1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* ChangeLog for this library:
30  *
31  * NDK r9?: Support for 64-bit CPUs (Intel, ARM & MIPS).
32  *
33  * NDK r8d: Add android_setCpu().
34  *
35  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
36  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
37  *
38  *          Rewrite the code to parse /proc/self/auxv instead of
39  *          the "Features" field in /proc/cpuinfo.
40  *
41  *          Dynamically allocate the buffer that hold the content
42  *          of /proc/cpuinfo to deal with newer hardware.
43  *
44  * NDK r7c: Fix CPU count computation. The old method only reported the
45  *           number of _active_ CPUs when the library was initialized,
46  *           which could be less than the real total.
47  *
48  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
49  *         for an ARMv6 CPU (see below).
50  *
51  *         Handle kernels that only report 'neon', and not 'vfpv3'
52  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
53  *
54  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
55  *
56  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
57  *         android_getCpuFamily().
58  *
59  * NDK r4: Initial release
60  */
61 
62 #if defined(__le32__) || defined(__le64__)
63 
64 // When users enter this, we should only provide interface and
65 // libportable will give the implementations.
66 
67 #else // !__le32__ && !__le64__
68 
69 #include "cpu-features.h"
70 
71 #include <dlfcn.h>
72 #include <errno.h>
73 #include <fcntl.h>
74 #include <pthread.h>
75 #include <stdio.h>
76 #include <stdlib.h>
77 #include <sys/system_properties.h>
78 
79 static  pthread_once_t     g_once;
80 static  int                g_inited;
81 static  AndroidCpuFamily   g_cpuFamily;
82 static  uint64_t           g_cpuFeatures;
83 static  int                g_cpuCount;
84 
85 #ifdef __arm__
86 static  uint32_t           g_cpuIdArm;
87 #endif
88 
89 static const int android_cpufeatures_debug = 0;
90 
91 #define  D(...) \
92     do { \
93         if (android_cpufeatures_debug) { \
94             printf(__VA_ARGS__); fflush(stdout); \
95         } \
96     } while (0)
97 
98 #ifdef __i386__
x86_cpuid(int func,int values[4])99 static __inline__ void x86_cpuid(int func, int values[4])
100 {
101     int a, b, c, d;
102     /* We need to preserve ebx since we're compiling PIC code */
103     /* this means we can't use "=b" for the second output register */
104     __asm__ __volatile__ ( \
105       "push %%ebx\n"
106       "cpuid\n" \
107       "mov %%ebx, %1\n"
108       "pop %%ebx\n"
109       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
110       : "a" (func) \
111     );
112     values[0] = a;
113     values[1] = b;
114     values[2] = c;
115     values[3] = d;
116 }
117 #endif
118 
119 /* Get the size of a file by reading it until the end. This is needed
120  * because files under /proc do not always return a valid size when
121  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
122  */
123 static int
get_file_size(const char * pathname)124 get_file_size(const char* pathname)
125 {
126     int fd, ret, result = 0;
127     char buffer[256];
128 
129     fd = open(pathname, O_RDONLY);
130     if (fd < 0) {
131         D("Can't open %s: %s\n", pathname, strerror(errno));
132         return -1;
133     }
134 
135     for (;;) {
136         int ret = read(fd, buffer, sizeof buffer);
137         if (ret < 0) {
138             if (errno == EINTR)
139                 continue;
140             D("Error while reading %s: %s\n", pathname, strerror(errno));
141             break;
142         }
143         if (ret == 0)
144             break;
145 
146         result += ret;
147     }
148     close(fd);
149     return result;
150 }
151 
152 /* Read the content of /proc/cpuinfo into a user-provided buffer.
153  * Return the length of the data, or -1 on error. Does *not*
154  * zero-terminate the content. Will not read more
155  * than 'buffsize' bytes.
156  */
157 static int
read_file(const char * pathname,char * buffer,size_t buffsize)158 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
159 {
160     int  fd, count;
161 
162     fd = open(pathname, O_RDONLY);
163     if (fd < 0) {
164         D("Could not open %s: %s\n", pathname, strerror(errno));
165         return -1;
166     }
167     count = 0;
168     while (count < (int)buffsize) {
169         int ret = read(fd, buffer + count, buffsize - count);
170         if (ret < 0) {
171             if (errno == EINTR)
172                 continue;
173             D("Error while reading from %s: %s\n", pathname, strerror(errno));
174             if (count == 0)
175                 count = -1;
176             break;
177         }
178         if (ret == 0)
179             break;
180         count += ret;
181     }
182     close(fd);
183     return count;
184 }
185 
186 /* Extract the content of a the first occurence of a given field in
187  * the content of /proc/cpuinfo and return it as a heap-allocated
188  * string that must be freed by the caller.
