1 /*
2  *  Licensed to the Apache Software Foundation (ASF) under one or more
3  *  contributor license agreements.  See the NOTICE file distributed with
4  *  this work for additional information regarding copyright ownership.
5  *  The ASF licenses this file to You under the Apache License, Version 2.0
6  *  (the "License"); you may not use this file except in compliance with
7  *  the License.  You may obtain a copy of the License at
8  *
9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  */
17 
18 package java.math;
19 
20 import java.io.IOException;
21 import java.io.ObjectInputStream;
22 import java.io.ObjectOutputStream;
23 import java.io.Serializable;
24 import java.util.Arrays;
25 import libcore.math.MathUtils;
26 
27 /**
28  * An immutable arbitrary-precision signed decimal.
29  *
30  * <p>A value is represented by an arbitrary-precision "unscaled value" and a signed 32-bit "scale",
31  * combined thus: {@code unscaled * 10<sup>-scale</sup>}. See {@link #unscaledValue} and {@link #scale}.
32  *
33  * <p>Most operations allow you to supply a {@link MathContext} to specify a desired rounding mode.
34  */
35 public class BigDecimal extends Number implements Comparable<BigDecimal>, Serializable {
36 
37     /**
38      * Rounding mode where positive values are rounded towards positive infinity
39      * and negative values towards negative infinity.
40      *
41      * @see RoundingMode#UP
42      */
43     public static final int ROUND_UP = 0;
44 
45     /**
46      * Rounding mode where the values are rounded towards zero.
47      *
48      * @see RoundingMode#DOWN
49      */
50     public static final int ROUND_DOWN = 1;
51 
52     /**
53      * Rounding mode to round towards positive infinity. For positive values
54      * this rounding mode behaves as {@link #ROUND_UP}, for negative values as
55      * {@link #ROUND_DOWN}.
56      *
57      * @see RoundingMode#CEILING
58      */
59     public static final int ROUND_CEILING = 2;
60 
61     /**
62      * Rounding mode to round towards negative infinity. For positive values
63      * this rounding mode behaves as {@link #ROUND_DOWN}, for negative values as
64      * {@link #ROUND_UP}.
65      *
66      * @see RoundingMode#FLOOR
67      */
68     public static final int ROUND_FLOOR = 3;
69 
70     /**
71      * Rounding mode where values are rounded towards the nearest neighbor.
72      * Ties are broken by rounding up.
73      *
74      * @see RoundingMode#HALF_UP
75      */
76     public static final int ROUND_HALF_UP = 4;
77 
78     /**
79      * Rounding mode where values are rounded towards the nearest neighbor.
80      * Ties are broken by rounding down.
81      *
82      * @see RoundingMode#HALF_DOWN
83      */
84     public static final int ROUND_HALF_DOWN = 5;
85 
86     /**
87      * Rounding mode where values are rounded towards the nearest neighbor.
88      * Ties are broken by rounding to the even neighbor.
89      *
90      * @see RoundingMode#HALF_EVEN
91      */
92     public static final int ROUND_HALF_EVEN = 6;
93 
94     /**
95      * Rounding mode where the rounding operations throws an {@code
96      * ArithmeticException} for the case that rounding is necessary, i.e. for
97      * the case that the value cannot be represented exactly.
98      *
99      * @see RoundingMode#UNNECESSARY
100      */
101     public static final int ROUND_UNNECESSARY = 7;
102 
103     /** This is the serialVersionUID used by the sun implementation. */
104     private static final long serialVersionUID = 6108874887143696463L;
105 
106     /** The double closest to {@code Log10(2)}. */
107     private static final double LOG10_2 = 0.3010299956639812;
108 
109     /** The <code>String</code> representation is cached. */
110     private transient String toStringImage = null;
111 
112     /** Cache for the hash code. */
113     private transient int hashCode = 0;
114 
115     /**
116      * An array with powers of five that fit in the type <code>long</code>
117      * (<code>5^0,5^1,...,5^27</code>).
118      */
119     private static final BigInteger[] FIVE_POW;
120 
121     /**
122      * An array with powers of ten that fit in the type <code>long</code>
123      * (<code>10^0,10^1,...,10^18</code>).
124      */
125     private static final BigInteger[] TEN_POW;
126 
127     private static final long[] LONG_FIVE_POW = new long[]
128     {   1L,
129         5L,
130         25L,
131         125L,
132         625L,
133         3125L,
134         15625L,
135         78125L,
136         390625L,
137         1953125L,
138         9765625L,
139         48828125L,
140         244140625L,
141         1220703125L,
142         6103515625L,
143         30517578125L,
144         152587890625L,
145         762939453125L,
146         3814697265625L,
147         19073486328125L,
148         95367431640625L,
149         476837158203125L,
150         2384185791015625L,
151         11920928955078125L,
152         59604644775390625L,
153         298023223876953125L,
154         1490116119384765625L,
155         7450580596923828125L, };
156 
157     private static final int[] LONG_FIVE_POW_BIT_LENGTH = new int[LONG_FIVE_POW.length];
158     private static final int[] LONG_POWERS_OF_TEN_BIT_LENGTH = new int[MathUtils.LONG_POWERS_OF_TEN.length];
159 
160     private static final int BI_SCALED_BY_ZERO_LENGTH = 11;
161 
162     /**
163      * An array with the first <code>BigInteger</code> scaled by zero.
164      * (<code>[0,0],[1,0],...,[10,0]</code>).
165      */
166     private static final BigDecimal[] BI_SCALED_BY_ZERO = new BigDecimal[BI_SCALED_BY_ZERO_LENGTH];
167 
168     /**
169      * An array with the zero number scaled by the first positive scales.
170      * (<code>0*10^0, 0*10^1, ..., 0*10^10</code>).
171      */
172     private static final BigDecimal[] ZERO_SCALED_BY = new BigDecimal[11];
173 
174     /** An array filled with characters <code>'0'</code>. */
175     private static final char[] CH_ZEROS = new char[100];
176 
177     static {
Arrays.fill(CH_ZEROS, '0')178         Arrays.fill(CH_ZEROS, '0');
179 
180         for (int i = 0; i < ZERO_SCALED_BY.length; ++i) {
181             BI_SCALED_BY_ZERO[i] = new BigDecimal(i, 0);
182             ZERO_SCALED_BY[i] = new BigDecimal(0, i);
183         }
184         for (int i = 0; i < LONG_FIVE_POW_BIT_LENGTH.length; ++i) {
185             LONG_FIVE_POW_BIT_LENGTH[i] = bitLength(LONG_FIVE_POW[i]);
186         }
187         for (int i = 0; i < LONG_POWERS_OF_TEN_BIT_LENGTH.length; ++i) {
188             LONG_POWERS_OF_TEN_BIT_LENGTH[i] = bitLength(MathUtils.LONG_POWERS_OF_TEN[i]);
189         }
190 
191         // Taking the references of useful powers.
192         TEN_POW = Multiplication.bigTenPows;
193         FIVE_POW = Multiplication.bigFivePows;
194     }
195 
196     /**
197      * The constant zero as a {@code BigDecimal}.
198      */
199     public static final BigDecimal ZERO = new BigDecimal(0, 0);
200 
201     /**
202      * The constant one as a {@code BigDecimal}.
203      */
204     public static final BigDecimal ONE = new BigDecimal(1, 0);
205 
206     /**
207      * The constant ten as a {@code BigDecimal}.
208      */
209     public static final BigDecimal TEN = new BigDecimal(10, 0);
210 
211     /**
212      * The arbitrary precision integer (unscaled value) in the internal
213      * representation of {@code BigDecimal}.
214      */
215     private BigInteger intVal;
216 
217     private transient int bitLength;
218 
219     private transient long smallValue;
220 
221     /**
222      * The 32-bit integer scale in the internal representation of {@code BigDecimal}.
223      */
224     private int scale;
225 
226     /**
227      * Represent the number of decimal digits in the unscaled value. This
228      * precision is calculated the first time, and used in the following calls
229      * of method <code>precision()</code>. Note that some call to the private
230      * method <code>inplaceRound()</code> could update this field.
231      *
232      * @see #precision()
233      * @see #inplaceRound(MathContext)
234      */
235     private transient int precision = 0;
236 
BigDecimal(long smallValue, int scale)237     private BigDecimal(long smallValue, int scale){
238         this.smallValue = smallValue;
239         this.scale = scale;
240         this.bitLength = bitLength(smallValue);
241     }
242 
BigDecimal(int smallValue, int scale)243     private BigDecimal(int smallValue, int scale){
244         this.smallValue = smallValue;
245         this.scale = scale;
246         this.bitLength = bitLength(smallValue);
247     }
248 
249     /**
250      * Constructs a new {@code BigDecimal} instance from a string representation
251      * given as a character array.
252      *
253      * @param in
254      *            array of characters containing the string representation of
255      *            this {@code BigDecimal}.
256      * @param offset
257      *            first index to be copied.
258      * @param len
259      *            number of characters to be used.
260      * @throws NumberFormatException
261      *             if {@code offset < 0 || len <= 0 || offset+len-1 < 0 ||
262      *             offset+len-1 >= in.length}, or if {@code in} does not
263      *             contain a valid string representation of a big decimal.
264      */
BigDecimal(char[] in, int offset, int len)265     public BigDecimal(char[] in, int offset, int len) {
266         int begin = offset; // first index to be copied
267         int last = offset + (len - 1); // last index to be copied
268         String scaleString; // buffer for scale
269         StringBuilder unscaledBuffer; // buffer for unscaled value
270         long newScale; // the new scale
271 
272         if (in == null) {
273             throw new NullPointerException("in == null");
274         }
275         if ((last >= in.length) || (offset < 0) || (len <= 0) || (last < 0)) {
276             throw new NumberFormatException("Bad offset/length: offset=" + offset +
277                     " len=" + len + " in.length=" + in.length);
278         }
279         unscaledBuffer = new StringBuilder(len);
280         int bufLength = 0;
281         // To skip a possible '+' symbol
282         if ((offset <= last) && (in[offset] == '+')) {
283             offset++;
284             begin++;
285         }
286         int counter = 0;
287         boolean wasNonZero = false;
288         // Accumulating all digits until a possible decimal point
289         for (; (offset <= last) && (in[offset] != '.') && (in[offset] != 'e') && (in[offset] != 'E'); offset++) {
290             if (!wasNonZero) {
291                 if (in[offset] == '0') {
292                     counter++;
293                 } else {
294                     wasNonZero = true;
295                 }
296             }
297 
298         }
299         unscaledBuffer.append(in, begin, offset - begin);
300         bufLength += offset - begin;
301         // A decimal point was found
302         if ((offset <= last) && (in[offset] == '.')) {
303             offset++;
304             // Accumulating all digits until a possible exponent
305             begin = offset;
306             for (; (offset <= last) && (in[offset] != 'e')
307             && (in[offset] != 'E'); offset++) {
308                 if (!wasNonZero) {
309                     if (in[offset] == '0') {
310                         counter++;
311                     } else {
312                         wasNonZero = true;
313                     }
314                 }
315             }
316             scale = offset - begin;
317             bufLength +=scale;
318             unscaledBuffer.append(in, begin, scale);
319         } else {
320             scale = 0;
321         }
322         // An exponent was found
323         if ((offset <= last) && ((in[offset] == 'e') || (in[offset] == 'E'))) {
324             offset++;
325             // Checking for a possible sign of scale
326             begin = offset;
327             if ((offset <= last) && (in[offset] == '+')) {
328                 offset++;
329                 if ((offset <= last) && (in[offset] != '-')) {
330                     begin++;
331                 }
332             }
333             // Accumulating all remaining digits
334             scaleString = String.valueOf(in, begin, last + 1 - begin);
335             // Checking if the scale is defined
336             newScale = (long)scale - Integer.parseInt(scaleString);
337             scale = (int)newScale;
338             if (newScale != scale) {
339                 throw new NumberFormatException("Scale out of range");
340             }
341         }
342         // Parsing the unscaled value
343         if (bufLength < 19) {
344             smallValue = Long.parseLong(unscaledBuffer.toString());
345             bitLength = bitLength(smallValue);
346         } else {
347             setUnscaledValue(new BigInteger(unscaledBuffer.toString()));
348         }
349     }
350 
351     /**
352      * Constructs a new {@code BigDecimal} instance from a string representation
353      * given as a character array.
354      *
355      * @param in
356      *            array of characters containing the string representation of
357      *            this {@code BigDecimal}.
358      * @param offset
359      *            first index to be copied.
360      * @param len
361      *            number of characters to be used.
362      * @param mc
363      *            rounding mode and precision for the result of this operation.
364      * @throws NumberFormatException
365      *             if {@code offset < 0 || len <= 0 || offset+len-1 < 0 ||
366      *             offset+len-1 >= in.length}, or if {@code in} does not
367      *             contain a valid string representation of a big decimal.
368      * @throws ArithmeticException
369      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
370      *             UNNECESSARY} and the new big decimal cannot be represented
371      *             within the given precision without rounding.
372      */
BigDecimal(char[] in, int offset, int len, MathContext mc)373     public BigDecimal(char[] in, int offset, int len, MathContext mc) {
374         this(in, offset, len);
375         inplaceRound(mc);
376     }
377 
378     /**
379      * Constructs a new {@code BigDecimal} instance from a string representation
380      * given as a character array.
381      *
382      * @param in
383      *            array of characters containing the string representation of
384      *            this {@code BigDecimal}.
385      * @throws NumberFormatException
386      *             if {@code in} does not contain a valid string representation
387      *             of a big decimal.
388      */
BigDecimal(char[] in)389     public BigDecimal(char[] in) {
390         this(in, 0, in.length);
391     }
392 
393     /**
394      * Constructs a new {@code BigDecimal} instance from a string representation
395      * given as a character array. The result is rounded according to the
396      * specified math context.
397      *
398      * @param in
399      *            array of characters containing the string representation of
400      *            this {@code BigDecimal}.
401      * @param mc
402      *            rounding mode and precision for the result of this operation.
403      * @throws NumberFormatException
404      *             if {@code in} does not contain a valid string representation
405      *             of a big decimal.
406      * @throws ArithmeticException
407      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
408      *             UNNECESSARY} and the new big decimal cannot be represented
409      *             within the given precision without rounding.
410      */
BigDecimal(char[] in, MathContext mc)411     public BigDecimal(char[] in, MathContext mc) {
412         this(in, 0, in.length);
413         inplaceRound(mc);
414     }
415 
416     /**
417      * Constructs a new {@code BigDecimal} instance from a string
418      * representation.
419      *
420      * @throws NumberFormatException
421      *             if {@code val} does not contain a valid string representation
422      *             of a big decimal.
423      */
BigDecimal(String val)424     public BigDecimal(String val) {
425         this(val.toCharArray(), 0, val.length());
426     }
427 
428     /**
429      * Constructs a new {@code BigDecimal} instance from a string
430      * representation. The result is rounded according to the specified math
431      * context.
432      *
433      * @param mc
434      *            rounding mode and precision for the result of this operation.
