1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "OpenGLRenderer"
18
19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20 #define CASTER_Z_CAP_RATIO 0.95f
21
22 // When there is no umbra, then just fake the umbra using
23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
25
26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27 // That is consider pretty fine tessllated polygon so far.
28 // This is just to prevent using too much some memory when edge slicing is not
29 // needed any more.
30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31 /**
32 * Extra vertices for the corner for smoother corner.
33 * Only for outer loop.
34 * Note that we use such extra memory to avoid an extra loop.
35 */
36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37 // Set to 1 if we don't want to have any.
38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39
40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41 // therefore, the maximum number of extra vertices will be twice bigger.
42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43
44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46
47
48 #include <math.h>
49 #include <stdlib.h>
50 #include <utils/Log.h>
51
52 #include "ShadowTessellator.h"
53 #include "SpotShadow.h"
54 #include "Vertex.h"
55 #include "utils/MathUtils.h"
56
57 // TODO: After we settle down the new algorithm, we can remove the old one and
58 // its utility functions.
59 // Right now, we still need to keep it for comparison purpose and future expansion.
60 namespace android {
61 namespace uirenderer {
62
63 static const float EPSILON = 1e-7;
64
65 /**
66 * For each polygon's vertex, the light center will project it to the receiver
67 * as one of the outline vertex.
68 * For each outline vertex, we need to store the position and normal.
69 * Normal here is defined against the edge by the current vertex and the next vertex.
70 */
71 struct OutlineData {
72 Vector2 position;
73 Vector2 normal;
74 float radius;
75 };
76
77 /**
78 * For each vertex, we need to keep track of its angle, whether it is penumbra or
79 * umbra, and its corresponding vertex index.
80 */
81 struct SpotShadow::VertexAngleData {
82 // The angle to the vertex from the centroid.
83 float mAngle;
84 // True is the vertex comes from penumbra, otherwise it comes from umbra.
85 bool mIsPenumbra;
86 // The index of the vertex described by this data.
87 int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData88 void set(float angle, bool isPenumbra, int index) {
89 mAngle = angle;
90 mIsPenumbra = isPenumbra;
91 mVertexIndex = index;
92 }
93 };
94
95 /**
96 * Calculate the angle between and x and a y coordinate.
97 * The atan2 range from -PI to PI.
98 */
angle(const Vector2 & point,const Vector2 & center)99 static float angle(const Vector2& point, const Vector2& center) {
100 return atan2(point.y - center.y, point.x - center.x);
101 }
102
103 /**
104 * Calculate the intersection of a ray with the line segment defined by two points.
105 *
106 * Returns a negative value in error conditions.
107
108 * @param rayOrigin The start of the ray
109 * @param dx The x vector of the ray
110 * @param dy The y vector of the ray
111 * @param p1 The first point defining the line segment
112 * @param p2 The second point defining the line segment
113 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
114 */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)115 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
116 const Vector2& p1, const Vector2& p2) {
117 // The math below is derived from solving this formula, basically the
118 // intersection point should stay on both the ray and the edge of (p1, p2).
119 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120
121 float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
122 if (divisor == 0) return -1.0f; // error, invalid divisor
123
124 #if DEBUG_SHADOW
125 float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
126 if (interpVal < 0 || interpVal > 1) {
127 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
128 }
129 #endif
130
131 float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
132 rayOrigin.x * (p2.y - p1.y)) / divisor;
133
134 return distance; // may be negative in error cases
135 }
136
137 /**
138 * Sort points by their X coordinates
139 *
140 * @param points the points as a Vector2 array.
141 * @param pointsLength the number of vertices of the polygon.
142 */
xsort(Vector2 * points,int pointsLength)143 void SpotShadow::xsort(Vector2* points, int pointsLength) {
144 quicksortX(points, 0, pointsLength - 1);
145 }
146
147 /**
148 * compute the convex hull of a collection of Points
149 *
150 * @param points the points as a Vector2 array.
151 * @param pointsLength the number of vertices of the polygon.
