1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <sys/stat.h>
27 #include <cutils/properties.h>
28 #include <media/AudioParameter.h>
29 #include <media/AudioResamplerPublic.h>
30 #include <utils/Log.h>
31 #include <utils/Trace.h>
32
33 #include <private/media/AudioTrackShared.h>
34 #include <hardware/audio.h>
35 #include <audio_effects/effect_ns.h>
36 #include <audio_effects/effect_aec.h>
37 #include <audio_utils/primitives.h>
38 #include <audio_utils/format.h>
39 #include <audio_utils/minifloat.h>
40
41 // NBAIO implementations
42 #include <media/nbaio/AudioStreamInSource.h>
43 #include <media/nbaio/AudioStreamOutSink.h>
44 #include <media/nbaio/MonoPipe.h>
45 #include <media/nbaio/MonoPipeReader.h>
46 #include <media/nbaio/Pipe.h>
47 #include <media/nbaio/PipeReader.h>
48 #include <media/nbaio/SourceAudioBufferProvider.h>
49
50 #include <powermanager/PowerManager.h>
51
52 #include <common_time/cc_helper.h>
53 #include <common_time/local_clock.h>
54
55 #include "AudioFlinger.h"
56 #include "AudioMixer.h"
57 #include "FastMixer.h"
58 #include "FastCapture.h"
59 #include "ServiceUtilities.h"
60 #include "SchedulingPolicyService.h"
61
62 #ifdef ADD_BATTERY_DATA
63 #include <media/IMediaPlayerService.h>
64 #include <media/IMediaDeathNotifier.h>
65 #endif
66
67 #ifdef DEBUG_CPU_USAGE
68 #include <cpustats/CentralTendencyStatistics.h>
69 #include <cpustats/ThreadCpuUsage.h>
70 #endif
71
72 // ----------------------------------------------------------------------------
73
74 // Note: the following macro is used for extremely verbose logging message. In
75 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
76 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
77 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
78 // turned on. Do not uncomment the #def below unless you really know what you
79 // are doing and want to see all of the extremely verbose messages.
80 //#define VERY_VERY_VERBOSE_LOGGING
81 #ifdef VERY_VERY_VERBOSE_LOGGING
82 #define ALOGVV ALOGV
83 #else
84 #define ALOGVV(a...) do { } while(0)
85 #endif
86
87 #define max(a, b) ((a) > (b) ? (a) : (b))
88
89 namespace android {
90
91 // retry counts for buffer fill timeout
92 // 50 * ~20msecs = 1 second
93 static const int8_t kMaxTrackRetries = 50;
94 static const int8_t kMaxTrackStartupRetries = 50;
95 // allow less retry attempts on direct output thread.
96 // direct outputs can be a scarce resource in audio hardware and should
97 // be released as quickly as possible.
98 static const int8_t kMaxTrackRetriesDirect = 2;
99
100 // don't warn about blocked writes or record buffer overflows more often than this
101 static const nsecs_t kWarningThrottleNs = seconds(5);
102
103 // RecordThread loop sleep time upon application overrun or audio HAL read error
104 static const int kRecordThreadSleepUs = 5000;
105
106 // maximum time to wait in sendConfigEvent_l() for a status to be received
107 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
108
109 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
110 static const uint32_t kMinThreadSleepTimeUs = 5000;
111 // maximum divider applied to the active sleep time in the mixer thread loop
112 static const uint32_t kMaxThreadSleepTimeShift = 2;
113
114 // minimum normal sink buffer size, expressed in milliseconds rather than frames
115 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
116 // maximum normal sink buffer size
117 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
118
119 // Offloaded output thread standby delay: allows track transition without going to standby
120 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
121
122 // Whether to use fast mixer
123 static const enum {
124 FastMixer_Never, // never initialize or use: for debugging only
125 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
126 // normal mixer multiplier is 1
127 FastMixer_Static, // initialize if needed, then use all the time if initialized,
128 // multiplier is calculated based on min & max normal mixer buffer size
129 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
130 // multiplier is calculated based on min & max normal mixer buffer size
131 // FIXME for FastMixer_Dynamic:
132 // Supporting this option will require fixing HALs that can't handle large writes.
133 // For example, one HAL implementation returns an error from a large write,
134 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
135 // We could either fix the HAL implementations, or provide a wrapper that breaks
136 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
137 } kUseFastMixer = FastMixer_Static;
138
139 // Whether to use fast capture
140 static const enum {
141 FastCapture_Never, // never initialize or use: for debugging only
142 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
143 FastCapture_Static, // initialize if needed, then use all the time if initialized
144 } kUseFastCapture = FastCapture_Static;
145
146 // Priorities for requestPriority
147 static const int kPriorityAudioApp = 2;
148 static const int kPriorityFastMixer = 3;
149 static const int kPriorityFastCapture = 3;
150
151 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
152 // for the track. The client then sub-divides this into smaller buffers for its use.
153 // Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
154 // So for now we just assume that client is double-buffered for fast tracks.
155 // FIXME It would be better for client to tell AudioFlinger the value of N,
156 // so AudioFlinger could allocate the right amount of memory.
157 // See the client's minBufCount and mNotificationFramesAct calculations for details.
158
159 // This is the default value, if not specified by property.
160 static const int kFastTrackMultiplier = 2;
161
162 // The minimum and maximum allowed values
163 static const int kFastTrackMultiplierMin = 1;
164 static const int kFastTrackMultiplierMax = 2;
165
166 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
167 static int sFastTrackMultiplier = kFastTrackMultiplier;
168
169 // See Thread::readOnlyHeap().