435      * @throws NumberFormatException
436      *             if {@code val} does not contain a valid string representation
437      *             of a big decimal.
438      * @throws ArithmeticException
439      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
440      *             UNNECESSARY} and the new big decimal cannot be represented
441      *             within the given precision without rounding.
442      */
BigDecimal(String val, MathContext mc)443     public BigDecimal(String val, MathContext mc) {
444         this(val.toCharArray(), 0, val.length());
445         inplaceRound(mc);
446     }
447 
448     /**
449      * Constructs a new {@code BigDecimal} instance from the 64bit double
450      * {@code val}. The constructed big decimal is equivalent to the given
451      * double. For example, {@code new BigDecimal(0.1)} is equal to {@code
452      * 0.1000000000000000055511151231257827021181583404541015625}. This happens
453      * as {@code 0.1} cannot be represented exactly in binary.
454      * <p>
455      * To generate a big decimal instance which is equivalent to {@code 0.1} use
456      * the {@code BigDecimal(String)} constructor.
457      *
458      * @param val
459      *            double value to be converted to a {@code BigDecimal} instance.
460      * @throws NumberFormatException
461      *             if {@code val} is infinity or not a number.
462      */
BigDecimal(double val)463     public BigDecimal(double val) {
464         if (Double.isInfinite(val) || Double.isNaN(val)) {
465             throw new NumberFormatException("Infinity or NaN: " + val);
466         }
467         long bits = Double.doubleToLongBits(val); // IEEE-754
468         long mantissa;
469         int trailingZeros;
470         // Extracting the exponent, note that the bias is 1023
471         scale = 1075 - (int)((bits >> 52) & 0x7FFL);
472         // Extracting the 52 bits of the mantissa.
473         mantissa = (scale == 1075) ? (bits & 0xFFFFFFFFFFFFFL) << 1
474                 : (bits & 0xFFFFFFFFFFFFFL) | 0x10000000000000L;
475         if (mantissa == 0) {
476             scale = 0;
477             precision = 1;
478         }
479         // To simplify all factors '2' in the mantissa
480         if (scale > 0) {
481             trailingZeros = Math.min(scale, Long.numberOfTrailingZeros(mantissa));
482             mantissa >>>= trailingZeros;
483             scale -= trailingZeros;
484         }
485         // Calculating the new unscaled value and the new scale
486         if((bits >> 63) != 0) {
487             mantissa = -mantissa;
488         }
489         int mantissaBits = bitLength(mantissa);
490         if (scale < 0) {
491             bitLength = mantissaBits == 0 ? 0 : mantissaBits - scale;
492             if(bitLength < 64) {
493                 smallValue = mantissa << (-scale);
494             } else {
495                 BigInt bi = new BigInt();
496                 bi.putLongInt(mantissa);
497                 bi.shift(-scale);
498                 intVal = new BigInteger(bi);
499             }
500             scale = 0;
501         } else if (scale > 0) {
502             // m * 2^e =  (m * 5^(-e)) * 10^e
503             if(scale < LONG_FIVE_POW.length
504                     && mantissaBits+LONG_FIVE_POW_BIT_LENGTH[scale] < 64) {
505                 smallValue = mantissa * LONG_FIVE_POW[scale];
506                 bitLength = bitLength(smallValue);
507             } else {
508                 setUnscaledValue(Multiplication.multiplyByFivePow(BigInteger.valueOf(mantissa), scale));
509             }
510         } else { // scale == 0
511             smallValue = mantissa;
512             bitLength = mantissaBits;
513         }
514     }
515 
516     /**
517      * Constructs a new {@code BigDecimal} instance from the 64bit double
518      * {@code val}. The constructed big decimal is equivalent to the given
519      * double. For example, {@code new BigDecimal(0.1)} is equal to {@code
520      * 0.1000000000000000055511151231257827021181583404541015625}. This happens
521      * as {@code 0.1} cannot be represented exactly in binary.
522      * <p>
523      * To generate a big decimal instance which is equivalent to {@code 0.1} use
524      * the {@code BigDecimal(String)} constructor.
525      *
526      * @param val
527      *            double value to be converted to a {@code BigDecimal} instance.
528      * @param mc
529      *            rounding mode and precision for the result of this operation.
530      * @throws NumberFormatException
531      *             if {@code val} is infinity or not a number.
532      * @throws ArithmeticException
533      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
534      *             UNNECESSARY} and the new big decimal cannot be represented
535      *             within the given precision without rounding.
536      */
BigDecimal(double val, MathContext mc)537     public BigDecimal(double val, MathContext mc) {
538         this(val);
539         inplaceRound(mc);
540     }
541 
542     /**
543      * Constructs a new {@code BigDecimal} instance from the given big integer
544      * {@code val}. The scale of the result is {@code 0}.
545      */
BigDecimal(BigInteger val)546     public BigDecimal(BigInteger val) {
547         this(val, 0);
548     }
549 
550     /**
551      * Constructs a new {@code BigDecimal} instance from the given big integer
552      * {@code val}. The scale of the result is {@code 0}.
553      *
554      * @param mc
555      *            rounding mode and precision for the result of this operation.
556      * @throws ArithmeticException
557      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
558      *             UNNECESSARY} and the new big decimal cannot be represented
559      *             within the given precision without rounding.
560      */
BigDecimal(BigInteger val, MathContext mc)561     public BigDecimal(BigInteger val, MathContext mc) {
562         this(val);
563         inplaceRound(mc);
564     }
565 
566     /**
567      * Constructs a new {@code BigDecimal} instance from a given unscaled value
568      * {@code unscaledVal} and a given scale. The value of this instance is
569      * {@code unscaledVal * 10<sup>-scale</sup>}).
570      *
571      * @throws NullPointerException
572      *             if {@code unscaledVal == null}.
573      */
BigDecimal(BigInteger unscaledVal, int scale)574     public BigDecimal(BigInteger unscaledVal, int scale) {
575         if (unscaledVal == null) {
576             throw new NullPointerException("unscaledVal == null");
577         }
578         this.scale = scale;
579         setUnscaledValue(unscaledVal);
580     }
581 
582     /**
583      * Constructs a new {@code BigDecimal} instance from a given unscaled value
584      * {@code unscaledVal} and a given scale. The value of this instance is
585      * {@code unscaledVal * 10<sup>-scale</sup>). The result is rounded according
586      * to the specified math context.
587      *
588      * @param mc
589      *            rounding mode and precision for the result of this operation.
590      * @throws ArithmeticException
591      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
592      *             UNNECESSARY} and the new big decimal cannot be represented
593      *             within the given precision without rounding.
594      * @throws NullPointerException
595      *             if {@code unscaledVal == null}.
596      */
BigDecimal(BigInteger unscaledVal, int scale, MathContext mc)597     public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
598         this(unscaledVal, scale);
599         inplaceRound(mc);
600     }
601 
602     /**
603      * Constructs a new {@code BigDecimal} instance from the given int
604      * {@code val}. The scale of the result is 0.
605      *
606      * @param val
607      *            int value to be converted to a {@code BigDecimal} instance.
608      */
BigDecimal(int val)609     public BigDecimal(int val) {
610         this(val,0);
611     }
612 
613     /**
614      * Constructs a new {@code BigDecimal} instance from the given int {@code
615      * val}. The scale of the result is {@code 0}. The result is rounded
616      * according to the specified math context.
617      *
618      * @param val
619      *            int value to be converted to a {@code BigDecimal} instance.
620      * @param mc
621      *            rounding mode and precision for the result of this operation.
622      * @throws ArithmeticException
623      *             if {@code mc.precision > 0} and {@code c.roundingMode ==
624      *             UNNECESSARY} and the new big decimal cannot be represented
625      *             within the given precision without rounding.
626      */
BigDecimal(int val, MathContext mc)627     public BigDecimal(int val, MathContext mc) {
628         this(val,0);
629         inplaceRound(mc);
630     }
631 
632     /**
633      * Constructs a new {@code BigDecimal} instance from the given long {@code
634      * val}. The scale of the result is {@code 0}.
635      *
636      * @param val
637      *            long value to be converted to a {@code BigDecimal} instance.
638      */
BigDecimal(long val)639     public BigDecimal(long val) {
640         this(val,0);
641     }
642 
643     /**
644      * Constructs a new {@code BigDecimal} instance from the given long {@code
645      * val}. The scale of the result is {@code 0}. The result is rounded
646      * according to the specified math context.
647      *
648      * @param val
649      *            long value to be converted to a {@code BigDecimal} instance.
650      * @param mc
651      *            rounding mode and precision for the result of this operation.
652      * @throws ArithmeticException
653      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
654      *             UNNECESSARY} and the new big decimal cannot be represented
655      *             within the given precision without rounding.
656      */
BigDecimal(long val, MathContext mc)657     public BigDecimal(long val, MathContext mc) {
658         this(val);
659         inplaceRound(mc);
660     }
661 
662     /* Public Methods */
663 
664     /**
665      * Returns a new {@code BigDecimal} instance whose value is equal to {@code
666      * unscaledVal * 10<sup>-scale</sup>}). The scale of the result is {@code
667      * scale}, and its unscaled value is {@code unscaledVal}.
668      */
valueOf(long unscaledVal, int scale)669     public static BigDecimal valueOf(long unscaledVal, int scale) {
670         if (scale == 0) {
671             return valueOf(unscaledVal);
672         }
673         if ((unscaledVal == 0) && (scale >= 0)
674                 && (scale < ZERO_SCALED_BY.length)) {
675             return ZERO_SCALED_BY[scale];
676         }
677         return new BigDecimal(unscaledVal, scale);
678     }
679 
680     /**
681      * Returns a new {@code BigDecimal} instance whose value is equal to {@code
682      * unscaledVal}. The scale of the result is {@code 0}, and its unscaled
683      * value is {@code unscaledVal}.
684      *
685      * @param unscaledVal
686      *            value to be converted to a {@code BigDecimal}.
687      * @return {@code BigDecimal} instance with the value {@code unscaledVal}.
688      */
valueOf(long unscaledVal)689     public static BigDecimal valueOf(long unscaledVal) {
690         if ((unscaledVal >= 0) && (unscaledVal < BI_SCALED_BY_ZERO_LENGTH)) {
691             return BI_SCALED_BY_ZERO[(int)unscaledVal];
692         }
693         return new BigDecimal(unscaledVal,0);
694     }
695 
696     /**
697      * Returns a new {@code BigDecimal} instance whose value is equal to {@code
698      * val}. The new decimal is constructed as if the {@code BigDecimal(String)}
699      * constructor is called with an argument which is equal to {@code
700      * Double.toString(val)}. For example, {@code valueOf("0.1")} is converted to
701      * (unscaled=1, scale=1), although the double {@code 0.1} cannot be
702      * represented exactly as a double value. In contrast to that, a new {@code
703      * BigDecimal(0.1)} instance has the value {@code
704      * 0.1000000000000000055511151231257827021181583404541015625} with an
705      * unscaled value {@code 1000000000000000055511151231257827021181583404541015625}
706      * and the scale {@code 55}.
707      *
708      * @param val
709      *            double value to be converted to a {@code BigDecimal}.
710      * @return {@code BigDecimal} instance with the value {@code val}.
711      * @throws NumberFormatException
712      *             if {@code val} is infinite or {@code val} is not a number
713      */
valueOf(double val)714     public static BigDecimal valueOf(double val) {
715         if (Double.isInfinite(val) || Double.isNaN(val)) {
716             throw new NumberFormatException("Infinity or NaN: " + val);
717         }
718         return new BigDecimal(Double.toString(val));
719     }
720 
721     /**
722      * Returns a new {@code BigDecimal} whose value is {@code this + augend}.
723      * The scale of the result is the maximum of the scales of the two
724      * arguments.
725      *
726      * @param augend
727      *            value to be added to {@code this}.
728      * @return {@code this + augend}.
729      * @throws NullPointerException
730      *             if {@code augend == null}.
731      */
add(BigDecimal augend)732     public BigDecimal add(BigDecimal augend) {
733         int diffScale = this.scale - augend.scale;
734         // Fast return when some operand is zero
735         if (this.isZero()) {
736             if (diffScale <= 0) {
737                 return augend;
738             }
739             if (augend.isZero()) {
740                 return this;
741             }
742         } else if (augend.isZero()) {
743             if (diffScale >= 0) {
744                 return this;
745             }
746         }
747         // Let be:  this = [u1,s1]  and  augend = [u2,s2]
748         if (diffScale == 0) {
749             // case s1 == s2: [u1 + u2 , s1]
750             if (Math.max(this.bitLength, augend.bitLength) + 1 < 64) {
751                 return valueOf(this.smallValue + augend.smallValue, this.scale);
752             }
753             return new BigDecimal(this.getUnscaledValue().add(augend.getUnscaledValue()), this.scale);
754         } else if (diffScale > 0) {
755             // case s1 > s2 : [(u1 + u2) * 10 ^ (s1 - s2) , s1]
756             return addAndMult10(this, augend, diffScale);
757         } else {// case s2 > s1 : [(u2 + u1) * 10 ^ (s2 - s1) , s2]
758             return addAndMult10(augend, this, -diffScale);
759         }
760     }
761 
addAndMult10(BigDecimal thisValue,BigDecimal augend, int diffScale)762     private static BigDecimal addAndMult10(BigDecimal thisValue,BigDecimal augend, int diffScale) {
763         if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
764                 Math.max(thisValue.bitLength,augend.bitLength+LONG_POWERS_OF_TEN_BIT_LENGTH[diffScale])+1<64) {
765             return valueOf(thisValue.smallValue+augend.smallValue*MathUtils.LONG_POWERS_OF_TEN[diffScale],thisValue.scale);
766         } else {
767             BigInt bi = Multiplication.multiplyByTenPow(augend.getUnscaledValue(),diffScale).getBigInt();
768             bi.add(thisValue.getUnscaledValue().getBigInt());
769             return new BigDecimal(new BigInteger(bi), thisValue.scale);
770         }
771     }
772 
773     /**
774      * Returns a new {@code BigDecimal} whose value is {@code this + augend}.
775      * The result is rounded according to the passed context {@code mc}.
776      *
777      * @param augend
778      *            value to be added to {@code this}.
779      * @param mc
780      *            rounding mode and precision for the result of this operation.
781      * @return {@code this + augend}.
782      * @throws NullPointerException
783      *             if {@code augend == null} or {@code mc == null}.