152 * @param retPoly pre allocated array of floats to put the vertices
153 * @return the number of points in the polygon 0 if no intersection
154 */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)155 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
156 xsort(points, pointsLength);
157 int n = pointsLength;
158 Vector2 lUpper[n];
159 lUpper[0] = points[0];
160 lUpper[1] = points[1];
161
162 int lUpperSize = 2;
163
164 for (int i = 2; i < n; i++) {
165 lUpper[lUpperSize] = points[i];
166 lUpperSize++;
167
168 while (lUpperSize > 2 && !ccw(
169 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
172 // Remove the middle point of the three last
173 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
174 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
175 lUpperSize--;
176 }
177 }
178
179 Vector2 lLower[n];
180 lLower[0] = points[n - 1];
181 lLower[1] = points[n - 2];
182
183 int lLowerSize = 2;
184
185 for (int i = n - 3; i >= 0; i--) {
186 lLower[lLowerSize] = points[i];
187 lLowerSize++;
188
189 while (lLowerSize > 2 && !ccw(
190 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
193 // Remove the middle point of the three last
194 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
195 lLowerSize--;
196 }
197 }
198
199 // output points in CW ordering
200 const int total = lUpperSize + lLowerSize - 2;
201 int outIndex = total - 1;
202 for (int i = 0; i < lUpperSize; i++) {
203 retPoly[outIndex] = lUpper[i];
204 outIndex--;
205 }
206
207 for (int i = 1; i < lLowerSize - 1; i++) {
208 retPoly[outIndex] = lLower[i];
209 outIndex--;
210 }
211 // TODO: Add test harness which verify that all the points are inside the hull.
212 return total;
213 }
214
215 /**
216 * Test whether the 3 points form a counter clockwise turn.
217 *
218 * @return true if a right hand turn
219 */
ccw(float ax,float ay,float bx,float by,float cx,float cy)220 bool SpotShadow::ccw(float ax, float ay, float bx, float by,
221 float cx, float cy) {
222 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
223 }
224
225 /**
226 * Sort points about a center point
227 *
228 * @param poly The in and out polyogon as a Vector2 array.
229 * @param polyLength The number of vertices of the polygon.
230 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
231 */
sort(Vector2 * poly,int polyLength,const Vector2 & center)232 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
233 quicksortCirc(poly, 0, polyLength - 1, center);
234 }
235
236 /**
237 * Swap points pointed to by i and j
238 */
swap(Vector2 * points,int i,int j)239 void SpotShadow::swap(Vector2* points, int i, int j) {
240 Vector2 temp = points[i];
241 points[i] = points[j];
242 points[j] = temp;
243 }
244
245 /**
246 * quick sort implementation about the center.
247 */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)248 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
249 const Vector2& center) {
250 int i = low, j = high;
251 int p = low + (high - low) / 2;
252 float pivot = angle(points[p], center);
253 while (i <= j) {
254 while (angle(points[i], center) > pivot) {
255 i++;
256 }
257 while (angle(points[j], center) < pivot) {
258 j--;
259 }
260
261 if (i <= j) {
262 swap(points, i, j);
263 i++;
264 j--;
265 }
266 }
267 if (low < j) quicksortCirc(points, low, j, center);
268 if (i < high) quicksortCirc(points, i, high, center);
269 }
270
271 /**
272 * Sort points by x axis
273 *
274 * @param points points to sort
275 * @param low start index
276 * @param high end index
277 */
quicksortX(Vector2 * points,int low,int high)278 void SpotShadow::quicksortX(Vector2* points, int low, int high) {
279 int i = low, j = high;
280 int p = low + (high - low) / 2;
281 float pivot = points[p].x;
282 while (i <= j) {
283 while (points[i].x < pivot) {
284 i++;
285 }
286 while (points[j].x > pivot) {
287 j--;
288 }
289
290 if (i <= j) {
291 swap(points, i, j);
292 i++;
293 j--;
294 }
295 }
296 if (low < j) quicksortX(points, low, j);
297 if (i < high) quicksortX(points, i, high);
298 }
299
300 /**
301 * Test whether a point is inside the polygon.
302 *
303 * @param testPoint the point to test
304 * @param poly the polygon
305 * @return true if the testPoint is inside the poly.
306 */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)307 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
308 const Vector2* poly, int len) {
309 bool c = false;
310 float testx = testPoint.x;
311 float testy = testPoint.y;
312 for (int i = 0, j = len - 1; i < len; j = i++) {
313 float startX = poly[j].x;
314 float startY = poly[j].y;
315 float endX = poly[i].x;
316 float endY = poly[i].y;
317
318 if (((endY > testy) != (startY > testy))
319 && (testx < (startX - endX) * (testy - endY)
320 / (startY - endY) + endX)) {
321 c = !c;
322 }
323 }
324 return c;
325 }
326
327 /**
328 * Make the polygon turn clockwise.
329 *
330 * @param polygon the polygon as a Vector2 array.