170 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
171 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
172 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
173 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
174
175 // ----------------------------------------------------------------------------
176
177 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
178
sFastTrackMultiplierInit()179 static void sFastTrackMultiplierInit()
180 {
181 char value[PROPERTY_VALUE_MAX];
182 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
183 char *endptr;
184 unsigned long ul = strtoul(value, &endptr, 0);
185 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
186 sFastTrackMultiplier = (int) ul;
187 }
188 }
189 }
190
191 // ----------------------------------------------------------------------------
192
193 #ifdef ADD_BATTERY_DATA
194 // To collect the amplifier usage
addBatteryData(uint32_t params)195 static void addBatteryData(uint32_t params) {
196 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
197 if (service == NULL) {
198 // it already logged
199 return;
200 }
201
202 service->addBatteryData(params);
203 }
204 #endif
205
206
207 // ----------------------------------------------------------------------------
208 // CPU Stats
209 // ----------------------------------------------------------------------------
210
211 class CpuStats {
212 public:
213 CpuStats();
214 void sample(const String8 &title);
215 #ifdef DEBUG_CPU_USAGE
216 private:
217 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
218 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
219
220 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
221
222 int mCpuNum; // thread's current CPU number
223 int mCpukHz; // frequency of thread's current CPU in kHz
224 #endif
225 };
226
CpuStats()227 CpuStats::CpuStats()
228 #ifdef DEBUG_CPU_USAGE
229 : mCpuNum(-1), mCpukHz(-1)
230 #endif
231 {
232 }
233
sample(const String8 & title __unused)234 void CpuStats::sample(const String8 &title
235 #ifndef DEBUG_CPU_USAGE
236 __unused
237 #endif
238 ) {
239 #ifdef DEBUG_CPU_USAGE
240 // get current thread's delta CPU time in wall clock ns
241 double wcNs;
242 bool valid = mCpuUsage.sampleAndEnable(wcNs);
243
244 // record sample for wall clock statistics
245 if (valid) {
246 mWcStats.sample(wcNs);
247 }
248
249 // get the current CPU number
250 int cpuNum = sched_getcpu();
251
252 // get the current CPU frequency in kHz
253 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
254
255 // check if either CPU number or frequency changed
256 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
257 mCpuNum = cpuNum;
258 mCpukHz = cpukHz;
259 // ignore sample for purposes of cycles
260 valid = false;
261 }
262
263 // if no change in CPU number or frequency, then record sample for cycle statistics
264 if (valid && mCpukHz > 0) {
265 double cycles = wcNs * cpukHz * 0.000001;
266 mHzStats.sample(cycles);
267 }
268
269 unsigned n = mWcStats.n();
270 // mCpuUsage.elapsed() is expensive, so don't call it every loop
271 if ((n & 127) == 1) {
272 long long elapsed = mCpuUsage.elapsed();
273 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
274 double perLoop = elapsed / (double) n;
275 double perLoop100 = perLoop * 0.01;
276 double perLoop1k = perLoop * 0.001;
277 double mean = mWcStats.mean();
278 double stddev = mWcStats.stddev();
279 double minimum = mWcStats.minimum();
280 double maximum = mWcStats.maximum();
281 double meanCycles = mHzStats.mean();
282 double stddevCycles = mHzStats.stddev();
283 double minCycles = mHzStats.minimum();
284 double maxCycles = mHzStats.maximum();
285 mCpuUsage.resetElapsed();
286 mWcStats.reset();
287 mHzStats.reset();
288 ALOGD("CPU usage for %s over past %.1f secs\n"
289 " (%u mixer loops at %.1f mean ms per loop):\n"
290 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
291 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
292 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
293 title.string(),
294 elapsed * .000000001, n, perLoop * .000001,
295 mean * .001,
296 stddev * .001,
297 minimum * .001,
298 maximum * .001,
299 mean / perLoop100,
300 stddev / perLoop100,
301 minimum / perLoop100,
302 maximum / perLoop100,
303 meanCycles / perLoop1k,
304 stddevCycles / perLoop1k,
305 minCycles / perLoop1k,
306 maxCycles / perLoop1k);
307
308 }
309 }
310 #endif
311 };
312
313 // ----------------------------------------------------------------------------
314 // ThreadBase
315 // ----------------------------------------------------------------------------
316
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type)317 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
318 audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
319 : Thread(false /*canCallJava*/),
320 mType(type),
321 mAudioFlinger(audioFlinger),
322 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
323 // are set by PlaybackThread::readOutputParameters_l() or
324 // RecordThread::readInputParameters_l()
325 //FIXME: mStandby should be true here. Is this some kind of hack?
326 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
327 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
328 // mName will be set by concrete (non-virtual) subclass
329 mDeathRecipient(new PMDeathRecipient(this))
330 {
331 }
332
~ThreadBase()333 AudioFlinger::ThreadBase::~ThreadBase()
334 {
335 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
336 mConfigEvents.clear();
337
338 // do not lock the mutex in destructor
339 releaseWakeLock_l();
340 if (mPowerManager != 0) {
341 sp<IBinder> binder = mPowerManager->asBinder();
342 binder->unlinkToDeath(mDeathRecipient);
343 }
344 }
345
readyToRun()346 status_t AudioFlinger::ThreadBase::readyToRun()
347 {
348 status_t status = initCheck();
349 if (status == NO_ERROR) {
350 ALOGI("AudioFlinger's thread %p ready to run", this);
351 } else {
352 ALOGE("No working audio driver found.");
353 }
354 return status;
355 }
356
exit()357 void AudioFlinger::ThreadBase::exit()
358 {
359 ALOGV("ThreadBase::exit");
360 // do any cleanup required for exit to succeed
361 preExit();
362 {
363 // This lock prevents the following race in thread (uniprocessor for illustration):
364 // if (!exitPending()) {
365 // // context switch from here to exit()
366 // // exit() calls requestExit(), what exitPending() observes
367 // // exit() calls signal(), which is dropped since no waiters
368 // // context switch back from exit() to here
369 // mWaitWorkCV.wait(...);
370 // // now thread is hung
371 // }
372 AutoMutex lock(mLock);
373 requestExit();
374 mWaitWorkCV.broadcast();
375 }
376 // When Thread::requestExitAndWait is made virtual and this method is renamed to
377 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
378 requestExitAndWait();
379 }
380
setParameters(const String8 & keyValuePairs)381 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
382 {
383 status_t status;
384
385 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
386 Mutex::Autolock _l(mLock);
387
388 return sendSetParameterConfigEvent_l(keyValuePairs);
389 }
390
391 // sendConfigEvent_l() must be called with ThreadBase::mLock held
392 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)393 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
394 {
395 status_t status = NO_ERROR;
396
397 mConfigEvents.add(event);
398 ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
399 mWaitWorkCV.signal();
400 mLock.unlock();
401 {
402 Mutex::Autolock _l(event->mLock);
403 while (event->mWaitStatus) {
404 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
405 event->mStatus = TIMED_OUT;
406 event->mWaitStatus = false;
407 }
408 }
409 status = event->mStatus;
410 }
411 mLock.lock();
412 return status;
413 }
414
sendIoConfigEvent(int event,int param)415 void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
416 {
417 Mutex::Autolock _l(mLock);
418 sendIoConfigEvent_l(event, param);
419 }
420
421 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(int event,int param)422 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
423 {
424 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, param);
425 sendConfigEvent_l(configEvent);
426 }
427
428 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)429 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
430 {
431 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
432 sendConfigEvent_l(configEvent);
433 }
434
435 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)436 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