784      */
add(BigDecimal augend, MathContext mc)785     public BigDecimal add(BigDecimal augend, MathContext mc) {
786         BigDecimal larger; // operand with the largest unscaled value
787         BigDecimal smaller; // operand with the smallest unscaled value
788         BigInteger tempBI;
789         long diffScale = (long)this.scale - augend.scale;
790         int largerSignum;
791         // Some operand is zero or the precision is infinity
792         if ((augend.isZero()) || (this.isZero())
793                 || (mc.getPrecision() == 0)) {
794             return add(augend).round(mc);
795         }
796         // Cases where there is room for optimizations
797         if (this.approxPrecision() < diffScale - 1) {
798             larger = augend;
799             smaller = this;
800         } else if (augend.approxPrecision() < -diffScale - 1) {
801             larger = this;
802             smaller = augend;
803         } else {// No optimization is done
804             return add(augend).round(mc);
805         }
806         if (mc.getPrecision() >= larger.approxPrecision()) {
807             // No optimization is done
808             return add(augend).round(mc);
809         }
810         // Cases where it's unnecessary to add two numbers with very different scales
811         largerSignum = larger.signum();
812         if (largerSignum == smaller.signum()) {
813             tempBI = Multiplication.multiplyByPositiveInt(larger.getUnscaledValue(),10)
814             .add(BigInteger.valueOf(largerSignum));
815         } else {
816             tempBI = larger.getUnscaledValue().subtract(
817                     BigInteger.valueOf(largerSignum));
818             tempBI = Multiplication.multiplyByPositiveInt(tempBI,10)
819             .add(BigInteger.valueOf(largerSignum * 9));
820         }
821         // Rounding the improved adding
822         larger = new BigDecimal(tempBI, larger.scale + 1);
823         return larger.round(mc);
824     }
825 
826     /**
827      * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}.
828      * The scale of the result is the maximum of the scales of the two arguments.
829      *
830      * @param subtrahend
831      *            value to be subtracted from {@code this}.
832      * @return {@code this - subtrahend}.
833      * @throws NullPointerException
834      *             if {@code subtrahend == null}.
835      */
subtract(BigDecimal subtrahend)836     public BigDecimal subtract(BigDecimal subtrahend) {
837         int diffScale = this.scale - subtrahend.scale;
838         // Fast return when some operand is zero
839         if (this.isZero()) {
840             if (diffScale <= 0) {
841                 return subtrahend.negate();
842             }
843             if (subtrahend.isZero()) {
844                 return this;
845             }
846         } else if (subtrahend.isZero()) {
847             if (diffScale >= 0) {
848                 return this;
849             }
850         }
851         // Let be: this = [u1,s1] and subtrahend = [u2,s2] so:
852         if (diffScale == 0) {
853             // case s1 = s2 : [u1 - u2 , s1]
854             if (Math.max(this.bitLength, subtrahend.bitLength) + 1 < 64) {
855                 return valueOf(this.smallValue - subtrahend.smallValue,this.scale);
856             }
857             return new BigDecimal(this.getUnscaledValue().subtract(subtrahend.getUnscaledValue()), this.scale);
858         } else if (diffScale > 0) {
859             // case s1 > s2 : [ u1 - u2 * 10 ^ (s1 - s2) , s1 ]
860             if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
861                     Math.max(this.bitLength,subtrahend.bitLength+LONG_POWERS_OF_TEN_BIT_LENGTH[diffScale])+1<64) {
862                 return valueOf(this.smallValue-subtrahend.smallValue*MathUtils.LONG_POWERS_OF_TEN[diffScale],this.scale);
863             }
864             return new BigDecimal(this.getUnscaledValue().subtract(
865                     Multiplication.multiplyByTenPow(subtrahend.getUnscaledValue(),diffScale)), this.scale);
866         } else {// case s2 > s1 : [ u1 * 10 ^ (s2 - s1) - u2 , s2 ]
867             diffScale = -diffScale;
868             if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
869                     Math.max(this.bitLength+LONG_POWERS_OF_TEN_BIT_LENGTH[diffScale],subtrahend.bitLength)+1<64) {
870                 return valueOf(this.smallValue*MathUtils.LONG_POWERS_OF_TEN[diffScale]-subtrahend.smallValue,subtrahend.scale);
871             }
872             return new BigDecimal(Multiplication.multiplyByTenPow(this.getUnscaledValue(),diffScale)
873             .subtract(subtrahend.getUnscaledValue()), subtrahend.scale);
874         }
875     }
876 
877     /**
878      * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}.
879      * The result is rounded according to the passed context {@code mc}.
880      *
881      * @param subtrahend
882      *            value to be subtracted from {@code this}.
883      * @param mc
884      *            rounding mode and precision for the result of this operation.
885      * @return {@code this - subtrahend}.
886      * @throws NullPointerException
887      *             if {@code subtrahend == null} or {@code mc == null}.
888      */
subtract(BigDecimal subtrahend, MathContext mc)889     public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
890         long diffScale = subtrahend.scale - (long)this.scale;
891         int thisSignum;
892         BigDecimal leftOperand; // it will be only the left operand (this)
893         BigInteger tempBI;
894         // Some operand is zero or the precision is infinity
895         if ((subtrahend.isZero()) || (this.isZero())
896                 || (mc.getPrecision() == 0)) {
897             return subtract(subtrahend).round(mc);
898         }
899         // Now:   this != 0   and   subtrahend != 0
900         if (subtrahend.approxPrecision() < diffScale - 1) {
901             // Cases where it is unnecessary to subtract two numbers with very different scales
902             if (mc.getPrecision() < this.approxPrecision()) {
903                 thisSignum = this.signum();
904                 if (thisSignum != subtrahend.signum()) {
905                     tempBI = Multiplication.multiplyByPositiveInt(this.getUnscaledValue(), 10)
906                     .add(BigInteger.valueOf(thisSignum));
907                 } else {
908                     tempBI = this.getUnscaledValue().subtract(BigInteger.valueOf(thisSignum));
909                     tempBI = Multiplication.multiplyByPositiveInt(tempBI, 10)
910                     .add(BigInteger.valueOf(thisSignum * 9));
911                 }
912                 // Rounding the improved subtracting
913                 leftOperand = new BigDecimal(tempBI, this.scale + 1);
914                 return leftOperand.round(mc);
915             }
916         }
917         // No optimization is done
918         return subtract(subtrahend).round(mc);
919     }
920 
921     /**
922      * Returns a new {@code BigDecimal} whose value is {@code this *
923      * multiplicand}. The scale of the result is the sum of the scales of the
924      * two arguments.
925      *
926      * @param multiplicand
927      *            value to be multiplied with {@code this}.
928      * @return {@code this * multiplicand}.
929      * @throws NullPointerException
930      *             if {@code multiplicand == null}.
931      */
multiply(BigDecimal multiplicand)932     public BigDecimal multiply(BigDecimal multiplicand) {
933         long newScale = (long)this.scale + multiplicand.scale;
934 
935         if ((this.isZero()) || (multiplicand.isZero())) {
936             return zeroScaledBy(newScale);
937         }
938         /* Let be: this = [u1,s1] and multiplicand = [u2,s2] so:
939          * this x multiplicand = [ s1 * s2 , s1 + s2 ] */
940         if(this.bitLength + multiplicand.bitLength < 64) {
941             return valueOf(this.smallValue*multiplicand.smallValue, safeLongToInt(newScale));
942         }
943         return new BigDecimal(this.getUnscaledValue().multiply(
944                 multiplicand.getUnscaledValue()), safeLongToInt(newScale));
945     }
946 
947     /**
948      * Returns a new {@code BigDecimal} whose value is {@code this *
949      * multiplicand}. The result is rounded according to the passed context
950      * {@code mc}.
951      *
952      * @param multiplicand
953      *            value to be multiplied with {@code this}.
954      * @param mc
955      *            rounding mode and precision for the result of this operation.
956      * @return {@code this * multiplicand}.
957      * @throws NullPointerException
958      *             if {@code multiplicand == null} or {@code mc == null}.
959      */
multiply(BigDecimal multiplicand, MathContext mc)960     public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
961         BigDecimal result = multiply(multiplicand);
962 
963         result.inplaceRound(mc);
964         return result;
965     }
966 
967     /**
968      * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
969      * As scale of the result the parameter {@code scale} is used. If rounding
970      * is required to meet the specified scale, then the specified rounding mode
971      * {@code roundingMode} is applied.
972      *
973      * @param divisor
974      *            value by which {@code this} is divided.
975      * @param scale
976      *            the scale of the result returned.
977      * @param roundingMode
978      *            rounding mode to be used to round the result.
979      * @return {@code this / divisor} rounded according to the given rounding
980      *         mode.
981      * @throws NullPointerException
982      *             if {@code divisor == null}.
983      * @throws IllegalArgumentException
984      *             if {@code roundingMode} is not a valid rounding mode.
985      * @throws ArithmeticException
986      *             if {@code divisor == 0}.
987      * @throws ArithmeticException
988      *             if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
989      *             necessary according to the given scale.
990      */
divide(BigDecimal divisor, int scale, int roundingMode)991     public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
992         return divide(divisor, scale, RoundingMode.valueOf(roundingMode));
993     }
994 
995     /**
996      * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
997      * As scale of the result the parameter {@code scale} is used. If rounding
998      * is required to meet the specified scale, then the specified rounding mode
999      * {@code roundingMode} is applied.
1000      *
1001      * @param divisor
1002      *            value by which {@code this} is divided.
1003      * @param scale
1004      *            the scale of the result returned.
1005      * @param roundingMode
1006      *            rounding mode to be used to round the result.
1007      * @return {@code this / divisor} rounded according to the given rounding
1008      *         mode.
1009      * @throws NullPointerException
1010      *             if {@code divisor == null} or {@code roundingMode == null}.
1011      * @throws ArithmeticException
1012      *             if {@code divisor == 0}.
1013      * @throws ArithmeticException
1014      *             if {@code roundingMode == RoundingMode.UNNECESSAR}Y and
1015      *             rounding is necessary according to the given scale and given
1016      *             precision.
1017      */
divide(BigDecimal divisor, int scale, RoundingMode roundingMode)1018     public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
1019         // Let be: this = [u1,s1]  and  divisor = [u2,s2]
1020         if (roundingMode == null) {
1021             throw new NullPointerException("roundingMode == null");
1022         }
1023         if (divisor.isZero()) {
1024             throw new ArithmeticException("Division by zero");
1025         }
1026 
1027         long diffScale = ((long)this.scale - divisor.scale) - scale;
1028 
1029         // Check whether the diffScale will fit into an int. See http://b/17393664.
1030         if (bitLength(diffScale) > 32) {
1031             throw new ArithmeticException(
1032                     "Unable to perform divisor / dividend scaling: the difference in scale is too" +
1033                             " big (" + diffScale + ")");
1034         }
1035 
1036         if(this.bitLength < 64 && divisor.bitLength < 64 ) {
1037             if(diffScale == 0) {
1038                 return dividePrimitiveLongs(this.smallValue,
1039                         divisor.smallValue,
1040                         scale,
1041                         roundingMode );
1042             } else if(diffScale > 0) {
1043                 if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
1044                         divisor.bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)diffScale] < 64) {
1045                     return dividePrimitiveLongs(this.smallValue,
1046                             divisor.smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)diffScale],
1047                             scale,
1048                             roundingMode);
1049                 }
1050             } else { // diffScale < 0
1051                 if(-diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
1052                         this.bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)-diffScale] < 64) {
1053                     return dividePrimitiveLongs(this.smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)-diffScale],
1054                             divisor.smallValue,
1055                             scale,
1056                             roundingMode);
1057                 }
1058 
1059             }
1060         }
1061         BigInteger scaledDividend = this.getUnscaledValue();
1062         BigInteger scaledDivisor = divisor.getUnscaledValue(); // for scaling of 'u2'
1063 
1064         if (diffScale > 0) {
1065             // Multiply 'u2'  by:  10^((s1 - s2) - scale)
1066             scaledDivisor = Multiplication.multiplyByTenPow(scaledDivisor, (int)diffScale);
1067         } else if (diffScale < 0) {
1068             // Multiply 'u1'  by:  10^(scale - (s1 - s2))
1069             scaledDividend  = Multiplication.multiplyByTenPow(scaledDividend, (int)-diffScale);
1070         }
1071         return divideBigIntegers(scaledDividend, scaledDivisor, scale, roundingMode);
1072         }
1073 
divideBigIntegers(BigInteger scaledDividend, BigInteger scaledDivisor, int scale, RoundingMode roundingMode)1074     private static BigDecimal divideBigIntegers(BigInteger scaledDividend, BigInteger scaledDivisor, int scale, RoundingMode roundingMode) {
1075 
1076         BigInteger[] quotAndRem = scaledDividend.divideAndRemainder(scaledDivisor);  // quotient and remainder
1077         // If after division there is a remainder...
1078         BigInteger quotient = quotAndRem[0];
1079         BigInteger remainder = quotAndRem[1];
1080         if (remainder.signum() == 0) {
1081             return new BigDecimal(quotient, scale);
1082         }
1083         int sign = scaledDividend.signum() * scaledDivisor.signum();
1084         int compRem;                                      // 'compare to remainder'
1085         if(scaledDivisor.bitLength() < 63) { // 63 in order to avoid out of long after *2
1086             long rem = remainder.longValue();
1087             long divisor = scaledDivisor.longValue();
1088             compRem = longCompareTo(Math.abs(rem) * 2,Math.abs(divisor));
1089             // To look if there is a carry
1090             compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0,
1091                     sign * (5 + compRem), roundingMode);
1092 
1093         } else {
1094             // Checking if:  remainder * 2 >= scaledDivisor
1095             compRem = remainder.abs().shiftLeftOneBit().compareTo(scaledDivisor.abs());
1096             compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0,
1097                     sign * (5 + compRem), roundingMode);
1098         }
1099             if (compRem != 0) {
1100             if(quotient.bitLength() < 63) {
1101                 return valueOf(quotient.longValue() + compRem,scale);
1102             }
1103             quotient = quotient.add(BigInteger.valueOf(compRem));
1104             return new BigDecimal(quotient, scale);
1105         }
1106         // Constructing the result with the appropriate unscaled value
1107         return new BigDecimal(quotient, scale);
1108     }
1109 
dividePrimitiveLongs(long scaledDividend, long scaledDivisor, int scale, RoundingMode roundingMode)1110     private static BigDecimal dividePrimitiveLongs(long scaledDividend, long scaledDivisor, int scale, RoundingMode roundingMode) {
1111         long quotient = scaledDividend / scaledDivisor;
1112         long remainder = scaledDividend % scaledDivisor;
1113         int sign = Long.signum( scaledDividend ) * Long.signum( scaledDivisor );
1114         if (remainder != 0) {
1115             // Checking if:  remainder * 2 >= scaledDivisor
1116             int compRem;                                      // 'compare to remainder'
1117             compRem = longCompareTo(Math.abs(remainder) * 2,Math.abs(scaledDivisor));
1118             // To look if there is a carry
1119             quotient += roundingBehavior(((int)quotient) & 1,
1120                     sign * (5 + compRem),
1121                     roundingMode);
1122         }
1123         // Constructing the result with the appropriate unscaled value
1124         return valueOf(quotient, scale);
1125     }
1126 
1127     /**
1128      * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
1129      * The scale of the result is the scale of {@code this}. If rounding is
1130      * required to meet the specified scale, then the specified rounding mode
1131      * {@code roundingMode} is applied.
1132      *
1133      * @param divisor
1134      *            value by which {@code this} is divided.
