1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "dex/compiler_ir.h"
17 #include "dex/compiler_internals.h"
18 #include "dex/quick/arm/arm_lir.h"
19 #include "dex/quick/mir_to_lir-inl.h"
20 #include "entrypoints/quick/quick_entrypoints.h"
21 #include "mirror/array.h"
22 #include "mirror/object_array-inl.h"
23 #include "mirror/object-inl.h"
24 #include "mirror/object_reference.h"
25 #include "verifier/method_verifier.h"
26 #include <functional>
27 
28 namespace art {
29 
30 // Shortcuts to repeatedly used long types.
31 typedef mirror::ObjectArray<mirror::Object> ObjArray;
32 typedef mirror::ObjectArray<mirror::Class> ClassArray;
33 
34 /*
35  * This source files contains "gen" codegen routines that should
36  * be applicable to most targets.  Only mid-level support utilities
37  * and "op" calls may be used here.
38  */
39 
40 /*
41  * Generate a kPseudoBarrier marker to indicate the boundary of special
42  * blocks.
43  */
GenBarrier()44 void Mir2Lir::GenBarrier() {
45   LIR* barrier = NewLIR0(kPseudoBarrier);
46   /* Mark all resources as being clobbered */
47   DCHECK(!barrier->flags.use_def_invalid);
48   barrier->u.m.def_mask = &kEncodeAll;
49 }
50 
GenDivZeroException()51 void Mir2Lir::GenDivZeroException() {
52   LIR* branch = OpUnconditionalBranch(nullptr);
53   AddDivZeroCheckSlowPath(branch);
54 }
55 
GenDivZeroCheck(ConditionCode c_code)56 void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
57   LIR* branch = OpCondBranch(c_code, nullptr);
58   AddDivZeroCheckSlowPath(branch);
59 }
60 
GenDivZeroCheck(RegStorage reg)61 void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
62   LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
63   AddDivZeroCheckSlowPath(branch);
64 }
65 
AddDivZeroCheckSlowPath(LIR * branch)66 void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
67   class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
68    public:
69     DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
70         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
71     }
72 
73     void Compile() OVERRIDE {
74       m2l_->ResetRegPool();
75       m2l_->ResetDefTracking();
76       GenerateTargetLabel(kPseudoThrowTarget);
77       m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
78     }
79   };
80 
81   AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
82 }
83 
GenArrayBoundsCheck(RegStorage index,RegStorage length)84 void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
85   class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
86    public:
87     ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
88         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
89           index_(index), length_(length) {
90     }
91 
92     void Compile() OVERRIDE {
93       m2l_->ResetRegPool();
94       m2l_->ResetDefTracking();
95       GenerateTargetLabel(kPseudoThrowTarget);
96       m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
97     }
98 
99    private:
100     const RegStorage index_;
101     const RegStorage length_;
102   };
103 
104   LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
105   AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
106 }
107 
GenArrayBoundsCheck(int index,RegStorage length)108 void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
109   class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
110    public:
111     ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
112         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
113           index_(index), length_(length) {
114     }
115 
116     void Compile() OVERRIDE {
117       m2l_->ResetRegPool();
118       m2l_->ResetDefTracking();
119       GenerateTargetLabel(kPseudoThrowTarget);
120 
121       RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
122       RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
123 
124       m2l_->OpRegCopy(arg1_32, length_);
125       m2l_->LoadConstant(arg0_32, index_);
126       m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
127     }
128 
129    private:
130     const int32_t index_;
131     const RegStorage length_;
132   };
133 
134   LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
135   AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
136 }
137 
GenNullCheck(RegStorage reg)138 LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
139   class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
140    public:
141     NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
142         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
143     }
144 
145     void Compile() OVERRIDE {
146       m2l_->ResetRegPool();
147       m2l_->ResetDefTracking();
148       GenerateTargetLabel(kPseudoThrowTarget);
149       m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
150     }
151   };
152 
153   LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
154   AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
155   return branch;
156 }
157 
158 /* Perform null-check on a register.  */
GenNullCheck(RegStorage m_reg,int opt_flags)159 LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
160   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
161     return GenExplicitNullCheck(m_reg, opt_flags);
162   }
163   // If null check has not been eliminated, reset redundant store tracking.
164   if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) {
165     ResetDefTracking();
166   }
167   return nullptr;
168 }
169 
170 /* Perform an explicit null-check on a register.  */
GenExplicitNullCheck(RegStorage m_reg,int opt_flags)171 LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
172   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
173     return NULL;
174   }
175   return GenNullCheck(m_reg);
176 }
177 
MarkPossibleNullPointerException(int opt_flags)178 void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
179   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
180     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
181       return;
182     }
183     // Insert after last instruction.
184     MarkSafepointPC(last_lir_insn_);
185   }
186 }
187 
MarkPossibleNullPointerExceptionAfter(int opt_flags,LIR * after)188 void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
189   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
190     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
191       return;
192     }
193     MarkSafepointPCAfter(after);
194   }
195 }
196 
MarkPossibleStackOverflowException()197 void Mir2Lir::MarkPossibleStackOverflowException() {
198   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
199     MarkSafepointPC(last_lir_insn_);
200   }
201 }
202 
ForceImplicitNullCheck(RegStorage reg,int opt_flags)203 void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
204   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
205     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
206       return;
207     }
208     // Force an implicit null check by performing a memory operation (load) from the given
209     // register with offset 0.  This will cause a signal if the register contains 0 (null).
210     RegStorage tmp = AllocTemp();
211     // TODO: for Mips, would be best to use rZERO as the bogus register target.
212     LIR* load = Load32Disp(reg, 0, tmp);
213     FreeTemp(tmp);
214     MarkSafepointPC(load);
215   }
216 }
217 
GenCompareAndBranch(Instruction::Code opcode,RegLocation rl_src1,RegLocation rl_src2,LIR * taken,LIR * fall_through)218 void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
219                                   RegLocation rl_src2, LIR* taken,
220                                   LIR* fall_through) {
221   DCHECK(!rl_src1.fp);
222   DCHECK(!rl_src2.fp);
223   ConditionCode cond;
224   switch (opcode) {
225     case Instruction::IF_EQ:
226       cond = kCondEq;
227       break;
228     case Instruction::IF_NE:
229       cond = kCondNe;
230       break;
231     case Instruction::IF_LT:
232       cond = kCondLt;
233       break;
234     case Instruction::IF_GE:
235       cond = kCondGe;
236       break;
237     case Instruction::IF_GT:
238       cond = kCondGt;
239       break;
240     case Instruction::IF_LE:
241       cond = kCondLe;
242       break;
243     default:
244       cond = static_cast<ConditionCode>(0);
245       LOG(FATAL) << "Unexpected opcode " << opcode;
246   }
247 
248   // Normalize such that if either operand is constant, src2 will be constant
249   if (rl_src1.is_const) {
250     RegLocation rl_temp = rl_src1;
251     rl_src1 = rl_src2;
252     rl_src2 = rl_temp;
253     cond = FlipComparisonOrder(cond);
254   }
255 
256   rl_src1 = LoadValue(rl_src1);
257   // Is this really an immediate comparison?
258   if (rl_src2.is_const) {
259     // If it's already live in a register or not easily materialized, just keep going
260     RegLocation rl_temp = UpdateLoc(rl_src2);
261     int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
262     if ((rl_temp.location == kLocDalvikFrame) &&
263         InexpensiveConstantInt(constant_value, opcode)) {
264       // OK - convert this to a compare immediate and branch
265       OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
266       return;
267     }
268 
269     // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
270     // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
271     // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
272     // the 32b literal 0 for null.
273     if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
274       // Use the OpCmpImmBranch and ignore the value in the register.
