1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "OpenGLRenderer"
18
19 /**
20 * Extra vertices for the corner for smoother corner.
21 * Only for outer vertices.
22 * Note that we use such extra memory to avoid an extra loop.
23 */
24 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
25 // Set to 1 if we don't want to have any.
26 #define EXTRA_CORNER_VERTEX_PER_PI 12
27
28 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
29 // therefore, the maximum number of extra vertices will be twice bigger.
30 #define MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * EXTRA_CORNER_VERTEX_PER_PI)
31
32 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
33 #define CORNER_RADIANS_DIVISOR (M_PI / EXTRA_CORNER_VERTEX_PER_PI)
34
35 /**
36 * Extra vertices for the Edge for interpolation artifacts.
37 * Same value for both inner and outer vertices.
38 */
39 #define EXTRA_EDGE_VERTEX_PER_PI 50
40
41 #define MAX_EXTRA_EDGE_VERTEX_NUMBER (2 * EXTRA_EDGE_VERTEX_PER_PI)
42
43 #define EDGE_RADIANS_DIVISOR (M_PI / EXTRA_EDGE_VERTEX_PER_PI)
44
45 /**
46 * Other constants:
47 */
48 // For the edge of the penumbra, the opacity is 0.
49 #define OUTER_OPACITY (0.0f)
50
51 // Once the alpha difference is greater than this threshold, we will allocate extra
52 // edge vertices.
53 // If this is set to negative value, then all the edge will be tessellated.
54 #define ALPHA_THRESHOLD (0.1f / 255.0f)
55
56 #include <math.h>
57 #include <utils/Log.h>
58 #include <utils/Vector.h>
59
60 #include "AmbientShadow.h"
61 #include "ShadowTessellator.h"
62 #include "Vertex.h"
63 #include "utils/MathUtils.h"
64
65 namespace android {
66 namespace uirenderer {
67
68 /**
69 * Local utility functions.
70 */
getNormalFromVertices(const Vector3 * vertices,int current,int next)71 inline Vector2 getNormalFromVertices(const Vector3* vertices, int current, int next) {
72 // Convert from Vector3 to Vector2 first.
73 Vector2 currentVertex = { vertices[current].x, vertices[current].y };
74 Vector2 nextVertex = { vertices[next].x, vertices[next].y };
75
76 return ShadowTessellator::calculateNormal(currentVertex, nextVertex);
77 }
78
79 // The input z value will be converted to be non-negative inside.
80 // The output must be ranged from 0 to 1.
getAlphaFromFactoredZ(float factoredZ)81 inline float getAlphaFromFactoredZ(float factoredZ) {
82 return 1.0 / (1 + MathUtils::max(factoredZ, 0.0f));
83 }
84
getTransformedAlphaFromAlpha(float alpha)85 inline float getTransformedAlphaFromAlpha(float alpha) {
86 return acosf(1.0f - 2.0f * alpha);
87 }
88
89 // The output is ranged from 0 to M_PI.
getTransformedAlphaFromFactoredZ(float factoredZ)90 inline float getTransformedAlphaFromFactoredZ(float factoredZ) {
91 return getTransformedAlphaFromAlpha(getAlphaFromFactoredZ(factoredZ));
92 }
93
getEdgeExtraAndUpdateSpike(Vector2 * currentSpike,const Vector3 & secondVertex,const Vector3 & centroid)94 inline int getEdgeExtraAndUpdateSpike(Vector2* currentSpike,
95 const Vector3& secondVertex, const Vector3& centroid) {
96 Vector2 secondSpike = {secondVertex.x - centroid.x, secondVertex.y - centroid.y};
97 secondSpike.normalize();
98
99 int result = ShadowTessellator::getExtraVertexNumber(secondSpike, *currentSpike,
100 EDGE_RADIANS_DIVISOR);
101 *currentSpike = secondSpike;
102 return result;
103 }
104
105 // Given the caster's vertex count, compute all the buffers size depending on
106 // whether or not the caster is opaque.
computeBufferSize(int * totalVertexCount,int * totalIndexCount,int * totalUmbraCount,int casterVertexCount,bool isCasterOpaque)107 inline void computeBufferSize(int* totalVertexCount, int* totalIndexCount,
108 int* totalUmbraCount, int casterVertexCount, bool isCasterOpaque) {
109 // Compute the size of the vertex buffer.