1135      * @param roundingMode
1136      *            rounding mode to be used to round the result.
1137      * @return {@code this / divisor} rounded according to the given rounding
1138      *         mode.
1139      * @throws NullPointerException
1140      *             if {@code divisor == null}.
1141      * @throws IllegalArgumentException
1142      *             if {@code roundingMode} is not a valid rounding mode.
1143      * @throws ArithmeticException
1144      *             if {@code divisor == 0}.
1145      * @throws ArithmeticException
1146      *             if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
1147      *             necessary according to the scale of this.
1148      */
divide(BigDecimal divisor, int roundingMode)1149     public BigDecimal divide(BigDecimal divisor, int roundingMode) {
1150         return divide(divisor, scale, RoundingMode.valueOf(roundingMode));
1151     }
1152 
1153     /**
1154      * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
1155      * The scale of the result is the scale of {@code this}. If rounding is
1156      * required to meet the specified scale, then the specified rounding mode
1157      * {@code roundingMode} is applied.
1158      *
1159      * @param divisor
1160      *            value by which {@code this} is divided.
1161      * @param roundingMode
1162      *            rounding mode to be used to round the result.
1163      * @return {@code this / divisor} rounded according to the given rounding
1164      *         mode.
1165      * @throws NullPointerException
1166      *             if {@code divisor == null} or {@code roundingMode == null}.
1167      * @throws ArithmeticException
1168      *             if {@code divisor == 0}.
1169      * @throws ArithmeticException
1170      *             if {@code roundingMode == RoundingMode.UNNECESSARY} and
1171      *             rounding is necessary according to the scale of this.
1172      */
divide(BigDecimal divisor, RoundingMode roundingMode)1173     public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
1174         return divide(divisor, scale, roundingMode);
1175     }
1176 
1177     /**
1178      * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
1179      * The scale of the result is the difference of the scales of {@code this}
1180      * and {@code divisor}. If the exact result requires more digits, then the
1181      * scale is adjusted accordingly. For example, {@code 1/128 = 0.0078125}
1182      * which has a scale of {@code 7} and precision {@code 5}.
1183      *
1184      * @param divisor
1185      *            value by which {@code this} is divided.
1186      * @return {@code this / divisor}.
1187      * @throws NullPointerException
1188      *             if {@code divisor == null}.
1189      * @throws ArithmeticException
1190      *             if {@code divisor == 0}.
1191      * @throws ArithmeticException
1192      *             if the result cannot be represented exactly.
1193      */
divide(BigDecimal divisor)1194     public BigDecimal divide(BigDecimal divisor) {
1195         BigInteger p = this.getUnscaledValue();
1196         BigInteger q = divisor.getUnscaledValue();
1197         BigInteger gcd; // greatest common divisor between 'p' and 'q'
1198         BigInteger quotAndRem[];
1199         long diffScale = (long)scale - divisor.scale;
1200         int newScale; // the new scale for final quotient
1201         int k; // number of factors "2" in 'q'
1202         int l = 0; // number of factors "5" in 'q'
1203         int i = 1;
1204         int lastPow = FIVE_POW.length - 1;
1205 
1206         if (divisor.isZero()) {
1207             throw new ArithmeticException("Division by zero");
1208         }
1209         if (p.signum() == 0) {
1210             return zeroScaledBy(diffScale);
1211         }
1212         // To divide both by the GCD
1213         gcd = p.gcd(q);
1214         p = p.divide(gcd);
1215         q = q.divide(gcd);
1216         // To simplify all "2" factors of q, dividing by 2^k
1217         k = q.getLowestSetBit();
1218         q = q.shiftRight(k);
1219         // To simplify all "5" factors of q, dividing by 5^l
1220         do {
1221             quotAndRem = q.divideAndRemainder(FIVE_POW[i]);
1222             if (quotAndRem[1].signum() == 0) {
1223                 l += i;
1224                 if (i < lastPow) {
1225                     i++;
1226                 }
1227                 q = quotAndRem[0];
1228             } else {
1229                 if (i == 1) {
1230                     break;
1231                 }
1232                 i = 1;
1233             }
1234         } while (true);
1235         // If  abs(q) != 1  then the quotient is periodic
1236         if (!q.abs().equals(BigInteger.ONE)) {
1237             throw new ArithmeticException("Non-terminating decimal expansion; no exact representable decimal result");
1238         }
1239         // The sign of the is fixed and the quotient will be saved in 'p'
1240         if (q.signum() < 0) {
1241             p = p.negate();
1242         }
1243         // Checking if the new scale is out of range
1244         newScale = safeLongToInt(diffScale + Math.max(k, l));
1245         // k >= 0  and  l >= 0  implies that  k - l  is in the 32-bit range
1246         i = k - l;
1247 
1248         p = (i > 0) ? Multiplication.multiplyByFivePow(p, i)
1249         : p.shiftLeft(-i);
1250         return new BigDecimal(p, newScale);
1251     }
1252 
1253     /**
1254      * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
1255      * The result is rounded according to the passed context {@code mc}. If the
1256      * passed math context specifies precision {@code 0}, then this call is
1257      * equivalent to {@code this.divide(divisor)}.
1258      *
1259      * @param divisor
1260      *            value by which {@code this} is divided.
1261      * @param mc
1262      *            rounding mode and precision for the result of this operation.
1263      * @return {@code this / divisor}.
1264      * @throws NullPointerException
1265      *             if {@code divisor == null} or {@code mc == null}.
1266      * @throws ArithmeticException
1267      *             if {@code divisor == 0}.
1268      * @throws ArithmeticException
1269      *             if {@code mc.getRoundingMode() == UNNECESSARY} and rounding
1270      *             is necessary according {@code mc.getPrecision()}.
1271      */
divide(BigDecimal divisor, MathContext mc)1272     public BigDecimal divide(BigDecimal divisor, MathContext mc) {
1273         /* Calculating how many zeros must be append to 'dividend'
1274          * to obtain a  quotient with at least 'mc.precision()' digits */
1275         long trailingZeros = mc.getPrecision() + 2L
1276                 + divisor.approxPrecision() - approxPrecision();
1277         long diffScale = (long)scale - divisor.scale;
1278         long newScale = diffScale; // scale of the final quotient
1279         int compRem; // to compare the remainder
1280         int i = 1; // index
1281         int lastPow = TEN_POW.length - 1; // last power of ten
1282         BigInteger integerQuot; // for temporal results
1283         BigInteger quotAndRem[] = {getUnscaledValue()};
1284         // In special cases it reduces the problem to call the dual method
1285         if ((mc.getPrecision() == 0) || (this.isZero())
1286         || (divisor.isZero())) {
1287             return this.divide(divisor);
1288         }
1289         if (trailingZeros > 0) {
1290             // To append trailing zeros at end of dividend
1291             quotAndRem[0] = getUnscaledValue().multiply( Multiplication.powerOf10(trailingZeros) );
1292             newScale += trailingZeros;
1293         }
1294         quotAndRem = quotAndRem[0].divideAndRemainder( divisor.getUnscaledValue() );
1295         integerQuot = quotAndRem[0];
1296         // Calculating the exact quotient with at least 'mc.precision()' digits
1297         if (quotAndRem[1].signum() != 0) {
1298             // Checking if:   2 * remainder >= divisor ?
1299             compRem = quotAndRem[1].shiftLeftOneBit().compareTo( divisor.getUnscaledValue() );
1300             // quot := quot * 10 + r;     with 'r' in {-6,-5,-4, 0,+4,+5,+6}
1301             integerQuot = integerQuot.multiply(BigInteger.TEN)
1302             .add(BigInteger.valueOf(quotAndRem[0].signum() * (5 + compRem)));
1303             newScale++;
1304         } else {
1305             // To strip trailing zeros until the preferred scale is reached
1306             while (!integerQuot.testBit(0)) {
1307                 quotAndRem = integerQuot.divideAndRemainder(TEN_POW[i]);
1308                 if ((quotAndRem[1].signum() == 0)
1309                         && (newScale - i >= diffScale)) {
1310                     newScale -= i;
1311                     if (i < lastPow) {
1312                         i++;
1313                     }
1314                     integerQuot = quotAndRem[0];
1315                 } else {
1316                     if (i == 1) {
1317                         break;
1318                     }
1319                     i = 1;
1320                 }
1321             }
1322         }
1323         // To perform rounding
1324         return new BigDecimal(integerQuot, safeLongToInt(newScale), mc);
1325     }
1326 
1327     /**
1328      * Returns a new {@code BigDecimal} whose value is the integral part of
1329      * {@code this / divisor}. The quotient is rounded down towards zero to the
1330      * next integer. For example, {@code 0.5/0.2 = 2}.
1331      *
1332      * @param divisor
1333      *            value by which {@code this} is divided.
1334      * @return integral part of {@code this / divisor}.
1335      * @throws NullPointerException
1336      *             if {@code divisor == null}.
1337      * @throws ArithmeticException
1338      *             if {@code divisor == 0}.
1339      */
divideToIntegralValue(BigDecimal divisor)1340     public BigDecimal divideToIntegralValue(BigDecimal divisor) {
1341         BigInteger integralValue; // the integer of result
1342         BigInteger powerOfTen; // some power of ten
1343         BigInteger quotAndRem[] = {getUnscaledValue()};
1344         long newScale = (long)this.scale - divisor.scale;
1345         long tempScale = 0;
1346         int i = 1;
1347         int lastPow = TEN_POW.length - 1;
1348 
1349         if (divisor.isZero()) {
1350             throw new ArithmeticException("Division by zero");
1351         }
1352         if ((divisor.approxPrecision() + newScale > this.approxPrecision() + 1L)
1353         || (this.isZero())) {
1354             /* If the divisor's integer part is greater than this's integer part,
1355              * the result must be zero with the appropriate scale */
1356             integralValue = BigInteger.ZERO;
1357         } else if (newScale == 0) {
1358             integralValue = getUnscaledValue().divide( divisor.getUnscaledValue() );
1359         } else if (newScale > 0) {
1360             powerOfTen = Multiplication.powerOf10(newScale);
1361             integralValue = getUnscaledValue().divide( divisor.getUnscaledValue().multiply(powerOfTen) );
1362             integralValue = integralValue.multiply(powerOfTen);
1363         } else {// (newScale < 0)
1364             powerOfTen = Multiplication.powerOf10(-newScale);
1365             integralValue = getUnscaledValue().multiply(powerOfTen).divide( divisor.getUnscaledValue() );
1366             // To strip trailing zeros approximating to the preferred scale
1367             while (!integralValue.testBit(0)) {
1368                 quotAndRem = integralValue.divideAndRemainder(TEN_POW[i]);
1369                 if ((quotAndRem[1].signum() == 0)
1370                         && (tempScale - i >= newScale)) {
1371                     tempScale -= i;
1372                     if (i < lastPow) {
1373                         i++;
1374                     }
1375                     integralValue = quotAndRem[0];
1376                 } else {
1377                     if (i == 1) {
1378                         break;
1379                     }
1380                     i = 1;
1381                 }
1382             }
1383             newScale = tempScale;
1384         }
1385         return ((integralValue.signum() == 0)
1386         ? zeroScaledBy(newScale)
1387                 : new BigDecimal(integralValue, safeLongToInt(newScale)));
1388     }
1389 
1390     /**
1391      * Returns a new {@code BigDecimal} whose value is the integral part of
1392      * {@code this / divisor}. The quotient is rounded down towards zero to the
1393      * next integer. The rounding mode passed with the parameter {@code mc} is
1394      * not considered. But if the precision of {@code mc > 0} and the integral
1395      * part requires more digits, then an {@code ArithmeticException} is thrown.
1396      *
1397      * @param divisor
1398      *            value by which {@code this} is divided.
1399      * @param mc
1400      *            math context which determines the maximal precision of the
1401      *            result.
1402      * @return integral part of {@code this / divisor}.
1403      * @throws NullPointerException
1404      *             if {@code divisor == null} or {@code mc == null}.
1405      * @throws ArithmeticException
1406      *             if {@code divisor == 0}.
1407      * @throws ArithmeticException
1408      *             if {@code mc.getPrecision() > 0} and the result requires more
1409      *             digits to be represented.
1410      */
divideToIntegralValue(BigDecimal divisor, MathContext mc)1411     public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
1412         int mcPrecision = mc.getPrecision();
1413         int diffPrecision = this.precision() - divisor.precision();
1414         int lastPow = TEN_POW.length - 1;
1415         long diffScale = (long)this.scale - divisor.scale;
1416         long newScale = diffScale;
1417         long quotPrecision = diffPrecision - diffScale + 1;
1418         BigInteger quotAndRem[] = new BigInteger[2];
1419         // In special cases it call the dual method
1420         if ((mcPrecision == 0) || (this.isZero()) || (divisor.isZero())) {
1421             return this.divideToIntegralValue(divisor);
1422         }
1423         // Let be:   this = [u1,s1]   and   divisor = [u2,s2]
1424         if (quotPrecision <= 0) {
1425             quotAndRem[0] = BigInteger.ZERO;
1426         } else if (diffScale == 0) {
1427             // CASE s1 == s2:  to calculate   u1 / u2
1428             quotAndRem[0] = this.getUnscaledValue().divide( divisor.getUnscaledValue() );
1429         } else if (diffScale > 0) {
1430             // CASE s1 >= s2:  to calculate   u1 / (u2 * 10^(s1-s2)
1431             quotAndRem[0] = this.getUnscaledValue().divide(
1432                     divisor.getUnscaledValue().multiply(Multiplication.powerOf10(diffScale)) );
1433             // To chose  10^newScale  to get a quotient with at least 'mc.precision()' digits
1434             newScale = Math.min(diffScale, Math.max(mcPrecision - quotPrecision + 1, 0));
1435             // To calculate: (u1 / (u2 * 10^(s1-s2)) * 10^newScale
1436             quotAndRem[0] = quotAndRem[0].multiply(Multiplication.powerOf10(newScale));
1437         } else {// CASE s2 > s1:
1438             /* To calculate the minimum power of ten, such that the quotient
1439              *   (u1 * 10^exp) / u2   has at least 'mc.precision()' digits. */
1440             long exp = Math.min(-diffScale, Math.max((long)mcPrecision - diffPrecision, 0));
1441             long compRemDiv;
1442             // Let be:   (u1 * 10^exp) / u2 = [q,r]
1443             quotAndRem = this.getUnscaledValue().multiply(Multiplication.powerOf10(exp)).
1444                     divideAndRemainder(divisor.getUnscaledValue());
1445             newScale += exp; // To fix the scale
1446             exp = -newScale; // The remaining power of ten
1447             // If after division there is a remainder...
1448             if ((quotAndRem[1].signum() != 0) && (exp > 0)) {
1449                 // Log10(r) + ((s2 - s1) - exp) > mc.precision ?
1450                 compRemDiv = (new BigDecimal(quotAndRem[1])).precision()
1451                 + exp - divisor.precision();
1452                 if (compRemDiv == 0) {
1453                     // To calculate:  (r * 10^exp2) / u2
1454                     quotAndRem[1] = quotAndRem[1].multiply(Multiplication.powerOf10(exp)).
