1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reference_processor.h"
18 
19 #include "mirror/object-inl.h"
20 #include "mirror/reference.h"
21 #include "mirror/reference-inl.h"
22 #include "reference_processor-inl.h"
23 #include "reflection.h"
24 #include "ScopedLocalRef.h"
25 #include "scoped_thread_state_change.h"
26 #include "well_known_classes.h"
27 
28 namespace art {
29 namespace gc {
30 
ReferenceProcessor()31 ReferenceProcessor::ReferenceProcessor()
32     : process_references_args_(nullptr, nullptr, nullptr),
33       preserving_references_(false),
34       condition_("reference processor condition", *Locks::reference_processor_lock_) ,
35       soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
36       weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
37       finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
38       phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
39       cleared_references_(Locks::reference_queue_cleared_references_lock_) {
40 }
41 
EnableSlowPath()42 void ReferenceProcessor::EnableSlowPath() {
43   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
44 }
45 
DisableSlowPath(Thread * self)46 void ReferenceProcessor::DisableSlowPath(Thread* self) {
47   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
48   condition_.Broadcast(self);
49 }
50 
GetReferent(Thread * self,mirror::Reference * reference)51 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
52   mirror::Object* const referent = reference->GetReferent();
53   // If the referent is null then it is already cleared, we can just return null since there is no
54   // scenario where it becomes non-null during the reference processing phase.
55   if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
56     return referent;
57   }
58   MutexLock mu(self, *Locks::reference_processor_lock_);
59   while (SlowPathEnabled()) {
60     mirror::HeapReference<mirror::Object>* const referent_addr =
61         reference->GetReferentReferenceAddr();
62     // If the referent became cleared, return it. Don't need barrier since thread roots can't get
63     // updated until after we leave the function due to holding the mutator lock.
64     if (referent_addr->AsMirrorPtr() == nullptr) {
65       return nullptr;
66     }
67     // Try to see if the referent is already marked by using the is_marked_callback. We can return
68     // it to the mutator as long as the GC is not preserving references.
69     IsHeapReferenceMarkedCallback* const is_marked_callback =
70         process_references_args_.is_marked_callback_;
71     if (LIKELY(is_marked_callback != nullptr)) {
72       // If it's null it means not marked, but it could become marked if the referent is reachable
73       // by finalizer referents. So we can not return in this case and must block. Otherwise, we
74       // can return it to the mutator as long as the GC is not preserving references, in which
75       // case only black nodes can be safely returned. If the GC is preserving references, the
76       // mutator could take a white field from a grey or white node and move it somewhere else
77       // in the heap causing corruption since this field would get swept.
78       if (is_marked_callback(referent_addr, process_references_args_.arg_)) {
79         if (!preserving_references_ ||
80            (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) {
81           return referent_addr->AsMirrorPtr();
82         }
83       }
84     }
85     condition_.WaitHoldingLocks(self);
86   }
87   return reference->GetReferent();
88 }
89 
PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object> * obj,void * arg)90 bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj,
91                                                        void* arg) {
92   auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg);
93   // TODO: Add smarter logic for preserving soft references.
94   mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_);
95   DCHECK(new_obj != nullptr);
96   obj->Assign(new_obj);
97   return true;
98 }
99 
StartPreservingReferences(Thread * self)100 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
101   MutexLock mu(self, *Locks::reference_processor_lock_);
102   preserving_references_ = true;
103 }
104 
StopPreservingReferences(Thread * self)105 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
106   MutexLock mu(self, *Locks::reference_processor_lock_);
107   preserving_references_ = false;
108   // We are done preserving references, some people who are blocked may see a marked referent.
109   condition_.Broadcast(self);
110 }
111 
112 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,IsHeapReferenceMarkedCallback * is_marked_callback,MarkObjectCallback * mark_object_callback,ProcessMarkStackCallback * process_mark_stack_callback,void * arg)113 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
114                                            bool clear_soft_references,
115                                            IsHeapReferenceMarkedCallback* is_marked_callback,
116                                            MarkObjectCallback* mark_object_callback,
117                                            ProcessMarkStackCallback* process_mark_stack_callback,
118                                            void* arg) {
119   TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
120   Thread* self = Thread::Current();
121   {
122     MutexLock mu(self, *Locks::reference_processor_lock_);
123     process_references_args_.is_marked_callback_ = is_marked_callback;
124     process_references_args_.mark_callback_ = mark_object_callback;
125     process_references_args_.arg_ = arg;
126     CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
127   }
128   // Unless required to clear soft references with white references, preserve some white referents.
