1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_processor.h"
18
19 #include "mirror/object-inl.h"
20 #include "mirror/reference.h"
21 #include "mirror/reference-inl.h"
22 #include "reference_processor-inl.h"
23 #include "reflection.h"
24 #include "ScopedLocalRef.h"
25 #include "scoped_thread_state_change.h"
26 #include "well_known_classes.h"
27
28 namespace art {
29 namespace gc {
30
ReferenceProcessor()31 ReferenceProcessor::ReferenceProcessor()
32 : process_references_args_(nullptr, nullptr, nullptr),
33 preserving_references_(false),
34 condition_("reference processor condition", *Locks::reference_processor_lock_) ,
35 soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
36 weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
37 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
38 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
39 cleared_references_(Locks::reference_queue_cleared_references_lock_) {
40 }
41
EnableSlowPath()42 void ReferenceProcessor::EnableSlowPath() {
43 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
44 }
45
DisableSlowPath(Thread * self)46 void ReferenceProcessor::DisableSlowPath(Thread* self) {
47 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
48 condition_.Broadcast(self);
49 }
50
GetReferent(Thread * self,mirror::Reference * reference)51 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
52 mirror::Object* const referent = reference->GetReferent();
53 // If the referent is null then it is already cleared, we can just return null since there is no
54 // scenario where it becomes non-null during the reference processing phase.
55 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
56 return referent;
57 }
58 MutexLock mu(self, *Locks::reference_processor_lock_);
59 while (SlowPathEnabled()) {
60 mirror::HeapReference<mirror::Object>* const referent_addr =
61 reference->GetReferentReferenceAddr();
62 // If the referent became cleared, return it. Don't need barrier since thread roots can't get
63 // updated until after we leave the function due to holding the mutator lock.
64 if (referent_addr->AsMirrorPtr() == nullptr) {
65 return nullptr;
66 }
67 // Try to see if the referent is already marked by using the is_marked_callback. We can return
68 // it to the mutator as long as the GC is not preserving references.
69 IsHeapReferenceMarkedCallback* const is_marked_callback =
70 process_references_args_.is_marked_callback_;
71 if (LIKELY(is_marked_callback != nullptr)) {
72 // If it's null it means not marked, but it could become marked if the referent is reachable
73 // by finalizer referents. So we can not return in this case and must block. Otherwise, we
74 // can return it to the mutator as long as the GC is not preserving references, in which
75 // case only black nodes can be safely returned. If the GC is preserving references, the
76 // mutator could take a white field from a grey or white node and move it somewhere else
77 // in the heap causing corruption since this field would get swept.
78 if (is_marked_callback(referent_addr, process_references_args_.arg_)) {
79 if (!preserving_references_ ||
80 (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) {
81 return referent_addr->AsMirrorPtr();
82 }
83 }
84 }
85 condition_.WaitHoldingLocks(self);
86 }
87 return reference->GetReferent();
88 }
89
PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object> * obj,void * arg)90 bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj,
91 void* arg) {
92 auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg);
93 // TODO: Add smarter logic for preserving soft references.
94 mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_);
95 DCHECK(new_obj != nullptr);
96 obj->Assign(new_obj);
97 return true;
98 }
99
StartPreservingReferences(Thread * self)100 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
101 MutexLock mu(self, *Locks::reference_processor_lock_);
102 preserving_references_ = true;
103 }
104
StopPreservingReferences(Thread * self)105 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
106 MutexLock mu(self, *Locks::reference_processor_lock_);
107 preserving_references_ = false;
108 // We are done preserving references, some people who are blocked may see a marked referent.
109 condition_.Broadcast(self);
110 }
111
112 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,IsHeapReferenceMarkedCallback * is_marked_callback,MarkObjectCallback * mark_object_callback,ProcessMarkStackCallback * process_mark_stack_callback,void * arg)113 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
114 bool clear_soft_references,
115 IsHeapReferenceMarkedCallback* is_marked_callback,
116 MarkObjectCallback* mark_object_callback,
117 ProcessMarkStackCallback* process_mark_stack_callback,
118 void* arg) {
119 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
120 Thread* self = Thread::Current();
121 {
122 MutexLock mu(self, *Locks::reference_processor_lock_);
123 process_references_args_.is_marked_callback_ = is_marked_callback;
124 process_references_args_.mark_callback_ = mark_object_callback;
125 process_references_args_.arg_ = arg;
126 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
127 }
128 // Unless required to clear soft references with white references, preserve some white referents.