1455                             divide(divisor.getUnscaledValue());
1456                     compRemDiv = Math.abs(quotAndRem[1].signum());
1457                 }
1458                 if (compRemDiv > 0) {
1459                     throw new ArithmeticException("Division impossible");
1460                 }
1461             }
1462         }
1463         // Fast return if the quotient is zero
1464         if (quotAndRem[0].signum() == 0) {
1465             return zeroScaledBy(diffScale);
1466         }
1467         BigInteger strippedBI = quotAndRem[0];
1468         BigDecimal integralValue = new BigDecimal(quotAndRem[0]);
1469         long resultPrecision = integralValue.precision();
1470         int i = 1;
1471         // To strip trailing zeros until the specified precision is reached
1472         while (!strippedBI.testBit(0)) {
1473             quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]);
1474             if ((quotAndRem[1].signum() == 0) &&
1475                     ((resultPrecision - i >= mcPrecision)
1476                     || (newScale - i >= diffScale)) ) {
1477                 resultPrecision -= i;
1478                 newScale -= i;
1479                 if (i < lastPow) {
1480                     i++;
1481                 }
1482                 strippedBI = quotAndRem[0];
1483             } else {
1484                 if (i == 1) {
1485                     break;
1486                 }
1487                 i = 1;
1488             }
1489         }
1490         // To check if the result fit in 'mc.precision()' digits
1491         if (resultPrecision > mcPrecision) {
1492             throw new ArithmeticException("Division impossible");
1493         }
1494         integralValue.scale = safeLongToInt(newScale);
1495         integralValue.setUnscaledValue(strippedBI);
1496         return integralValue;
1497     }
1498 
1499     /**
1500      * Returns a new {@code BigDecimal} whose value is {@code this % divisor}.
1501      * <p>
1502      * The remainder is defined as {@code this -
1503      * this.divideToIntegralValue(divisor) * divisor}.
1504      *
1505      * @param divisor
1506      *            value by which {@code this} is divided.
1507      * @return {@code this % divisor}.
1508      * @throws NullPointerException
1509      *             if {@code divisor == null}.
1510      * @throws ArithmeticException
1511      *             if {@code divisor == 0}.
1512      */
remainder(BigDecimal divisor)1513     public BigDecimal remainder(BigDecimal divisor) {
1514         return divideAndRemainder(divisor)[1];
1515     }
1516 
1517     /**
1518      * Returns a new {@code BigDecimal} whose value is {@code this % divisor}.
1519      * <p>
1520      * The remainder is defined as {@code this -
1521      * this.divideToIntegralValue(divisor) * divisor}.
1522      * <p>
1523      * The specified rounding mode {@code mc} is used for the division only.
1524      *
1525      * @param divisor
1526      *            value by which {@code this} is divided.
1527      * @param mc
1528      *            rounding mode and precision to be used.
1529      * @return {@code this % divisor}.
1530      * @throws NullPointerException
1531      *             if {@code divisor == null}.
1532      * @throws ArithmeticException
1533      *             if {@code divisor == 0}.
1534      * @throws ArithmeticException
1535      *             if {@code mc.getPrecision() > 0} and the result of {@code
1536      *             this.divideToIntegralValue(divisor, mc)} requires more digits
1537      *             to be represented.
1538      */
remainder(BigDecimal divisor, MathContext mc)1539     public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
1540         return divideAndRemainder(divisor, mc)[1];
1541     }
1542 
1543     /**
1544      * Returns a {@code BigDecimal} array which contains the integral part of
1545      * {@code this / divisor} at index 0 and the remainder {@code this %
1546      * divisor} at index 1. The quotient is rounded down towards zero to the
1547      * next integer.
1548      *
1549      * @param divisor
1550      *            value by which {@code this} is divided.
1551      * @return {@code [this.divideToIntegralValue(divisor),
1552      *         this.remainder(divisor)]}.
1553      * @throws NullPointerException
1554      *             if {@code divisor == null}.
1555      * @throws ArithmeticException
1556      *             if {@code divisor == 0}.
1557      * @see #divideToIntegralValue
1558      * @see #remainder
1559      */
divideAndRemainder(BigDecimal divisor)1560     public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
1561         BigDecimal quotAndRem[] = new BigDecimal[2];
1562 
1563         quotAndRem[0] = this.divideToIntegralValue(divisor);
1564         quotAndRem[1] = this.subtract( quotAndRem[0].multiply(divisor) );
1565         return quotAndRem;
1566     }
1567 
1568     /**
1569      * Returns a {@code BigDecimal} array which contains the integral part of
1570      * {@code this / divisor} at index 0 and the remainder {@code this %
1571      * divisor} at index 1. The quotient is rounded down towards zero to the
1572      * next integer. The rounding mode passed with the parameter {@code mc} is
1573      * not considered. But if the precision of {@code mc > 0} and the integral
1574      * part requires more digits, then an {@code ArithmeticException} is thrown.
1575      *
1576      * @param divisor
1577      *            value by which {@code this} is divided.
1578      * @param mc
1579      *            math context which determines the maximal precision of the
1580      *            result.
1581      * @return {@code [this.divideToIntegralValue(divisor),
1582      *         this.remainder(divisor)]}.
1583      * @throws NullPointerException
1584      *             if {@code divisor == null}.
1585      * @throws ArithmeticException
1586      *             if {@code divisor == 0}.
1587      * @see #divideToIntegralValue
1588      * @see #remainder
1589      */
divideAndRemainder(BigDecimal divisor, MathContext mc)1590     public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
1591         BigDecimal quotAndRem[] = new BigDecimal[2];
1592 
1593         quotAndRem[0] = this.divideToIntegralValue(divisor, mc);
1594         quotAndRem[1] = this.subtract( quotAndRem[0].multiply(divisor) );
1595         return quotAndRem;
1596     }
1597 
1598     /**
1599      * Returns a new {@code BigDecimal} whose value is {@code this<sup>n</sup>}. The
1600      * scale of the result is {@code n * this.scale()}.
1601      *
1602      * <p>{@code x.pow(0)} returns {@code 1}, even if {@code x == 0}.
1603      *
1604      * <p>Implementation Note: The implementation is based on the ANSI standard
1605      * X3.274-1996 algorithm.
1606      *
1607      * @throws ArithmeticException
1608      *             if {@code n < 0} or {@code n > 999999999}.
1609      */
pow(int n)1610     public BigDecimal pow(int n) {
1611         if (n == 0) {
1612             return ONE;
1613         }
1614         if ((n < 0) || (n > 999999999)) {
1615             throw new ArithmeticException("Invalid operation");
1616         }
1617         long newScale = scale * (long)n;
1618         // Let be: this = [u,s]   so:  this^n = [u^n, s*n]
1619         return isZero() ? zeroScaledBy(newScale)
1620                 : new BigDecimal(getUnscaledValue().pow(n), safeLongToInt(newScale));
1621     }
1622 
1623     /**
1624      * Returns a new {@code BigDecimal} whose value is {@code this<sup>n</sup>}. The
1625      * result is rounded according to the passed context {@code mc}.
1626      *
1627      * <p>Implementation Note: The implementation is based on the ANSI standard
1628      * X3.274-1996 algorithm.
1629      *
1630      * @param mc
1631      *            rounding mode and precision for the result of this operation.
1632      * @throws ArithmeticException
1633      *             if {@code n < 0} or {@code n > 999999999}.
1634      */
pow(int n, MathContext mc)1635     public BigDecimal pow(int n, MathContext mc) {
1636         // The ANSI standard X3.274-1996 algorithm
1637         int m = Math.abs(n);
1638         int mcPrecision = mc.getPrecision();
1639         int elength = (int)Math.log10(m) + 1;   // decimal digits in 'n'
1640         int oneBitMask; // mask of bits
1641         BigDecimal accum; // the single accumulator
1642         MathContext newPrecision = mc; // MathContext by default
1643 
1644         // In particular cases, it reduces the problem to call the other 'pow()'
1645         if ((n == 0) || ((isZero()) && (n > 0))) {
1646             return pow(n);
1647         }
1648         if ((m > 999999999) || ((mcPrecision == 0) && (n < 0))
1649                 || ((mcPrecision > 0) && (elength > mcPrecision))) {
1650             throw new ArithmeticException("Invalid operation");
1651         }
1652         if (mcPrecision > 0) {
1653             newPrecision = new MathContext( mcPrecision + elength + 1,
1654                     mc.getRoundingMode());
1655         }
1656         // The result is calculated as if 'n' were positive
1657         accum = round(newPrecision);
1658         oneBitMask = Integer.highestOneBit(m) >> 1;
1659 
1660         while (oneBitMask > 0) {
1661             accum = accum.multiply(accum, newPrecision);
1662             if ((m & oneBitMask) == oneBitMask) {
1663                 accum = accum.multiply(this, newPrecision);
1664             }
1665             oneBitMask >>= 1;
1666         }
1667         // If 'n' is negative, the value is divided into 'ONE'
1668         if (n < 0) {
1669             accum = ONE.divide(accum, newPrecision);
1670         }
1671         // The final value is rounded to the destination precision
1672         accum.inplaceRound(mc);
1673         return accum;
1674     }
1675 
1676     /**
1677      * Returns a {@code BigDecimal} whose value is the absolute value of
1678      * {@code this}. The scale of the result is the same as the scale of this.
1679      */
abs()1680     public BigDecimal abs() {
1681         return ((signum() < 0) ? negate() : this);
1682     }
1683 
1684     /**
1685      * Returns a {@code BigDecimal} whose value is the absolute value of
1686      * {@code this}. The result is rounded according to the passed context
1687      * {@code mc}.
1688      */
abs(MathContext mc)1689     public BigDecimal abs(MathContext mc) {
1690         BigDecimal result = (signum() < 0) ? negate() : new BigDecimal(getUnscaledValue(), scale);
1691         result.inplaceRound(mc);
1692         return result;
1693     }
1694 
1695     /**
1696      * Returns a new {@code BigDecimal} whose value is the {@code -this}. The
1697      * scale of the result is the same as the scale of this.
1698      *
1699      * @return {@code -this}
1700      */
negate()1701     public BigDecimal negate() {
1702         if(bitLength < 63 || (bitLength == 63 && smallValue!=Long.MIN_VALUE)) {
1703             return valueOf(-smallValue,scale);
1704         }
1705         return new BigDecimal(getUnscaledValue().negate(), scale);
1706     }
1707 
1708     /**
1709      * Returns a new {@code BigDecimal} whose value is the {@code -this}. The
1710      * result is rounded according to the passed context {@code mc}.
1711      *
1712      * @param mc
1713      *            rounding mode and precision for the result of this operation.
1714      * @return {@code -this}
1715      */
negate(MathContext mc)1716     public BigDecimal negate(MathContext mc) {
1717         BigDecimal result = negate();
1718         result.inplaceRound(mc);
1719         return result;
1720     }
1721 
1722     /**
1723      * Returns a new {@code BigDecimal} whose value is {@code +this}. The scale
1724      * of the result is the same as the scale of this.
1725      *
1726      * @return {@code this}
1727      */
plus()1728     public BigDecimal plus() {
1729         return this;
1730     }
1731 
1732     /**
1733      * Returns a new {@code BigDecimal} whose value is {@code +this}. The result
1734      * is rounded according to the passed context {@code mc}.
1735      *
1736      * @param mc
1737      *            rounding mode and precision for the result of this operation.
1738      * @return {@code this}, rounded
1739      */
plus(MathContext mc)1740     public BigDecimal plus(MathContext mc) {
1741         return round(mc);
1742     }
1743 
1744     /**
1745      * Returns the sign of this {@code BigDecimal}.
1746      *
1747      * @return {@code -1} if {@code this < 0},
1748      *         {@code 0} if {@code this == 0},
1749      *         {@code 1} if {@code this > 0}.
1750      */
signum()1751     public int signum() {
1752         if( bitLength < 64) {
1753             return Long.signum( this.smallValue );
1754         }
1755         return getUnscaledValue().signum();
1756     }
1757 
isZero()1758     private boolean isZero() {
1759         //Watch out: -1 has a bitLength=0
1760         return bitLength == 0 && this.smallValue != -1;
1761     }
1762 
1763     /**
1764      * Returns the scale of this {@code BigDecimal}. The scale is the number of
1765      * digits behind the decimal point. The value of this {@code BigDecimal} is
1766      * the {@code unsignedValue * 10<sup>-scale</sup>}. If the scale is negative,
1767      * then this {@code BigDecimal} represents a big integer.
1768      *
1769      * @return the scale of this {@code BigDecimal}.
1770      */
scale()1771     public int scale() {
1772         return scale;
1773     }
1774 
1775     /**
1776      * Returns the precision of this {@code BigDecimal}. The precision is the
1777      * number of decimal digits used to represent this decimal. It is equivalent
1778      * to the number of digits of the unscaled value. The precision of {@code 0}
1779      * is {@code 1} (independent of the scale).
1780      *
1781      * @return the precision of this {@code BigDecimal}.
1782      */
precision()1783     public int precision() {
1784         // Return the cached value if we have one.
1785         if (precision != 0) {
1786             return precision;
1787         }
1788 
1789         if (bitLength == 0) {
1790             precision = 1;
1791         } else if (bitLength < 64) {
1792             precision = decimalDigitsInLong(smallValue);
1793         } else {
1794             int decimalDigits = 1 + (int) ((bitLength - 1) * LOG10_2);
1795             // If after division the number isn't zero, there exists an additional digit
1796             if (getUnscaledValue().divide(Multiplication.powerOf10(decimalDigits)).signum() != 0) {
1797                 decimalDigits++;
1798             }
1799             precision = decimalDigits;
1800         }
1801         return precision;
1802     }
1803 
decimalDigitsInLong(long value)1804     private int decimalDigitsInLong(long value) {
1805         if (value == Long.MIN_VALUE) {
1806             return 19; // special case required because abs(MIN_VALUE) == MIN_VALUE
1807         } else {
1808             int index = Arrays.binarySearch(MathUtils.LONG_POWERS_OF_TEN, Math.abs(value));
1809             return (index < 0) ? (-index - 1) : (index + 1);
1810         }
1811     }
1812 
1813     /**
1814      * Returns the unscaled value (mantissa) of this {@code BigDecimal} instance
1815      * as a {@code BigInteger}. The unscaled value can be computed as
1816      * {@code this * 10<sup>scale</sup>}.
1817      */
unscaledValue()1818     public BigInteger unscaledValue() {
1819         return getUnscaledValue();
1820     }
1821 
1822     /**
1823      * Returns a new {@code BigDecimal} whose value is {@code this}, rounded
1824      * according to the passed context {@code mc}.
1825      * <p>
1826      * If {@code mc.precision = 0}, then no rounding is performed.
1827      * <p>
1828      * If {@code mc.precision > 0} and {@code mc.roundingMode == UNNECESSARY},
1829      * then an {@code ArithmeticException} is thrown if the result cannot be
1830      * represented exactly within the given precision.