437 {
438 sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
439 return sendConfigEvent_l(configEvent);
440 }
441
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)442 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
443 const struct audio_patch *patch,
444 audio_patch_handle_t *handle)
445 {
446 Mutex::Autolock _l(mLock);
447 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
448 status_t status = sendConfigEvent_l(configEvent);
449 if (status == NO_ERROR) {
450 CreateAudioPatchConfigEventData *data =
451 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
452 *handle = data->mHandle;
453 }
454 return status;
455 }
456
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)457 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
458 const audio_patch_handle_t handle)
459 {
460 Mutex::Autolock _l(mLock);
461 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
462 return sendConfigEvent_l(configEvent);
463 }
464
465
466 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()467 void AudioFlinger::ThreadBase::processConfigEvents_l()
468 {
469 bool configChanged = false;
470
471 while (!mConfigEvents.isEmpty()) {
472 ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
473 sp<ConfigEvent> event = mConfigEvents[0];
474 mConfigEvents.removeAt(0);
475 switch (event->mType) {
476 case CFG_EVENT_PRIO: {
477 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
478 // FIXME Need to understand why this has to be done asynchronously
479 int err = requestPriority(data->mPid, data->mTid, data->mPrio,
480 true /*asynchronous*/);
481 if (err != 0) {
482 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
483 data->mPrio, data->mPid, data->mTid, err);
484 }
485 } break;
486 case CFG_EVENT_IO: {
487 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
488 audioConfigChanged(data->mEvent, data->mParam);
489 } break;
490 case CFG_EVENT_SET_PARAMETER: {
491 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
492 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
493 configChanged = true;
494 }
495 } break;
496 case CFG_EVENT_CREATE_AUDIO_PATCH: {
497 CreateAudioPatchConfigEventData *data =
498 (CreateAudioPatchConfigEventData *)event->mData.get();
499 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
500 } break;
501 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
502 ReleaseAudioPatchConfigEventData *data =
503 (ReleaseAudioPatchConfigEventData *)event->mData.get();
504 event->mStatus = releaseAudioPatch_l(data->mHandle);
505 } break;
506 default:
507 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
508 break;
509 }
510 {
511 Mutex::Autolock _l(event->mLock);
512 if (event->mWaitStatus) {
513 event->mWaitStatus = false;
514 event->mCond.signal();
515 }
516 }
517 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
518 }
519
520 if (configChanged) {
521 cacheParameters_l();
522 }
523 }
524
channelMaskToString(audio_channel_mask_t mask,bool output)525 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
526 String8 s;
527 if (output) {
528 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
529 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
530 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
531 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
532 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
533 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
534 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
535 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
536 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
537 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
538 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
539 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
540 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
541 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
542 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
543 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
544 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
545 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
546 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
547 } else {
548 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
549 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
550 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
551 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
552 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
553 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
554 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
555 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
556 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
557 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
558 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
559 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
560 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
561 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
562 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
563 }
564 int len = s.length();
565 if (s.length() > 2) {
566 char *str = s.lockBuffer(len);
567 s.unlockBuffer(len - 2);
568 }
569 return s;
570 }
571
dumpBase(int fd,const Vector<String16> & args __unused)572 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
573 {
574 const size_t SIZE = 256;
575 char buffer[SIZE];
576 String8 result;
577
578 bool locked = AudioFlinger::dumpTryLock(mLock);
579 if (!locked) {
580 dprintf(fd, "thread %p maybe dead locked\n", this);
581 }
582
583 dprintf(fd, " I/O handle: %d\n", mId);
584 dprintf(fd, " TID: %d\n", getTid());
585 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
586 dprintf(fd, " Sample rate: %u\n", mSampleRate);
587 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
588 dprintf(fd, " HAL buffer size: %u bytes\n", mBufferSize);
589 dprintf(fd, " Channel Count: %u\n", mChannelCount);
590 dprintf(fd, " Channel Mask: 0x%08x (%s)\n", mChannelMask,
591 channelMaskToString(mChannelMask, mType != RECORD).string());
592 dprintf(fd, " Format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
593 dprintf(fd, " Frame size: %zu\n", mFrameSize);
594 dprintf(fd, " Pending config events:");
595 size_t numConfig = mConfigEvents.size();
596 if (numConfig) {
597 for (size_t i = 0; i < numConfig; i++) {
598 mConfigEvents[i]->dump(buffer, SIZE);
599 dprintf(fd, "\n %s", buffer);
600 }
601 dprintf(fd, "\n");
602 } else {
603 dprintf(fd, " none\n");
604 }
605
606 if (locked) {
607 mLock.unlock();
608 }
609 }
610
dumpEffectChains(int fd,const Vector<String16> & args)611 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
612 {
613 const size_t SIZE = 256;
614 char buffer[SIZE];
615 String8 result;
616
617 size_t numEffectChains = mEffectChains.size();
618 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
619 write(fd, buffer, strlen(buffer));
620
621 for (size_t i = 0; i < numEffectChains; ++i) {
622 sp<EffectChain> chain = mEffectChains[i];
623 if (chain != 0) {
624 chain->dump(fd, args);
625 }
626 }
627 }
628
acquireWakeLock(int uid)629 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
630 {
631 Mutex::Autolock _l(mLock);
632 acquireWakeLock_l(uid);
633 }
634
getWakeLockTag()635 String16 AudioFlinger::ThreadBase::getWakeLockTag()
636 {
637 switch (mType) {
638 case MIXER:
639 return String16("AudioMix");
640 case DIRECT:
641 return String16("AudioDirectOut");
642 case DUPLICATING:
643 return String16("AudioDup");
644 case RECORD:
645 return String16("AudioIn");
646 case OFFLOAD:
647 return String16("AudioOffload");
648 default:
649 ALOG_ASSERT(false);
650 return String16("AudioUnknown");
651 }
652 }
653
acquireWakeLock_l(int uid)654 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
655 {
656 getPowerManager_l();
657 if (mPowerManager != 0) {
658 sp<IBinder> binder = new BBinder();
659 status_t status;
660 if (uid >= 0) {
661 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
662 binder,
663 getWakeLockTag(),
664 String16("media"),
665 uid,
666 true /* FIXME force oneway contrary to .aidl */);
667 } else {
668 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
669 binder,
670 getWakeLockTag(),
671 String16("media"),
672 true /* FIXME force oneway contrary to .aidl */);
673 }
674 if (status == NO_ERROR) {
675 mWakeLockToken = binder;
676 }
677 ALOGV("acquireWakeLock_l() %s status %d", mName, status);
678 }
679 }
680
releaseWakeLock()681 void AudioFlinger::ThreadBase::releaseWakeLock()
682 {
683 Mutex::Autolock _l(mLock);
684 releaseWakeLock_l();
685 }
686