110 int outerVertexCount = casterVertexCount * 2 + MAX_EXTRA_CORNER_VERTEX_NUMBER +
111 MAX_EXTRA_EDGE_VERTEX_NUMBER;
112 int innerVertexCount = casterVertexCount + MAX_EXTRA_EDGE_VERTEX_NUMBER;
113 *totalVertexCount = outerVertexCount + innerVertexCount;
114
115 // Compute the size of the index buffer.
116 *totalIndexCount = 2 * outerVertexCount + 2;
117
118 // Compute the size of the umber buffer.
119 // For translucent object, keep track of the umbra(inner) vertex in order to draw
120 // inside. We only need to store the index information.
121 *totalUmbraCount = 0;
122 if (!isCasterOpaque) {
123 // Add the centroid if occluder is translucent.
124 *totalVertexCount++;
125 *totalIndexCount += 2 * innerVertexCount + 1;
126 *totalUmbraCount = innerVertexCount;
127 }
128 }
129
needsExtraForEdge(float firstAlpha,float secondAlpha)130 inline bool needsExtraForEdge(float firstAlpha, float secondAlpha) {
131 return abs(firstAlpha - secondAlpha) > ALPHA_THRESHOLD;
132 }
133
134 /**
135 * Calculate the shadows as a triangle strips while alpha value as the
136 * shadow values.
137 *
138 * @param isCasterOpaque Whether the caster is opaque.
139 * @param vertices The shadow caster's polygon, which is represented in a Vector3
140 * array.
141 * @param vertexCount The length of caster's polygon in terms of number of
142 * vertices.
143 * @param centroid3d The centroid of the shadow caster.
144 * @param heightFactor The factor showing the higher the object, the lighter the
145 * shadow.
146 * @param geomFactor The factor scaling the geometry expansion along the normal.
147 *
148 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
149 * triangle strips mode.
150 *
151 * An simple illustration:
152 * For now let's mark the outer vertex as Pi, the inner as Vi, the centroid as C.
153 *
154 * First project the occluder to the Z=0 surface.
155 * Then we got all the inner vertices. And we compute the normal for each edge.
156 * According to the normal, we generate outer vertices. E.g: We generate P1 / P4
157 * as extra corner vertices to make the corner looks round and smoother.
158 *
159 * Due to the fact that the alpha is not linear interpolated along the inner
160 * edge, when the alpha is different, we may add extra vertices such as P2.1, P2.2,
161 * V0.1, V0.2 to avoid the visual artifacts.
162 *
163 * (P3)
164 * (P2) (P2.1) (P2.2) | ' (P4)
165 * (P1)' | | | | '
166 * ' | | | | '
167 * (P0) ------------------------------------------------(P5)
168 * | (V0) (V0.1) (V0.2) |(V1)
169 * | |
170 * | |
171 * | (C) |
172 * | |
173 * | |
174 * | |
175 * | |
176 * (V3)-----------------------------------(V2)
177 */
createAmbientShadow(bool isCasterOpaque,const Vector3 * casterVertices,int casterVertexCount,const Vector3 & centroid3d,float heightFactor,float geomFactor,VertexBuffer & shadowVertexBuffer)178 void AmbientShadow::createAmbientShadow(bool isCasterOpaque,
179 const Vector3* casterVertices, int casterVertexCount, const Vector3& centroid3d,
180 float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) {
181 shadowVertexBuffer.setMode(VertexBuffer::kIndices);
182
183 // In order to computer the outer vertices in one loop, we need pre-compute
184 // the normal by the vertex (n - 1) to vertex 0, and the spike and alpha value
185 // for vertex 0.