1831      *
1832      * @param mc
1833      *            rounding mode and precision for the result of this operation.
1834      * @return {@code this} rounded according to the passed context.
1835      * @throws ArithmeticException
1836      *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
1837      *             UNNECESSARY} and this cannot be represented within the given
1838      *             precision.
1839      */
round(MathContext mc)1840     public BigDecimal round(MathContext mc) {
1841         BigDecimal thisBD = new BigDecimal(getUnscaledValue(), scale);
1842 
1843         thisBD.inplaceRound(mc);
1844         return thisBD;
1845     }
1846 
1847     /**
1848      * Returns a new {@code BigDecimal} instance with the specified scale.
1849      * <p>
1850      * If the new scale is greater than the old scale, then additional zeros are
1851      * added to the unscaled value. In this case no rounding is necessary.
1852      * <p>
1853      * If the new scale is smaller than the old scale, then trailing digits are
1854      * removed. If these trailing digits are not zero, then the remaining
1855      * unscaled value has to be rounded. For this rounding operation the
1856      * specified rounding mode is used.
1857      *
1858      * @param newScale
1859      *            scale of the result returned.
1860      * @param roundingMode
1861      *            rounding mode to be used to round the result.
1862      * @return a new {@code BigDecimal} instance with the specified scale.
1863      * @throws NullPointerException
1864      *             if {@code roundingMode == null}.
1865      * @throws ArithmeticException
1866      *             if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
1867      *             necessary according to the given scale.
1868      */
setScale(int newScale, RoundingMode roundingMode)1869     public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
1870         if (roundingMode == null) {
1871             throw new NullPointerException("roundingMode == null");
1872         }
1873         long diffScale = newScale - (long)scale;
1874         // Let be:  'this' = [u,s]
1875         if(diffScale == 0) {
1876             return this;
1877         }
1878         if(diffScale > 0) {
1879         // return  [u * 10^(s2 - s), newScale]
1880             if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
1881                     (this.bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)diffScale]) < 64 ) {
1882                 return valueOf(this.smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)diffScale],newScale);
1883             }
1884             return new BigDecimal(Multiplication.multiplyByTenPow(getUnscaledValue(),(int)diffScale), newScale);
1885         }
1886         // diffScale < 0
1887         // return  [u,s] / [1,newScale]  with the appropriate scale and rounding
1888         if(this.bitLength < 64 && -diffScale < MathUtils.LONG_POWERS_OF_TEN.length) {
1889             return dividePrimitiveLongs(this.smallValue, MathUtils.LONG_POWERS_OF_TEN[(int)-diffScale], newScale,roundingMode);
1890         }
1891         return divideBigIntegers(this.getUnscaledValue(),Multiplication.powerOf10(-diffScale),newScale,roundingMode);
1892     }
1893 
1894     /**
1895      * Returns a new {@code BigDecimal} instance with the specified scale.
1896      * <p>
1897      * If the new scale is greater than the old scale, then additional zeros are
1898      * added to the unscaled value. In this case no rounding is necessary.
1899      * <p>
1900      * If the new scale is smaller than the old scale, then trailing digits are
1901      * removed. If these trailing digits are not zero, then the remaining
1902      * unscaled value has to be rounded. For this rounding operation the
1903      * specified rounding mode is used.
1904      *
1905      * @param newScale
1906      *            scale of the result returned.
1907      * @param roundingMode
1908      *            rounding mode to be used to round the result.
1909      * @return a new {@code BigDecimal} instance with the specified scale.
1910      * @throws IllegalArgumentException
1911      *             if {@code roundingMode} is not a valid rounding mode.
1912      * @throws ArithmeticException
1913      *             if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
1914      *             necessary according to the given scale.
1915      */
setScale(int newScale, int roundingMode)1916     public BigDecimal setScale(int newScale, int roundingMode) {
1917         return setScale(newScale, RoundingMode.valueOf(roundingMode));
1918     }
1919 
1920     /**
1921      * Returns a new {@code BigDecimal} instance with the specified scale. If
1922      * the new scale is greater than the old scale, then additional zeros are
1923      * added to the unscaled value. If the new scale is smaller than the old
1924      * scale, then trailing zeros are removed. If the trailing digits are not
1925      * zeros then an ArithmeticException is thrown.
1926      * <p>
1927      * If no exception is thrown, then the following equation holds: {@code
1928      * x.setScale(s).compareTo(x) == 0}.
1929      *
1930      * @param newScale
1931      *            scale of the result returned.
1932      * @return a new {@code BigDecimal} instance with the specified scale.
1933      * @throws ArithmeticException
1934      *             if rounding would be necessary.
1935      */
setScale(int newScale)1936     public BigDecimal setScale(int newScale) {
1937         return setScale(newScale, RoundingMode.UNNECESSARY);
1938     }
1939 
1940     /**
1941      * Returns a new {@code BigDecimal} instance where the decimal point has
1942      * been moved {@code n} places to the left. If {@code n < 0} then the
1943      * decimal point is moved {@code -n} places to the right.
1944      *
1945      * <p>The result is obtained by changing its scale. If the scale of the result
1946      * becomes negative, then its precision is increased such that the scale is
1947      * zero.
1948      *
1949      * <p>Note, that {@code movePointLeft(0)} returns a result which is
1950      * mathematically equivalent, but which has {@code scale >= 0}.
1951      */
movePointLeft(int n)1952     public BigDecimal movePointLeft(int n) {
1953         return movePoint(scale + (long)n);
1954     }
1955 
movePoint(long newScale)1956     private BigDecimal movePoint(long newScale) {
1957         if (isZero()) {
1958             return zeroScaledBy(Math.max(newScale, 0));
1959         }
1960         /*
1961          * When: 'n'== Integer.MIN_VALUE isn't possible to call to
1962          * movePointRight(-n) since -Integer.MIN_VALUE == Integer.MIN_VALUE
1963          */
1964         if(newScale >= 0) {
1965             if(bitLength < 64) {
1966                 return valueOf(smallValue, safeLongToInt(newScale));
1967             }
1968             return new BigDecimal(getUnscaledValue(), safeLongToInt(newScale));
1969         }
1970         if(-newScale < MathUtils.LONG_POWERS_OF_TEN.length &&
1971                 bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)-newScale] < 64 ) {
1972             return valueOf(smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)-newScale],0);
1973         }
1974         return new BigDecimal(Multiplication.multiplyByTenPow(
1975                 getUnscaledValue(), safeLongToInt(-newScale)), 0);
1976     }
1977 
1978     /**
1979      * Returns a new {@code BigDecimal} instance where the decimal point has
1980      * been moved {@code n} places to the right. If {@code n < 0} then the
1981      * decimal point is moved {@code -n} places to the left.
1982      *
1983      * <p>The result is obtained by changing its scale. If the scale of the result
1984      * becomes negative, then its precision is increased such that the scale is
1985      * zero.
1986      *
1987      * <p>Note, that {@code movePointRight(0)} returns a result which is
1988      * mathematically equivalent, but which has scale >= 0.
1989      */
movePointRight(int n)1990     public BigDecimal movePointRight(int n) {
1991         return movePoint(scale - (long)n);
1992     }
1993 
1994     /**
1995      * Returns a new {@code BigDecimal} whose value is {@code this * 10<sup>n</sup>}.
1996      * The scale of the result is {@code this.scale()} - {@code n}.
1997      * The precision of the result is the precision of {@code this}.
1998      *
1999      * <p>This method has the same effect as {@link #movePointRight}, except that
2000      * the precision is not changed.
2001      */
scaleByPowerOfTen(int n)2002     public BigDecimal scaleByPowerOfTen(int n) {
2003         long newScale = scale - (long)n;
2004         if(bitLength < 64) {
2005             //Taking care when a 0 is to be scaled
2006             if( smallValue==0  ){
2007                 return zeroScaledBy( newScale );
2008             }
2009             return valueOf(smallValue, safeLongToInt(newScale));
2010         }
2011         return new BigDecimal(getUnscaledValue(), safeLongToInt(newScale));
2012     }
2013 
2014     /**
2015      * Returns a new {@code BigDecimal} instance with the same value as {@code
2016      * this} but with a unscaled value where the trailing zeros have been
2017      * removed. If the unscaled value of {@code this} has n trailing zeros, then
2018      * the scale and the precision of the result has been reduced by n.
2019      *
2020      * @return a new {@code BigDecimal} instance equivalent to this where the
2021      *         trailing zeros of the unscaled value have been removed.
2022      */
stripTrailingZeros()2023     public BigDecimal stripTrailingZeros() {
2024         int i = 1; // 1 <= i <= 18
2025         int lastPow = TEN_POW.length - 1;
2026         long newScale = scale;
2027 
2028         if (isZero()) {
2029             // Preserve RI compatibility, so BigDecimal.equals (which checks
2030             // value *and* scale) continues to work.
2031             return this;
2032         }
2033         BigInteger strippedBI = getUnscaledValue();
2034         BigInteger[] quotAndRem;
2035 
2036         // while the number is even...
2037         while (!strippedBI.testBit(0)) {
2038             // To divide by 10^i
2039             quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]);
2040             // To look the remainder
2041             if (quotAndRem[1].signum() == 0) {
2042                 // To adjust the scale
2043                 newScale -= i;
2044                 if (i < lastPow) {
2045                     // To set to the next power
2046                     i++;
2047                 }
2048                 strippedBI = quotAndRem[0];
2049             } else {
2050                 if (i == 1) {
2051                     // 'this' has no more trailing zeros
2052                     break;
2053                 }
2054                 // To set to the smallest power of ten
2055                 i = 1;
2056             }
2057         }
2058         return new BigDecimal(strippedBI, safeLongToInt(newScale));
2059     }
2060 
2061     /**
2062      * Compares this {@code BigDecimal} with {@code val}. Returns one of the
2063      * three values {@code 1}, {@code 0}, or {@code -1}. The method behaves as
2064      * if {@code this.subtract(val)} is computed. If this difference is > 0 then
2065      * 1 is returned, if the difference is < 0 then -1 is returned, and if the
2066      * difference is 0 then 0 is returned. This means, that if two decimal
2067      * instances are compared which are equal in value but differ in scale, then
2068      * these two instances are considered as equal.
2069      *
2070      * @param val
2071      *            value to be compared with {@code this}.
2072      * @return {@code 1} if {@code this > val}, {@code -1} if {@code this < val},
2073      *         {@code 0} if {@code this == val}.
2074      * @throws NullPointerException
2075      *             if {@code val == null}.
2076      */
compareTo(BigDecimal val)2077     public int compareTo(BigDecimal val) {
2078         int thisSign = signum();
2079         int valueSign = val.signum();
2080 
2081         if( thisSign == valueSign) {
2082             if(this.scale == val.scale && this.bitLength<64 && val.bitLength<64 ) {
2083                 return (smallValue < val.smallValue) ? -1 : (smallValue > val.smallValue) ? 1 : 0;
2084             }
2085             long diffScale = (long)this.scale - val.scale;
2086             int diffPrecision = this.approxPrecision() - val.approxPrecision();
2087             if (diffPrecision > diffScale + 1) {
2088                 return thisSign;
2089             } else if (diffPrecision < diffScale - 1) {
2090                 return -thisSign;
2091             } else {// thisSign == val.signum()  and  diffPrecision is aprox. diffScale
2092                 BigInteger thisUnscaled = this.getUnscaledValue();
2093                 BigInteger valUnscaled = val.getUnscaledValue();
2094                 // If any of both precision is bigger, append zeros to the shorter one
2095                 if (diffScale < 0) {
2096                     thisUnscaled = thisUnscaled.multiply(Multiplication.powerOf10(-diffScale));
2097                 } else if (diffScale > 0) {
2098                     valUnscaled = valUnscaled.multiply(Multiplication.powerOf10(diffScale));
2099                 }
2100                 return thisUnscaled.compareTo(valUnscaled);
2101             }
2102         } else if (thisSign < valueSign) {
2103             return -1;
2104         } else  {
2105             return 1;
2106         }
2107     }
2108 
2109     /**
2110      * Returns {@code true} if {@code x} is a {@code BigDecimal} instance and if
2111      * this instance is equal to this big decimal. Two big decimals are equal if
2112      * their unscaled value and their scale is equal. For example, 1.0
2113      * (10*10<sup>-1</sup>) is not equal to 1.00 (100*10<sup>-2</sup>). Similarly, zero
2114      * instances are not equal if their scale differs.
2115      */
2116     @Override
equals(Object x)2117     public boolean equals(Object x) {
2118         if (this == x) {
2119             return true;
2120         }
2121         if (x instanceof BigDecimal) {
2122             BigDecimal x1 = (BigDecimal) x;
2123             return x1.scale == scale
2124                    && (bitLength < 64 ? (x1.smallValue == smallValue)
2125                     : intVal.equals(x1.intVal));
2126         }
2127         return false;
2128     }
2129 
2130     /**
2131      * Returns the minimum of this {@code BigDecimal} and {@code val}.
2132      *
2133      * @param val
2134      *            value to be used to compute the minimum with this.
2135      * @return {@code min(this, val}.
2136      * @throws NullPointerException
2137      *             if {@code val == null}.
2138      */
min(BigDecimal val)2139     public BigDecimal min(BigDecimal val) {
2140         return ((compareTo(val) <= 0) ? this : val);
2141     }
2142 
2143     /**
2144      * Returns the maximum of this {@code BigDecimal} and {@code val}.
2145      *
2146      * @param val
2147      *            value to be used to compute the maximum with this.
2148      * @return {@code max(this, val}.
2149      * @throws NullPointerException
2150      *             if {@code val == null}.
2151      */
max(BigDecimal val)2152     public BigDecimal max(BigDecimal val) {
2153         return ((compareTo(val) >= 0) ? this : val);
2154     }
2155 
2156     /**
2157      * Returns a hash code for this {@code BigDecimal}.
2158      *
2159      * @return hash code for {@code this}.
2160      */
2161     @Override
hashCode()2162     public int hashCode() {
2163         if (hashCode != 0) {
2164             return hashCode;
2165         }
2166         if (bitLength < 64) {
2167             hashCode = (int)(smallValue & 0xffffffff);
2168             hashCode = 33 * hashCode +  (int)((smallValue >> 32) & 0xffffffff);
2169             hashCode = 17 * hashCode + scale;
2170             return hashCode;
2171         }
2172         hashCode = 17 * intVal.hashCode() + scale;
2173         return hashCode;
2174     }
2175 
2176     /**
2177      * Returns a canonical string representation of this {@code BigDecimal}. If
2178      * necessary, scientific notation is used. This representation always prints
2179      * all significant digits of this value.
2180      * <p>
2181      * If the scale is negative or if {@code scale - precision >= 6} then
2182      * scientific notation is used.
2183      *
2184      * @return a string representation of {@code this} in scientific notation if
2185      *         necessary.