189  *
190  * Return NULL if not found
191  */
192 static char*
extract_cpuinfo_field(const char * buffer,int buflen,const char * field)193 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
194 {
195     int  fieldlen = strlen(field);
196     const char* bufend = buffer + buflen;
197     char* result = NULL;
198     int len, ignore;
199     const char *p, *q;
200 
201     /* Look for first field occurence, and ensures it starts the line. */
202     p = buffer;
203     for (;;) {
204         p = memmem(p, bufend-p, field, fieldlen);
205         if (p == NULL)
206             goto EXIT;
207 
208         if (p == buffer || p[-1] == '\n')
209             break;
210 
211         p += fieldlen;
212     }
213 
214     /* Skip to the first column followed by a space */
215     p += fieldlen;
216     p  = memchr(p, ':', bufend-p);
217     if (p == NULL || p[1] != ' ')
218         goto EXIT;
219 
220     /* Find the end of the line */
221     p += 2;
222     q = memchr(p, '\n', bufend-p);
223     if (q == NULL)
224         q = bufend;
225 
226     /* Copy the line into a heap-allocated buffer */
227     len = q-p;
228     result = malloc(len+1);
229     if (result == NULL)
230         goto EXIT;
231 
232     memcpy(result, p, len);
233     result[len] = '\0';
234 
235 EXIT:
236     return result;
237 }
238 
239 /* Checks that a space-separated list of items contains one given 'item'.
240  * Returns 1 if found, 0 otherwise.
241  */
242 static int
has_list_item(const char * list,const char * item)243 has_list_item(const char* list, const char* item)
244 {
245     const char*  p = list;
246     int itemlen = strlen(item);
247 
248     if (list == NULL)
249         return 0;
250 
251     while (*p) {
252         const char*  q;
253 
254         /* skip spaces */
255         while (*p == ' ' || *p == '\t')
256             p++;
257 
258         /* find end of current list item */
259         q = p;
260         while (*q && *q != ' ' && *q != '\t')
261             q++;
262 
263         if (itemlen == q-p && !memcmp(p, item, itemlen))
264             return 1;
265 
266         /* skip to next item */
267         p = q;
268     }
269     return 0;
270 }
271 
272 /* Parse a number starting from 'input', but not going further
273  * than 'limit'. Return the value into '*result'.
274  *
275  * NOTE: Does not skip over leading spaces, or deal with sign characters.
276  * NOTE: Ignores overflows.
277  *
278  * The function returns NULL in case of error (bad format), or the new
279  * position after the decimal number in case of success (which will always
280  * be <= 'limit').
281  */
282 static const char*
parse_number(const char * input,const char * limit,int base,int * result)283 parse_number(const char* input, const char* limit, int base, int* result)
284 {
285     const char* p = input;
286     int val = 0;
287     while (p < limit) {
288         int d = (*p - '0');
289         if ((unsigned)d >= 10U) {
290             d = (*p - 'a');
291             if ((unsigned)d >= 6U)
292               d = (*p - 'A');
293             if ((unsigned)d >= 6U)
294               break;
295             d += 10;
296         }
297         if (d >= base)
298           break;
299         val = val*base + d;
300         p++;
301     }
302     if (p == input)
303         return NULL;
304 
305     *result = val;
306     return p;
307 }
308 
309 static const char*
parse_decimal(const char * input,const char * limit,int * result)310 parse_decimal(const char* input, const char* limit, int* result)
311 {
312     return parse_number(input, limit, 10, result);
313 }
314 
315 static const char*
parse_hexadecimal(const char * input,const char * limit,int * result)316 parse_hexadecimal(const char* input, const char* limit, int* result)
317 {
318     return parse_number(input, limit, 16, result);
319 }
320 
321 /* This small data type is used to represent a CPU list / mask, as read
322  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
323  *
324  * For now, we don't expect more than 32 cores on mobile devices, so keep
325  * everything simple.