331 * @param len the number of points of the polygon
332 */
makeClockwise(Vector2 * polygon,int len)333 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
334 if (polygon == 0 || len == 0) {
335 return;
336 }
337 if (!ShadowTessellator::isClockwise(polygon, len)) {
338 reverse(polygon, len);
339 }
340 }
341
342 /**
343 * Reverse the polygon
344 *
345 * @param polygon the polygon as a Vector2 array
346 * @param len the number of points of the polygon
347 */
reverse(Vector2 * polygon,int len)348 void SpotShadow::reverse(Vector2* polygon, int len) {
349 int n = len / 2;
350 for (int i = 0; i < n; i++) {
351 Vector2 tmp = polygon[i];
352 int k = len - 1 - i;
353 polygon[i] = polygon[k];
354 polygon[k] = tmp;
355 }
356 }
357
358 /**
359 * Compute a horizontal circular polygon about point (x , y , height) of radius
360 * (size)
361 *
362 * @param points number of the points of the output polygon.
363 * @param lightCenter the center of the light.
364 * @param size the light size.
365 * @param ret result polygon.
366 */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)367 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
368 float size, Vector3* ret) {
369 // TODO: Caching all the sin / cos values and store them in a look up table.
370 for (int i = 0; i < points; i++) {
371 float angle = 2 * i * M_PI / points;
372 ret[i].x = cosf(angle) * size + lightCenter.x;
373 ret[i].y = sinf(angle) * size + lightCenter.y;
374 ret[i].z = lightCenter.z;
375 }
376 }
377
378 /**
379 * From light center, project one vertex to the z=0 surface and get the outline.
380 *
381 * @param outline The result which is the outline position.
382 * @param lightCenter The center of light.
383 * @param polyVertex The input polygon's vertex.
384 *
385 * @return float The ratio of (polygon.z / light.z - polygon.z)
386 */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)387 float SpotShadow::projectCasterToOutline(Vector2& outline,
388 const Vector3& lightCenter, const Vector3& polyVertex) {
389 float lightToPolyZ = lightCenter.z - polyVertex.z;
390 float ratioZ = CASTER_Z_CAP_RATIO;
391 if (lightToPolyZ != 0) {
392 // If any caster's vertex is almost above the light, we just keep it as 95%
393 // of the height of the light.
394 ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
395 }
396
397 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
398 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
399 return ratioZ;
400 }
401
402 /**
403 * Generate the shadow spot light of shape lightPoly and a object poly
404 *
405 * @param isCasterOpaque whether the caster is opaque
406 * @param lightCenter the center of the light
407 * @param lightSize the radius of the light
408 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
409 * @param polyLength number of vertexes of the occluding polygon
410 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
411 * empty strip if error.
412 */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)413 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
414 float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
415 VertexBuffer& shadowTriangleStrip) {
416 if (CC_UNLIKELY(lightCenter.z <= 0)) {
417 ALOGW("Relative Light Z is not positive. No spot shadow!");
418 return;
419 }
420 if (CC_UNLIKELY(polyLength < 3)) {
421 #if DEBUG_SHADOW
422 ALOGW("Invalid polygon length. No spot shadow!");
423 #endif
424 return;
425 }
426 OutlineData outlineData[polyLength];
427 Vector2 outlineCentroid;
428 // Calculate the projected outline for each polygon's vertices from the light center.
429 //
430 // O Light
431 // /
432 // /
433 // . Polygon vertex
434 // /
435 // /
436 // O Outline vertices
437 //
438 // Ratio = (Poly - Outline) / (Light - Poly)
439 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
440 // Outline's radius / Light's radius = Ratio
441
442 // Compute the last outline vertex to make sure we can get the normal and outline
443 // in one single loop.
444 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
445 poly[polyLength - 1]);
446
447 // Take the outline's polygon, calculate the normal for each outline edge.
448 int currentNormalIndex = polyLength - 1;
449 int nextNormalIndex = 0;
450
451 for (int i = 0; i < polyLength; i++) {
452 float ratioZ = projectCasterToOutline(outlineData[i].position,
453 lightCenter, poly[i]);
454 outlineData[i].radius = ratioZ * lightSize;
455
456 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
457 outlineData[currentNormalIndex].position,
458 outlineData[nextNormalIndex].position);
459 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
460 nextNormalIndex++;
461 }
462
463 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
464
465 int penumbraIndex = 0;
466 // Then each polygon's vertex produce at minmal 2 penumbra vertices.
467 // Since the size can be dynamic here, we keep track of the size and update
468 // the real size at the end.
469 int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
470 Vector2 penumbra[allocatedPenumbraLength];
471 int totalExtraCornerSliceNumber = 0;
472
473 Vector2 umbra[polyLength];
474
475 // When centroid is covered by all circles from outline, then we consider
476 // the umbra is invalid, and we will tune down the shadow strength.