releaseWakeLock_l()687 void AudioFlinger::ThreadBase::releaseWakeLock_l()
688 {
689 if (mWakeLockToken != 0) {
690 ALOGV("releaseWakeLock_l() %s", mName);
691 if (mPowerManager != 0) {
692 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
693 true /* FIXME force oneway contrary to .aidl */);
694 }
695 mWakeLockToken.clear();
696 }
697 }
698
updateWakeLockUids(const SortedVector<int> & uids)699 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
700 Mutex::Autolock _l(mLock);
701 updateWakeLockUids_l(uids);
702 }
703
getPowerManager_l()704 void AudioFlinger::ThreadBase::getPowerManager_l() {
705
706 if (mPowerManager == 0) {
707 // use checkService() to avoid blocking if power service is not up yet
708 sp<IBinder> binder =
709 defaultServiceManager()->checkService(String16("power"));
710 if (binder == 0) {
711 ALOGW("Thread %s cannot connect to the power manager service", mName);
712 } else {
713 mPowerManager = interface_cast<IPowerManager>(binder);
714 binder->linkToDeath(mDeathRecipient);
715 }
716 }
717 }
718
updateWakeLockUids_l(const SortedVector<int> & uids)719 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
720
721 getPowerManager_l();
722 if (mWakeLockToken == NULL) {
723 ALOGE("no wake lock to update!");
724 return;
725 }
726 if (mPowerManager != 0) {
727 sp<IBinder> binder = new BBinder();
728 status_t status;
729 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
730 true /* FIXME force oneway contrary to .aidl */);
731 ALOGV("acquireWakeLock_l() %s status %d", mName, status);
732 }
733 }
734
clearPowerManager()735 void AudioFlinger::ThreadBase::clearPowerManager()
736 {
737 Mutex::Autolock _l(mLock);
738 releaseWakeLock_l();
739 mPowerManager.clear();
740 }
741
binderDied(const wp<IBinder> & who __unused)742 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
743 {
744 sp<ThreadBase> thread = mThread.promote();
745 if (thread != 0) {
746 thread->clearPowerManager();
747 }
748 ALOGW("power manager service died !!!");
749 }
750
setEffectSuspended(const effect_uuid_t * type,bool suspend,int sessionId)751 void AudioFlinger::ThreadBase::setEffectSuspended(
752 const effect_uuid_t *type, bool suspend, int sessionId)
753 {
754 Mutex::Autolock _l(mLock);
755 setEffectSuspended_l(type, suspend, sessionId);
756 }
757
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,int sessionId)758 void AudioFlinger::ThreadBase::setEffectSuspended_l(
759 const effect_uuid_t *type, bool suspend, int sessionId)
760 {
761 sp<EffectChain> chain = getEffectChain_l(sessionId);
762 if (chain != 0) {
763 if (type != NULL) {
764 chain->setEffectSuspended_l(type, suspend);
765 } else {
766 chain->setEffectSuspendedAll_l(suspend);
767 }
768 }
769
770 updateSuspendedSessions_l(type, suspend, sessionId);
771 }
772
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)773 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
774 {
775 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
776 if (index < 0) {
777 return;
778 }
779
780 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
781 mSuspendedSessions.valueAt(index);
782
783 for (size_t i = 0; i < sessionEffects.size(); i++) {
784 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
785 for (int j = 0; j < desc->mRefCount; j++) {
786 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
787 chain->setEffectSuspendedAll_l(true);
788 } else {
789 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
790 desc->mType.timeLow);
791 chain->setEffectSuspended_l(&desc->mType, true);
792 }
793 }
794 }
795 }
796
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,int sessionId)797 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
798 bool suspend,
799 int sessionId)
800 {
801 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
802
803 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
804
805 if (suspend) {
806 if (index >= 0) {
807 sessionEffects = mSuspendedSessions.valueAt(index);
808 } else {
809 mSuspendedSessions.add(sessionId, sessionEffects);
810 }
811 } else {
812 if (index < 0) {
813 return;
814 }
815 sessionEffects = mSuspendedSessions.valueAt(index);
816 }
817
818
819 int key = EffectChain::kKeyForSuspendAll;
820 if (type != NULL) {
821 key = type->timeLow;
822 }
823 index = sessionEffects.indexOfKey(key);
824
825 sp<SuspendedSessionDesc> desc;
826 if (suspend) {
827 if (index >= 0) {
828 desc = sessionEffects.valueAt(index);
829 } else {
830 desc = new SuspendedSessionDesc();
831 if (type != NULL) {
832 desc->mType = *type;
833 }
834 sessionEffects.add(key, desc);
835 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
836 }
837 desc->mRefCount++;
838 } else {
839 if (index < 0) {
840 return;
841 }
842 desc = sessionEffects.valueAt(index);
843 if (--desc->mRefCount == 0) {
844 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
845 sessionEffects.removeItemsAt(index);
846 if (sessionEffects.isEmpty()) {
847 ALOGV("updateSuspendedSessions_l() restore removing session %d",
848 sessionId);
849 mSuspendedSessions.removeItem(sessionId);
850 }
851 }
852 }
853 if (!sessionEffects.isEmpty()) {
854 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
855 }
856 }
857
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,int sessionId)858 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
859 bool enabled,
860 int sessionId)
861 {
862 Mutex::Autolock _l(mLock);
863 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
864 }
865
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,int sessionId)866 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
867 bool enabled,
868 int sessionId)
869 {
870 if (mType != RECORD) {
871 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
872 // another session. This gives the priority to well behaved effect control panels
873 // and applications not using global effects.
874 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
875 // global effects
876 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
877 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
878 }
879 }
880
881 sp<EffectChain> chain = getEffectChain_l(sessionId);
882 if (chain != 0) {
883 chain->checkSuspendOnEffectEnabled(effect, enabled);
884 }
885 }
886
887 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,int sessionId,effect_descriptor_t * desc,int * enabled,status_t * status)888 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
889 const sp<AudioFlinger::Client>& client,
890 const sp<IEffectClient>& effectClient,
891 int32_t priority,
892 int sessionId,
893 effect_descriptor_t *desc,
894 int *enabled,
895 status_t *status)
896 {
897 sp<EffectModule> effect;
898 sp<EffectHandle> handle;
899 status_t lStatus;
900 sp<EffectChain> chain;
901 bool chainCreated = false;
902 bool effectCreated = false;
903 bool effectRegistered = false;
904
905 lStatus = initCheck();
906 if (lStatus != NO_ERROR) {
907 ALOGW("createEffect_l() Audio driver not initialized.");
908 goto Exit;
909 }
910
911 // Reject any effect on Direct output threads for now, since the format of
912 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
913 if (mType == DIRECT) {
914 ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
915 desc->name, mName);
916 lStatus = BAD_VALUE;
917 goto Exit;
918 }
919
920 // Reject any effect on mixer or duplicating multichannel sinks.
921 // TODO: fix both format and multichannel issues with effects.
922 if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
923 ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
924 desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
925 lStatus = BAD_VALUE;
926 goto Exit;
927 }
928
929 // Allow global effects only on offloaded and mixer threads
930 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
931 switch (mType) {
932 case MIXER:
933 case OFFLOAD:
934 break;
935 case DIRECT:
936 case DUPLICATING:
937 case RECORD:
938 default:
939 ALOGW("createEffect_l() Cannot add global effect %s on thread %s", desc->name, mName);
940 lStatus = BAD_VALUE;
941 goto Exit;
942 }
943 }
944
945 // Only Pre processor effects are allowed on input threads and only on input threads
946 if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
947 ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
948 desc->name, desc->flags, mType);
949 lStatus = BAD_VALUE;
950 goto Exit;
951 }
952
953 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
954
955 { // scope for mLock
956 Mutex::Autolock _l(mLock);
957
958 // check for existing effect chain with the requested audio session
959 chain = getEffectChain_l(sessionId);
960 if (chain == 0) {