326  */
327 typedef struct {
328     uint32_t mask;
329 } CpuList;
330 
331 static __inline__ void
cpulist_init(CpuList * list)332 cpulist_init(CpuList* list) {
333     list->mask = 0;
334 }
335 
336 static __inline__ void
cpulist_and(CpuList * list1,CpuList * list2)337 cpulist_and(CpuList* list1, CpuList* list2) {
338     list1->mask &= list2->mask;
339 }
340 
341 static __inline__ void
cpulist_set(CpuList * list,int index)342 cpulist_set(CpuList* list, int index) {
343     if ((unsigned)index < 32) {
344         list->mask |= (uint32_t)(1U << index);
345     }
346 }
347 
348 static __inline__ int
cpulist_count(CpuList * list)349 cpulist_count(CpuList* list) {
350     return __builtin_popcount(list->mask);
351 }
352 
353 /* Parse a textual list of cpus and store the result inside a CpuList object.
354  * Input format is the following:
355  * - comma-separated list of items (no spaces)
356  * - each item is either a single decimal number (cpu index), or a range made
357  *   of two numbers separated by a single dash (-). Ranges are inclusive.
358  *
359  * Examples:   0
360  *             2,4-127,128-143
361  *             0-1
362  */
363 static void
cpulist_parse(CpuList * list,const char * line,int line_len)364 cpulist_parse(CpuList* list, const char* line, int line_len)
365 {
366     const char* p = line;
367     const char* end = p + line_len;
368     const char* q;
369 
370     /* NOTE: the input line coming from sysfs typically contains a
371      * trailing newline, so take care of it in the code below
372      */
373     while (p < end && *p != '\n')
374     {
375         int val, start_value, end_value;
376 
377         /* Find the end of current item, and put it into 'q' */
378         q = memchr(p, ',', end-p);
379         if (q == NULL) {
380             q = end;
381         }
382 
383         /* Get first value */
384         p = parse_decimal(p, q, &start_value);
385         if (p == NULL)
386             goto BAD_FORMAT;
387 
388         end_value = start_value;
389 
390         /* If we're not at the end of the item, expect a dash and
391          * and integer; extract end value.
392          */
393         if (p < q && *p == '-') {
394             p = parse_decimal(p+1, q, &end_value);
395             if (p == NULL)
396                 goto BAD_FORMAT;
397         }
398 
399         /* Set bits CPU list bits */
400         for (val = start_value; val <= end_value; val++) {
401             cpulist_set(list, val);
402         }
403 
404         /* Jump to next item */
405         p = q;
406         if (p < end)
407             p++;
408     }
409 
410 BAD_FORMAT:
411     ;
412 }
413 
414 /* Read a CPU list from one sysfs file */
415 static void
cpulist_read_from(CpuList * list,const char * filename)416 cpulist_read_from(CpuList* list, const char* filename)
417 {
418     char   file[64];
419     int    filelen;
420 
421     cpulist_init(list);
422 
423     filelen = read_file(filename, file, sizeof file);
424     if (filelen < 0) {
425         D("Could not read %s: %s\n", filename, strerror(errno));
426         return;
427     }
428 
429     cpulist_parse(list, file, filelen);
430 }
431 
432 #if defined(__arm__)
433 
434 // See <asm/hwcap.h> kernel header.
435 #define HWCAP_VFP       (1 << 6)
436 #define HWCAP_IWMMXT    (1 << 9)
437 #define HWCAP_NEON      (1 << 12)
438 #define HWCAP_VFPv3     (1 << 13)
439 #define HWCAP_VFPv3D16  (1 << 14)
440 #define HWCAP_VFPv4     (1 << 16)
441 #define HWCAP_IDIVA     (1 << 17)
442 #define HWCAP_IDIVT     (1 << 18)
443 
444 // This is the list of 32-bit ARMv7 optional features that are _always_
445 // supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
446 // Manual.
447 #define HWCAP_SET_FOR_ARMV8  \
448   ( HWCAP_VFP | \
449     HWCAP_NEON | \
450     HWCAP_VFPv3 | \
451     HWCAP_VFPv4 | \
452     HWCAP_IDIVA | \
453     HWCAP_IDIVT )
454 
455 #define AT_HWCAP 16
456 
457 // Probe the system's C library for a 'getauxval' function and call it if
458 // it exits, or return 0 for failure. This function is available since API
459 // level 20.