477 bool hasValidUmbra = true;
478 // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
479 float minRaitoVI = FLT_MAX;
480
481 for (int i = 0; i < polyLength; i++) {
482 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
483 // There is no guarantee that the penumbra is still convex, but for
484 // each outline vertex, it will connect to all its corresponding penumbra vertices as
485 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
486 //
487 // Penumbra Vertices marked as Pi
488 // Outline Vertices marked as Vi
489 // (P3)
490 // (P2) | ' (P4)
491 // (P1)' | | '
492 // ' | | '
493 // (P0) ------------------------------------------------(P5)
494 // | (V0) |(V1)
495 // | |
496 // | |
497 // | |
498 // | |
499 // | |
500 // | |
501 // | |
502 // | |
503 // (V3)-----------------------------------(V2)
504 int preNormalIndex = (i + polyLength - 1) % polyLength;
505
506 const Vector2& previousNormal = outlineData[preNormalIndex].normal;
507 const Vector2& currentNormal = outlineData[i].normal;
508
509 // Depending on how roundness we want for each corner, we can subdivide
510 // further here and/or introduce some heuristic to decide how much the
511 // subdivision should be.
512 int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
513 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
514
515 int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
516 totalExtraCornerSliceNumber += currentExtraSliceNumber;
517 #if DEBUG_SHADOW
518 ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
519 ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
520 ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
521 #endif
522 if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
523 currentCornerSliceNumber = 1;
524 }
525 for (int k = 0; k <= currentCornerSliceNumber; k++) {
526 Vector2 avgNormal =
527 (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
528 currentCornerSliceNumber;
529 avgNormal.normalize();
530 penumbra[penumbraIndex++] = outlineData[i].position +
531 avgNormal * outlineData[i].radius;
532 }
533
534
535 // Compute the umbra by the intersection from the outline's centroid!
536 //
537 // (V) ------------------------------------
538 // | ' |
539 // | ' |
540 // | ' (I) |
541 // | ' |
542 // | ' (C) |
543 // | |
544 // | |
545 // | |
546 // | |
547 // ------------------------------------
548 //
549 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
550 // intersect with the outline vertex's circle at point (I).
551 // Now, ratioVI = VI / VC, ratioIC = IC / VC
552 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
553 //
554 // When all of the outline circles cover the the outline centroid, (like I is
555 // on the other side of C), there is no real umbra any more, so we just fake
556 // a small area around the centroid as the umbra, and tune down the spot
557 // shadow's umbra strength to simulate the effect the whole shadow will
558 // become lighter in this case.
559 // The ratio can be simulated by using the inverse of maximum of ratioVI for
560 // all (V).
561 float distOutline = (outlineData[i].position - outlineCentroid).length();
562 if (CC_UNLIKELY(distOutline == 0)) {
563 // If the outline has 0 area, then there is no spot shadow anyway.
564 ALOGW("Outline has 0 area, no spot shadow!");
565 return;
566 }
567
568 float ratioVI = outlineData[i].radius / distOutline;
569 minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
570 if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
571 ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
572 }
573 // When we know we don't have valid umbra, don't bother to compute the
574 // values below. But we can't skip the loop yet since we want to know the
575 // maximum ratio.
576 float ratioIC = 1 - ratioVI;
577 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
578 }
579
580 hasValidUmbra = (minRaitoVI <= 1.0);
581 float shadowStrengthScale = 1.0;
582 if (!hasValidUmbra) {
583 #if DEBUG_SHADOW
584 ALOGW("The object is too close to the light or too small, no real umbra!");
585 #endif
586 for (int i = 0; i < polyLength; i++) {
587 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
588 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
589 }
590 shadowStrengthScale = 1.0 / minRaitoVI;
591 }
592
593 int penumbraLength = penumbraIndex;
594 int umbraLength = polyLength;
595
596 #if DEBUG_SHADOW
597 ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
598 dumpPolygon(poly, polyLength, "input poly");
599 dumpPolygon(penumbra, penumbraLength, "penumbra");
600 dumpPolygon(umbra, umbraLength, "umbra");
601 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
602 #endif
603
604 // The penumbra and umbra needs to be in convex shape to keep consistency
605 // and quality.
606 // Since we are still shooting rays to penumbra, it needs to be convex.
607 // Umbra can be represented as a fan from the centroid, but visually umbra
608 // looks nicer when it is convex.
609 Vector2 finalUmbra[umbraLength];
610 Vector2 finalPenumbra[penumbraLength];
611 int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
612 int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
613
614 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
615 finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
616 shadowTriangleStrip, outlineCentroid);
617
618 }
619
620 /**
621 * This is only for experimental purpose.
622 * After intersections are calculated, we could smooth the polygon if needed.