275       OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
276       return;
277     }
278   }
279 
280   rl_src2 = LoadValue(rl_src2);
281   OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
282 }
283 
GenCompareZeroAndBranch(Instruction::Code opcode,RegLocation rl_src,LIR * taken,LIR * fall_through)284 void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
285                                       LIR* fall_through) {
286   ConditionCode cond;
287   DCHECK(!rl_src.fp);
288   rl_src = LoadValue(rl_src);
289   switch (opcode) {
290     case Instruction::IF_EQZ:
291       cond = kCondEq;
292       break;
293     case Instruction::IF_NEZ:
294       cond = kCondNe;
295       break;
296     case Instruction::IF_LTZ:
297       cond = kCondLt;
298       break;
299     case Instruction::IF_GEZ:
300       cond = kCondGe;
301       break;
302     case Instruction::IF_GTZ:
303       cond = kCondGt;
304       break;
305     case Instruction::IF_LEZ:
306       cond = kCondLe;
307       break;
308     default:
309       cond = static_cast<ConditionCode>(0);
310       LOG(FATAL) << "Unexpected opcode " << opcode;
311   }
312   OpCmpImmBranch(cond, rl_src.reg, 0, taken);
313 }
314 
GenIntToLong(RegLocation rl_dest,RegLocation rl_src)315 void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
316   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
317   if (rl_src.location == kLocPhysReg) {
318     OpRegCopy(rl_result.reg, rl_src.reg);
319   } else {
320     LoadValueDirect(rl_src, rl_result.reg.GetLow());
321   }
322   OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
323   StoreValueWide(rl_dest, rl_result);
324 }
325 
GenIntNarrowing(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src)326 void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
327                               RegLocation rl_src) {
328   rl_src = LoadValue(rl_src, kCoreReg);
329   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
330   OpKind op = kOpInvalid;
331   switch (opcode) {
332     case Instruction::INT_TO_BYTE:
333       op = kOp2Byte;
334       break;
335     case Instruction::INT_TO_SHORT:
336        op = kOp2Short;
337        break;
338     case Instruction::INT_TO_CHAR:
339        op = kOp2Char;
340        break;
341     default:
342       LOG(ERROR) << "Bad int conversion type";
343   }
344   OpRegReg(op, rl_result.reg, rl_src.reg);
345   StoreValue(rl_dest, rl_result);
346 }
347 
348 /*
349  * Let helper function take care of everything.  Will call
350  * Array::AllocFromCode(type_idx, method, count);
351  * Note: AllocFromCode will handle checks for errNegativeArraySize.
352  */
GenNewArray(uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)353 void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
354                           RegLocation rl_src) {
355   FlushAllRegs();  /* Everything to home location */
356   const DexFile* dex_file = cu_->dex_file;
357   CompilerDriver* driver = cu_->compiler_driver;
358   if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
359     bool is_type_initialized;  // Ignored as an array does not have an initializer.
360     bool use_direct_type_ptr;
361     uintptr_t direct_type_ptr;
362     bool is_finalizable;
363     if (kEmbedClassInCode &&
364         driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
365                                    &direct_type_ptr, &is_finalizable)) {
366       // The fast path.
367       if (!use_direct_type_ptr) {
368         LoadClassType(type_idx, kArg0);
369         CallRuntimeHelperRegMethodRegLocation(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
370                                               rl_src, true);
371       } else {
372         // Use the direct pointer.
373         CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
374                                               true);
375       }
376     } else {
377       // The slow path.
378       CallRuntimeHelperImmMethodRegLocation(kQuickAllocArray, type_idx, rl_src, true);
379     }
380   } else {
381     CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
382   }
383   StoreValue(rl_dest, GetReturn(kRefReg));
384 }
385 
386 /*
387  * Similar to GenNewArray, but with post-allocation initialization.
388  * Verifier guarantees we're dealing with an array class.  Current
389  * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
390  * Current code also throws internal unimp if not 'L', '[' or 'I'.
391  */
GenFilledNewArray(CallInfo * info)392 void Mir2Lir::GenFilledNewArray(CallInfo* info) {
393   int elems = info->num_arg_words;
394   int type_idx = info->index;
395   FlushAllRegs();  /* Everything to home location */
396   QuickEntrypointEnum target;
397   if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
398                                                        type_idx)) {
399     target = kQuickCheckAndAllocArray;
400   } else {
401     target = kQuickCheckAndAllocArrayWithAccessCheck;
402   }
403   CallRuntimeHelperImmMethodImm(target, type_idx, elems, true);
404   FreeTemp(TargetReg(kArg2, kNotWide));
405   FreeTemp(TargetReg(kArg1, kNotWide));
406   /*
407    * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
408    * return region.  Because AllocFromCode placed the new array
409    * in kRet0, we'll just lock it into place.  When debugger support is
410    * added, it may be necessary to additionally copy all return
411    * values to a home location in thread-local storage
412    */
413   RegStorage ref_reg = TargetReg(kRet0, kRef);
414   LockTemp(ref_reg);
415 
416   // TODO: use the correct component size, currently all supported types
417   // share array alignment with ints (see comment at head of function)
418   size_t component_size = sizeof(int32_t);
419 
420   // Having a range of 0 is legal
421   if (info->is_range && (elems > 0)) {
422     /*
423      * Bit of ugliness here.  We're going generate a mem copy loop
424      * on the register range, but it is possible that some regs
425      * in the range have been promoted.  This is unlikely, but
426      * before generating the copy, we'll just force a flush
427      * of any regs in the source range that have been promoted to
428      * home location.
429      */
430     for (int i = 0; i < elems; i++) {
431       RegLocation loc = UpdateLoc(info->args[i]);
432       if (loc.location == kLocPhysReg) {
433         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
434         Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
435       }
436     }
437     /*
438      * TUNING note: generated code here could be much improved, but
439      * this is an uncommon operation and isn't especially performance
440      * critical.
441      */
442     // This is addressing the stack, which may be out of the 4G area.
443     RegStorage r_src = AllocTempRef();
444     RegStorage r_dst = AllocTempRef();
445     RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
446     RegStorage r_val;
447     switch (cu_->instruction_set) {
448       case kThumb2:
449       case kArm64:
450         r_val = TargetReg(kLr, kNotWide);
451         break;
452       case kX86:
453       case kX86_64:
454         FreeTemp(ref_reg);
455         r_val = AllocTemp();
456         break;
457       case kMips:
458         r_val = AllocTemp();
459         break;
460       default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
461     }
462     // Set up source pointer
463     RegLocation rl_first = info->args[0];
464     OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
465     // Set up the target pointer
466     OpRegRegImm(kOpAdd, r_dst, ref_reg,
467                 mirror::Array::DataOffset(component_size).Int32Value());
468     // Set up the loop counter (known to be > 0)
469     LoadConstant(r_idx, elems - 1);
470     // Generate the copy loop.  Going backwards for convenience
471     LIR* target = NewLIR0(kPseudoTargetLabel);
472     // Copy next element
473     {
474       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
475       LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
476       // NOTE: No dalvik register annotation, local optimizations will be stopped
477       // by the loop boundaries.
478     }
479     StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
480     FreeTemp(r_val);
481     OpDecAndBranch(kCondGe, r_idx, target);
482     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
483       // Restore the target pointer
484       OpRegRegImm(kOpAdd, ref_reg, r_dst,
485                   -mirror::Array::DataOffset(component_size).Int32Value());
486     }
487   } else if (!info->is_range) {
488     // TUNING: interleave
489     for (int i = 0; i < elems; i++) {
490       RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
491       Store32Disp(ref_reg,
492                   mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
493       // If the LoadValue caused a temp to be allocated, free it
494       if (IsTemp(rl_arg.reg)) {
495         FreeTemp(rl_arg.reg);
496       }
497     }
498   }
499   if (info->result.location != kLocInvalid) {
500     StoreValue(info->result, GetReturn(kRefReg));
501   }
502 }
503 
504 //
505 // Slow path to ensure a class is initialized for sget/sput.
506 //
507 class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
508  public:
StaticFieldSlowPath(Mir2Lir * m2l,LIR * unresolved,LIR * uninit,LIR * cont,int storage_index,RegStorage r_base)509   StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
510                       RegStorage r_base) :
511     LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
512                storage_index_(storage_index), r_base_(r_base) {
513   }
514 
Compile()515   void Compile() {
516     LIR* unresolved_target = GenerateTargetLabel();
517     uninit_->target = unresolved_target;
518     m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
519     // Copy helper's result into r_base, a no-op on all but MIPS.
520     m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
521 
522     m2l_->OpUnconditionalBranch(cont_);
523   }
524 
525  private:
526   LIR* const uninit_;
527   const int storage_index_;
528   const RegStorage r_base_;
529 };
530 
GenSput(MIR * mir,RegLocation rl_src,bool is_long_or_double,bool is_object)531 void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
532                       bool is_object) {
533   const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
534   cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
535   OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
536   if (!SLOW_FIELD_PATH && field_info.FastPut()) {
537     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
538     RegStorage r_base;
539     if (field_info.IsReferrersClass()) {
540       // Fast path, static storage base is this method's class
541       RegLocation rl_method = LoadCurrMethod();
542       r_base = AllocTempRef();
543       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
544                   kNotVolatile);
545       if (IsTemp(rl_method.reg)) {
546         FreeTemp(rl_method.reg);
547       }
548     } else {
549       // Medium path, static storage base in a different class which requires checks that the other
550       // class is initialized.
551       // TODO: remove initialized check now that we are initializing classes in the compiler driver.
552       DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
553       // May do runtime call so everything to home locations.
554       FlushAllRegs();
555       // Using fixed register to sync with possible call to runtime support.
556       RegStorage r_method = TargetReg(kArg1, kRef);
557       LockTemp(r_method);
558       LoadCurrMethodDirect(r_method);
559       r_base = TargetReg(kArg0, kRef);
560       LockTemp(r_base);
561       LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
562                   kNotVolatile);
563       int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
564       LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
565       // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
566       if (!field_info.IsInitialized() &&
567           (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
568         // Check if r_base is NULL or a not yet initialized class.