460 //
461 // This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
462 // edge case where some NDK developers use headers for a platform that is
463 // newer than the one really targetted by their application.
464 // This is typically done to use newer native APIs only when running on more
465 // recent Android versions, and requires careful symbol management.
466 //
467 // Note that getauxval() can't really be re-implemented here, because
468 // its implementation does not parse /proc/self/auxv. Instead it depends
469 // on values  that are passed by the kernel at process-init time to the
470 // C runtime initialization layer.
471 static uint32_t
get_elf_hwcap_from_getauxval(void)472 get_elf_hwcap_from_getauxval(void) {
473     typedef unsigned long getauxval_func_t(unsigned long);
474 
475     dlerror();
476     void* libc_handle = dlopen("libc.so", RTLD_NOW);
477     if (!libc_handle) {
478         D("Could not dlopen() C library: %s\n", dlerror());
479         return 0;
480     }
481 
482     uint32_t ret = 0;
483     getauxval_func_t* func = (getauxval_func_t*)
484             dlsym(libc_handle, "getauxval");
485     if (!func) {
486         D("Could not find getauxval() in C library\n");
487     } else {
488         // Note: getauxval() returns 0 on failure. Doesn't touch errno.
489         ret = (uint32_t)(*func)(AT_HWCAP);
490     }
491     dlclose(libc_handle);
492     return ret;
493 }
494 
495 // Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
496 // current CPU. Note that this file is not accessible from regular
497 // application processes on some Android platform releases.
498 // On success, return new ELF hwcaps, or 0 on failure.
499 static uint32_t
get_elf_hwcap_from_proc_self_auxv(void)500 get_elf_hwcap_from_proc_self_auxv(void) {
501     const char filepath[] = "/proc/self/auxv";
502     int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
503     if (fd < 0) {
504         D("Could not open %s: %s\n", filepath, strerror(errno));
505         return 0;
506     }
507 
508     struct { uint32_t tag; uint32_t value; } entry;
509 
510     uint32_t result = 0;
511     for (;;) {
512         int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
513         if (ret < 0) {
514             D("Error while reading %s: %s\n", filepath, strerror(errno));
515             break;
516         }
517         // Detect end of list.
518         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
519           break;
520         if (entry.tag == AT_HWCAP) {
521           result = entry.value;
522           break;
523         }
524     }
525     close(fd);
526     return result;
527 }
528 
529 /* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
530  * This works by parsing the 'Features' line, which lists which optional
531  * features the device's CPU supports, on top of its reference
532  * architecture.
533  */
534 static uint32_t
get_elf_hwcap_from_proc_cpuinfo(const char * cpuinfo,int cpuinfo_len)535 get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
536     uint32_t hwcaps = 0;
537     long architecture = 0;
538     char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
539     if (cpuArch) {
540         architecture = strtol(cpuArch, NULL, 10);
541         free(cpuArch);
542 
543         if (architecture >= 8L) {
544             // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
545             // The 'Features' line only lists the optional features that the
546             // device's CPU supports, compared to its reference architecture
547             // which are of no use for this process.
548             D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
549             return HWCAP_SET_FOR_ARMV8;
550         }
551     }
552 
553     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
554     if (cpuFeatures != NULL) {
555         D("Found cpuFeatures = '%s'\n", cpuFeatures);
556 
557         if (has_list_item(cpuFeatures, "vfp"))
558             hwcaps |= HWCAP_VFP;
559         if (has_list_item(cpuFeatures, "vfpv3"))
560             hwcaps |= HWCAP_VFPv3;
561         if (has_list_item(cpuFeatures, "vfpv3d16"))
562             hwcaps |= HWCAP_VFPv3D16;
563         if (has_list_item(cpuFeatures, "vfpv4"))
564             hwcaps |= HWCAP_VFPv4;
565         if (has_list_item(cpuFeatures, "neon"))
566             hwcaps |= HWCAP_NEON;
567         if (has_list_item(cpuFeatures, "idiva"))
568             hwcaps |= HWCAP_IDIVA;
569         if (has_list_item(cpuFeatures, "idivt"))
570             hwcaps |= HWCAP_IDIVT;
571         if (has_list_item(cpuFeatures, "idiv"))
572             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
573         if (has_list_item(cpuFeatures, "iwmmxt"))
574             hwcaps |= HWCAP_IWMMXT;
575 
576         free(cpuFeatures);
577     }
578     return hwcaps;
579 }
580 #endif  /* __arm__ */
581 
582 /* Return the number of cpus present on a given device.
