1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <inttypes.h>
18 
19 #define LOG_TAG "MonoPipe"
20 //#define LOG_NDEBUG 0
21 
22 #include <common_time/cc_helper.h>
23 #include <cutils/atomic.h>
24 #include <cutils/compiler.h>
25 #include <utils/LinearTransform.h>
26 #include <utils/Log.h>
27 #include <utils/Trace.h>
28 #include <media/AudioBufferProvider.h>
29 #include <media/nbaio/MonoPipe.h>
30 #include <media/nbaio/roundup.h>
31 
32 
33 namespace android {
34 
35 static uint64_t cacheN; // output of CCHelper::getLocalFreq()
36 static bool cacheValid; // whether cacheN is valid
37 static pthread_once_t cacheOnceControl = PTHREAD_ONCE_INIT;
38 
cacheOnceInit()39 static void cacheOnceInit()
40 {
41     CCHelper tmpHelper;
42     status_t res;
43     if (OK != (res = tmpHelper.getLocalFreq(&cacheN))) {
44         ALOGE("Failed to fetch local time frequency when constructing a"
45               " MonoPipe (res = %d).  getNextWriteTimestamp calls will be"
46               " non-functional", res);
47         return;
48     }
49     cacheValid = true;
50 }
51 
MonoPipe(size_t reqFrames,const NBAIO_Format & format,bool writeCanBlock)52 MonoPipe::MonoPipe(size_t reqFrames, const NBAIO_Format& format, bool writeCanBlock) :
53         NBAIO_Sink(format),
54         mUpdateSeq(0),
55         mReqFrames(reqFrames),
56         mMaxFrames(roundup(reqFrames)),
57         mBuffer(malloc(mMaxFrames * Format_frameSize(format))),
58         mFront(0),
59         mRear(0),
60         mWriteTsValid(false),
61         // mWriteTs
62         mSetpoint((reqFrames * 11) / 16),
63         mWriteCanBlock(writeCanBlock),
64         mIsShutdown(false),
65         // mTimestampShared
66         mTimestampMutator(&mTimestampShared),
67         mTimestampObserver(&mTimestampShared)
68 {
69     uint64_t N, D;
70 
71     mNextRdPTS = AudioBufferProvider::kInvalidPTS;
72 
73     mSamplesToLocalTime.a_zero = 0;
74     mSamplesToLocalTime.b_zero = 0;
75     mSamplesToLocalTime.a_to_b_numer = 0;
76     mSamplesToLocalTime.a_to_b_denom = 0;
77 
78     D = Format_sampleRate(format);
79 
80     (void) pthread_once(&cacheOnceControl, cacheOnceInit);
81     if (!cacheValid) {
82         // log has already been done
83         return;
84     }
85     N = cacheN;
86 
87     LinearTransform::reduce(&N, &D);
88     static const uint64_t kSignedHiBitsMask   = ~(0x7FFFFFFFull);
89     static const uint64_t kUnsignedHiBitsMask = ~(0xFFFFFFFFull);
90     if ((N & kSignedHiBitsMask) || (D & kUnsignedHiBitsMask)) {
91         ALOGE("Cannot reduce sample rate to local clock frequency ratio to fit"
92               " in a 32/32 bit rational.  (max reduction is 0x%016" PRIx64 "/0x%016" PRIx64
93               ").  getNextWriteTimestamp calls will be non-functional", N, D);
94         return;
95     }
96 
97     mSamplesToLocalTime.a_to_b_numer = static_cast<int32_t>(N);
98     mSamplesToLocalTime.a_to_b_denom = static_cast<uint32_t>(D);
99 }
100 
~MonoPipe()101 MonoPipe::~MonoPipe()
102 {
103     free(mBuffer);
104 }
105 
availableToWrite() const106 ssize_t MonoPipe::availableToWrite() const
107 {
108     if (CC_UNLIKELY(!mNegotiated)) {
109         return NEGOTIATE;
110     }
111     // uses mMaxFrames not mReqFrames, so allows "over-filling" the pipe beyond requested limit
112     ssize_t ret = mMaxFrames - (mRear - android_atomic_acquire_load(&mFront));
113     ALOG_ASSERT((0 <= ret) && (ret <= mMaxFrames));
114     return ret;
115 }
116 
write(const void * buffer,size_t count)117 ssize_t MonoPipe::write(const void *buffer, size_t count)
118 {
119     if (CC_UNLIKELY(!mNegotiated)) {
120         return NEGOTIATE;
121     }
122     size_t totalFramesWritten = 0;
123     while (count > 0) {
124         // can't return a negative value, as we already checked for !mNegotiated
125         size_t avail = availableToWrite();
126         size_t written = avail;
127         if (CC_LIKELY(written > count)) {
128             written = count;
129         }
130         size_t rear = mRear & (mMaxFrames - 1);
131         size_t part1 = mMaxFrames - rear;
132         if (part1 > written) {
133             part1 = written;
134         }
135         if (CC_LIKELY(part1 > 0)) {
136             memcpy((char *) mBuffer + (rear * mFrameSize), buffer, part1 * mFrameSize);
137             if (CC_UNLIKELY(rear + part1 == mMaxFrames)) {
138                 size_t part2 = written - part1;
139                 if (CC_LIKELY(part2 > 0)) {
140                     memcpy(mBuffer, (char *) buffer + (part1 * mFrameSize), part2 * mFrameSize);
141                 }
142             }
143             android_atomic_release_store(written + mRear, &mRear);
144             totalFramesWritten += written;
145         }
146         if (!mWriteCanBlock || mIsShutdown) {
147             break;
148         }
149         count -= written;
150         buffer = (char *) buffer + (written * mFrameSize);
151         // Simulate blocking I/O by sleeping at different rates, depending on a throttle.