961 // create a new chain for this session
962 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
963 chain = new EffectChain(this, sessionId);
964 addEffectChain_l(chain);
965 chain->setStrategy(getStrategyForSession_l(sessionId));
966 chainCreated = true;
967 } else {
968 effect = chain->getEffectFromDesc_l(desc);
969 }
970
971 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
972
973 if (effect == 0) {
974 int id = mAudioFlinger->nextUniqueId();
975 // Check CPU and memory usage
976 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
977 if (lStatus != NO_ERROR) {
978 goto Exit;
979 }
980 effectRegistered = true;
981 // create a new effect module if none present in the chain
982 effect = new EffectModule(this, chain, desc, id, sessionId);
983 lStatus = effect->status();
984 if (lStatus != NO_ERROR) {
985 goto Exit;
986 }
987 effect->setOffloaded(mType == OFFLOAD, mId);
988
989 lStatus = chain->addEffect_l(effect);
990 if (lStatus != NO_ERROR) {
991 goto Exit;
992 }
993 effectCreated = true;
994
995 effect->setDevice(mOutDevice);
996 effect->setDevice(mInDevice);
997 effect->setMode(mAudioFlinger->getMode());
998 effect->setAudioSource(mAudioSource);
999 }
1000 // create effect handle and connect it to effect module
1001 handle = new EffectHandle(effect, client, effectClient, priority);
1002 lStatus = handle->initCheck();
1003 if (lStatus == OK) {
1004 lStatus = effect->addHandle(handle.get());
1005 }
1006 if (enabled != NULL) {
1007 *enabled = (int)effect->isEnabled();
1008 }
1009 }
1010
1011 Exit:
1012 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1013 Mutex::Autolock _l(mLock);
1014 if (effectCreated) {
1015 chain->removeEffect_l(effect);
1016 }
1017 if (effectRegistered) {
1018 AudioSystem::unregisterEffect(effect->id());
1019 }
1020 if (chainCreated) {
1021 removeEffectChain_l(chain);
1022 }
1023 handle.clear();
1024 }
1025
1026 *status = lStatus;
1027 return handle;
1028 }
1029
getEffect(int sessionId,int effectId)1030 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1031 {
1032 Mutex::Autolock _l(mLock);
1033 return getEffect_l(sessionId, effectId);
1034 }
1035
getEffect_l(int sessionId,int effectId)1036 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1037 {
1038 sp<EffectChain> chain = getEffectChain_l(sessionId);
1039 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1040 }
1041
1042 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1043 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1044 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1045 {
1046 // check for existing effect chain with the requested audio session
1047 int sessionId = effect->sessionId();
1048 sp<EffectChain> chain = getEffectChain_l(sessionId);
1049 bool chainCreated = false;
1050
1051 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1052 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1053 this, effect->desc().name, effect->desc().flags);
1054
1055 if (chain == 0) {
1056 // create a new chain for this session
1057 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1058 chain = new EffectChain(this, sessionId);
1059 addEffectChain_l(chain);
1060 chain->setStrategy(getStrategyForSession_l(sessionId));
1061 chainCreated = true;
1062 }
1063 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1064
1065 if (chain->getEffectFromId_l(effect->id()) != 0) {
1066 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1067 this, effect->desc().name, chain.get());
1068 return BAD_VALUE;
1069 }
1070
1071 effect->setOffloaded(mType == OFFLOAD, mId);
1072
1073 status_t status = chain->addEffect_l(effect);
1074 if (status != NO_ERROR) {
1075 if (chainCreated) {
1076 removeEffectChain_l(chain);
1077 }
1078 return status;
1079 }
1080
1081 effect->setDevice(mOutDevice);
1082 effect->setDevice(mInDevice);
1083 effect->setMode(mAudioFlinger->getMode());
1084 effect->setAudioSource(mAudioSource);
1085 return NO_ERROR;
1086 }
1087
removeEffect_l(const sp<EffectModule> & effect)1088 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1089
1090 ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1091 effect_descriptor_t desc = effect->desc();
1092 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1093 detachAuxEffect_l(effect->id());
1094 }
1095
1096 sp<EffectChain> chain = effect->chain().promote();
1097 if (chain != 0) {
1098 // remove effect chain if removing last effect
1099 if (chain->removeEffect_l(effect) == 0) {
1100 removeEffectChain_l(chain);
1101 }
1102 } else {
1103 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1104 }
1105 }
1106
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1107 void AudioFlinger::ThreadBase::lockEffectChains_l(
1108 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1109 {
1110 effectChains = mEffectChains;
1111 for (size_t i = 0; i < mEffectChains.size(); i++) {
1112 mEffectChains[i]->lock();
1113 }
1114 }
1115
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1116 void AudioFlinger::ThreadBase::unlockEffectChains(
1117 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1118 {
1119 for (size_t i = 0; i < effectChains.size(); i++) {
1120 effectChains[i]->unlock();
1121 }
1122 }
1123
getEffectChain(int sessionId)1124 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1125 {
1126 Mutex::Autolock _l(mLock);
1127 return getEffectChain_l(sessionId);
1128 }
1129
getEffectChain_l(int sessionId) const1130 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1131 {
1132 size_t size = mEffectChains.size();
1133 for (size_t i = 0; i < size; i++) {
1134 if (mEffectChains[i]->sessionId() == sessionId) {
1135 return mEffectChains[i];
1136 }
1137 }
1138 return 0;
1139 }
1140
setMode(audio_mode_t mode)1141 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1142 {
1143 Mutex::Autolock _l(mLock);
1144 size_t size = mEffectChains.size();
1145 for (size_t i = 0; i < size; i++) {
1146 mEffectChains[i]->setMode_l(mode);
1147 }
1148 }
1149
getAudioPortConfig(struct audio_port_config * config)1150 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1151 {
1152 config->type = AUDIO_PORT_TYPE_MIX;
1153 config->ext.mix.handle = mId;
1154 config->sample_rate = mSampleRate;
1155 config->format = mFormat;
1156 config->channel_mask = mChannelMask;
1157 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1158 AUDIO_PORT_CONFIG_FORMAT;
1159 }
1160
1161
1162 // ----------------------------------------------------------------------------
1163 // Playback
1164 // ----------------------------------------------------------------------------
1165
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type)1166 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1167 AudioStreamOut* output,
1168 audio_io_handle_t id,
1169 audio_devices_t device,
1170 type_t type)
1171 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1172 mNormalFrameCount(0), mSinkBuffer(NULL),
1173 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1174 mMixerBuffer(NULL),
1175 mMixerBufferSize(0),
1176 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1177 mMixerBufferValid(false),
1178 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1179 mEffectBuffer(NULL),
1180 mEffectBufferSize(0),
1181 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1182 mEffectBufferValid(false),
1183 mSuspended(0), mBytesWritten(0),
1184 mActiveTracksGeneration(0),
1185 // mStreamTypes[] initialized in constructor body
1186 mOutput(output),
1187 mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1188 mMixerStatus(MIXER_IDLE),
1189 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1190 standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1191 mBytesRemaining(0),
1192 mCurrentWriteLength(0),
1193 mUseAsyncWrite(false),
1194 mWriteAckSequence(0),
1195 mDrainSequence(0),
1196 mSignalPending(false),
1197 mScreenState(AudioFlinger::mScreenState),
1198 // index 0 is reserved for normal mixer's submix
1199 mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1200 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1201 // mLatchD, mLatchQ,
1202 mLatchDValid(false), mLatchQValid(false)
1203 {
1204 snprintf(mName, kNameLength, "AudioOut_%X", id);
1205 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
1206
1207 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1208 // it would be safer to explicitly pass initial masterVolume/masterMute as
1209 // parameter.
1210 //
1211 // If the HAL we are using has support for master volume or master mute,
1212 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1213 // and the mute set to false).