623 * So far, we don't think it is more appealing yet.
624 *
625 * @param level The level of smoothness.
626 * @param rays The total number of rays.
627 * @param rayDist (In and Out) The distance for each ray.
628 *
629 */
smoothPolygon(int level,int rays,float * rayDist)630 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
631 for (int k = 0; k < level; k++) {
632 for (int i = 0; i < rays; i++) {
633 float p1 = rayDist[(rays - 1 + i) % rays];
634 float p2 = rayDist[i];
635 float p3 = rayDist[(i + 1) % rays];
636 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
637 }
638 }
639 }
640
641 // Index pair is meant for storing the tessellation information for the penumbra
642 // area. One index must come from exterior tangent of the circles, the other one
643 // must come from the interior tangent of the circles.
644 struct IndexPair {
645 int outerIndex;
646 int innerIndex;
647 };
648
649 // For one penumbra vertex, find the cloest umbra vertex and return its index.
getClosestUmbraIndex(const Vector2 & pivot,const Vector2 * polygon,int polygonLength)650 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
651 float minLengthSquared = FLT_MAX;
652 int resultIndex = -1;
653 bool hasDecreased = false;
654 // Starting with some negative offset, assuming both umbra and penumbra are starting
655 // at the same angle, this can help to find the result faster.
656 // Normally, loop 3 times, we can find the closest point.
657 int offset = polygonLength - 2;
658 for (int i = 0; i < polygonLength; i++) {
659 int currentIndex = (i + offset) % polygonLength;
660 float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
661 if (currentLengthSquared < minLengthSquared) {
662 if (minLengthSquared != FLT_MAX) {
663 hasDecreased = true;
664 }
665 minLengthSquared = currentLengthSquared;
666 resultIndex = currentIndex;
667 } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
668 // Early break b/c we have found the closet one and now the length
669 // is increasing again.
670 break;
671 }
672 }
673 if(resultIndex == -1) {
674 ALOGE("resultIndex is -1, the polygon must be invalid!");
675 resultIndex = 0;
676 }
677 return resultIndex;
678 }
679
680 // Allow some epsilon here since the later ray intersection did allow for some small
681 // floating point error, when the intersection point is slightly outside the segment.
sameDirections(bool isPositiveCross,float a,float b)682 inline bool sameDirections(bool isPositiveCross, float a, float b) {
683 if (isPositiveCross) {
684 return a >= -EPSILON && b >= -EPSILON;
685 } else {
686 return a <= EPSILON && b <= EPSILON;
687 }
688 }
689
690 // Find the right polygon edge to shoot the ray at.
findPolyIndex(bool isPositiveCross,int startPolyIndex,const Vector2 & umbraDir,const Vector2 * polyToCentroid,int polyLength)691 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
692 const Vector2* polyToCentroid, int polyLength) {
693 // Make sure we loop with a bound.
694 for (int i = 0; i < polyLength; i++) {
695 int currentIndex = (i + startPolyIndex) % polyLength;
696 const Vector2& currentToCentroid = polyToCentroid[currentIndex];
697 const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
698
699 float currentCrossUmbra = currentToCentroid.cross(umbraDir);
700 float umbraCrossNext = umbraDir.cross(nextToCentroid);
701 if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
702 #if DEBUG_SHADOW
703 ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
704 #endif
705 return currentIndex;
706 }
707 }
708 LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
709 return -1;
710 }
711
712 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
713 // if needed.
genNewPenumbraAndPairWithUmbra(const Vector2 * penumbra,int penumbraLength,const Vector2 * umbra,int umbraLength,Vector2 * newPenumbra,int & newPenumbraIndex,IndexPair * verticesPair,int & verticesPairIndex)714 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
715 const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
716 IndexPair* verticesPair, int& verticesPairIndex) {
717 // In order to keep everything in just one loop, we need to pre-compute the
718 // closest umbra vertex for the last penumbra vertex.
719 int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
720 umbra, umbraLength);
721 for (int i = 0; i < penumbraLength; i++) {
722 const Vector2& currentPenumbraVertex = penumbra[i];
723 // For current penumbra vertex, starting from previousClosestUmbraIndex,
724 // then check the next one until the distance increase.
725 // The last one before the increase is the umbra vertex we need to pair with.
726 float currentLengthSquared =
727 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
728 int currentClosestUmbraIndex = previousClosestUmbraIndex;
729 int indexDelta = 0;
730 for (int j = 1; j < umbraLength; j++) {
731 int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
732 float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
733 if (newLengthSquared > currentLengthSquared) {
734 // currentClosestUmbraIndex is the umbra vertex's index which has
735 // currently found smallest distance, so we can simply break here.