186 Vector2 previousNormal = getNormalFromVertices(casterVertices,
187 casterVertexCount - 1 , 0);
188 Vector2 currentSpike = {casterVertices[0].x - centroid3d.x,
189 casterVertices[0].y - centroid3d.y};
190 currentSpike.normalize();
191 float currentAlpha = getAlphaFromFactoredZ(casterVertices[0].z * heightFactor);
192
193 // Preparing all the output data.
194 int totalVertexCount, totalIndexCount, totalUmbraCount;
195 computeBufferSize(&totalVertexCount, &totalIndexCount, &totalUmbraCount,
196 casterVertexCount, isCasterOpaque);
197 AlphaVertex* shadowVertices =
198 shadowVertexBuffer.alloc<AlphaVertex>(totalVertexCount);
199 int vertexBufferIndex = 0;
200 uint16_t* indexBuffer = shadowVertexBuffer.allocIndices<uint16_t>(totalIndexCount);
201 int indexBufferIndex = 0;
202 uint16_t umbraVertices[totalUmbraCount];
203 int umbraIndex = 0;
204
205 for (int i = 0; i < casterVertexCount; i++) {
206 // Corner: first figure out the extra vertices we need for the corner.
207 const Vector3& innerVertex = casterVertices[i];
208 Vector2 currentNormal = getNormalFromVertices(casterVertices, i,
209 (i + 1) % casterVertexCount);
210
211 int extraVerticesNumber = ShadowTessellator::getExtraVertexNumber(currentNormal,
212 previousNormal, CORNER_RADIANS_DIVISOR);
213
214 float expansionDist = innerVertex.z * heightFactor * geomFactor;
215 const int cornerSlicesNumber = extraVerticesNumber + 1; // Minimal as 1.
216 #if DEBUG_SHADOW
217 ALOGD("cornerSlicesNumber is %d", cornerSlicesNumber);
218 #endif
219
220 // Corner: fill the corner Vertex Buffer(VB) and Index Buffer(IB).
221 // We fill the inner vertex first, such that we can fill the index buffer
222 // inside the loop.
223 int currentInnerVertexIndex = vertexBufferIndex;
224 if (!isCasterOpaque) {
225 umbraVertices[umbraIndex++] = vertexBufferIndex;
226 }
227 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], casterVertices[i].x,
228 casterVertices[i].y,
229 getTransformedAlphaFromAlpha(currentAlpha));
230
231 const Vector3& innerStart = casterVertices[i];
232
233 // outerStart is the first outer vertex for this inner vertex.
234 // outerLast is the last outer vertex for this inner vertex.
235 Vector2 outerStart = {0, 0};
236 Vector2 outerLast = {0, 0};
237 // This will create vertices from [0, cornerSlicesNumber] inclusively,
238 // which means minimally 2 vertices even without the extra ones.
239 for (int j = 0; j <= cornerSlicesNumber; j++) {
240 Vector2 averageNormal =
241 previousNormal * (cornerSlicesNumber - j) + currentNormal * j;
242 averageNormal /= cornerSlicesNumber;
243 averageNormal.normalize();
244 Vector2 outerVertex;
245 outerVertex.x = innerVertex.x + averageNormal.x * expansionDist;
246 outerVertex.y = innerVertex.y + averageNormal.y * expansionDist;
247
248 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
249 indexBuffer[indexBufferIndex++] = currentInnerVertexIndex;
250 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], outerVertex.x,
251 outerVertex.y, OUTER_OPACITY);
252
253 if (j == 0) {
254 outerStart = outerVertex;
255 } else if (j == cornerSlicesNumber) {
256 outerLast = outerVertex;
257 }
258 }
259 previousNormal = currentNormal;
260
261 // Edge: first figure out the extra vertices needed for the edge.