569 
570         // The slow path is invoked if the r_base is NULL or the class pointed
571         // to by it is not initialized.
572         LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
573         RegStorage r_tmp = TargetReg(kArg2, kNotWide);
574         LockTemp(r_tmp);
575         LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
576                                           mirror::Class::StatusOffset().Int32Value(),
577                                           mirror::Class::kStatusInitialized, nullptr, nullptr);
578         LIR* cont = NewLIR0(kPseudoTargetLabel);
579 
580         AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
581                                                      field_info.StorageIndex(), r_base));
582 
583         FreeTemp(r_tmp);
584         // Ensure load of status and store of value don't re-order.
585         // TODO: Presumably the actual value store is control-dependent on the status load,
586         // and will thus not be reordered in any case, since stores are never speculated.
587         // Does later code "know" that the class is now initialized?  If so, we still
588         // need the barrier to guard later static loads.
589         GenMemBarrier(kLoadAny);
590       }
591       FreeTemp(r_method);
592     }
593     // rBase now holds static storage base
594     RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
595     if (is_long_or_double) {
596       rl_src = LoadValueWide(rl_src, reg_class);
597     } else {
598       rl_src = LoadValue(rl_src, reg_class);
599     }
600     if (is_object) {
601       StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
602                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
603     } else {
604       StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
605                     field_info.IsVolatile() ? kVolatile : kNotVolatile);
606     }
607     if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
608       MarkGCCard(rl_src.reg, r_base);
609     }
610     FreeTemp(r_base);
611   } else {
612     FlushAllRegs();  // Everything to home locations
613     QuickEntrypointEnum target =
614         is_long_or_double ? kQuickSet64Static
615             : (is_object ? kQuickSetObjStatic : kQuickSet32Static);
616     CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
617   }
618 }
619 
GenSget(MIR * mir,RegLocation rl_dest,bool is_long_or_double,bool is_object)620 void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
621                       bool is_long_or_double, bool is_object) {
622   const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
623   cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
624   OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
625   if (!SLOW_FIELD_PATH && field_info.FastGet()) {
626     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
627     RegStorage r_base;
628     if (field_info.IsReferrersClass()) {
629       // Fast path, static storage base is this method's class
630       RegLocation rl_method  = LoadCurrMethod();
631       r_base = AllocTempRef();
632       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
633                   kNotVolatile);
634     } else {
635       // Medium path, static storage base in a different class which requires checks that the other
636       // class is initialized
637       DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
638       // May do runtime call so everything to home locations.
639       FlushAllRegs();
640       // Using fixed register to sync with possible call to runtime support.
641       RegStorage r_method = TargetReg(kArg1, kRef);
642       LockTemp(r_method);
643       LoadCurrMethodDirect(r_method);
644       r_base = TargetReg(kArg0, kRef);
645       LockTemp(r_base);
646       LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
647                   kNotVolatile);
648       int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
649       LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
650       // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
651       if (!field_info.IsInitialized() &&
652           (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
653         // Check if r_base is NULL or a not yet initialized class.
654 
655         // The slow path is invoked if the r_base is NULL or the class pointed
656         // to by it is not initialized.
657         LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
658         RegStorage r_tmp = TargetReg(kArg2, kNotWide);
659         LockTemp(r_tmp);
660         LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
661                                           mirror::Class::StatusOffset().Int32Value(),
662                                           mirror::Class::kStatusInitialized, nullptr, nullptr);
663         LIR* cont = NewLIR0(kPseudoTargetLabel);
664 
665         AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
666                                                      field_info.StorageIndex(), r_base));
667 
668         FreeTemp(r_tmp);
669         // Ensure load of status and load of value don't re-order.
670         GenMemBarrier(kLoadAny);
671       }
672       FreeTemp(r_method);
673     }
674     // r_base now holds static storage base
675     RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
676     RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
677 
678     int field_offset = field_info.FieldOffset().Int32Value();
679     if (is_object) {
680       LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
681           kNotVolatile);
682     } else {
683       LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
684           kVolatile : kNotVolatile);
685     }
686     FreeTemp(r_base);
687 
688     if (is_long_or_double) {
689       StoreValueWide(rl_dest, rl_result);
690     } else {
691       StoreValue(rl_dest, rl_result);
692     }
693   } else {
694     FlushAllRegs();  // Everything to home locations
695     QuickEntrypointEnum target =
696         is_long_or_double ? kQuickGet64Static
697             : (is_object ? kQuickGetObjStatic : kQuickGet32Static);
698     CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
699 
700     // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
701     if (is_long_or_double) {
702       RegLocation rl_result = GetReturnWide(kCoreReg);
703       StoreValueWide(rl_dest, rl_result);
704     } else {
705       RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
706       StoreValue(rl_dest, rl_result);
707     }
708   }
709 }
710 
711 // Generate code for all slow paths.
HandleSlowPaths()712 void Mir2Lir::HandleSlowPaths() {
713   // We should check slow_paths_.Size() every time, because a new slow path
714   // may be created during slowpath->Compile().
715   for (size_t i = 0; i < slow_paths_.Size(); ++i) {
716     LIRSlowPath* slowpath = slow_paths_.Get(i);
717     slowpath->Compile();
718   }
719   slow_paths_.Reset();
720 }
721 
GenIGet(MIR * mir,int opt_flags,OpSize size,RegLocation rl_dest,RegLocation rl_obj,bool is_long_or_double,bool is_object)722 void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
723                       RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
724                       bool is_object) {
725   const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
726   cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
727   OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
728   if (!SLOW_FIELD_PATH && field_info.FastGet()) {
729     RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
730     // A load of the class will lead to an iget with offset 0.
731     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
732     rl_obj = LoadValue(rl_obj, kRefReg);
733     GenNullCheck(rl_obj.reg, opt_flags);
734     RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
735     int field_offset = field_info.FieldOffset().Int32Value();
736     LIR* load_lir;
737     if (is_object) {
738       load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
739           kVolatile : kNotVolatile);
740     } else {
741       load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
742                               field_info.IsVolatile() ? kVolatile : kNotVolatile);
743     }
744     MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
745     if (is_long_or_double) {
746       StoreValueWide(rl_dest, rl_result);
747     } else {
748       StoreValue(rl_dest, rl_result);
749     }
750   } else {
751     QuickEntrypointEnum target =
752         is_long_or_double ? kQuickGet64Instance
753             : (is_object ? kQuickGetObjInstance : kQuickGet32Instance);
754     // Second argument of pGetXXInstance is always a reference.
755     DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
756     CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
757 
758     // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
759     if (is_long_or_double) {
760       RegLocation rl_result = GetReturnWide(kCoreReg);
761       StoreValueWide(rl_dest, rl_result);
762     } else {
763       RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
764       StoreValue(rl_dest, rl_result);
765     }
766   }
767 }
768 
GenIPut(MIR * mir,int opt_flags,OpSize size,RegLocation rl_src,RegLocation rl_obj,bool is_long_or_double,bool is_object)769 void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
770                       RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
771                       bool is_object) {
772   const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
773   cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
774   OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
775   if (!SLOW_FIELD_PATH && field_info.FastPut()) {
776     RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
777     // Dex code never writes to the class field.
778     DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
779               sizeof(mirror::HeapReference<mirror::Class>));
780     rl_obj = LoadValue(rl_obj, kRefReg);
781     if (is_long_or_double) {
782       rl_src = LoadValueWide(rl_src, reg_class);
783     } else {
784       rl_src = LoadValue(rl_src, reg_class);
785     }
786     GenNullCheck(rl_obj.reg, opt_flags);
787     int field_offset = field_info.FieldOffset().Int32Value();
788     LIR* null_ck_insn;
789     if (is_object) {
790       null_ck_insn = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
791           kVolatile : kNotVolatile);
792     } else {
793       null_ck_insn = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
794                                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
795     }
796     MarkPossibleNullPointerExceptionAfter(opt_flags, null_ck_insn);
797     if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
798       MarkGCCard(rl_src.reg, rl_obj.reg);
799     }
800   } else {
801     QuickEntrypointEnum target =
802         is_long_or_double ? kQuickSet64Instance
803             : (is_object ? kQuickSetObjInstance : kQuickSet32Instance);
804     CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
805                                                true);
806   }
807 }
808 
GenArrayObjPut(int opt_flags,RegLocation rl_array,RegLocation rl_index,RegLocation rl_src)809 void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
810                              RegLocation rl_src) {
811   bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
812   bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
813       (opt_flags & MIR_IGNORE_NULL_CHECK));
814   QuickEntrypointEnum target = needs_range_check
815         ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
816                             : kQuickAputObjectWithBoundCheck)
817         : kQuickAputObject;
818   CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
819 }
820 
GenConstClass(uint32_t type_idx,RegLocation rl_dest)821 void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
822   RegLocation rl_method = LoadCurrMethod();
823   CheckRegLocation(rl_method);
824   RegStorage res_reg = AllocTempRef();
825   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
826   if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
827                                                         *cu_->dex_file,
828                                                         type_idx)) {
829     // Call out to helper which resolves type and verifies access.