736 break;
737 } else {
738 currentLengthSquared = newLengthSquared;
739 indexDelta++;
740 currentClosestUmbraIndex = newUmbraIndex;
741 }
742 }
743
744 if (indexDelta > 1) {
745 // For those umbra don't have penumbra, generate new penumbra vertices by interpolation.
746 //
747 // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
748 // In the case like below P1 paired with U1 and P2 paired with U5.
749 // U2 to U4 are unpaired umbra vertices.
750 //
751 // P1 P2
752 // | |
753 // U1 U2 U3 U4 U5
754 //
755 // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
756 // to pair with U2 to U4.
757 //
758 // P1 P1.1 P1.2 P1.3 P2
759 // | | | | |
760 // U1 U2 U3 U4 U5
761 //
762 // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
763 // vertex's location.
764 int newPenumbraNumber = indexDelta - 1;
765
766 float accumulatedDeltaLength[newPenumbraNumber];
767 float totalDeltaLength = 0;
768
769 // To save time, cache the previous umbra vertex info outside the loop
770 // and update each loop.
771 Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
772 Vector2 skippedUmbra;
773 // Use umbra data to precompute the length b/t unpaired umbra vertices,
774 // and its ratio against the total length.
775 for (int k = 0; k < indexDelta; k++) {
776 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
777 skippedUmbra = umbra[skippedUmbraIndex];
778 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
779
780 totalDeltaLength += currentDeltaLength;
781 accumulatedDeltaLength[k] = totalDeltaLength;
782
783 previousClosestUmbra = skippedUmbra;
784 }
785
786 const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
787 // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
788 // and pair them togehter.
789 for (int k = 0; k < newPenumbraNumber; k++) {
790 float weightForCurrentPenumbra = 1.0f;
791 if (totalDeltaLength != 0.0f) {
792 weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
793 }
794 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
795
796 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
797 previousPenumbra * weightForPreviousPenumbra;
798
799 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
800 verticesPair[verticesPairIndex++] = {newPenumbraIndex, skippedUmbraIndex};
801 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
802 }
803 }
804 verticesPair[verticesPairIndex++] = {newPenumbraIndex, currentClosestUmbraIndex};
805 newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
806
807 previousClosestUmbraIndex = currentClosestUmbraIndex;
808 }
809 }
810
811 // Precompute all the polygon's vector, return true if the reference cross product is positive.
genPolyToCentroid(const Vector2 * poly2d,int polyLength,const Vector2 & centroid,Vector2 * polyToCentroid)812 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
813 const Vector2& centroid, Vector2* polyToCentroid) {
814 for (int j = 0; j < polyLength; j++) {
815 polyToCentroid[j] = poly2d[j] - centroid;
816 // Normalize these vectors such that we can use epsilon comparison after
817 // computing their cross products with another normalized vector.
818 polyToCentroid[j].normalize();
819 }
820 float refCrossProduct = 0;
821 for (int j = 0; j < polyLength; j++) {
822 refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
823 if (refCrossProduct != 0) {
824 break;
825 }
826 }
827
828 return refCrossProduct > 0;
829 }
830
831 // For one umbra vertex, shoot an ray from centroid to it.
832 // If the ray hit the polygon first, then return the intersection point as the
833 // closer vertex.
getCloserVertex(const Vector2 & umbraVertex,const Vector2 & centroid,const Vector2 * poly2d,int polyLength,const Vector2 * polyToCentroid,bool isPositiveCross,int & previousPolyIndex)834 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
835 const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
836 bool isPositiveCross, int& previousPolyIndex) {
837 Vector2 umbraToCentroid = umbraVertex - centroid;
838 float distanceToUmbra = umbraToCentroid.length();
839 umbraToCentroid = umbraToCentroid / distanceToUmbra;
840
841 // previousPolyIndex is updated for each item such that we can minimize the
842 // looping inside findPolyIndex();
843 previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
844 umbraToCentroid, polyToCentroid, polyLength);
845
846 float dx = umbraToCentroid.x;
847 float dy = umbraToCentroid.y;
848 float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
849 poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
850 if (distanceToIntersectPoly < 0) {
851 distanceToIntersectPoly = 0;
852 }
853
854 // Pick the closer one as the occluded area vertex.