1214 mMasterVolume = audioFlinger->masterVolume_l();
1215 mMasterMute = audioFlinger->masterMute_l();
1216 if (mOutput && mOutput->audioHwDev) {
1217 if (mOutput->audioHwDev->canSetMasterVolume()) {
1218 mMasterVolume = 1.0;
1219 }
1220
1221 if (mOutput->audioHwDev->canSetMasterMute()) {
1222 mMasterMute = false;
1223 }
1224 }
1225
1226 readOutputParameters_l();
1227
1228 // ++ operator does not compile
1229 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1230 stream = (audio_stream_type_t) (stream + 1)) {
1231 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1232 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1233 }
1234 }
1235
~PlaybackThread()1236 AudioFlinger::PlaybackThread::~PlaybackThread()
1237 {
1238 mAudioFlinger->unregisterWriter(mNBLogWriter);
1239 free(mSinkBuffer);
1240 free(mMixerBuffer);
1241 free(mEffectBuffer);
1242 }
1243
dump(int fd,const Vector<String16> & args)1244 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1245 {
1246 dumpInternals(fd, args);
1247 dumpTracks(fd, args);
1248 dumpEffectChains(fd, args);
1249 }
1250
dumpTracks(int fd,const Vector<String16> & args __unused)1251 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1252 {
1253 const size_t SIZE = 256;
1254 char buffer[SIZE];
1255 String8 result;
1256
1257 result.appendFormat(" Stream volumes in dB: ");
1258 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1259 const stream_type_t *st = &mStreamTypes[i];
1260 if (i > 0) {
1261 result.appendFormat(", ");
1262 }
1263 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1264 if (st->mute) {
1265 result.append("M");
1266 }
1267 }
1268 result.append("\n");
1269 write(fd, result.string(), result.length());
1270 result.clear();
1271
1272 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1273 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1274 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1275 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1276
1277 size_t numtracks = mTracks.size();
1278 size_t numactive = mActiveTracks.size();
1279 dprintf(fd, " %d Tracks", numtracks);
1280 size_t numactiveseen = 0;
1281 if (numtracks) {
1282 dprintf(fd, " of which %d are active\n", numactive);
1283 Track::appendDumpHeader(result);
1284 for (size_t i = 0; i < numtracks; ++i) {
1285 sp<Track> track = mTracks[i];
1286 if (track != 0) {
1287 bool active = mActiveTracks.indexOf(track) >= 0;
1288 if (active) {
1289 numactiveseen++;
1290 }
1291 track->dump(buffer, SIZE, active);
1292 result.append(buffer);
1293 }
1294 }
1295 } else {
1296 result.append("\n");
1297 }
1298 if (numactiveseen != numactive) {
1299 // some tracks in the active list were not in the tracks list
1300 snprintf(buffer, SIZE, " The following tracks are in the active list but"
1301 " not in the track list\n");
1302 result.append(buffer);
1303 Track::appendDumpHeader(result);
1304 for (size_t i = 0; i < numactive; ++i) {
1305 sp<Track> track = mActiveTracks[i].promote();
1306 if (track != 0 && mTracks.indexOf(track) < 0) {
1307 track->dump(buffer, SIZE, true);
1308 result.append(buffer);
1309 }
1310 }
1311 }
1312
1313 write(fd, result.string(), result.size());
1314 }
1315
dumpInternals(int fd,const Vector<String16> & args)1316 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1317 {
1318 dprintf(fd, "\nOutput thread %p:\n", this);
1319 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1320 dprintf(fd, " Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1321 dprintf(fd, " Total writes: %d\n", mNumWrites);
1322 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1323 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1324 dprintf(fd, " Suspend count: %d\n", mSuspended);
1325 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1326 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1327 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1328 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1329
1330 dumpBase(fd, args);
1331 }
1332
1333 // Thread virtuals
1334
onFirstRef()1335 void AudioFlinger::PlaybackThread::onFirstRef()
1336 {
1337 run(mName, ANDROID_PRIORITY_URGENT_AUDIO);
1338 }
1339
1340 // ThreadBase virtuals
preExit()1341 void AudioFlinger::PlaybackThread::preExit()
1342 {
1343 ALOGV(" preExit()");
1344 // FIXME this is using hard-coded strings but in the future, this functionality will be
1345 // converted to use audio HAL extensions required to support tunneling
1346 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1347 }
1348
1349 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,int sessionId,IAudioFlinger::track_flags_t * flags,pid_t tid,int uid,status_t * status)1350 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1351 const sp<AudioFlinger::Client>& client,
1352 audio_stream_type_t streamType,
1353 uint32_t sampleRate,
1354 audio_format_t format,
1355 audio_channel_mask_t channelMask,
1356 size_t *pFrameCount,
1357 const sp<IMemory>& sharedBuffer,
1358 int sessionId,
1359 IAudioFlinger::track_flags_t *flags,
1360 pid_t tid,
1361 int uid,
1362 status_t *status)
1363 {
1364 size_t frameCount = *pFrameCount;
1365 sp<Track> track;
1366 status_t lStatus;
1367
1368 bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1369
1370 // client expresses a preference for FAST, but we get the final say
1371 if (*flags & IAudioFlinger::TRACK_FAST) {
1372 if (
1373 // not timed
1374 (!isTimed) &&
1375 // either of these use cases:
1376 (
1377 // use case 1: shared buffer with any frame count
1378 (
1379 (sharedBuffer != 0)
1380 ) ||
1381 // use case 2: callback handler and frame count is default or at least as large as HAL
1382 (
1383 (tid != -1) &&
1384 ((frameCount == 0) ||
1385 (frameCount >= mFrameCount))
1386 )
1387 ) &&
1388 // PCM data
1389 audio_is_linear_pcm(format) &&
1390 // identical channel mask to sink, or mono in and stereo sink
1391 (channelMask == mChannelMask ||
1392 (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1393 mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1394 // hardware sample rate
1395 (sampleRate == mSampleRate) &&
1396 // normal mixer has an associated fast mixer
1397 hasFastMixer() &&
1398 // there are sufficient fast track slots available
1399 (mFastTrackAvailMask != 0)
1400 // FIXME test that MixerThread for this fast track has a capable output HAL
1401 // FIXME add a permission test also?
1402 ) {
1403 // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1404 if (frameCount == 0) {
1405 // read the fast track multiplier property the first time it is needed
1406 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1407 if (ok != 0) {
1408 ALOGE("%s pthread_once failed: %d", __func__, ok);
1409 }
1410 frameCount = mFrameCount * sFastTrackMultiplier;
1411 }
1412 ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1413 frameCount, mFrameCount);
1414 } else {
1415 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1416 "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1417 "sampleRate=%u mSampleRate=%u "
1418 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1419 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1420 audio_is_linear_pcm(format),
1421 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1422 *flags &= ~IAudioFlinger::TRACK_FAST;
1423 // For compatibility with AudioTrack calculation, buffer depth is forced
1424 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1425 // This is probably too conservative, but legacy application code may depend on it.
1426 // If you change this calculation, also review the start threshold which is related.