830     // Resolved type returned in kRet0.
831     CallRuntimeHelperImmReg(kQuickInitializeTypeAndVerifyAccess, type_idx, rl_method.reg, true);
832     RegLocation rl_result = GetReturn(kRefReg);
833     StoreValue(rl_dest, rl_result);
834   } else {
835     // We're don't need access checks, load type from dex cache
836     int32_t dex_cache_offset =
837         mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
838     LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
839     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
840     LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
841     if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
842         type_idx) || SLOW_TYPE_PATH) {
843       // Slow path, at runtime test if type is null and if so initialize
844       FlushAllRegs();
845       LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
846       LIR* cont = NewLIR0(kPseudoTargetLabel);
847 
848       // Object to generate the slow path for class resolution.
849       class SlowPath : public LIRSlowPath {
850        public:
851         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
852                  const RegLocation& rl_method, const RegLocation& rl_result) :
853                    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
854                    rl_method_(rl_method), rl_result_(rl_result) {
855         }
856 
857         void Compile() {
858           GenerateTargetLabel();
859 
860           m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, rl_method_.reg, true);
861           m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
862           m2l_->OpUnconditionalBranch(cont_);
863         }
864 
865        private:
866         const int type_idx_;
867         const RegLocation rl_method_;
868         const RegLocation rl_result_;
869       };
870 
871       // Add to list for future.
872       AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
873 
874       StoreValue(rl_dest, rl_result);
875      } else {
876       // Fast path, we're done - just store result
877       StoreValue(rl_dest, rl_result);
878     }
879   }
880 }
881 
GenConstString(uint32_t string_idx,RegLocation rl_dest)882 void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
883   /* NOTE: Most strings should be available at compile time */
884   const int32_t offset_of_string =
885       mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).Int32Value();
886   if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
887       *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
888     // slow path, resolve string if not in dex cache
889     FlushAllRegs();
890     LockCallTemps();  // Using explicit registers
891 
892     // If the Method* is already in a register, we can save a copy.
893     RegLocation rl_method = mir_graph_->GetMethodLoc();
894     RegStorage r_method;
895     if (rl_method.location == kLocPhysReg) {
896       // A temp would conflict with register use below.
897       DCHECK(!IsTemp(rl_method.reg));
898       r_method = rl_method.reg;
899     } else {
900       r_method = TargetReg(kArg2, kRef);
901       LoadCurrMethodDirect(r_method);
902     }
903     // Method to declaring class.
904     LoadRefDisp(r_method, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
905                 TargetReg(kArg0, kRef), kNotVolatile);
906     // Declaring class to dex cache strings.
907     LoadRefDisp(TargetReg(kArg0, kRef), mirror::Class::DexCacheStringsOffset().Int32Value(),
908                 TargetReg(kArg0, kRef), kNotVolatile);
909 
910     // Might call out to helper, which will return resolved string in kRet0
911     LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
912     LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
913     LIR* cont = NewLIR0(kPseudoTargetLabel);
914 
915     {
916       // Object to generate the slow path for string resolution.
917       class SlowPath : public LIRSlowPath {
918        public:
919         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
920           LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
921           r_method_(r_method), string_idx_(string_idx) {
922         }
923 
924         void Compile() {
925           GenerateTargetLabel();
926           m2l_->CallRuntimeHelperRegImm(kQuickResolveString, r_method_, string_idx_, true);
927           m2l_->OpUnconditionalBranch(cont_);
928         }
929 
930        private:
931          const RegStorage r_method_;
932          const int32_t string_idx_;
933       };
934 
935       AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
936     }
937 
938     GenBarrier();
939     StoreValue(rl_dest, GetReturn(kRefReg));
940   } else {
941     // Try to see if we can embed a direct pointer.
942     bool use_direct_ptr = false;
943     size_t direct_ptr = 0;
944     bool embed_string = false;
945     // TODO: Implement for X86.
946     if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
947       embed_string = cu_->compiler_driver->CanEmbedStringInCode(*cu_->dex_file, string_idx,
948                                                                 &use_direct_ptr, &direct_ptr);
949     }
950     if (embed_string) {
951       RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
952       if (!use_direct_ptr) {
953         LoadString(string_idx, rl_result.reg);
954       } else {
955         LoadConstant(rl_result.reg, static_cast<int32_t>(direct_ptr));
956       }
957       StoreValue(rl_dest, rl_result);
958     } else {
959       RegLocation rl_method = LoadCurrMethod();
960       RegStorage res_reg = AllocTempRef();
961       RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
962 
963       // Method to declaring class.
964       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
965                   res_reg, kNotVolatile);
966       // Declaring class to dex cache strings.
967       LoadRefDisp(res_reg, mirror::Class::DexCacheStringsOffset().Int32Value(), res_reg,
968                   kNotVolatile);
969 
970       LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
971       StoreValue(rl_dest, rl_result);
972     }
973   }
974 }
975 
976 /*
977  * Let helper function take care of everything.  Will
978  * call Class::NewInstanceFromCode(type_idx, method);
979  */
GenNewInstance(uint32_t type_idx,RegLocation rl_dest)980 void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
981   FlushAllRegs();  /* Everything to home location */
982   // alloc will always check for resolution, do we also need to verify
983   // access because the verifier was unable to?
984   const DexFile* dex_file = cu_->dex_file;
985   CompilerDriver* driver = cu_->compiler_driver;
986   if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
987     bool is_type_initialized;
988     bool use_direct_type_ptr;
989     uintptr_t direct_type_ptr;
990     bool is_finalizable;
991     if (kEmbedClassInCode &&
992         driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
993                                    &direct_type_ptr, &is_finalizable) &&
994                                    !is_finalizable) {
995       // The fast path.
996       if (!use_direct_type_ptr) {
997         LoadClassType(type_idx, kArg0);
998         if (!is_type_initialized) {
999           CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
1000         } else {
1001           CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
1002         }
1003       } else {
1004         // Use the direct pointer.
1005         if (!is_type_initialized) {
1006           CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
1007         } else {
1008           CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
1009         }
1010       }
1011     } else {
1012       // The slow path.
1013       CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
1014     }
1015   } else {
1016     CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
1017   }
1018   StoreValue(rl_dest, GetReturn(kRefReg));
1019 }
1020 
GenThrow(RegLocation rl_src)1021 void Mir2Lir::GenThrow(RegLocation rl_src) {
1022   FlushAllRegs();
1023   CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
1024 }
1025 
1026 // For final classes there are no sub-classes to check and so we can answer the instance-of
1027 // question with simple comparisons.
GenInstanceofFinal(bool use_declaring_class,uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)1028 void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1029                                  RegLocation rl_src) {
1030   // X86 has its own implementation.
1031   DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1032 
1033   RegLocation object = LoadValue(rl_src, kRefReg);
1034   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1035   RegStorage result_reg = rl_result.reg;
1036   if (IsSameReg(result_reg, object.reg)) {
1037     result_reg = AllocTypedTemp(false, kCoreReg);
1038     DCHECK(!IsSameReg(result_reg, object.reg));
1039   }
1040   LoadConstant(result_reg, 0);     // assume false
1041   LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1042 
1043   RegStorage check_class = AllocTypedTemp(false, kRefReg);
1044   RegStorage object_class = AllocTypedTemp(false, kRefReg);
1045 
1046   LoadCurrMethodDirect(check_class);
1047   if (use_declaring_class) {
1048     LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1049                 kNotVolatile);
1050     LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1051                 kNotVolatile);
1052   } else {
1053     LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1054                 check_class, kNotVolatile);
1055     LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1056                 kNotVolatile);
1057     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1058     LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1059   }
1060 
1061   // FIXME: what should we be comparing here? compressed or decompressed references?
1062   if (cu_->instruction_set == kThumb2) {
1063     OpRegReg(kOpCmp, check_class, object_class);  // Same?
1064     LIR* it = OpIT(kCondEq, "");   // if-convert the test
1065     LoadConstant(result_reg, 1);     // .eq case - load true
1066     OpEndIT(it);
1067   } else {
1068     GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1069   }
1070   LIR* target = NewLIR0(kPseudoTargetLabel);
1071   null_branchover->target = target;
1072   FreeTemp(object_class);
1073   FreeTemp(check_class);
1074   if (IsTemp(result_reg)) {
1075     OpRegCopy(rl_result.reg, result_reg);
1076     FreeTemp(result_reg);
1077   }
1078   StoreValue(rl_dest, rl_result);
1079 }
1080 
GenInstanceofCallingHelper(bool needs_access_check,bool type_known_final,bool type_known_abstract,bool use_declaring_class,bool can_assume_type_is_in_dex_cache,uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)1081 void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1082                                          bool type_known_abstract, bool use_declaring_class,
1083                                          bool can_assume_type_is_in_dex_cache,
1084                                          uint32_t type_idx, RegLocation rl_dest,
1085                                          RegLocation rl_src) {
1086   FlushAllRegs();
1087   // May generate a call - use explicit registers
1088   LockCallTemps();
1089   RegStorage method_reg = TargetReg(kArg1, kRef);
1090   LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1091   RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1092   RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg0 will hold the ref.