262 const Vector3& innerNext = casterVertices[(i + 1) % casterVertexCount];
263 float nextAlpha = getAlphaFromFactoredZ(innerNext.z * heightFactor);
264 if (needsExtraForEdge(currentAlpha, nextAlpha)) {
265 // TODO: See if we can / should cache this outer vertex across the loop.
266 Vector2 outerNext;
267 float expansionDist = innerNext.z * heightFactor * geomFactor;
268 outerNext.x = innerNext.x + currentNormal.x * expansionDist;
269 outerNext.y = innerNext.y + currentNormal.y * expansionDist;
270
271 // Compute the angle and see how many extra points we need.
272 int extraVerticesNumber = getEdgeExtraAndUpdateSpike(¤tSpike,
273 innerNext, centroid3d);
274 #if DEBUG_SHADOW
275 ALOGD("extraVerticesNumber %d for edge %d", extraVerticesNumber, i);
276 #endif
277 // Edge: fill the edge's VB and IB.
278 // This will create vertices pair from [1, extraVerticesNumber - 1].
279 // If there is no extra vertices created here, the edge will be drawn
280 // as just 2 triangles.
281 for (int k = 1; k < extraVerticesNumber; k++) {
282 int startWeight = extraVerticesNumber - k;
283 Vector2 currentOuter =
284 (outerLast * startWeight + outerNext * k) / extraVerticesNumber;
285 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
286 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], currentOuter.x,
287 currentOuter.y, OUTER_OPACITY);
288
289 if (!isCasterOpaque) {
290 umbraVertices[umbraIndex++] = vertexBufferIndex;
291 }
292 Vector3 currentInner =
293 (innerStart * startWeight + innerNext * k) / extraVerticesNumber;
294 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
295 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], currentInner.x,
296 currentInner.y,
297 getTransformedAlphaFromFactoredZ(currentInner.z * heightFactor));
298 }
299 }
300 currentAlpha = nextAlpha;
301 }
302
303 indexBuffer[indexBufferIndex++] = 1;
304 indexBuffer[indexBufferIndex++] = 0;
305
306 if (!isCasterOpaque) {
307 // Add the centroid as the last one in the vertex buffer.
308 float centroidOpacity =
309 getTransformedAlphaFromFactoredZ(centroid3d.z * heightFactor);
310 int centroidIndex = vertexBufferIndex;
311 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid3d.x,
312 centroid3d.y, centroidOpacity);
313
314 for (int i = 0; i < umbraIndex; i++) {
315 // Note that umbraVertices[0] is always 0.
316 // So the start and the end of the umbra are using the "0".
317 // And penumbra ended with 0, so a degenerated triangle is formed b/t
318 // the umbra and penumbra.
319 indexBuffer[indexBufferIndex++] = umbraVertices[i];
320 indexBuffer[indexBufferIndex++] = centroidIndex;
321 }
322 indexBuffer[indexBufferIndex++] = 0;
323 }
324
325 // At the end, update the real index and vertex buffer size.
326 shadowVertexBuffer.updateVertexCount(vertexBufferIndex);
327 shadowVertexBuffer.updateIndexCount(indexBufferIndex);
328 shadowVertexBuffer.computeBounds<AlphaVertex>();
329
330 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Ambient Vertex Buffer");
331 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Ambient Index Buffer");
332 ShadowTessellator::checkOverflow(umbraIndex, totalUmbraCount, "Ambient Umbra Buffer");
333
334 #if DEBUG_SHADOW
335 for (int i = 0; i < vertexBufferIndex; i++) {
336 ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
337 shadowVertices[i].alpha);
338 }
339 for (int i = 0; i < indexBufferIndex; i++) {
340 ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
341 }
342 #endif
343 }
344
345 }; // namespace uirenderer
346 }; // namespace android
347