583  *
584  * To handle all weird kernel configurations, we need to compute the
585  * intersection of the 'present' and 'possible' CPU lists and count
586  * the result.
587  */
588 static int
get_cpu_count(void)589 get_cpu_count(void)
590 {
591     CpuList cpus_present[1];
592     CpuList cpus_possible[1];
593 
594     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
595     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
596 
597     /* Compute the intersection of both sets to get the actual number of
598      * CPU cores that can be used on this device by the kernel.
599      */
600     cpulist_and(cpus_present, cpus_possible);
601 
602     return cpulist_count(cpus_present);
603 }
604 
605 static void
android_cpuInitFamily(void)606 android_cpuInitFamily(void)
607 {
608 #if defined(__arm__)
609     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
610 #elif defined(__i386__)
611     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
612 #elif defined(__mips64)
613 /* Needs to be before __mips__ since the compiler defines both */
614     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
615 #elif defined(__mips__)
616     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
617 #elif defined(__aarch64__)
618     g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
619 #elif defined(__x86_64__)
620     g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
621 #else
622     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
623 #endif
624 }
625 
626 static void
android_cpuInit(void)627 android_cpuInit(void)
628 {
629     char* cpuinfo = NULL;
630     int   cpuinfo_len;
631 
632     android_cpuInitFamily();
633 
634     g_cpuFeatures = 0;
635     g_cpuCount    = 1;
636     g_inited      = 1;
637 
638     cpuinfo_len = get_file_size("/proc/cpuinfo");
639     if (cpuinfo_len < 0) {
640       D("cpuinfo_len cannot be computed!");
641       return;
642     }
643     cpuinfo = malloc(cpuinfo_len);
644     if (cpuinfo == NULL) {
645       D("cpuinfo buffer could not be allocated");
646       return;
647     }
648     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
649     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
650       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
651 
652     if (cpuinfo_len < 0)  /* should not happen */ {
653         free(cpuinfo);
654         return;
655     }
656 
657     /* Count the CPU cores, the value may be 0 for single-core CPUs */
658     g_cpuCount = get_cpu_count();
659     if (g_cpuCount == 0) {
660         g_cpuCount = 1;
661     }
662 
663     D("found cpuCount = %d\n", g_cpuCount);
664 
665 #ifdef __arm__
666     {
667         /* Extract architecture from the "CPU Architecture" field.
668          * The list is well-known, unlike the the output of
669          * the 'Processor' field which can vary greatly.
670          *
671          * See the definition of the 'proc_arch' array in
672          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
673          * same file.
674          */
675         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
676 
677         if (cpuArch != NULL) {
678             char*  end;
679             long   archNumber;
680             int    hasARMv7 = 0;
681 
682             D("found cpuArch = '%s'\n", cpuArch);
683 
684             /* read the initial decimal number, ignore the rest */
685             archNumber = strtol(cpuArch, &end, 10);
686 
687             /* Note that ARMv8 is upwards compatible with ARMv7. */
688             if (end > cpuArch && archNumber >= 7) {
689                 hasARMv7 = 1;
690             }
691 
692             /* Unfortunately, it seems that certain ARMv6-based CPUs
693              * report an incorrect architecture number of 7!
694              *
695              * See http://code.google.com/p/android/issues/detail?id=10812
696              *
697              * We try to correct this by looking at the 'elf_format'
698              * field reported by the 'Processor' field, which is of the
699              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
700              * an ARMv6-one.