1093   RegStorage ret_reg = GetReturn(kRefReg).reg;
1094   if (needs_access_check) {
1095     // Check we have access to type_idx and if not throw IllegalAccessError,
1096     // returns Class* in kArg0
1097     CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1098     OpRegCopy(class_reg, ret_reg);  // Align usage with fast path
1099     LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1100   } else if (use_declaring_class) {
1101     LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1102     LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1103                 class_reg, kNotVolatile);
1104   } else {
1105     if (can_assume_type_is_in_dex_cache) {
1106       // Conditionally, as in the other case we will also load it.
1107       LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1108     }
1109 
1110     // Load dex cache entry into class_reg (kArg2)
1111     LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1112                 class_reg, kNotVolatile);
1113     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1114     LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1115     if (!can_assume_type_is_in_dex_cache) {
1116       LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1117       LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
1118 
1119       // Should load value here.
1120       LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1121 
1122       class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
1123        public:
1124         InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
1125                          RegLocation rl_src)
1126             : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
1127               rl_src_(rl_src) {
1128         }
1129 
1130         void Compile() OVERRIDE {
1131           GenerateTargetLabel();
1132 
1133           m2l_->CallRuntimeHelperImm(kQuickInitializeType, type_idx_, true);
1134           m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
1135                           m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1136           m2l_->OpUnconditionalBranch(cont_);
1137         }
1138 
1139        private:
1140         uint32_t type_idx_;
1141         RegLocation rl_src_;
1142       };
1143 
1144       AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
1145                                                 type_idx, rl_src));
1146     }
1147   }
1148   /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1149   RegLocation rl_result = GetReturn(kCoreReg);
1150   if (!IsSameReg(rl_result.reg, ref_reg)) {
1151     // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
1152     LoadConstant(rl_result.reg, 0);
1153   }
1154   LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL);
1155 
1156   /* load object->klass_ */
1157   RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg1 will hold the Class* of ref.
1158   DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1159   LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
1160               ref_class_reg, kNotVolatile);
1161   /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1162   LIR* branchover = NULL;
1163   if (type_known_final) {
1164     // rl_result == ref == class.
1165     GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
1166                      kCoreReg);
1167   } else {
1168     if (cu_->instruction_set == kThumb2) {
1169       RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
1170       LIR* it = nullptr;
1171       if (!type_known_abstract) {
1172       /* Uses conditional nullification */
1173         OpRegReg(kOpCmp, ref_class_reg, class_reg);  // Same?
1174         it = OpIT(kCondEq, "EE");   // if-convert the test
1175         LoadConstant(rl_result.reg, 1);     // .eq case - load true
1176       }
1177       OpRegCopy(ref_reg, class_reg);    // .ne case - arg0 <= class
1178       OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1179       if (it != nullptr) {
1180         OpEndIT(it);
1181       }
1182       FreeTemp(r_tgt);
1183     } else {
1184       if (!type_known_abstract) {
1185         /* Uses branchovers */
1186         LoadConstant(rl_result.reg, 1);     // assume true
1187         branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1188       }
1189 
1190       OpRegCopy(TargetReg(kArg0, kRef), class_reg);    // .ne case - arg0 <= class
1191       CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
1192     }
1193   }
1194   // TODO: only clobber when type isn't final?
1195   ClobberCallerSave();
1196   /* branch targets here */
1197   LIR* target = NewLIR0(kPseudoTargetLabel);
1198   StoreValue(rl_dest, rl_result);
1199   branch1->target = target;
1200   if (branchover != nullptr) {
1201     branchover->target = target;
1202   }
1203 }
1204 
GenInstanceof(uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)1205 void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1206   bool type_known_final, type_known_abstract, use_declaring_class;
1207   bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1208                                                                               *cu_->dex_file,
1209                                                                               type_idx,
1210                                                                               &type_known_final,
1211                                                                               &type_known_abstract,
1212                                                                               &use_declaring_class);
1213   bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1214       cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1215 
1216   if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1217     GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1218   } else {
1219     GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1220                                use_declaring_class, can_assume_type_is_in_dex_cache,
1221                                type_idx, rl_dest, rl_src);
1222   }
1223 }
1224 
GenCheckCast(uint32_t insn_idx,uint32_t type_idx,RegLocation rl_src)1225 void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1226   bool type_known_final, type_known_abstract, use_declaring_class;
1227   bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1228                                                                               *cu_->dex_file,
1229                                                                               type_idx,
1230                                                                               &type_known_final,
1231                                                                               &type_known_abstract,
1232                                                                               &use_declaring_class);
1233   // Note: currently type_known_final is unused, as optimizing will only improve the performance
1234   // of the exception throw path.
1235   DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1236   if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1237     // Verifier type analysis proved this check cast would never cause an exception.
1238     return;
1239   }
1240   FlushAllRegs();
1241   // May generate a call - use explicit registers
1242   LockCallTemps();
1243   RegStorage method_reg = TargetReg(kArg1, kRef);
1244   LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1245   RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1246   if (needs_access_check) {
1247     // Check we have access to type_idx and if not throw IllegalAccessError,
1248     // returns Class* in kRet0
1249     // InitializeTypeAndVerifyAccess(idx, method)
1250     CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1251     OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1252   } else if (use_declaring_class) {
1253     LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1254                 class_reg, kNotVolatile);
1255   } else {
1256     // Load dex cache entry into class_reg (kArg2)
1257     LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1258                 class_reg, kNotVolatile);
1259     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1260     LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1261     if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1262       // Need to test presence of type in dex cache at runtime
1263       LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1264       LIR* cont = NewLIR0(kPseudoTargetLabel);
1265 
1266       // Slow path to initialize the type.  Executed if the type is NULL.
1267       class SlowPath : public LIRSlowPath {
1268        public:
1269         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1270                  const RegStorage class_reg) :
1271                    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1272                    class_reg_(class_reg) {
1273         }
1274 
1275         void Compile() {
1276           GenerateTargetLabel();
1277 
1278           // Call out to helper, which will return resolved type in kArg0
1279           // InitializeTypeFromCode(idx, method)
1280           m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_,
1281                                         m2l_->TargetReg(kArg1, kRef), true);
1282           m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1283           m2l_->OpUnconditionalBranch(cont_);
1284         }
1285 
1286        public:
1287         const int type_idx_;
1288         const RegStorage class_reg_;
1289       };
1290 
1291       AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1292     }
1293   }
1294   // At this point, class_reg (kArg2) has class
1295   LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1296 
1297   // Slow path for the case where the classes are not equal.  In this case we need
1298   // to call a helper function to do the check.
1299   class SlowPath : public LIRSlowPath {
1300    public:
1301     SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1302                LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1303     }
1304 
1305     void Compile() {
1306       GenerateTargetLabel();
1307 
1308       if (load_) {
1309         m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1310                           m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1311       }
1312       m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
1313                                     m2l_->TargetReg(kArg1, kRef), true);
1314       m2l_->OpUnconditionalBranch(cont_);
1315     }
1316 
1317    private:
1318     const bool load_;
1319   };
1320 
1321   if (type_known_abstract) {
1322     // Easier case, run slow path if target is non-null (slow path will load from target)
1323     LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1324     LIR* cont = NewLIR0(kPseudoTargetLabel);
1325     AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1326   } else {
1327     // Harder, more common case.  We need to generate a forward branch over the load
1328     // if the target is null.  If it's non-null we perform the load and branch to the
1329     // slow path if the classes are not equal.
1330 
1331     /* Null is OK - continue */
1332     LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1333     /* load object->klass_ */
1334     DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1335     LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1336                 TargetReg(kArg1, kRef), kNotVolatile);
1337 
1338     LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1339     LIR* cont = NewLIR0(kPseudoTargetLabel);
1340 
1341     // Add the slow path that will not perform load since this is already done.
1342     AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1343 
1344     // Set the null check to branch to the continuation.
1345     branch1->target = cont;
1346   }
1347 }
1348 
GenLong3Addr(OpKind first_op,OpKind second_op,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1349 void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1350                            RegLocation rl_src1, RegLocation rl_src2) {
1351   RegLocation rl_result;
1352   if (cu_->instruction_set == kThumb2) {
1353     /*
1354      * NOTE:  This is the one place in the code in which we might have
1355      * as many as six live temporary registers.  There are 5 in the normal
1356      * set for Arm.  Until we have spill capabilities, temporarily add
1357      * lr to the temp set.  It is safe to do this locally, but note that
1358      * lr is used explicitly elsewhere in the code generator and cannot
1359      * normally be used as a general temp register.