855 Vector2 closerVertex;
856 if (distanceToIntersectPoly < distanceToUmbra) {
857 closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
858 closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
859 } else {
860 closerVertex = umbraVertex;
861 }
862
863 return closerVertex;
864 }
865
866 /**
867 * Generate a triangle strip given two convex polygon
868 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)869 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
870 Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
871 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
872 const Vector2& centroid) {
873 bool hasOccludedUmbraArea = false;
874 Vector2 poly2d[polyLength];
875
876 if (isCasterOpaque) {
877 for (int i = 0; i < polyLength; i++) {
878 poly2d[i].x = poly[i].x;
879 poly2d[i].y = poly[i].y;
880 }
881 // Make sure the centroid is inside the umbra, otherwise, fall back to the
882 // approach as if there is no occluded umbra area.
883 if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
884 hasOccludedUmbraArea = true;
885 }
886 }
887
888 // For each penumbra vertex, find its corresponding closest umbra vertex index.
889 //
890 // Penumbra Vertices marked as Pi
891 // Umbra Vertices marked as Ui
892 // (P3)
893 // (P2) | ' (P4)
894 // (P1)' | | '
895 // ' | | '
896 // (P0) ------------------------------------------------(P5)
897 // | (U0) |(U1)
898 // | |
899 // | |(U2) (P5.1)
900 // | |
901 // | |
902 // | |
903 // | |
904 // | |
905 // | |
906 // (U4)-----------------------------------(U3) (P6)
907 //
908 // At least, like P0, P1, P2, they will find the matching umbra as U0.
909 // If we jump over some umbra vertex without matching penumbra vertex, then
910 // we will generate some new penumbra vertex by interpolation. Like P6 is
911 // matching U3, but U2 is not matched with any penumbra vertex.
912 // So interpolate P5.1 out and match U2.
913 // In this way, every umbra vertex will have a matching penumbra vertex.
914 //
915 // The total pair number can be as high as umbraLength + penumbraLength.
916 const int maxNewPenumbraLength = umbraLength + penumbraLength;
917 IndexPair verticesPair[maxNewPenumbraLength];
918 int verticesPairIndex = 0;
919
920 // Cache all the existing penumbra vertices and newly interpolated vertices into a
921 // a new array.
922 Vector2 newPenumbra[maxNewPenumbraLength];
923 int newPenumbraIndex = 0;
924
925 // For each penumbra vertex, find its closet umbra vertex by comparing the
926 // neighbor umbra vertices.
927 genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
928 newPenumbraIndex, verticesPair, verticesPairIndex);
929 ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
930 ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
931 #if DEBUG_SHADOW
932 for (int i = 0; i < umbraLength; i++) {
933 ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y);
934 }
935 for (int i = 0; i < newPenumbraIndex; i++) {
936 ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
937 }
938 for (int i = 0; i < verticesPairIndex; i++) {
939 ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
940 }
941 #endif
942
943 // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
944 // one has umbraLength, the last one has at most umbraLength.
945 //
946 // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
947 // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
948 // And 2 more for jumping between penumbra to umbra.
949 const int newPenumbraLength = newPenumbraIndex;
950 const int totalVertexCount = newPenumbraLength + umbraLength * 2;
951 const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
952 AlphaVertex* shadowVertices =
953 shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
954 uint16_t* indexBuffer =
955 shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
956 int vertexBufferIndex = 0;
957 int indexBufferIndex = 0;
958
959 // Fill the IB and VB for the penumbra area.
960 for (int i = 0; i < newPenumbraLength; i++) {
961 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
962 newPenumbra[i].y, 0.0f);
963 }
964 for (int i = 0; i < umbraLength; i++) {
965 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
966 M_PI);
967 }
968
969 for (int i = 0; i < verticesPairIndex; i++) {
970 indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
971 // All umbra index need to be offseted by newPenumbraSize.
972 indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
973 }
974 indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
975 indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
976
977 // Now fill the IB and VB for the umbra area.
978 // First duplicated the index from previous strip and the first one for the
979 // degenerated triangles.
980 indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
981 indexBufferIndex++;
982 indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
983 // Save the first VB index for umbra area in order to close the loop.
984 int savedStartIndex = vertexBufferIndex;
985
986 if (hasOccludedUmbraArea) {
987 // Precompute all the polygon's vector, and the reference cross product,
988 // in order to find the right polygon edge for the ray to intersect.
989 Vector2 polyToCentroid[polyLength];
990 bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
991
992 // Because both the umbra and polygon are going in the same direction,
993 // we can save the previous polygon index to make sure we have less polygon
994 // vertex to compute for each ray.
995 int previousPolyIndex = 0;
996 for (int i = 0; i < umbraLength; i++) {
997 // Shoot a ray from centroid to each umbra vertices and pick the one with
998 // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
999 Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
1000 polyToCentroid, isPositiveCross, previousPolyIndex);
1001
1002 // We already stored the umbra vertices, just need to add the occlued umbra's ones.