701              */
702             if (hasARMv7) {
703                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
704                                                       "Processor");
705                 if (cpuProc != NULL) {
706                     D("found cpuProc = '%s'\n", cpuProc);
707                     if (has_list_item(cpuProc, "(v6l)")) {
708                         D("CPU processor and architecture mismatch!!\n");
709                         hasARMv7 = 0;
710                     }
711                     free(cpuProc);
712                 }
713             }
714 
715             if (hasARMv7) {
716                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
717             }
718 
719             /* The LDREX / STREX instructions are available from ARMv6 */
720             if (archNumber >= 6) {
721                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
722             }
723 
724             free(cpuArch);
725         }
726 
727         /* Extract the list of CPU features from ELF hwcaps */
728         uint32_t hwcaps = 0;
729         hwcaps = get_elf_hwcap_from_getauxval();
730         if (!hwcaps) {
731             D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
732             hwcaps = get_elf_hwcap_from_proc_self_auxv();
733         }
734         if (!hwcaps) {
735             // Parsing /proc/self/auxv will fail from regular application
736             // processes on some Android platform versions, when this happens
737             // parse proc/cpuinfo instead.
738             D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
739             hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
740         }
741 
742         if (hwcaps != 0) {
743             int has_vfp = (hwcaps & HWCAP_VFP);
744             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
745             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
746             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
747             int has_neon = (hwcaps & HWCAP_NEON);
748             int has_idiva = (hwcaps & HWCAP_IDIVA);
749             int has_idivt = (hwcaps & HWCAP_IDIVT);
750             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
751 
752             // The kernel does a poor job at ensuring consistency when
753             // describing CPU features. So lots of guessing is needed.
754 
755             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
756             if (has_vfpv4)
757                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
758                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
759                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
760 
761             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
762             // a value of 'vfpv3' doesn't necessarily mean that the D32
763             // feature is present, so be conservative. All CPUs in the
764             // field that support D32 also support NEON, so this should
765             // not be a problem in practice.
766             if (has_vfpv3 || has_vfpv3d16)
767                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
768 
769             // 'vfp' is super ambiguous. Depending on the kernel, it can
770             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
771             if (has_vfp) {
772               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
773                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
774               else
775                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
776             }
777 
778             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
779             if (has_neon) {
780                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
781                                  ANDROID_CPU_ARM_FEATURE_NEON |
782                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
783               if (has_vfpv4)
784                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
785             }
786 
787             // VFPv3 implies VFPv2 and ARMv7
788             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
789                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
790                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
791 
792             if (has_idiva)
793                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
794             if (has_idivt)
795                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
796 
797             if (has_iwmmxt)
798                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
799         }
800 
801         /* Extract the cpuid value from various fields */
802         // The CPUID value is broken up in several entries in /proc/cpuinfo.
803         // This table is used to rebuild it from the entries.
804         static const struct CpuIdEntry {
805             const char* field;
806             char        format;
807             char        bit_lshift;
808             char        bit_length;
809         } cpu_id_entries[] = {
810             { "CPU implementer", 'x', 24, 8 },
811             { "CPU variant", 'x', 20, 4 },
812             { "CPU part", 'x', 4, 12 },
813             { "CPU revision", 'd', 0, 4 },
814         };
815         size_t i;
816         D("Parsing /proc/cpuinfo to recover CPUID\n");
817         for (i = 0;
818              i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
819              ++i) {
820             const struct CpuIdEntry* entry = &cpu_id_entries[i];
821             char* value = extract_cpuinfo_field(cpuinfo,
822                                                 cpuinfo_len,
823                                                 entry->field);
824             if (value == NULL)
825                 continue;
826 
827             D("field=%s value='%s'\n", entry->field, value);
828             char* value_end = value + strlen(value);
829             int val = 0;
830             const char* start = value;
831             const char* p;
832             if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
833               start += 2;
834               p = parse_hexadecimal(start, value_end, &val);
835             } else if (entry->format == 'x')
836               p = parse_hexadecimal(value, value_end, &val);
837             else
838               p = parse_decimal(value, value_end, &val);
839 
840             if (p > (const char*)start) {
841               val &= ((1 << entry->bit_length)-1);
842               val <<= entry->bit_lshift;
843               g_cpuIdArm |= (uint32_t) val;
844             }
845 
846             free(value);
847         }
848 
849         // Handle kernel configuration bugs that prevent the correct
850         // reporting of CPU features.
851         static const struct CpuFix {
852             uint32_t  cpuid;
853             uint64_t  or_flags;
854         } cpu_fixes[] = {
855             /* The Nexus 4 (Qualcomm Krait) kernel configuration
856              * forgets to report IDIV support. */
857             { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
858                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
859             };
860         size_t n;
861         for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
862             const struct CpuFix* entry = &cpu_fixes[n];
863 
864             if (g_cpuIdArm == entry->cpuid)
865                 g_cpuFeatures |= entry->or_flags;
866         }
867 
868         // Special case: The emulator-specific Android 4.2 kernel fails
869         // to report support for the 32-bit ARM IDIV instruction.