1360      */
1361     MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1362     FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1363   }
1364   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1365   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1366   rl_result = EvalLoc(rl_dest, kCoreReg, true);
1367   // The longs may overlap - use intermediate temp if so
1368   if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1369     RegStorage t_reg = AllocTemp();
1370     OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1371     OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1372     OpRegCopy(rl_result.reg.GetLow(), t_reg);
1373     FreeTemp(t_reg);
1374   } else {
1375     OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1376     OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1377   }
1378   /*
1379    * NOTE: If rl_dest refers to a frame variable in a large frame, the
1380    * following StoreValueWide might need to allocate a temp register.
1381    * To further work around the lack of a spill capability, explicitly
1382    * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1383    * Remove when spill is functional.
1384    */
1385   FreeRegLocTemps(rl_result, rl_src1);
1386   FreeRegLocTemps(rl_result, rl_src2);
1387   StoreValueWide(rl_dest, rl_result);
1388   if (cu_->instruction_set == kThumb2) {
1389     Clobber(TargetReg(kLr, kNotWide));
1390     UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1391   }
1392 }
1393 
GenShiftOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_shift)1394 void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1395                              RegLocation rl_src1, RegLocation rl_shift) {
1396   QuickEntrypointEnum target;
1397   switch (opcode) {
1398     case Instruction::SHL_LONG:
1399     case Instruction::SHL_LONG_2ADDR:
1400       target = kQuickShlLong;
1401       break;
1402     case Instruction::SHR_LONG:
1403     case Instruction::SHR_LONG_2ADDR:
1404       target = kQuickShrLong;
1405       break;
1406     case Instruction::USHR_LONG:
1407     case Instruction::USHR_LONG_2ADDR:
1408       target = kQuickUshrLong;
1409       break;
1410     default:
1411       LOG(FATAL) << "Unexpected case";
1412       target = kQuickShlLong;
1413   }
1414   FlushAllRegs();   /* Send everything to home location */
1415   CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
1416   RegLocation rl_result = GetReturnWide(kCoreReg);
1417   StoreValueWide(rl_dest, rl_result);
1418 }
1419 
1420 
GenArithOpInt(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1421 void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1422                             RegLocation rl_src1, RegLocation rl_src2) {
1423   DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1424   OpKind op = kOpBkpt;
1425   bool is_div_rem = false;
1426   bool check_zero = false;
1427   bool unary = false;
1428   RegLocation rl_result;
1429   bool shift_op = false;
1430   switch (opcode) {
1431     case Instruction::NEG_INT:
1432       op = kOpNeg;
1433       unary = true;
1434       break;
1435     case Instruction::NOT_INT:
1436       op = kOpMvn;
1437       unary = true;
1438       break;
1439     case Instruction::ADD_INT:
1440     case Instruction::ADD_INT_2ADDR:
1441       op = kOpAdd;
1442       break;
1443     case Instruction::SUB_INT:
1444     case Instruction::SUB_INT_2ADDR:
1445       op = kOpSub;
1446       break;
1447     case Instruction::MUL_INT:
1448     case Instruction::MUL_INT_2ADDR:
1449       op = kOpMul;
1450       break;
1451     case Instruction::DIV_INT:
1452     case Instruction::DIV_INT_2ADDR:
1453       check_zero = true;
1454       op = kOpDiv;
1455       is_div_rem = true;
1456       break;
1457     /* NOTE: returns in kArg1 */
1458     case Instruction::REM_INT:
1459     case Instruction::REM_INT_2ADDR:
1460       check_zero = true;
1461       op = kOpRem;
1462       is_div_rem = true;
1463       break;
1464     case Instruction::AND_INT:
1465     case Instruction::AND_INT_2ADDR:
1466       op = kOpAnd;
1467       break;
1468     case Instruction::OR_INT:
1469     case Instruction::OR_INT_2ADDR:
1470       op = kOpOr;
1471       break;
1472     case Instruction::XOR_INT:
1473     case Instruction::XOR_INT_2ADDR:
1474       op = kOpXor;
1475       break;
1476     case Instruction::SHL_INT:
1477     case Instruction::SHL_INT_2ADDR:
1478       shift_op = true;
1479       op = kOpLsl;
1480       break;
1481     case Instruction::SHR_INT:
1482     case Instruction::SHR_INT_2ADDR:
1483       shift_op = true;
1484       op = kOpAsr;
1485       break;
1486     case Instruction::USHR_INT:
1487     case Instruction::USHR_INT_2ADDR:
1488       shift_op = true;
1489       op = kOpLsr;
1490       break;
1491     default:
1492       LOG(FATAL) << "Invalid word arith op: " << opcode;
1493   }
1494   if (!is_div_rem) {
1495     if (unary) {
1496       rl_src1 = LoadValue(rl_src1, kCoreReg);
1497       rl_result = EvalLoc(rl_dest, kCoreReg, true);
1498       OpRegReg(op, rl_result.reg, rl_src1.reg);
1499     } else {
1500       if ((shift_op) && (cu_->instruction_set != kArm64)) {
1501         rl_src2 = LoadValue(rl_src2, kCoreReg);
1502         RegStorage t_reg = AllocTemp();
1503         OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1504         rl_src1 = LoadValue(rl_src1, kCoreReg);
1505         rl_result = EvalLoc(rl_dest, kCoreReg, true);
1506         OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1507         FreeTemp(t_reg);
1508       } else {
1509         rl_src1 = LoadValue(rl_src1, kCoreReg);
1510         rl_src2 = LoadValue(rl_src2, kCoreReg);
1511         rl_result = EvalLoc(rl_dest, kCoreReg, true);
1512         OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1513       }
1514     }
1515     StoreValue(rl_dest, rl_result);
1516   } else {
1517     bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1518     if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1519       rl_src1 = LoadValue(rl_src1, kCoreReg);
1520       rl_src2 = LoadValue(rl_src2, kCoreReg);
1521       if (check_zero) {
1522         GenDivZeroCheck(rl_src2.reg);
1523       }
1524       rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1525       done = true;
1526     } else if (cu_->instruction_set == kThumb2) {
1527       if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1528         // Use ARM SDIV instruction for division.  For remainder we also need to
1529         // calculate using a MUL and subtract.
1530         rl_src1 = LoadValue(rl_src1, kCoreReg);
1531         rl_src2 = LoadValue(rl_src2, kCoreReg);
1532         if (check_zero) {
1533           GenDivZeroCheck(rl_src2.reg);
1534         }
1535         rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1536         done = true;
1537       }
1538     }
1539 
1540     // If we haven't already generated the code use the callout function.
1541     if (!done) {
1542       FlushAllRegs();   /* Send everything to home location */
1543       LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1544       RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
1545       LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1546       if (check_zero) {
1547         GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1548       }
1549       // NOTE: callout here is not a safepoint.
1550       CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
1551       if (op == kOpDiv)
1552         rl_result = GetReturn(kCoreReg);
1553       else
1554         rl_result = GetReturnAlt();
1555     }
1556     StoreValue(rl_dest, rl_result);
1557   }
1558 }
1559 
1560 /*
1561  * The following are the first-level codegen routines that analyze the format
1562  * of each bytecode then either dispatch special purpose codegen routines
1563  * or produce corresponding Thumb instructions directly.
1564  */
1565 
1566 // Returns true if no more than two bits are set in 'x'.
IsPopCountLE2(unsigned int x)1567 static bool IsPopCountLE2(unsigned int x) {
1568   x &= x - 1;
1569   return (x & (x - 1)) == 0;
1570 }
1571 
1572 // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1573 // and store the result in 'rl_dest'.
HandleEasyDivRem(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int lit)1574 bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1575                                RegLocation rl_src, RegLocation rl_dest, int lit) {
1576   if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1577     return false;
1578   }
1579   // No divide instruction for Arm, so check for more special cases
1580   if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1581     return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1582   }
1583   int k = LowestSetBit(lit);
1584   if (k >= 30) {
1585     // Avoid special cases.
1586     return false;
1587   }
1588   rl_src = LoadValue(rl_src, kCoreReg);
1589   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1590   if (is_div) {
1591     RegStorage t_reg = AllocTemp();
1592     if (lit == 2) {
1593       // Division by 2 is by far the most common division by constant.
1594       OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1595       OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1596       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1597     } else {
1598       OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1599       OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1600       OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1601       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1602     }
1603   } else {
1604     RegStorage t_reg1 = AllocTemp();
1605     RegStorage t_reg2 = AllocTemp();
1606     if (lit == 2) {
1607       OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1608       OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1609       OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1610       OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1611     } else {
1612       OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1613       OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1614       OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1615       OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1616       OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1617     }
1618   }
1619   StoreValue(rl_dest, rl_result);
1620   return true;
1621 }
1622 
1623 // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1624 // and store the result in 'rl_dest'.