2186      */
2187     @Override
toString()2188     public String toString() {
2189         if (toStringImage != null) {
2190             return toStringImage;
2191         }
2192         if(bitLength < 32) {
2193             toStringImage = Conversion.toDecimalScaledString(smallValue,scale);
2194             return toStringImage;
2195         }
2196         String intString = getUnscaledValue().toString();
2197         if (scale == 0) {
2198             return intString;
2199         }
2200         int begin = (getUnscaledValue().signum() < 0) ? 2 : 1;
2201         int end = intString.length();
2202         long exponent = -(long)scale + end - begin;
2203         StringBuilder result = new StringBuilder();
2204 
2205         result.append(intString);
2206         if ((scale > 0) && (exponent >= -6)) {
2207             if (exponent >= 0) {
2208                 result.insert(end - scale, '.');
2209             } else {
2210                 result.insert(begin - 1, "0.");
2211                 result.insert(begin + 1, CH_ZEROS, 0, -(int)exponent - 1);
2212             }
2213         } else {
2214             if (end - begin >= 1) {
2215                 result.insert(begin, '.');
2216                 end++;
2217             }
2218             result.insert(end, 'E');
2219             if (exponent > 0) {
2220                 result.insert(++end, '+');
2221             }
2222             result.insert(++end, Long.toString(exponent));
2223         }
2224         toStringImage = result.toString();
2225         return toStringImage;
2226     }
2227 
2228     /**
2229      * Returns a string representation of this {@code BigDecimal}. This
2230      * representation always prints all significant digits of this value.
2231      * <p>
2232      * If the scale is negative or if {@code scale - precision >= 6} then
2233      * engineering notation is used. Engineering notation is similar to the
2234      * scientific notation except that the exponent is made to be a multiple of
2235      * 3 such that the integer part is >= 1 and < 1000.
2236      *
2237      * @return a string representation of {@code this} in engineering notation
2238      *         if necessary.
2239      */
toEngineeringString()2240     public String toEngineeringString() {
2241         String intString = getUnscaledValue().toString();
2242         if (scale == 0) {
2243             return intString;
2244         }
2245         int begin = (getUnscaledValue().signum() < 0) ? 2 : 1;
2246         int end = intString.length();
2247         long exponent = -(long)scale + end - begin;
2248         StringBuilder result = new StringBuilder(intString);
2249 
2250         if ((scale > 0) && (exponent >= -6)) {
2251             if (exponent >= 0) {
2252                 result.insert(end - scale, '.');
2253             } else {
2254                 result.insert(begin - 1, "0.");
2255                 result.insert(begin + 1, CH_ZEROS, 0, -(int)exponent - 1);
2256             }
2257         } else {
2258             int delta = end - begin;
2259             int rem = (int)(exponent % 3);
2260 
2261             if (rem != 0) {
2262                 // adjust exponent so it is a multiple of three
2263                 if (getUnscaledValue().signum() == 0) {
2264                     // zero value
2265                     rem = (rem < 0) ? -rem : 3 - rem;
2266                     exponent += rem;
2267                 } else {
2268                     // nonzero value
2269                     rem = (rem < 0) ? rem + 3 : rem;
2270                     exponent -= rem;
2271                     begin += rem;
2272                 }
2273                 if (delta < 3) {
2274                     for (int i = rem - delta; i > 0; i--) {
2275                         result.insert(end++, '0');
2276                     }
2277                 }
2278             }
2279             if (end - begin >= 1) {
2280                 result.insert(begin, '.');
2281                 end++;
2282             }
2283             if (exponent != 0) {
2284                 result.insert(end, 'E');
2285                 if (exponent > 0) {
2286                     result.insert(++end, '+');
2287                 }
2288                 result.insert(++end, Long.toString(exponent));
2289             }
2290         }
2291         return result.toString();
2292     }
2293 
2294     /**
2295      * Returns a string representation of this {@code BigDecimal}. No scientific
2296      * notation is used. This methods adds zeros where necessary.
2297      * <p>
2298      * If this string representation is used to create a new instance, this
2299      * instance is generally not identical to {@code this} as the precision
2300      * changes.
2301      * <p>
2302      * {@code x.equals(new BigDecimal(x.toPlainString())} usually returns
2303      * {@code false}.
2304      * <p>
2305      * {@code x.compareTo(new BigDecimal(x.toPlainString())} returns {@code 0}.
2306      *
2307      * @return a string representation of {@code this} without exponent part.
2308      */
toPlainString()2309     public String toPlainString() {
2310         String intStr = getUnscaledValue().toString();
2311         if ((scale == 0) || ((isZero()) && (scale < 0))) {
2312             return intStr;
2313         }
2314         int begin = (signum() < 0) ? 1 : 0;
2315         int delta = scale;
2316         // We take space for all digits, plus a possible decimal point, plus 'scale'
2317         StringBuilder result = new StringBuilder(intStr.length() + 1 + Math.abs(scale));
2318 
2319         if (begin == 1) {
2320             // If the number is negative, we insert a '-' character at front
2321             result.append('-');
2322         }
2323         if (scale > 0) {
2324             delta -= (intStr.length() - begin);
2325             if (delta >= 0) {
2326                 result.append("0.");
2327                 // To append zeros after the decimal point
2328                 for (; delta > CH_ZEROS.length; delta -= CH_ZEROS.length) {
2329                     result.append(CH_ZEROS);
2330                 }
2331                 result.append(CH_ZEROS, 0, delta);
2332                 result.append(intStr.substring(begin));
2333             } else {
2334                 delta = begin - delta;
2335                 result.append(intStr.substring(begin, delta));
2336                 result.append('.');
2337                 result.append(intStr.substring(delta));
2338             }
2339         } else {// (scale <= 0)
2340             result.append(intStr.substring(begin));
2341             // To append trailing zeros
2342             for (; delta < -CH_ZEROS.length; delta += CH_ZEROS.length) {
2343                 result.append(CH_ZEROS);
2344             }
2345             result.append(CH_ZEROS, 0, -delta);
2346         }
2347         return result.toString();
2348     }
2349 
2350     /**
2351      * Returns this {@code BigDecimal} as a big integer instance. A fractional
2352      * part is discarded.
2353      *
2354      * @return this {@code BigDecimal} as a big integer instance.
2355      */
toBigInteger()2356     public BigInteger toBigInteger() {
2357         if ((scale == 0) || (isZero())) {
2358             return getUnscaledValue();
2359         } else if (scale < 0) {
2360             return getUnscaledValue().multiply(Multiplication.powerOf10(-(long)scale));
2361         } else {// (scale > 0)
2362             return getUnscaledValue().divide(Multiplication.powerOf10(scale));
2363         }
2364     }
2365 
2366     /**
2367      * Returns this {@code BigDecimal} as a big integer instance if it has no
2368      * fractional part. If this {@code BigDecimal} has a fractional part, i.e.
2369      * if rounding would be necessary, an {@code ArithmeticException} is thrown.
2370      *
2371      * @return this {@code BigDecimal} as a big integer value.
2372      * @throws ArithmeticException
2373      *             if rounding is necessary.
2374      */
toBigIntegerExact()2375     public BigInteger toBigIntegerExact() {
2376         if ((scale == 0) || (isZero())) {
2377             return getUnscaledValue();
2378         } else if (scale < 0) {
2379             return getUnscaledValue().multiply(Multiplication.powerOf10(-(long)scale));
2380         } else {// (scale > 0)
2381             BigInteger[] integerAndFraction;
2382             // An optimization before do a heavy division
2383             if ((scale > approxPrecision()) || (scale > getUnscaledValue().getLowestSetBit())) {
2384                 throw new ArithmeticException("Rounding necessary");
2385             }
2386             integerAndFraction = getUnscaledValue().divideAndRemainder(Multiplication.powerOf10(scale));
2387             if (integerAndFraction[1].signum() != 0) {
2388                 // It exists a non-zero fractional part
2389                 throw new ArithmeticException("Rounding necessary");
2390             }
2391             return integerAndFraction[0];
2392         }
2393     }
2394 
2395     /**
2396      * Returns this {@code BigDecimal} as an long value. Any fractional part is
2397      * discarded. If the integral part of {@code this} is too big to be
2398      * represented as an long, then {@code this % 2<sup>64</sup>} is returned.
2399      */
2400     @Override
longValue()2401     public long longValue() {
2402         /*
2403          * If scale <= -64 there are at least 64 trailing bits zero in
2404          * 10^(-scale). If the scale is positive and very large the long value
2405          * could be zero.
2406          */
2407         return ((scale <= -64) || (scale > approxPrecision()) ? 0L : toBigInteger().longValue());
2408     }
2409 
2410     /**
2411      * Returns this {@code BigDecimal} as a long value if it has no fractional
2412      * part and if its value fits to the int range ([-2<sup>63</sup>..2<sup>63</sup>-1]). If
2413      * these conditions are not met, an {@code ArithmeticException} is thrown.
2414      *
2415      * @throws ArithmeticException
2416      *             if rounding is necessary or the number doesn't fit in a long.
2417      */
longValueExact()2418     public long longValueExact() {
2419         return valueExact(64);
2420     }
2421 
2422     /**
2423      * Returns this {@code BigDecimal} as an int value. Any fractional part is
2424      * discarded. If the integral part of {@code this} is too big to be
2425      * represented as an int, then {@code this % 2<sup>32</sup>} is returned.
2426      */
2427     @Override
intValue()2428     public int intValue() {
2429         /*
2430          * If scale <= -32 there are at least 32 trailing bits zero in
2431          * 10^(-scale). If the scale is positive and very large the long value
2432          * could be zero.
2433          */
2434         return ((scale <= -32) || (scale > approxPrecision()) ? 0 : toBigInteger().intValue());
2435     }
2436 
2437     /**
2438      * Returns this {@code BigDecimal} as a int value if it has no fractional
2439      * part and if its value fits to the int range ([-2<sup>31</sup>..2<sup>31</sup>-1]). If
2440      * these conditions are not met, an {@code ArithmeticException} is thrown.
2441      *
2442      * @throws ArithmeticException
2443      *             if rounding is necessary or the number doesn't fit in an int.
2444      */
intValueExact()2445     public int intValueExact() {
2446         return (int) valueExact(32);
2447     }
2448 
2449     /**
2450      * Returns this {@code BigDecimal} as a short value if it has no fractional
2451      * part and if its value fits to the short range ([-2<sup>15</sup>..2<sup>15</sup>-1]). If
2452      * these conditions are not met, an {@code ArithmeticException} is thrown.
2453      *
2454      * @throws ArithmeticException
2455      *             if rounding is necessary of the number doesn't fit in a short.
2456      */
shortValueExact()2457     public short shortValueExact() {
2458         return (short) valueExact(16);
2459     }
2460 
2461     /**
2462      * Returns this {@code BigDecimal} as a byte value if it has no fractional
2463      * part and if its value fits to the byte range ([-128..127]). If these
2464      * conditions are not met, an {@code ArithmeticException} is thrown.
2465      *
2466      * @throws ArithmeticException
2467      *             if rounding is necessary or the number doesn't fit in a byte.
2468      */
byteValueExact()2469     public byte byteValueExact() {
2470         return (byte) valueExact(8);
2471     }
2472 
2473     /**
2474      * Returns this {@code BigDecimal} as a float value. If {@code this} is too
2475      * big to be represented as an float, then {@code Float.POSITIVE_INFINITY}
2476      * or {@code Float.NEGATIVE_INFINITY} is returned.
2477      * <p>
2478      * Note, that if the unscaled value has more than 24 significant digits,
2479      * then this decimal cannot be represented exactly in a float variable. In
2480      * this case the result is rounded.
2481      * <p>
2482      * For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be
2483      * represented exactly as a float, and thus {@code x1.equals(new
2484      * BigDecimal(x1.floatValue())} returns {@code false} for this case.
2485      * <p>
2486      * Similarly, if the instance {@code new BigDecimal(16777217)} is converted
2487      * to a float, the result is {@code 1.6777216E}7.
2488      *
2489      * @return this {@code BigDecimal} as a float value.
2490      */
2491     @Override
floatValue()2492     public float floatValue() {
2493         /* A similar code like in doubleValue() could be repeated here,
2494          * but this simple implementation is quite efficient. */
2495         float floatResult = signum();
2496         long powerOfTwo = this.bitLength - (long)(scale / LOG10_2);
2497         if ((powerOfTwo < -149) || (floatResult == 0.0f)) {
2498             // Cases which 'this' is very small
2499             floatResult *= 0.0f;
2500         } else if (powerOfTwo > 129) {
2501             // Cases which 'this' is very large
2502             floatResult *= Float.POSITIVE_INFINITY;
2503         } else {
2504             floatResult = (float)doubleValue();
2505         }
2506         return floatResult;
2507     }
2508 
2509     /**
2510      * Returns this {@code BigDecimal} as a double value. If {@code this} is too
2511      * big to be represented as an float, then {@code Double.POSITIVE_INFINITY}
2512      * or {@code Double.NEGATIVE_INFINITY} is returned.
2513      * <p>
2514      * Note, that if the unscaled value has more than 53 significant digits,
2515      * then this decimal cannot be represented exactly in a double variable. In
2516      * this case the result is rounded.
2517      * <p>
2518      * For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be
2519      * represented exactly as a double, and thus {@code x1.equals(new
2520      * BigDecimal(x1.doubleValue())} returns {@code false} for this case.
2521      * <p>
2522      * Similarly, if the instance {@code new BigDecimal(9007199254740993L)} is
2523      * converted to a double, the result is {@code 9.007199254740992E15}.
2524      * <p>
2525      *
2526      * @return this {@code BigDecimal} as a double value.