870         // Technically, this is a feature of the virtual CPU implemented
871         // by the emulator. Note that it could also support Thumb IDIV
872         // in the future, and this will have to be slightly updated.
873         char* hardware = extract_cpuinfo_field(cpuinfo,
874                                                cpuinfo_len,
875                                                "Hardware");
876         if (hardware) {
877             if (!strcmp(hardware, "Goldfish") &&
878                 g_cpuIdArm == 0x4100c080 &&
879                 (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
880                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
881             }
882             free(hardware);
883         }
884     }
885 #endif /* __arm__ */
886 
887 #ifdef __i386__
888     int regs[4];
889 
890 /* According to http://en.wikipedia.org/wiki/CPUID */
891 #define VENDOR_INTEL_b  0x756e6547
892 #define VENDOR_INTEL_c  0x6c65746e
893 #define VENDOR_INTEL_d  0x49656e69
894 
895     x86_cpuid(0, regs);
896     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
897                          regs[2] == VENDOR_INTEL_c &&
898                          regs[3] == VENDOR_INTEL_d);
899 
900     x86_cpuid(1, regs);
901     if ((regs[2] & (1 << 9)) != 0) {
902         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
903     }
904     if ((regs[2] & (1 << 23)) != 0) {
905         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
906     }
907     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
908         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
909     }
910 #endif
911 
912     free(cpuinfo);
913 }
914 
915 
916 AndroidCpuFamily
android_getCpuFamily(void)917 android_getCpuFamily(void)
918 {
919     pthread_once(&g_once, android_cpuInit);
920     return g_cpuFamily;
921 }
922 
923 
924 uint64_t
android_getCpuFeatures(void)925 android_getCpuFeatures(void)
926 {
927     pthread_once(&g_once, android_cpuInit);
928     return g_cpuFeatures;
929 }
930 
931 
932 int
android_getCpuCount(void)933 android_getCpuCount(void)
934 {
935     pthread_once(&g_once, android_cpuInit);
936     return g_cpuCount;
937 }
938 
939 static void
android_cpuInitDummy(void)940 android_cpuInitDummy(void)
941 {
942     g_inited = 1;
943 }
944 
945 int
android_setCpu(int cpu_count,uint64_t cpu_features)946 android_setCpu(int cpu_count, uint64_t cpu_features)
947 {
948     /* Fail if the library was already initialized. */
949     if (g_inited)
950         return 0;
951 
952     android_cpuInitFamily();
953     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
954     g_cpuFeatures = cpu_features;
955     pthread_once(&g_once, android_cpuInitDummy);
956 
957     return 1;
958 }
959 
960 #ifdef __arm__
961 uint32_t
android_getCpuIdArm(void)962 android_getCpuIdArm(void)
963 {
964     pthread_once(&g_once, android_cpuInit);
965     return g_cpuIdArm;
966 }
967 
968 int
android_setCpuArm(int cpu_count,uint64_t cpu_features,uint32_t cpu_id)969 android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
970 {
971     if (!android_setCpu(cpu_count, cpu_features))
972         return 0;
973 
974     g_cpuIdArm = cpu_id;
975     return 1;
976 }
977 #endif  /* __arm__ */
978 
979 /*
980  * Technical note: Making sense of ARM's FPU architecture versions.
981  *
982  * FPA was ARM's first attempt at an FPU architecture. There is no Android
983  * device that actually uses it since this technology was already obsolete
984  * when the project started. If you see references to FPA instructions
985  * somewhere, you can be sure that this doesn't apply to Android at all.
986  *
987  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
988  * new versions / additions to it. ARM considers this obsolete right now,
989  * and no known Android device implements it either.
990  *
991  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
992  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
993  * supporting the 'armeabi' ABI doesn't necessarily support these.
994  *
995  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
996  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
997  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
998  * that it provides 16 double-precision FPU registers (d0-d15) and 32
999  * single-precision ones (s0-s31) which happen to be mapped to the same
1000  * register banks.