HandleEasyMultiply(RegLocation rl_src,RegLocation rl_dest,int lit)1625 bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1626   if (lit < 0) {
1627     return false;
1628   }
1629   if (lit == 0) {
1630     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1631     LoadConstant(rl_result.reg, 0);
1632     StoreValue(rl_dest, rl_result);
1633     return true;
1634   }
1635   if (lit == 1) {
1636     rl_src = LoadValue(rl_src, kCoreReg);
1637     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1638     OpRegCopy(rl_result.reg, rl_src.reg);
1639     StoreValue(rl_dest, rl_result);
1640     return true;
1641   }
1642   // There is RegRegRegShift on Arm, so check for more special cases
1643   if (cu_->instruction_set == kThumb2) {
1644     return EasyMultiply(rl_src, rl_dest, lit);
1645   }
1646   // Can we simplify this multiplication?
1647   bool power_of_two = false;
1648   bool pop_count_le2 = false;
1649   bool power_of_two_minus_one = false;
1650   if (IsPowerOfTwo(lit)) {
1651     power_of_two = true;
1652   } else if (IsPopCountLE2(lit)) {
1653     pop_count_le2 = true;
1654   } else if (IsPowerOfTwo(lit + 1)) {
1655     power_of_two_minus_one = true;
1656   } else {
1657     return false;
1658   }
1659   rl_src = LoadValue(rl_src, kCoreReg);
1660   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1661   if (power_of_two) {
1662     // Shift.
1663     OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1664   } else if (pop_count_le2) {
1665     // Shift and add and shift.
1666     int first_bit = LowestSetBit(lit);
1667     int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1668     GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1669   } else {
1670     // Reverse subtract: (src << (shift + 1)) - src.
1671     DCHECK(power_of_two_minus_one);
1672     // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1673     RegStorage t_reg = AllocTemp();
1674     OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1675     OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1676   }
1677   StoreValue(rl_dest, rl_result);
1678   return true;
1679 }
1680 
GenArithOpIntLit(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src,int lit)1681 void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1682                                int lit) {
1683   RegLocation rl_result;
1684   OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1685   int shift_op = false;
1686   bool is_div = false;
1687 
1688   switch (opcode) {
1689     case Instruction::RSUB_INT_LIT8:
1690     case Instruction::RSUB_INT: {
1691       rl_src = LoadValue(rl_src, kCoreReg);
1692       rl_result = EvalLoc(rl_dest, kCoreReg, true);
1693       if (cu_->instruction_set == kThumb2) {
1694         OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1695       } else {
1696         OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1697         OpRegImm(kOpAdd, rl_result.reg, lit);
1698       }
1699       StoreValue(rl_dest, rl_result);
1700       return;
1701     }
1702 
1703     case Instruction::SUB_INT:
1704     case Instruction::SUB_INT_2ADDR:
1705       lit = -lit;
1706       // Intended fallthrough
1707     case Instruction::ADD_INT:
1708     case Instruction::ADD_INT_2ADDR:
1709     case Instruction::ADD_INT_LIT8:
1710     case Instruction::ADD_INT_LIT16:
1711       op = kOpAdd;
1712       break;
1713     case Instruction::MUL_INT:
1714     case Instruction::MUL_INT_2ADDR:
1715     case Instruction::MUL_INT_LIT8:
1716     case Instruction::MUL_INT_LIT16: {
1717       if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1718         return;
1719       }
1720       op = kOpMul;
1721       break;
1722     }
1723     case Instruction::AND_INT:
1724     case Instruction::AND_INT_2ADDR:
1725     case Instruction::AND_INT_LIT8:
1726     case Instruction::AND_INT_LIT16:
1727       op = kOpAnd;
1728       break;
1729     case Instruction::OR_INT:
1730     case Instruction::OR_INT_2ADDR:
1731     case Instruction::OR_INT_LIT8:
1732     case Instruction::OR_INT_LIT16:
1733       op = kOpOr;
1734       break;
1735     case Instruction::XOR_INT:
1736     case Instruction::XOR_INT_2ADDR:
1737     case Instruction::XOR_INT_LIT8:
1738     case Instruction::XOR_INT_LIT16:
1739       op = kOpXor;
1740       break;
1741     case Instruction::SHL_INT_LIT8:
1742     case Instruction::SHL_INT:
1743     case Instruction::SHL_INT_2ADDR:
1744       lit &= 31;
1745       shift_op = true;
1746       op = kOpLsl;
1747       break;
1748     case Instruction::SHR_INT_LIT8:
1749     case Instruction::SHR_INT:
1750     case Instruction::SHR_INT_2ADDR:
1751       lit &= 31;
1752       shift_op = true;
1753       op = kOpAsr;
1754       break;
1755     case Instruction::USHR_INT_LIT8:
1756     case Instruction::USHR_INT:
1757     case Instruction::USHR_INT_2ADDR:
1758       lit &= 31;
1759       shift_op = true;
1760       op = kOpLsr;
1761       break;
1762 
1763     case Instruction::DIV_INT:
1764     case Instruction::DIV_INT_2ADDR:
1765     case Instruction::DIV_INT_LIT8:
1766     case Instruction::DIV_INT_LIT16:
1767     case Instruction::REM_INT:
1768     case Instruction::REM_INT_2ADDR:
1769     case Instruction::REM_INT_LIT8:
1770     case Instruction::REM_INT_LIT16: {
1771       if (lit == 0) {
1772         GenDivZeroException();
1773         return;
1774       }
1775       if ((opcode == Instruction::DIV_INT) ||
1776           (opcode == Instruction::DIV_INT_2ADDR) ||
1777           (opcode == Instruction::DIV_INT_LIT8) ||
1778           (opcode == Instruction::DIV_INT_LIT16)) {
1779         is_div = true;
1780       } else {
1781         is_div = false;
1782       }
1783       if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1784         return;
1785       }
1786 
1787       bool done = false;
1788       if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1789         rl_src = LoadValue(rl_src, kCoreReg);
1790         rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1791         done = true;
1792       } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1793         rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1794         done = true;
1795       } else if (cu_->instruction_set == kThumb2) {
1796         if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1797           // Use ARM SDIV instruction for division.  For remainder we also need to
1798           // calculate using a MUL and subtract.