1003 indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
1004 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1005 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1006 closerVertex.x, closerVertex.y, M_PI);
1007 }
1008 } else {
1009 // If there is no occluded umbra at all, then draw the triangle fan
1010 // starting from the centroid to all umbra vertices.
1011 int lastCentroidIndex = vertexBufferIndex;
1012 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1013 centroid.y, M_PI);
1014 for (int i = 0; i < umbraLength; i++) {
1015 indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
1016 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1017 }
1018 }
1019 // Closing the umbra area triangle's loop here.
1020 indexBuffer[indexBufferIndex++] = newPenumbraLength;
1021 indexBuffer[indexBufferIndex++] = savedStartIndex;
1022
1023 // At the end, update the real index and vertex buffer size.
1024 shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1025 shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1026 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1027 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1028
1029 shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1030 shadowTriangleStrip.computeBounds<AlphaVertex>();
1031 }
1032
1033 #if DEBUG_SHADOW
1034
1035 #define TEST_POINT_NUMBER 128
1036 /**
1037 * Calculate the bounds for generating random test points.
1038 */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)1039 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1040 Vector2& upperBound) {
1041 if (inVector.x < lowerBound.x) {
1042 lowerBound.x = inVector.x;
1043 }
1044
1045 if (inVector.y < lowerBound.y) {
1046 lowerBound.y = inVector.y;
1047 }
1048
1049 if (inVector.x > upperBound.x) {
1050 upperBound.x = inVector.x;
1051 }
1052
1053 if (inVector.y > upperBound.y) {
1054 upperBound.y = inVector.y;
1055 }
1056 }
1057
1058 /**
1059 * For debug purpose, when things go wrong, dump the whole polygon data.
1060 */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1061 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1062 for (int i = 0; i < polyLength; i++) {
1063 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1064 }
1065 }
1066
1067 /**
1068 * For debug purpose, when things go wrong, dump the whole polygon data.
1069 */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1070 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1071 for (int i = 0; i < polyLength; i++) {
1072 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1073 }
1074 }
1075
1076 /**
1077 * Test whether the polygon is convex.
1078 */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1079 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1080 const char* name) {
1081 bool isConvex = true;
1082 for (int i = 0; i < polygonLength; i++) {
1083 Vector2 start = polygon[i];
1084 Vector2 middle = polygon[(i + 1) % polygonLength];
1085 Vector2 end = polygon[(i + 2) % polygonLength];
1086
1087 float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1088 (float(middle.y) - start.y) * (float(end.x) - start.x);
1089 bool isCCWOrCoLinear = (delta >= EPSILON);
1090
1091 if (isCCWOrCoLinear) {
1092 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1093 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1094 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1095 isConvex = false;
1096 break;
1097 }
1098 }
1099 return isConvex;
1100 }
1101
1102 /**
1103 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1104 * Using Marte Carlo method, we generate a random point, and if it is inside the
1105 * intersection, then it must be inside both source polygons.
1106 */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1107 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1108 const Vector2* poly2, int poly2Length,
1109 const Vector2* intersection, int intersectionLength) {
1110 // Find the min and max of x and y.
1111 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1112 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1113 for (int i = 0; i < poly1Length; i++) {
1114 updateBound(poly1[i], lowerBound, upperBound);
1115 }
1116 for (int i = 0; i < poly2Length; i++) {
1117 updateBound(poly2[i], lowerBound, upperBound);
1118 }
1119
1120 bool dumpPoly = false;
1121 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1122 // Generate a random point between minX, minY and maxX, maxY.
1123 float randomX = rand() / float(RAND_MAX);
1124 float randomY = rand() / float(RAND_MAX);
1125
1126 Vector2 testPoint;
1127 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1128 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1129
1130 // If the random point is in both poly 1 and 2, then it must be intersection.
1131 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1132 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1133 dumpPoly = true;
1134 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1135 " not in the poly1",
1136 testPoint.x, testPoint.y);
1137 }
1138
1139 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1140 dumpPoly = true;
1141 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1142 " not in the poly2",
1143 testPoint.x, testPoint.y);
1144 }
1145 }
1146 }
1147
1148 if (dumpPoly) {
1149 dumpPolygon(intersection, intersectionLength, "intersection");
1150 for (int i = 1; i < intersectionLength; i++) {
1151 Vector2 delta = intersection[i] - intersection[i - 1];
1152 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1153 }
1154
1155 dumpPolygon(poly1, poly1Length, "poly 1");
1156 dumpPolygon(poly2, poly2Length, "poly 2");
1157 }
1158 }
1159 #endif
1160
1161 }; // namespace uirenderer
1162 }; // namespace android
1163