1001  *
1002  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1003  * additional double precision registers (d16-d31). Note that there are
1004  * still only 32 single precision registers.
1005  *
1006  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1007  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1008  * are not supported by Android. Note that it is not compatible with VFPv2.
1009  *
1010  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1011  *       depending on context. For example GCC uses it for VFPv3-D32, but
1012  *       the Linux kernel code uses it for VFPv3-D16 (especially in
1013  *       /proc/cpuinfo). Always try to use the full designation when
1014  *       possible.
1015  *
1016  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1017  * instructions to perform parallel computations on vectors of 8, 16,
1018  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1019  * NEON registers are also mapped to the same register banks.
1020  *
1021  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1022  * perform fused multiply-accumulate on VFP registers, as well as
1023  * half-precision (16-bit) conversion operations.
1024  *
1025  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1026  * registers.
1027  *
1028  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1029  * multiply-accumulate instructions that work on the NEON registers.
1030  *
1031  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1032  *       depending on context.
1033  *
1034  * The following information was determined by scanning the binutils-2.22
1035  * sources:
1036  *
1037  * Basic VFP instruction subsets:
1038  *
1039  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1040  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1041  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1042  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1043  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1044  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1045  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1046  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1047  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1048  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1049  *
1050  * FPU types (excluding NEON)
1051  *
1052  * FPU_VFP_V1xD (EXT_V1xD)
1053  *    |
1054  *    +--------------------------+
1055  *    |                          |
1056  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1057  *    |                          |
1058  *    |                          |
1059  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1060  *    |
1061  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1062  *    |
1063  *    +--------------------------+
1064  *    |                          |
1065  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1066  *    |                          |
1067  *    |                      FPU_VFP_V4 (+EXT_D32)
1068  *    |
1069  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1070  *
1071  * VFP architectures:
1072  *
1073  * ARCH_VFP_V1xD  (EXT_V1xD)
1074  *   |
1075  *   +------------------+
1076  *   |                  |
1077  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1078  *   |                  |
1079  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1080  *   |                  |
1081  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1082  *   |
1083  * ARCH_VFP_V1 (+EXT_V1)
1084  *   |
1085  * ARCH_VFP_V2 (+EXT_V2)
1086  *   |
1087  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1088  *   |
1089  *   +-------------------+
1090  *   |                   |
1091  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1092  *   |
1093  *   +-------------------+
1094  *   |                   |
1095  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1096  *   |                   |
1097  *   |         ARCH_VFP_V4 (+EXT_D32)
1098  *   |                   |
1099  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1100  *   |
1101  * ARCH_VFP_V3 (+EXT_D32)
1102  *   |
1103  *   +-------------------+
1104  *   |                   |
1105  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1106  *   |
1107  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1108  *   |
1109  * ARCH_NEON_FP16 (+EXT_FP16)
1110  *
1111  * -fpu=<name> values and their correspondance with FPU architectures above:
1112  *
1113  *   {"vfp",               FPU_ARCH_VFP_V2},
1114  *   {"vfp9",              FPU_ARCH_VFP_V2},
1115  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1116  *   {"vfp10",             FPU_ARCH_VFP_V2},
1117  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1118  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1119  *   {"vfpv2",             FPU_ARCH_VFP_V2},
1120  *   {"vfpv3",             FPU_ARCH_VFP_V3},
1121  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1122  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1123  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1124  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1125  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1126  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1127  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1128  *   {"vfpv4",             FPU_ARCH_VFP_V4},
1129  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1130  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1131  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1132  *
1133  *
1134  * Simplified diagram that only includes FPUs supported by Android:
1135  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1136  * all others are optional and must be probed at runtime.
1137  *
1138  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1139  *   |
1140  *   +-------------------+
1141  *   |                   |
1142  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1143  *   |
1144  *   +-------------------+
1145  *   |                   |
1146  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1147  *   |                   |
1148  *   |         ARCH_VFP_V4 (+EXT_D32)
1149  *   |                   |
1150  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1151  *   |
1152  * ARCH_VFP_V3 (+EXT_D32)
1153  *   |
1154  *   +-------------------+
1155  *   |                   |
1156  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1157  *   |
1158  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1159  *   |
1160  * ARCH_NEON_FP16 (+EXT_FP16)
1161  *
1162  */
1163 
1164 #endif // defined(__le32__) || defined(__le64__)
1165