129 if (!clear_soft_references) {
130 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
131 "(Paused)ForwardSoftReferences", timings);
132 if (concurrent) {
133 StartPreservingReferences(self);
134 }
135 soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback,
136 &process_references_args_);
137 process_mark_stack_callback(arg);
138 if (concurrent) {
139 StopPreservingReferences(self);
140 }
141 }
142 // Clear all remaining soft and weak references with white referents.
143 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
144 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
145 {
146 TimingLogger::ScopedTiming t(concurrent ? "EnqueueFinalizerReferences" :
147 "(Paused)EnqueueFinalizerReferences", timings);
148 if (concurrent) {
149 StartPreservingReferences(self);
150 }
151 // Preserve all white objects with finalize methods and schedule them for finalization.
152 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback,
153 mark_object_callback, arg);
154 process_mark_stack_callback(arg);
155 if (concurrent) {
156 StopPreservingReferences(self);
157 }
158 }
159 // Clear all finalizer referent reachable soft and weak references with white referents.
160 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
161 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
162 // Clear all phantom references with white referents.
163 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
164 // At this point all reference queues other than the cleared references should be empty.
165 DCHECK(soft_reference_queue_.IsEmpty());
166 DCHECK(weak_reference_queue_.IsEmpty());
167 DCHECK(finalizer_reference_queue_.IsEmpty());
168 DCHECK(phantom_reference_queue_.IsEmpty());
169 {
170 MutexLock mu(self, *Locks::reference_processor_lock_);
171 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
172 // could result in a stale is_marked_callback_ being called before the reference processing
173 // starts since there is a small window of time where slow_path_enabled_ is enabled but the
174 // callback isn't yet set.
175 process_references_args_.is_marked_callback_ = nullptr;
176 if (concurrent) {
177 // Done processing, disable the slow path and broadcast to the waiters.
178 DisableSlowPath(self);
179 }
180 }
181 }
182
183 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
184 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref,IsHeapReferenceMarkedCallback * is_marked_callback,void * arg)185 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
186 IsHeapReferenceMarkedCallback* is_marked_callback,
187 void* arg) {
188 // klass can be the class of the old object if the visitor already updated the class of ref.
189 DCHECK(klass != nullptr);
190 DCHECK(klass->IsTypeOfReferenceClass());
191 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
192 if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) {
193 Thread* self = Thread::Current();
194 // TODO: Remove these locks, and use atomic stacks for storing references?
195 // We need to check that the references haven't already been enqueued since we can end up
196 // scanning the same reference multiple times due to dirty cards.
197 if (klass->IsSoftReferenceClass()) {
198 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
199 } else if (klass->IsWeakReferenceClass()) {
200 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
201 } else if (klass->IsFinalizerReferenceClass()) {
202 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
203 } else if (klass->IsPhantomReferenceClass()) {
204 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
205 } else {
206 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
207 << klass->GetAccessFlags();
208 }
209 }
210 }
211
UpdateRoots(IsMarkedCallback * callback,void * arg)212 void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) {
213 cleared_references_.UpdateRoots(callback, arg);
214 }
215
EnqueueClearedReferences(Thread * self)216 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
217 Locks::mutator_lock_->AssertNotHeld(self);
218 if (!cleared_references_.IsEmpty()) {
219 // When a runtime isn't started there are no reference queues to care about so ignore.
220 if (LIKELY(Runtime::Current()->IsStarted())) {
221 ScopedObjectAccess soa(self);
222 ScopedLocalRef<jobject> arg(self->GetJniEnv(),
223 soa.AddLocalReference<jobject>(cleared_references_.GetList()));
224 jvalue args[1];
225 args[0].l = arg.get();
226 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
227 }
228 cleared_references_.Clear();
229 }
230 }
231
MakeCircularListIfUnenqueued(mirror::FinalizerReference * reference)232 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) {
233 Thread* self = Thread::Current();
234 MutexLock mu(self, *Locks::reference_processor_lock_);
235 // Wait untul we are done processing reference.
236 while (SlowPathEnabled()) {
237 condition_.Wait(self);
238 }
239 // At this point, since the sentinel of the reference is live, it is guaranteed to not be
240 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
241 // phase. Since we are holding the reference processor lock, it guarantees that reference
242 // processing can't begin. The GC could have just enqueued the reference one one of the internal
243 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
244 // race.
245 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
246 if (!reference->IsEnqueued()) {
247 CHECK(reference->IsFinalizerReferenceInstance());
248 if (Runtime::Current()->IsActiveTransaction()) {
249 reference->SetPendingNext<true>(reference);
250 } else {
251 reference->SetPendingNext<false>(reference);
252 }
253 return true;
254 }
255 return false;
256 }
257
258 } // namespace gc
259 } // namespace art
260