1799           rl_src = LoadValue(rl_src, kCoreReg);
1800           rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1801           done = true;
1802         }
1803       }
1804 
1805       if (!done) {
1806         FlushAllRegs();   /* Everything to home location. */
1807         LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1808         Clobber(TargetReg(kArg0, kNotWide));
1809         CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
1810         if (is_div)
1811           rl_result = GetReturn(kCoreReg);
1812         else
1813           rl_result = GetReturnAlt();
1814       }
1815       StoreValue(rl_dest, rl_result);
1816       return;
1817     }
1818     default:
1819       LOG(FATAL) << "Unexpected opcode " << opcode;
1820   }
1821   rl_src = LoadValue(rl_src, kCoreReg);
1822   rl_result = EvalLoc(rl_dest, kCoreReg, true);
1823   // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1824   if (shift_op && (lit == 0)) {
1825     OpRegCopy(rl_result.reg, rl_src.reg);
1826   } else {
1827     OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1828   }
1829   StoreValue(rl_dest, rl_result);
1830 }
1831 
GenArithOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1832 void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1833                              RegLocation rl_src1, RegLocation rl_src2) {
1834   RegLocation rl_result;
1835   OpKind first_op = kOpBkpt;
1836   OpKind second_op = kOpBkpt;
1837   bool call_out = false;
1838   bool check_zero = false;
1839   int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1840   QuickEntrypointEnum target;
1841 
1842   switch (opcode) {
1843     case Instruction::NOT_LONG:
1844       rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1845       rl_result = EvalLoc(rl_dest, kCoreReg, true);
1846       // Check for destructive overlap
1847       if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1848         RegStorage t_reg = AllocTemp();
1849         OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1850         OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1851         OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1852         FreeTemp(t_reg);
1853       } else {
1854         OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1855         OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1856       }
1857       StoreValueWide(rl_dest, rl_result);
1858       return;
1859     case Instruction::ADD_LONG:
1860     case Instruction::ADD_LONG_2ADDR:
1861       first_op = kOpAdd;
1862       second_op = kOpAdc;
1863       break;
1864     case Instruction::SUB_LONG:
1865     case Instruction::SUB_LONG_2ADDR:
1866       first_op = kOpSub;
1867       second_op = kOpSbc;
1868       break;
1869     case Instruction::MUL_LONG:
1870     case Instruction::MUL_LONG_2ADDR:
1871       call_out = true;
1872       ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1873       target = kQuickLmul;
1874       break;
1875     case Instruction::DIV_LONG:
1876     case Instruction::DIV_LONG_2ADDR:
1877       call_out = true;
1878       check_zero = true;
1879       ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1880       target = kQuickLdiv;
1881       break;
1882     case Instruction::REM_LONG:
1883     case Instruction::REM_LONG_2ADDR:
1884       call_out = true;
1885       check_zero = true;
1886       target = kQuickLmod;
1887       /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
1888       ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
1889           TargetReg(kRet0, kNotWide).GetReg();
1890       break;
1891     case Instruction::AND_LONG_2ADDR:
1892     case Instruction::AND_LONG:
1893       first_op = kOpAnd;
1894       second_op = kOpAnd;
1895       break;
1896     case Instruction::OR_LONG:
1897     case Instruction::OR_LONG_2ADDR:
1898       first_op = kOpOr;
1899       second_op = kOpOr;
1900       break;
1901     case Instruction::XOR_LONG:
1902     case Instruction::XOR_LONG_2ADDR:
1903       first_op = kOpXor;
1904       second_op = kOpXor;
1905       break;
1906     default:
1907       LOG(FATAL) << "Invalid long arith op";
1908   }
1909   if (!call_out) {
1910     GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
1911   } else {
1912     FlushAllRegs();   /* Send everything to home location */
1913     if (check_zero) {
1914       RegStorage r_tmp1 = TargetReg(kArg0, kWide);
1915       RegStorage r_tmp2 = TargetReg(kArg2, kWide);
1916       LoadValueDirectWideFixed(rl_src2, r_tmp2);
1917       RegStorage r_tgt = CallHelperSetup(target);
1918       GenDivZeroCheckWide(r_tmp2);
1919       LoadValueDirectWideFixed(rl_src1, r_tmp1);
1920       // NOTE: callout here is not a safepoint
1921       CallHelper(r_tgt, target, false /* not safepoint */);
1922     } else {
1923       CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
1924     }
1925     // Adjust return regs in to handle case of rem returning kArg2/kArg3
1926     if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
1927       rl_result = GetReturnWide(kCoreReg);
1928     else
1929       rl_result = GetReturnWideAlt();
1930     StoreValueWide(rl_dest, rl_result);
1931   }
1932 }
1933 
GenConst(RegLocation rl_dest,int value)1934 void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
1935   RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
1936   LoadConstantNoClobber(rl_result.reg, value);
1937   StoreValue(rl_dest, rl_result);
1938   if (value == 0) {
1939     Workaround7250540(rl_dest, rl_result.reg);
1940   }
1941 }
1942 
GenConversionCall(QuickEntrypointEnum trampoline,RegLocation rl_dest,RegLocation rl_src)1943 void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
1944                                 RegLocation rl_src) {
1945   /*
1946    * Don't optimize the register usage since it calls out to support
1947    * functions
1948    */
1949 
1950   FlushAllRegs();   /* Send everything to home location */
1951   CallRuntimeHelperRegLocation(trampoline, rl_src, false);
1952   if (rl_dest.wide) {
1953     RegLocation rl_result;
1954     rl_result = GetReturnWide(LocToRegClass(rl_dest));
1955     StoreValueWide(rl_dest, rl_result);
1956   } else {
1957     RegLocation rl_result;
1958     rl_result = GetReturn(LocToRegClass(rl_dest));
1959     StoreValue(rl_dest, rl_result);
1960   }
1961 }
1962 
1963 class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
1964  public:
SuspendCheckSlowPath(Mir2Lir * m2l,LIR * branch,LIR * cont)1965   SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
1966       : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
1967   }
1968 
Compile()1969   void Compile() OVERRIDE {
1970     m2l_->ResetRegPool();
1971     m2l_->ResetDefTracking();
1972     GenerateTargetLabel(kPseudoSuspendTarget);
1973     m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
1974     if (cont_ != nullptr) {
1975       m2l_->OpUnconditionalBranch(cont_);
1976     }
1977   }
1978 };
1979 
1980 /* Check if we need to check for pending suspend request */
GenSuspendTest(int opt_flags)1981 void Mir2Lir::GenSuspendTest(int opt_flags) {
1982   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
1983     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1984       return;
1985     }
1986     FlushAllRegs();
1987     LIR* branch = OpTestSuspend(NULL);
1988     LIR* cont = NewLIR0(kPseudoTargetLabel);
1989     AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
1990   } else {
1991     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1992       return;
1993     }
1994     FlushAllRegs();     // TODO: needed?
1995     LIR* inst = CheckSuspendUsingLoad();
1996     MarkSafepointPC(inst);
1997   }
1998 }
1999 
2000 /* Check if we need to check for pending suspend request */
GenSuspendTestAndBranch(int opt_flags,LIR * target)2001 void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2002   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2003     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2004       OpUnconditionalBranch(target);
2005       return;
2006     }
2007     OpTestSuspend(target);
2008     FlushAllRegs();
2009     LIR* branch = OpUnconditionalBranch(nullptr);
2010     AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2011   } else {
2012     // For the implicit suspend check, just perform the trigger
2013     // load and branch to the target.
2014     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2015       OpUnconditionalBranch(target);
2016       return;
2017     }
2018     FlushAllRegs();
2019     LIR* inst = CheckSuspendUsingLoad();
2020     MarkSafepointPC(inst);
2021     OpUnconditionalBranch(target);
2022   }
2023 }
2024 
2025 /* Call out to helper assembly routine that will null check obj and then lock it. */
GenMonitorEnter(int opt_flags,RegLocation rl_src)2026 void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2027   FlushAllRegs();
2028   CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
2029 }
2030 
2031 /* Call out to helper assembly routine that will null check obj and then unlock it. */
GenMonitorExit(int opt_flags,RegLocation rl_src)2032 void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2033   FlushAllRegs();
2034   CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
2035 }
2036 
2037 /* Generic code for generating a wide constant into a VR. */
GenConstWide(RegLocation rl_dest,int64_t value)2038 void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2039   RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2040   LoadConstantWide(rl_result.reg, value);
2041   StoreValueWide(rl_dest, rl_result);
2042 }
2043 
GenSmallPackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2044 void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2045   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2046   const uint16_t entries = table[1];
2047   // Chained cmp-and-branch.
2048   const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
2049   int32_t current_key = as_int32[0];
2050   const int32_t* targets = &as_int32[1];
2051   rl_src = LoadValue(rl_src, kCoreReg);
2052   int i = 0;
2053   for (; i < entries; i++, current_key++) {
2054     if (!InexpensiveConstantInt(current_key, Instruction::Code::IF_EQ)) {
2055       // Switch to using a temp and add.
2056       break;
2057     }
2058     BasicBlock* case_block =
2059         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2060     OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2061   }
2062   if (i < entries) {
2063     // The rest do not seem to be inexpensive. Try to allocate a temp and use add.
2064     RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
2065     if (key_temp.Valid()) {
2066       LoadConstantNoClobber(key_temp, current_key);
2067       for (; i < entries - 1; i++, current_key++) {
2068         BasicBlock* case_block =
2069             mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2070         OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2071         OpRegImm(kOpAdd, key_temp, 1);  // Increment key.
2072       }
2073       BasicBlock* case_block =
2074           mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2075       OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2076     } else {
2077       // No free temp, just finish the old loop.
2078       for (; i < entries; i++, current_key++) {
2079         BasicBlock* case_block =
2080             mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2081         OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2082       }
2083     }
2084   }
2085 }
2086 
GenPackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2087 void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2088   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2089   if (cu_->verbose) {
2090     DumpSparseSwitchTable(table);
2091   }
2092 
2093   const uint16_t entries = table[1];
2094   if (entries <= kSmallSwitchThreshold) {
2095     GenSmallPackedSwitch(mir, table_offset, rl_src);
2096   } else {
2097     // Use the backend-specific implementation.
2098     GenLargePackedSwitch(mir, table_offset, rl_src);
2099   }
2100 }
2101 
GenSmallSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2102 void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2103   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2104   const uint16_t entries = table[1];
2105   // Chained cmp-and-branch.
2106   const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
2107   const int32_t* targets = &keys[entries];
2108   rl_src = LoadValue(rl_src, kCoreReg);
2109   for (int i = 0; i < entries; i++) {
2110     int key = keys[i];
2111     BasicBlock* case_block =
2112         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2113     OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]);
2114   }
2115 }
2116 
GenSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2117 void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2118   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2119   if (cu_->verbose) {
2120     DumpSparseSwitchTable(table);
2121   }
2122 
2123   const uint16_t entries = table[1];
2124   if (entries <= kSmallSwitchThreshold) {
2125     GenSmallSparseSwitch(mir, table_offset, rl_src);
2126   } else {
2127     // Use the backend-specific implementation.
2128     GenLargeSparseSwitch(mir, table_offset, rl_src);
2129   }
2130 }
2131 
2132 }  // namespace art
2133