2527      */
2528     @Override
doubleValue()2529     public double doubleValue() {
2530         int sign = signum();
2531         int exponent = 1076; // bias + 53
2532         int lowestSetBit;
2533         int discardedSize;
2534         long powerOfTwo = this.bitLength - (long)(scale / LOG10_2);
2535         long bits; // IEEE-754 Standard
2536         long tempBits; // for temporal calculations
2537         BigInteger mantissa;
2538 
2539         if ((powerOfTwo < -1074) || (sign == 0)) {
2540             // Cases which 'this' is very small
2541             return (sign * 0.0d);
2542         } else if (powerOfTwo > 1025) {
2543             // Cases which 'this' is very large
2544             return (sign * Double.POSITIVE_INFINITY);
2545         }
2546         mantissa = getUnscaledValue().abs();
2547         // Let be:  this = [u,s], with s > 0
2548         if (scale <= 0) {
2549             // mantissa = abs(u) * 10^s
2550             mantissa = mantissa.multiply(Multiplication.powerOf10(-scale));
2551         } else {// (scale > 0)
2552             BigInteger quotAndRem[];
2553             BigInteger powerOfTen = Multiplication.powerOf10(scale);
2554             int k = 100 - (int)powerOfTwo;
2555             int compRem;
2556 
2557             if (k > 0) {
2558                 /* Computing (mantissa * 2^k) , where 'k' is a enough big
2559                  * power of '2' to can divide by 10^s */
2560                 mantissa = mantissa.shiftLeft(k);
2561                 exponent -= k;
2562             }
2563             // Computing (mantissa * 2^k) / 10^s
2564             quotAndRem = mantissa.divideAndRemainder(powerOfTen);
2565             // To check if the fractional part >= 0.5
2566             compRem = quotAndRem[1].shiftLeftOneBit().compareTo(powerOfTen);
2567             // To add two rounded bits at end of mantissa
2568             mantissa = quotAndRem[0].shiftLeft(2).add(
2569                     BigInteger.valueOf((compRem * (compRem + 3)) / 2 + 1));
2570             exponent -= 2;
2571         }
2572         lowestSetBit = mantissa.getLowestSetBit();
2573         discardedSize = mantissa.bitLength() - 54;
2574         if (discardedSize > 0) {// (n > 54)
2575             // mantissa = (abs(u) * 10^s) >> (n - 54)
2576             bits = mantissa.shiftRight(discardedSize).longValue();
2577             tempBits = bits;
2578             // #bits = 54, to check if the discarded fraction produces a carry
2579             if ((((bits & 1) == 1) && (lowestSetBit < discardedSize))
2580                     || ((bits & 3) == 3)) {
2581                 bits += 2;
2582             }
2583         } else {// (n <= 54)
2584             // mantissa = (abs(u) * 10^s) << (54 - n)
2585             bits = mantissa.longValue() << -discardedSize;
2586             tempBits = bits;
2587             // #bits = 54, to check if the discarded fraction produces a carry:
2588             if ((bits & 3) == 3) {
2589                 bits += 2;
2590             }
2591         }
2592         // Testing bit 54 to check if the carry creates a new binary digit
2593         if ((bits & 0x40000000000000L) == 0) {
2594             // To drop the last bit of mantissa (first discarded)
2595             bits >>= 1;
2596             // exponent = 2^(s-n+53+bias)
2597             exponent += discardedSize;
2598         } else {// #bits = 54
2599             bits >>= 2;
2600             exponent += discardedSize + 1;
2601         }
2602         // To test if the 53-bits number fits in 'double'
2603         if (exponent > 2046) {// (exponent - bias > 1023)
2604             return (sign * Double.POSITIVE_INFINITY);
2605         } else if (exponent <= 0) {// (exponent - bias <= -1023)
2606             // Denormalized numbers (having exponent == 0)
2607             if (exponent < -53) {// exponent - bias < -1076
2608                 return (sign * 0.0d);
2609             }
2610             // -1076 <= exponent - bias <= -1023
2611             // To discard '- exponent + 1' bits
2612             bits = tempBits >> 1;
2613             tempBits = bits & (-1L >>> (63 + exponent));
2614             bits >>= (-exponent );
2615             // To test if after discard bits, a new carry is generated
2616             if (((bits & 3) == 3) || (((bits & 1) == 1) && (tempBits != 0)
2617             && (lowestSetBit < discardedSize))) {
2618                 bits += 1;
2619             }
2620             exponent = 0;
2621             bits >>= 1;
2622         }
2623         // Construct the 64 double bits: [sign(1), exponent(11), mantissa(52)]
2624         bits = (sign & 0x8000000000000000L) | ((long)exponent << 52)
2625                 | (bits & 0xFFFFFFFFFFFFFL);
2626         return Double.longBitsToDouble(bits);
2627     }
2628 
2629     /**
2630      * Returns the unit in the last place (ULP) of this {@code BigDecimal}
2631      * instance. An ULP is the distance to the nearest big decimal with the same
2632      * precision.
2633      *
2634      * <p>The amount of a rounding error in the evaluation of a floating-point
2635      * operation is often expressed in ULPs. An error of 1 ULP is often seen as
2636      * a tolerable error.
2637      *
2638      * <p>For class {@code BigDecimal}, the ULP of a number is simply 10<sup>-scale</sup>.
2639      * For example, {@code new BigDecimal(0.1).ulp()} returns {@code 1E-55}.
2640      *
2641      * @return unit in the last place (ULP) of this {@code BigDecimal} instance.
2642      */
ulp()2643     public BigDecimal ulp() {
2644         return valueOf(1, scale);
2645     }
2646 
2647     /* Private Methods */
2648 
2649     /**
2650      * It does all rounding work of the public method
2651      * {@code round(MathContext)}, performing an inplace rounding
2652      * without creating a new object.
2653      *
2654      * @param mc
2655      *            the {@code MathContext} for perform the rounding.
2656      * @see #round(MathContext)
2657      */
inplaceRound(MathContext mc)2658     private void inplaceRound(MathContext mc) {
2659         int mcPrecision = mc.getPrecision();
2660         if (approxPrecision() < mcPrecision || mcPrecision == 0) {
2661             return;
2662         }
2663         int discardedPrecision = precision() - mcPrecision;
2664         // If no rounding is necessary it returns immediately
2665         if ((discardedPrecision <= 0)) {
2666             return;
2667         }
2668         // When the number is small perform an efficient rounding
2669         if (this.bitLength < 64) {
2670             smallRound(mc, discardedPrecision);
2671             return;
2672         }
2673         // Getting the integer part and the discarded fraction
2674         BigInteger sizeOfFraction = Multiplication.powerOf10(discardedPrecision);
2675         BigInteger[] integerAndFraction = getUnscaledValue().divideAndRemainder(sizeOfFraction);
2676         long newScale = (long)scale - discardedPrecision;
2677         int compRem;
2678         BigDecimal tempBD;
2679         // If the discarded fraction is non-zero, perform rounding
2680         if (integerAndFraction[1].signum() != 0) {
2681             // To check if the discarded fraction >= 0.5
2682             compRem = (integerAndFraction[1].abs().shiftLeftOneBit().compareTo(sizeOfFraction));
2683             // To look if there is a carry
2684             compRem =  roundingBehavior( integerAndFraction[0].testBit(0) ? 1 : 0,
2685                     integerAndFraction[1].signum() * (5 + compRem),
2686                     mc.getRoundingMode());
2687             if (compRem != 0) {
2688                 integerAndFraction[0] = integerAndFraction[0].add(BigInteger.valueOf(compRem));
2689             }
2690             tempBD = new BigDecimal(integerAndFraction[0]);
2691             // If after to add the increment the precision changed, we normalize the size
2692             if (tempBD.precision() > mcPrecision) {
2693                 integerAndFraction[0] = integerAndFraction[0].divide(BigInteger.TEN);
2694                 newScale--;
2695             }
2696         }
2697         // To update all internal fields
2698         scale = safeLongToInt(newScale);
2699         precision = mcPrecision;
2700         setUnscaledValue(integerAndFraction[0]);
2701     }
2702 
longCompareTo(long value1, long value2)2703     private static int longCompareTo(long value1, long value2) {
2704         return value1 > value2 ? 1 : (value1 < value2 ? -1 : 0);
2705     }
2706     /**
2707      * This method implements an efficient rounding for numbers which unscaled
2708      * value fits in the type {@code long}.
2709      *
2710      * @param mc
2711      *            the context to use
2712      * @param discardedPrecision
2713      *            the number of decimal digits that are discarded
2714      * @see #round(MathContext)
2715      */
smallRound(MathContext mc, int discardedPrecision)2716     private void smallRound(MathContext mc, int discardedPrecision) {
2717         long sizeOfFraction = MathUtils.LONG_POWERS_OF_TEN[discardedPrecision];
2718         long newScale = (long)scale - discardedPrecision;
2719         long unscaledVal = smallValue;
2720         // Getting the integer part and the discarded fraction
2721         long integer = unscaledVal / sizeOfFraction;
2722         long fraction = unscaledVal % sizeOfFraction;
2723         int compRem;
2724         // If the discarded fraction is non-zero perform rounding
2725         if (fraction != 0) {
2726             // To check if the discarded fraction >= 0.5
2727             compRem = longCompareTo(Math.abs(fraction) * 2, sizeOfFraction);
2728             // To look if there is a carry
2729             integer += roundingBehavior( ((int)integer) & 1,
2730                     Long.signum(fraction) * (5 + compRem),
2731                     mc.getRoundingMode());
2732             // If after to add the increment the precision changed, we normalize the size
2733             if (Math.log10(Math.abs(integer)) >= mc.getPrecision()) {
2734                 integer /= 10;
2735                 newScale--;
2736             }
2737         }
2738         // To update all internal fields
2739         scale = safeLongToInt(newScale);
2740         precision = mc.getPrecision();
2741         smallValue = integer;
2742         bitLength = bitLength(integer);
2743         intVal = null;
2744     }
2745 
2746     /**
2747      * Return an increment that can be -1,0 or 1, depending of
2748      * {@code roundingMode}.
2749      *
2750      * @param parityBit
2751      *            can be 0 or 1, it's only used in the case
2752      *            {@code HALF_EVEN}
2753      * @param fraction
2754      *            the mantissa to be analyzed
2755      * @param roundingMode
2756      *            the type of rounding
2757      * @return the carry propagated after rounding
2758      */
roundingBehavior(int parityBit, int fraction, RoundingMode roundingMode)2759     private static int roundingBehavior(int parityBit, int fraction, RoundingMode roundingMode) {
2760         int increment = 0; // the carry after rounding
2761 
2762         switch (roundingMode) {
2763             case UNNECESSARY:
2764                 if (fraction != 0) {
2765                     throw new ArithmeticException("Rounding necessary");
2766                 }
2767                 break;
2768             case UP:
2769                 increment = Integer.signum(fraction);
2770                 break;
2771             case DOWN:
2772                 break;
2773             case CEILING:
2774                 increment = Math.max(Integer.signum(fraction), 0);
2775                 break;
2776             case FLOOR:
2777                 increment = Math.min(Integer.signum(fraction), 0);
2778                 break;
2779             case HALF_UP:
2780                 if (Math.abs(fraction) >= 5) {
2781                     increment = Integer.signum(fraction);
2782                 }
2783                 break;
2784             case HALF_DOWN:
2785                 if (Math.abs(fraction) > 5) {
2786                     increment = Integer.signum(fraction);
2787                 }
2788                 break;
2789             case HALF_EVEN:
2790                 if (Math.abs(fraction) + parityBit > 5) {
2791                     increment = Integer.signum(fraction);
2792                 }
2793                 break;
2794         }
2795         return increment;
2796     }
2797 
2798     /**
2799      * If {@code intVal} has a fractional part throws an exception,
2800      * otherwise it counts the number of bits of value and checks if it's out of
2801      * the range of the primitive type. If the number fits in the primitive type
2802      * returns this number as {@code long}, otherwise throws an
2803      * exception.
2804      *
2805      * @param bitLengthOfType
2806      *            number of bits of the type whose value will be calculated
2807      *            exactly
2808      * @return the exact value of the integer part of {@code BigDecimal}
2809      *         when is possible
2810      * @throws ArithmeticException when rounding is necessary or the
2811      *             number don't fit in the primitive type
2812      */
valueExact(int bitLengthOfType)2813     private long valueExact(int bitLengthOfType) {
2814         BigInteger bigInteger = toBigIntegerExact();
2815 
2816         if (bigInteger.bitLength() < bitLengthOfType) {
2817             // It fits in the primitive type
2818             return bigInteger.longValue();
2819         }
2820         throw new ArithmeticException("Rounding necessary");
2821     }
2822 
2823     /**
2824      * If the precision already was calculated it returns that value, otherwise
2825      * it calculates a very good approximation efficiently . Note that this
2826      * value will be {@code precision()} or {@code precision()-1}
2827      * in the worst case.
2828      *
2829      * @return an approximation of {@code precision()} value
2830      */
approxPrecision()2831     private int approxPrecision() {
2832         return precision > 0
2833                 ? precision
2834                 : (int) ((this.bitLength - 1) * LOG10_2) + 1;
2835     }
2836 
safeLongToInt(long longValue)2837     private static int safeLongToInt(long longValue) {
2838         if (longValue < Integer.MIN_VALUE || longValue > Integer.MAX_VALUE) {
2839             throw new ArithmeticException("Out of int range: " + longValue);
2840         }
2841         return (int) longValue;
2842     }
2843 
2844     /**
2845      * It returns the value 0 with the most approximated scale of type
2846      * {@code int}. if {@code longScale > Integer.MAX_VALUE} the
2847      * scale will be {@code Integer.MAX_VALUE}; if
2848      * {@code longScale < Integer.MIN_VALUE} the scale will be
2849      * {@code Integer.MIN_VALUE}; otherwise {@code longScale} is
2850      * casted to the type {@code int}.
2851      *
2852      * @param longScale
2853      *            the scale to which the value 0 will be scaled.
2854      * @return the value 0 scaled by the closer scale of type {@code int}.
2855      * @see #scale
2856      */
zeroScaledBy(long longScale)2857     private static BigDecimal zeroScaledBy(long longScale) {
2858         if (longScale == (int) longScale) {
2859             return valueOf(0,(int)longScale);
2860             }
2861         if (longScale >= 0) {
2862             return new BigDecimal( 0, Integer.MAX_VALUE);
2863         }
2864         return new BigDecimal( 0, Integer.MIN_VALUE);
2865     }
2866 
2867     /**
2868      * Assigns all transient fields upon deserialization of a
2869      * {@code BigDecimal} instance (bitLength and smallValue). The transient
2870      * field precision is assigned lazily.
2871      */
readObject(ObjectInputStream in)2872     private void readObject(ObjectInputStream in) throws IOException,
2873             ClassNotFoundException {
2874         in.defaultReadObject();
2875 
2876         this.bitLength = intVal.bitLength();
2877         if (this.bitLength < 64) {
2878             this.smallValue = intVal.longValue();
2879         }
2880     }
2881 
2882     /**
2883      * Prepares this {@code BigDecimal} for serialization, i.e. the
2884      * non-transient field {@code intVal} is assigned.
2885      */
writeObject(ObjectOutputStream out)2886     private void writeObject(ObjectOutputStream out) throws IOException {
2887         getUnscaledValue();
2888         out.defaultWriteObject();
2889     }
2890 
getUnscaledValue()2891     private BigInteger getUnscaledValue() {
2892         if(intVal == null) {
2893             intVal = BigInteger.valueOf(smallValue);
2894         }
2895         return intVal;
2896     }
2897 
setUnscaledValue(BigInteger unscaledValue)2898     private void setUnscaledValue(BigInteger unscaledValue) {
2899         this.intVal = unscaledValue;
2900         this.bitLength = unscaledValue.bitLength();
2901         if(this.bitLength < 64) {
2902             this.smallValue = unscaledValue.longValue();
2903         }
2904     }
2905 
bitLength(long smallValue)2906     private static int bitLength(long smallValue) {
2907         if(smallValue < 0) {
2908             smallValue = ~smallValue;
2909         }
2910         return 64 - Long.numberOfLeadingZeros(smallValue);
2911     }
2912 
bitLength(int smallValue)2913     private static int bitLength(int smallValue) {
2914         if(smallValue < 0) {
2915             smallValue = ~smallValue;
2916         }
2917         return 32 - Integer.numberOfLeadingZeros(smallValue);
2918     }
2919 
2920 }
2921