1427 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1428 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1429 if (minBufCount < 2) {
1430 minBufCount = 2;
1431 }
1432 size_t minFrameCount = mNormalFrameCount * minBufCount;
1433 if (frameCount < minFrameCount) {
1434 frameCount = minFrameCount;
1435 }
1436 }
1437 }
1438 *pFrameCount = frameCount;
1439
1440 switch (mType) {
1441
1442 case DIRECT:
1443 if (audio_is_linear_pcm(format)) {
1444 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1445 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1446 "for output %p with format %#x",
1447 sampleRate, format, channelMask, mOutput, mFormat);
1448 lStatus = BAD_VALUE;
1449 goto Exit;
1450 }
1451 }
1452 break;
1453
1454 case OFFLOAD:
1455 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1456 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1457 "for output %p with format %#x",
1458 sampleRate, format, channelMask, mOutput, mFormat);
1459 lStatus = BAD_VALUE;
1460 goto Exit;
1461 }
1462 break;
1463
1464 default:
1465 if (!audio_is_linear_pcm(format)) {
1466 ALOGE("createTrack_l() Bad parameter: format %#x \""
1467 "for output %p with format %#x",
1468 format, mOutput, mFormat);
1469 lStatus = BAD_VALUE;
1470 goto Exit;
1471 }
1472 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1473 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1474 lStatus = BAD_VALUE;
1475 goto Exit;
1476 }
1477 break;
1478
1479 }
1480
1481 lStatus = initCheck();
1482 if (lStatus != NO_ERROR) {
1483 ALOGE("createTrack_l() audio driver not initialized");
1484 goto Exit;
1485 }
1486
1487 { // scope for mLock
1488 Mutex::Autolock _l(mLock);
1489
1490 // all tracks in same audio session must share the same routing strategy otherwise
1491 // conflicts will happen when tracks are moved from one output to another by audio policy
1492 // manager
1493 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1494 for (size_t i = 0; i < mTracks.size(); ++i) {
1495 sp<Track> t = mTracks[i];
1496 if (t != 0 && t->isExternalTrack()) {
1497 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1498 if (sessionId == t->sessionId() && strategy != actual) {
1499 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1500 strategy, actual);
1501 lStatus = BAD_VALUE;
1502 goto Exit;
1503 }
1504 }
1505 }
1506
1507 if (!isTimed) {
1508 track = new Track(this, client, streamType, sampleRate, format,
1509 channelMask, frameCount, NULL, sharedBuffer,
1510 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1511 } else {
1512 track = TimedTrack::create(this, client, streamType, sampleRate, format,
1513 channelMask, frameCount, sharedBuffer, sessionId, uid);
1514 }
1515
1516 // new Track always returns non-NULL,
1517 // but TimedTrack::create() is a factory that could fail by returning NULL
1518 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1519 if (lStatus != NO_ERROR) {
1520 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1521 // track must be cleared from the caller as the caller has the AF lock
1522 goto Exit;
1523 }
1524 mTracks.add(track);
1525
1526 sp<EffectChain> chain = getEffectChain_l(sessionId);
1527 if (chain != 0) {
1528 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1529 track->setMainBuffer(chain->inBuffer());
1530 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1531 chain->incTrackCnt();
1532 }
1533
1534 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1535 pid_t callingPid = IPCThreadState::self()->getCallingPid();
1536 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1537 // so ask activity manager to do this on our behalf
1538 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1539 }
1540 }
1541
1542 lStatus = NO_ERROR;
1543
1544 Exit:
1545 *status = lStatus;
1546 return track;
1547 }
1548
correctLatency_l(uint32_t latency) const1549 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1550 {
1551 return latency;
1552 }
1553
latency() const1554 uint32_t AudioFlinger::PlaybackThread::latency() const
1555 {
1556 Mutex::Autolock _l(mLock);
1557 return latency_l();
1558 }
latency_l() const1559 uint32_t AudioFlinger::PlaybackThread::latency_l() const
1560 {
1561 if (initCheck() == NO_ERROR) {
1562 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1563 } else {
1564 return 0;
1565 }
1566 }
1567
setMasterVolume(float value)1568 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1569 {
1570 Mutex::Autolock _l(mLock);
1571 // Don't apply master volume in SW if our HAL can do it for us.
1572 if (mOutput && mOutput->audioHwDev &&
1573 mOutput->audioHwDev->canSetMasterVolume()) {
1574 mMasterVolume = 1.0;
1575 } else {
1576 mMasterVolume = value;
1577 }
1578 }
1579
setMasterMute(bool muted)1580 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1581 {
1582 Mutex::Autolock _l(mLock);
1583 // Don't apply master mute in SW if our HAL can do it for us.
1584 if (mOutput && mOutput->audioHwDev &&
1585 mOutput->audioHwDev->canSetMasterMute()) {
1586 mMasterMute = false;
1587 } else {
1588 mMasterMute = muted;
1589 }
1590 }
1591
setStreamVolume(audio_stream_type_t stream,float value)1592 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1593 {
1594 Mutex::Autolock _l(mLock);
1595 mStreamTypes[stream].volume = value;
1596 broadcast_l();
1597 }
1598
setStreamMute(audio_stream_type_t stream,bool muted)1599 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1600 {
1601 Mutex::Autolock _l(mLock);
1602 mStreamTypes[stream].mute = muted;
1603 broadcast_l();
1604 }
1605
streamVolume(audio_stream_type_t stream) const1606 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1607 {
1608 Mutex::Autolock _l(mLock);
1609 return mStreamTypes[stream].volume;
1610 }
1611
1612 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)1613 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1614 {
1615 status_t status = ALREADY_EXISTS;
1616
1617 // set retry count for buffer fill
1618 track->mRetryCount = kMaxTrackStartupRetries;
1619 if (mActiveTracks.indexOf(track) < 0) {
1620 // the track is newly added, make sure it fills up all its
1621 // buffers before playing. This is to ensure the client will
1622 // effectively get the latency it requested.
1623 if (track->isExternalTrack()) {
1624 TrackBase::track_state state = track->mState;
1625 mLock.unlock();
1626 status = AudioSystem::startOutput(mId, track->streamType(),
1627 (audio_session_t)track->sessionId());
1628 mLock.lock();
1629 // abort track was stopped/paused while we released the lock
1630 if (state != track->mState) {
1631 if (status == NO_ERROR) {
1632 mLock.unlock();
1633 AudioSystem::stopOutput(mId, track->streamType(),
1634 (audio_session_t)track->sessionId());
1635 mLock.lock();
1636 }
1637 return INVALID_OPERATION;
1638 }
1639 // abort if start is rejected by audio policy manager
1640 if (status != NO_ERROR) {
1641 return PERMISSION_DENIED;
1642 }
1643 #ifdef ADD_BATTERY_DATA
1644 // to track the speaker usage
1645 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1646 #endif
1647 }
1648
1649 track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1650 track->mResetDone = false;
1651 track->mPresentationCompleteFrames = 0;
1652 mActiveTracks.add(track);
1653 mWakeLockUids.add(track->uid());
1654 mActiveTracksGeneration++;
1655 mLatestActiveTrack = track;
1656 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1657 if (chain != 0) {
1658 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1659 track->sessionId());
1660 chain->incActiveTrackCnt();
1661 }
1662
1663 status = NO_ERROR;
1664 }
1665
1666 onAddNewTrack_l();
1667 return status;
1668 }
1669
destroyTrack_l(const sp<Track> & track)1670 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1671 {
1672 track->terminate();
1673 // active tracks are removed by threadLoop()
1674 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1675 track->mState = TrackBase::STOPPED;
1676 if (!trackActive) {
1677 removeTrack_l(track);
1678 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1679 track->mState = TrackBase::STOPPING_1;
1680 }
1681
1682 return trackActive;
1683 }
1684
removeTrack_l(const sp<Track> & track)1685 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1686 {
1687 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1688 mTracks.remove(track);
1689 deleteTrackName_l(track->name());
1690 // redundant as track is about to be destroyed, for dumpsys only
1691 track->mName = -1;
1692 if (track->isFastTrack()) {
1693 int index = track->mFastIndex;
1694 ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1695 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1696 mFastTrackAvailMask |= 1 << index;
1697 // redundant as track is about to be destroyed, for dumpsys only
1698 track->mFastIndex = -1;
1699 }
1700 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1701 if (chain != 0) {
1702 chain->decTrackCnt();
1703 }
1704 }
1705
broadcast_l()1706 void AudioFlinger::PlaybackThread::broadcast_l()
1707 {
1708 // Thread could be blocked waiting for async
1709 // so signal it to handle state changes immediately