129   if (!clear_soft_references) {
130     TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
131         "(Paused)ForwardSoftReferences", timings);
132     if (concurrent) {
133       StartPreservingReferences(self);
134     }
135     soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback,
136                                                 &process_references_args_);
137     process_mark_stack_callback(arg);
138     if (concurrent) {
139       StopPreservingReferences(self);
140     }
141   }
142   // Clear all remaining soft and weak references with white referents.
143   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
144   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
145   {
146     TimingLogger::ScopedTiming t(concurrent ? "EnqueueFinalizerReferences" :
147         "(Paused)EnqueueFinalizerReferences", timings);
148     if (concurrent) {
149       StartPreservingReferences(self);
150     }
151     // Preserve all white objects with finalize methods and schedule them for finalization.
152     finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback,
153                                                           mark_object_callback, arg);
154     process_mark_stack_callback(arg);
155     if (concurrent) {
156       StopPreservingReferences(self);
157     }
158   }
159   // Clear all finalizer referent reachable soft and weak references with white referents.
160   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
161   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
162   // Clear all phantom references with white referents.
163   phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
164   // At this point all reference queues other than the cleared references should be empty.
165   DCHECK(soft_reference_queue_.IsEmpty());
166   DCHECK(weak_reference_queue_.IsEmpty());
167   DCHECK(finalizer_reference_queue_.IsEmpty());
168   DCHECK(phantom_reference_queue_.IsEmpty());
169   {
170     MutexLock mu(self, *Locks::reference_processor_lock_);
171     // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
172     // could result in a stale is_marked_callback_ being called before the reference processing
173     // starts since there is a small window of time where slow_path_enabled_ is enabled but the
174     // callback isn't yet set.
175     process_references_args_.is_marked_callback_ = nullptr;
176     if (concurrent) {
177       // Done processing, disable the slow path and broadcast to the waiters.
178       DisableSlowPath(self);
179     }
180   }
181 }
182 
183 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
184 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref,IsHeapReferenceMarkedCallback * is_marked_callback,void * arg)185 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
186                                                 IsHeapReferenceMarkedCallback* is_marked_callback,
187                                                 void* arg) {
188   // klass can be the class of the old object if the visitor already updated the class of ref.
189   DCHECK(klass != nullptr);
190   DCHECK(klass->IsTypeOfReferenceClass());
191   mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
192   if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) {
193     Thread* self = Thread::Current();
194     // TODO: Remove these locks, and use atomic stacks for storing references?
195     // We need to check that the references haven't already been enqueued since we can end up
196     // scanning the same reference multiple times due to dirty cards.
197     if (klass->IsSoftReferenceClass()) {
198       soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
199     } else if (klass->IsWeakReferenceClass()) {
200       weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
201     } else if (klass->IsFinalizerReferenceClass()) {
202       finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
203     } else if (klass->IsPhantomReferenceClass()) {
204       phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
205     } else {
206       LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
207                  << klass->GetAccessFlags();
208     }
209   }
210 }
211 
UpdateRoots(IsMarkedCallback * callback,void * arg)212 void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) {
213   cleared_references_.UpdateRoots(callback, arg);
214 }
215 
EnqueueClearedReferences(Thread * self)216 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
217   Locks::mutator_lock_->AssertNotHeld(self);
218   if (!cleared_references_.IsEmpty()) {
219     // When a runtime isn't started there are no reference queues to care about so ignore.
220     if (LIKELY(Runtime::Current()->IsStarted())) {
221       ScopedObjectAccess soa(self);
222       ScopedLocalRef<jobject> arg(self->GetJniEnv(),
223                                   soa.AddLocalReference<jobject>(cleared_references_.GetList()));
224       jvalue args[1];
225       args[0].l = arg.get();
226       InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
227     }
228     cleared_references_.Clear();
229   }
230 }
231 
MakeCircularListIfUnenqueued(mirror::FinalizerReference * reference)232 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) {
233   Thread* self = Thread::Current();
234   MutexLock mu(self, *Locks::reference_processor_lock_);
235   // Wait untul we are done processing reference.
236   while (SlowPathEnabled()) {
237     condition_.Wait(self);
238   }
239   // At this point, since the sentinel of the reference is live, it is guaranteed to not be
240   // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
241   // phase. Since we are holding the reference processor lock, it guarantees that reference
242   // processing can't begin. The GC could have just enqueued the reference one one of the internal
243   // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
244   // race.
245   MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
246   if (!reference->IsEnqueued()) {
247     CHECK(reference->IsFinalizerReferenceInstance());
248     if (Runtime::Current()->IsActiveTransaction()) {
249       reference->SetPendingNext<true>(reference);
250     } else {
251       reference->SetPendingNext<false>(reference);
252     }
253     return true;
254   }
255   return false;
256 }
257 
258 }  // namespace gc
259 }  // namespace art
260