorage r_src,OpSize size)781 LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
782 int displacement, RegStorage r_src, OpSize size) {
783 LIR *store = NULL;
784 LIR *store2 = NULL;
785 bool is_array = r_index.Valid();
786 bool pair = r_src.IsPair();
787 bool is64bit = (size == k64) || (size == kDouble);
788 X86OpCode opcode = kX86Nop;
789 switch (size) {
790 case k64:
791 case kDouble:
792 if (r_src.IsFloat()) {
793 opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
794 } else if (!pair) {
795 opcode = is_array ? kX86Mov64AR : kX86Mov64MR;
796 } else {
797 opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
798 }
799 // TODO: double store is to unaligned address
800 DCHECK_EQ((displacement & 0x3), 0);
801 break;
802 case kWord:
803 if (cu_->target64) {
804 opcode = is_array ? kX86Mov64AR : kX86Mov64MR;
805 CHECK_EQ(is_array, false);
806 CHECK_EQ(r_src.IsFloat(), false);
807 break;
808 } // else fall-through to k32 case
809 case k32:
810 case kSingle:
811 case kReference:
812 opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
813 if (r_src.IsFloat()) {
814 opcode = is_array ? kX86MovssAR : kX86MovssMR;
815 DCHECK(r_src.IsSingle());
816 }
817 DCHECK_EQ((displacement & 0x3), 0);
818 break;
819 case kUnsignedHalf:
820 case kSignedHalf:
821 opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
822 DCHECK_EQ((displacement & 0x1), 0);
823 break;
824 case kUnsignedByte:
825 case kSignedByte:
826 opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
827 break;
828 default:
829 LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
830 }
831
832 if (!is_array) {
833 if (!pair) {
834 store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
835 } else {
836 DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here.
837 store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
838 store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
839 }
840 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
841 DCHECK(r_base == rs_rX86_SP);
842 AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
843 false /* is_load */, is64bit);
844 if (pair) {
845 AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
846 false /* is_load */, is64bit);
847 }
848 }
849 } else {
850 if (!pair) {
851 store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
852 displacement + LOWORD_OFFSET, r_src.GetReg());
853 } else {
854 DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here.
855 store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
856 displacement + LOWORD_OFFSET, r_src.GetLowReg());
857 store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
858 displacement + HIWORD_OFFSET, r_src.GetHighReg());
859 }
860 }
861 return store;
862 }
863
864 /* store value base base + scaled index. */
StoreBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_src,int scale,OpSize size)865 LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
866 int scale, OpSize size) {
867 return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
868 }
869
StoreBaseDisp(RegStorage r_base,int displacement,RegStorage r_src,OpSize size,VolatileKind is_volatile)870 LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
871 VolatileKind is_volatile) {
872 if (UNLIKELY(is_volatile == kVolatile)) {
873 GenMemBarrier(kAnyStore); // Only a scheduling barrier.
874 }
875
876 // StoreBaseDisp() will emit correct insn for atomic store on x86
877 // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
878
879 LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
880
881 if (UNLIKELY(is_volatile == kVolatile)) {
882 // A volatile load might follow the volatile store so insert a StoreLoad barrier.
883 // This does require a fence, even on x86.
884 GenMemBarrier(kAnyAny);
885 }
886
887 return store;
888 }
889
OpCmpMemImmBranch(ConditionCode cond,RegStorage temp_reg,RegStorage base_reg,int offset,int check_value,LIR * target,LIR ** compare)890 LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
891 int offset, int check_value, LIR* target, LIR** compare) {
892 LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(),
893 offset, check_value);
894 if (compare != nullptr) {
895 *compare = inst;
896 }
897 LIR* branch = OpCondBranch(cond, target);
898 return branch;
899 }
900
AnalyzeMIR()901 void X86Mir2Lir::AnalyzeMIR() {
902 // Assume we don't need a pointer to the base of the code.
903 cu_->NewTimingSplit("X86 MIR Analysis");
904 store_method_addr_ = false;
905
906 // Walk the MIR looking for interesting items.
907 PreOrderDfsIterator iter(mir_graph_);
908 BasicBlock* curr_bb = iter.Next();
909 while (curr_bb != NULL) {
910 AnalyzeBB(curr_bb);
911 curr_bb = iter.Next();
912 }
913
914 // Did we need a pointer to the method code?
915 if (store_method_addr_) {
916 base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, cu_->target64 == true);
917 } else {
918 base_of_code_ = nullptr;
919 }
920 }
921
AnalyzeBB(BasicBlock * bb)922 void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
923 if (bb->block_type == kDead) {
924 // Ignore dead blocks
925 return;
926 }
927
928 for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
929 int opcode = mir->dalvikInsn.opcode;
930 if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
931 AnalyzeExtendedMIR(opcode, bb, mir);
932 } else {
933 AnalyzeMIR(opcode, bb, mir);
934 }
935 }
936 }
937
938
AnalyzeExtendedMIR(int opcode,BasicBlock * bb,MIR * mir)939 void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
940 switch (opcode) {
941 // Instructions referencing doubles.