152         // The throttle tries to keep the mean pipe depth near the setpoint, with a slight jitter.
153         uint32_t ns;
154         if (written > 0) {
155             size_t filled = (mMaxFrames - avail) + written;
156             // FIXME cache these values to avoid re-computation
157             if (filled <= mSetpoint / 2) {
158                 // pipe is (nearly) empty, fill quickly
159                 ns = written * ( 500000000 / Format_sampleRate(mFormat));
160             } else if (filled <= (mSetpoint * 3) / 4) {
161                 // pipe is below setpoint, fill at slightly faster rate
162                 ns = written * ( 750000000 / Format_sampleRate(mFormat));
163             } else if (filled <= (mSetpoint * 5) / 4) {
164                 // pipe is at setpoint, fill at nominal rate
165                 ns = written * (1000000000 / Format_sampleRate(mFormat));
166             } else if (filled <= (mSetpoint * 3) / 2) {
167                 // pipe is above setpoint, fill at slightly slower rate
168                 ns = written * (1150000000 / Format_sampleRate(mFormat));
169             } else if (filled <= (mSetpoint * 7) / 4) {
170                 // pipe is overflowing, fill slowly
171                 ns = written * (1350000000 / Format_sampleRate(mFormat));
172             } else {
173                 // pipe is severely overflowing
174                 ns = written * (1750000000 / Format_sampleRate(mFormat));
175             }
176         } else {
177             ns = count * (1350000000 / Format_sampleRate(mFormat));
178         }
179         if (ns > 999999999) {
180             ns = 999999999;
181         }
182         struct timespec nowTs;
183         bool nowTsValid = !clock_gettime(CLOCK_MONOTONIC, &nowTs);
184         // deduct the elapsed time since previous write() completed
185         if (nowTsValid && mWriteTsValid) {
186             time_t sec = nowTs.tv_sec - mWriteTs.tv_sec;
187             long nsec = nowTs.tv_nsec - mWriteTs.tv_nsec;
188             ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
189                     "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
190                     mWriteTs.tv_sec, mWriteTs.tv_nsec, nowTs.tv_sec, nowTs.tv_nsec);
191             if (nsec < 0) {
192                 --sec;
193                 nsec += 1000000000;
194             }
195             if (sec == 0) {
196                 if ((long) ns > nsec) {
197                     ns -= nsec;
198                 } else {
199                     ns = 0;
200                 }
201             }
202         }
203         if (ns > 0) {
204             const struct timespec req = {0, static_cast<long>(ns)};
205             nanosleep(&req, NULL);
206         }
207         // record the time that this write() completed
208         if (nowTsValid) {
209             mWriteTs = nowTs;
210             if ((mWriteTs.tv_nsec += ns) >= 1000000000) {
211                 mWriteTs.tv_nsec -= 1000000000;
212                 ++mWriteTs.tv_sec;
213             }
214         }
215         mWriteTsValid = nowTsValid;
216     }
217     mFramesWritten += totalFramesWritten;
218     return totalFramesWritten;
219 }
220 
setAvgFrames(size_t setpoint)221 void MonoPipe::setAvgFrames(size_t setpoint)
222 {
223     mSetpoint = setpoint;
224 }
225 
getNextWriteTimestamp(int64_t * timestamp)226 status_t MonoPipe::getNextWriteTimestamp(int64_t *timestamp)
227 {
228     int32_t front;
229 
230     ALOG_ASSERT(NULL != timestamp);
231 
232     if (0 == mSamplesToLocalTime.a_to_b_denom)
233         return UNKNOWN_ERROR;
234 
235     observeFrontAndNRPTS(&front, timestamp);
236 
237     if (AudioBufferProvider::kInvalidPTS != *timestamp) {
238         // If we have a valid read-pointer and next read timestamp pair, then
239         // use the current value of the write pointer to figure out how many
240         // frames are in the buffer, and offset the timestamp by that amt.  Then
241         // next time we write to the MonoPipe, the data will hit the speakers at
242         // the next read timestamp plus the current amount of data in the
243         // MonoPipe.