942 case kMirOpFusedCmplDouble:
943 case kMirOpFusedCmpgDouble:
944 AnalyzeFPInstruction(opcode, bb, mir);
945 break;
946 case kMirOpConstVector:
947 store_method_addr_ = true;
948 break;
949 default:
950 // Ignore the rest.
951 break;
952 }
953 }
954
AnalyzeMIR(int opcode,BasicBlock * bb,MIR * mir)955 void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
956 // Looking for
957 // - Do we need a pointer to the code (used for packed switches and double lits)?
958
959 switch (opcode) {
960 // Instructions referencing doubles.
961 case Instruction::CMPL_DOUBLE:
962 case Instruction::CMPG_DOUBLE:
963 case Instruction::NEG_DOUBLE:
964 case Instruction::ADD_DOUBLE:
965 case Instruction::SUB_DOUBLE:
966 case Instruction::MUL_DOUBLE:
967 case Instruction::DIV_DOUBLE:
968 case Instruction::REM_DOUBLE:
969 case Instruction::ADD_DOUBLE_2ADDR:
970 case Instruction::SUB_DOUBLE_2ADDR:
971 case Instruction::MUL_DOUBLE_2ADDR:
972 case Instruction::DIV_DOUBLE_2ADDR:
973 case Instruction::REM_DOUBLE_2ADDR:
974 AnalyzeFPInstruction(opcode, bb, mir);
975 break;
976
977 // Packed switches and array fills need a pointer to the base of the method.
978 case Instruction::FILL_ARRAY_DATA:
979 case Instruction::PACKED_SWITCH:
980 store_method_addr_ = true;
981 break;
982 case Instruction::INVOKE_STATIC:
983 AnalyzeInvokeStatic(opcode, bb, mir);
984 break;
985 default:
986 // Other instructions are not interesting yet.
987 break;
988 }
989 }
990
AnalyzeFPInstruction(int opcode,BasicBlock * bb,MIR * mir)991 void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
992 // Look at all the uses, and see if they are double constants.
993 uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
994 int next_sreg = 0;
995 if (attrs & DF_UA) {
996 if (attrs & DF_A_WIDE) {
997 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
998 next_sreg += 2;
999 } else {
1000 next_sreg++;
1001 }
1002 }
1003 if (attrs & DF_UB) {
1004 if (attrs & DF_B_WIDE) {
1005 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
1006 next_sreg += 2;
1007 } else {
1008 next_sreg++;
1009 }
1010 }
1011 if (attrs & DF_UC) {
1012 if (attrs & DF_C_WIDE) {
1013 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
1014 }
1015 }
1016 }
1017
AnalyzeDoubleUse(RegLocation use)1018 void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
1019 // If this is a double literal, we will want it in the literal pool on 32b platforms.
1020 if (use.is_const && !cu_->target64) {
1021 store_method_addr_ = true;
1022 }
1023 }
1024
UpdateLocTyped(RegLocation loc,int reg_class)1025 RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
1026 loc = UpdateLoc(loc);
1027 if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1028 if (GetRegInfo(loc.reg)->IsTemp()) {
1029 Clobber(loc.reg);
1030 FreeTemp(loc.reg);
1031 loc.reg = RegStorage::InvalidReg();
1032 loc.location = kLocDalvikFrame;
1033 }
1034 }
1035 DCHECK(CheckCorePoolSanity());
1036 return loc;
1037 }
1038
UpdateLocWideTyped(RegLocation loc,int reg_class)1039 RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
1040 loc = UpdateLocWide(loc);
1041 if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1042 if (GetRegInfo(loc.reg)->IsTemp()) {
1043 Clobber(loc.reg);
1044 FreeTemp(loc.reg);
1045 loc.reg = RegStorage::InvalidReg();
1046 loc.location = kLocDalvikFrame;
1047 }
1048 }
1049 DCHECK(CheckCorePoolSanity());
1050 return loc;
1051 }
1052
AnalyzeInvokeStatic(int opcode,BasicBlock * bb,MIR * mir)1053 void X86Mir2Lir::AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir) {
1054 // For now this is only actual for x86-32.
1055 if (cu_->target64) {
1056 return;
1057 }
1058
1059 uint32_t index = mir->dalvikInsn.vB;
1060 if (!(mir->optimization_flags & MIR_INLINED)) {
1061 DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1062 DexFileMethodInliner* method_inliner =
1063 cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file);
1064 InlineMethod method;
1065 if (method_inliner->IsIntrinsic(index, &method)) {
1066 switch (method.opcode) {
1067 case kIntrinsicAbsDouble:
1068 case kIntrinsicMinMaxDouble:
1069 store_method_addr_ = true;
1070 break;
1071 default:
1072 break;
1073 }
1074 }
1075 }
1076 }
1077
InvokeTrampoline(OpKind op,RegStorage r_tgt,QuickEntrypointEnum trampoline)1078 LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
1079 if (cu_->target64) {
1080 return OpThreadMem(op, GetThreadOffset<8>(trampoline));
1081 } else {
1082 return OpThreadMem(op, GetThreadOffset<4>(trampoline));
1083 }
1084 }
1085
1086 } // namespace art
1087