244         size_t pendingFrames = (mRear - front) & (mMaxFrames - 1);
245         *timestamp = offsetTimestampByAudioFrames(*timestamp, pendingFrames);
246     }
247 
248     return OK;
249 }
250 
updateFrontAndNRPTS(int32_t newFront,int64_t newNextRdPTS)251 void MonoPipe::updateFrontAndNRPTS(int32_t newFront, int64_t newNextRdPTS)
252 {
253     // Set the MSB of the update sequence number to indicate that there is a
254     // multi-variable update in progress.  Use an atomic store with an "acquire"
255     // barrier to make sure that the next operations cannot be re-ordered and
256     // take place before the change to mUpdateSeq is commited..
257     int32_t tmp = mUpdateSeq | 0x80000000;
258     android_atomic_acquire_store(tmp, &mUpdateSeq);
259 
260     // Update mFront and mNextRdPTS
261     mFront = newFront;
262     mNextRdPTS = newNextRdPTS;
263 
264     // We are finished with the update.  Compute the next sequnce number (which
265     // should be the old sequence number, plus one, and with the MSB cleared)
266     // and then store it in mUpdateSeq using an atomic store with a "release"
267     // barrier so our update operations cannot be re-ordered past the update of
268     // the sequence number.
269     tmp = (tmp + 1) & 0x7FFFFFFF;
270     android_atomic_release_store(tmp, &mUpdateSeq);
271 }
272 
observeFrontAndNRPTS(int32_t * outFront,int64_t * outNextRdPTS)273 void MonoPipe::observeFrontAndNRPTS(int32_t *outFront, int64_t *outNextRdPTS)
274 {
275     // Perform an atomic observation of mFront and mNextRdPTS.  Basically,
276     // atomically observe the sequence number, then observer the variables, then
277     // atomically observe the sequence number again.  If the two observations of
278     // the sequence number match, and the update-in-progress bit was not set,
279     // then we know we have a successful atomic observation.  Otherwise, we loop
280     // around and try again.
281     //
282     // Note, it is very important that the observer be a lower priority thread
283     // than the updater.  If the updater is lower than the observer, or they are
284     // the same priority and running with SCHED_FIFO (implying that quantum
285     // based premption is disabled) then we run the risk of deadlock.
286     int32_t seqOne, seqTwo;
287 
288     do {
289         seqOne        = android_atomic_acquire_load(&mUpdateSeq);
290         *outFront     = mFront;
291         *outNextRdPTS = mNextRdPTS;
292         seqTwo        = android_atomic_release_load(&mUpdateSeq);
293     } while ((seqOne != seqTwo) || (seqOne & 0x80000000));
294 }
295 
offsetTimestampByAudioFrames(int64_t ts,size_t audFrames)296 int64_t MonoPipe::offsetTimestampByAudioFrames(int64_t ts, size_t audFrames)
297 {
298     if (0 == mSamplesToLocalTime.a_to_b_denom)
299         return AudioBufferProvider::kInvalidPTS;
300 
301     if (ts == AudioBufferProvider::kInvalidPTS)
302         return AudioBufferProvider::kInvalidPTS;
303 
304     int64_t frame_lt_duration;
305     if (!mSamplesToLocalTime.doForwardTransform(audFrames,
306                                                 &frame_lt_duration)) {
307         // This should never fail, but if there is a bug which is causing it
308         // to fail, this message would probably end up flooding the logs
309         // because the conversion would probably fail forever.  Log the
310         // error, but then zero out the ratio in the linear transform so
311         // that we don't try to do any conversions from now on.  This
312         // MonoPipe's getNextWriteTimestamp is now broken for good.
313         ALOGE("Overflow when attempting to convert %zu audio frames to"
314               " duration in local time.  getNextWriteTimestamp will fail from"
315               " now on.", audFrames);
316         mSamplesToLocalTime.a_to_b_numer = 0;
317         mSamplesToLocalTime.a_to_b_denom = 0;
318         return AudioBufferProvider::kInvalidPTS;
319     }
320 
321     return ts + frame_lt_duration;
322 }
323 
shutdown(bool newState)324 void MonoPipe::shutdown(bool newState)
325 {
326     mIsShutdown = newState;
327 }
328 
isShutdown()329 bool MonoPipe::isShutdown()
330 {
331     return mIsShutdown;
332 }
333 
getTimestamp(AudioTimestamp & timestamp)334 status_t MonoPipe::getTimestamp(AudioTimestamp& timestamp)
335 {
336     if (mTimestampObserver.poll(timestamp)) {
337         return OK;
338     }
339     return INVALID_OPERATION;
340 }
341 
342 }   // namespace android
343