1710 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1711 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1712 mSignalPending = true;
1713 mWaitWorkCV.broadcast();
1714 }
1715
getParameters(const String8 & keys)1716 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1717 {
1718 Mutex::Autolock _l(mLock);
1719 if (initCheck() != NO_ERROR) {
1720 return String8();
1721 }
1722
1723 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1724 const String8 out_s8(s);
1725 free(s);
1726 return out_s8;
1727 }
1728
audioConfigChanged(int event,int param)1729 void AudioFlinger::PlaybackThread::audioConfigChanged(int event, int param) {
1730 AudioSystem::OutputDescriptor desc;
1731 void *param2 = NULL;
1732
1733 ALOGV("PlaybackThread::audioConfigChanged, thread %p, event %d, param %d", this, event,
1734 param);
1735
1736 switch (event) {
1737 case AudioSystem::OUTPUT_OPENED:
1738 case AudioSystem::OUTPUT_CONFIG_CHANGED:
1739 desc.channelMask = mChannelMask;
1740 desc.samplingRate = mSampleRate;
1741 desc.format = mFormat;
1742 desc.frameCount = mNormalFrameCount; // FIXME see
1743 // AudioFlinger::frameCount(audio_io_handle_t)
1744 desc.latency = latency_l();
1745 param2 = &desc;
1746 break;
1747
1748 case AudioSystem::STREAM_CONFIG_CHANGED:
1749 param2 = ¶m;
1750 case AudioSystem::OUTPUT_CLOSED:
1751 default:
1752 break;
1753 }
1754 mAudioFlinger->audioConfigChanged(event, mId, param2);
1755 }
1756
writeCallback()1757 void AudioFlinger::PlaybackThread::writeCallback()
1758 {
1759 ALOG_ASSERT(mCallbackThread != 0);
1760 mCallbackThread->resetWriteBlocked();
1761 }
1762
drainCallback()1763 void AudioFlinger::PlaybackThread::drainCallback()
1764 {
1765 ALOG_ASSERT(mCallbackThread != 0);
1766 mCallbackThread->resetDraining();
1767 }
1768
resetWriteBlocked(uint32_t sequence)1769 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1770 {
1771 Mutex::Autolock _l(mLock);
1772 // reject out of sequence requests
1773 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1774 mWriteAckSequence &= ~1;
1775 mWaitWorkCV.signal();
1776 }
1777 }
1778
resetDraining(uint32_t sequence)1779 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1780 {
1781 Mutex::Autolock _l(mLock);
1782 // reject out of sequence requests
1783 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1784 mDrainSequence &= ~1;
1785 mWaitWorkCV.signal();
1786 }
1787 }
1788
1789 // static
asyncCallback(stream_callback_event_t event,void * param __unused,void * cookie)1790 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1791 void *param __unused,
1792 void *cookie)
1793 {
1794 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1795 ALOGV("asyncCallback() event %d", event);
1796 switch (event) {
1797 case STREAM_CBK_EVENT_WRITE_READY:
1798 me->writeCallback();
1799 break;
1800 case STREAM_CBK_EVENT_DRAIN_READY:
1801 me->drainCallback();
1802 break;
1803 default:
1804 ALOGW("asyncCallback() unknown event %d", event);
1805 break;
1806 }
1807 return 0;
1808 }
1809
readOutputParameters_l()1810 void AudioFlinger::PlaybackThread::readOutputParameters_l()
1811 {
1812 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
1813 mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
1814 mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
1815 if (!audio_is_output_channel(mChannelMask)) {
1816 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
1817 }
1818 if ((mType == MIXER || mType == DUPLICATING)
1819 && !isValidPcmSinkChannelMask(mChannelMask)) {
1820 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
1821 mChannelMask);
1822 }
1823 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
1824 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
1825 mFormat = mHALFormat;
1826 if (!audio_is_valid_format(mFormat)) {
1827 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
1828 }
1829 if ((mType == MIXER || mType == DUPLICATING)
1830 && !isValidPcmSinkFormat(mFormat)) {
1831 LOG_FATAL("HAL format %#x not supported for mixed output",
1832 mFormat);
1833 }
1834 mFrameSize = audio_stream_out_frame_size(mOutput->stream);
1835 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
1836 mFrameCount = mBufferSize / mFrameSize;
1837 if (mFrameCount & 15) {
1838 ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
1839 mFrameCount);
1840 }
1841
1842 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
1843 (mOutput->stream->set_callback != NULL)) {
1844 if (mOutput->stream->set_callback(mOutput->stream,
1845 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
1846 mUseAsyncWrite = true;
1847 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
1848 }
1849 }
1850
1851 mHwSupportsPause = false;
1852 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
1853 if (mOutput->stream->pause != NULL) {
1854 if (mOutput->stream->resume != NULL) {
1855 mHwSupportsPause = true;
1856 } else {
1857 ALOGW("direct output implements pause but not resume");
1858 }
1859 } else if (mOutput->stream->resume != NULL) {
1860 ALOGW("direct output implements resume but not pause");
1861 }
1862 }
1863
1864 // Calculate size of normal sink buffer relative to the HAL output buffer size
1865 double multiplier = 1.0;
1866 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
1867 kUseFastMixer == FastMixer_Dynamic)) {
1868 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
1869 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
1870 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
1871 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
1872 maxNormalFrameCount = maxNormalFrameCount & ~15;
1873 if (maxNormalFrameCount < minNormalFrameCount) {
1874 maxNormalFrameCount = minNormalFrameCount;
1875 }
1876 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
1877 if (multiplier <= 1.0) {
1878 multiplier = 1.0;
1879 } else if (multiplier <= 2.0) {
1880 if (2 * mFrameCount <= maxNormalFrameCount) {
1881 multiplier = 2.0;
1882 } else {
1883 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
1884 }
1885 } else {
1886 // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
1887 // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
1888 // track, but we sometimes have to do this to satisfy the maximum frame count
1889 // constraint)
1890 // FIXME this rounding up should not be done if no HAL SRC
1891 uint32_t truncMult = (uint32_t) multiplier;
1892 if ((truncMult & 1)) {
1893 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
1894 ++truncMult;
1895 }
1896 }
1897 multiplier = (double) truncMult;
1898 }
1899 }
1900 mNormalFrameCount = multiplier * mFrameCount;
1901 // round up to nearest 16 frames to satisfy AudioMixer
1902 if (mType == MIXER || mType == DUPLICATING) {
1903 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
1904 }
1905 ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
1906 mNormalFrameCount);
1907
1908 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
1909 // Originally this was int16_t[] array, need to remove legacy implications.
1910 free(mSinkBuffer);
1911 mSinkBuffer = NULL;
1912 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
1913 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
1914 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
1915 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
1916
1917 // We resize the mMixerBuffer according to the requirements of the sink buffer which
1918 // drives the output.
1919 free(mMixerBuffer);
1920 mMixerBuffer = NULL;
1921 if (mMixerBufferEnabled) {
1922 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
1923 mMixerBufferSize = mNormalFrameCount * mChannelCount
1924 * audio_bytes_per_sample(mMixerBufferFormat);
1925 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
1926 }
1927 free(mEffectBuffer);
1928 mEffectBuffer = NULL;
1929 if (mEffectBufferEnabled) {
1930 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
1931 mEffectBufferSize = mNormalFrameCount * mChannelCount
1932 * audio_bytes_per_sample(mEffectBufferFormat);
1933 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
1934 }
1935
1936 // force reconfiguration of effect chains and engines to take new buffer size and audio
1937 // parameters into account
1938 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
1939 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
1940 // matter.
1941 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
1942 Vector< sp<EffectChain> > effectChains = mEffectChains;
1943 for (size_t i = 0; i < effectChains.size(); i ++) {
1944 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
1945 }
1946 }
1947
1948
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)1949 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
1950 {
1951 if (halFrames == NULL || dspFrames == NULL) {
1952 return BAD_VALUE;
1953 }
1954 Mutex::Autolock _l(mLock);
1955 if (initCheck() != NO_ERROR) {
1956 return INVALID_OPERATION;
1957 }
1958 size_t framesWritten = mBytesWritten / mFrameSize;
1959 *halFrames = framesWritten;
1960
1961 if (isSuspended()) {
1962 // return an estimation of rendered frames when the output is suspended
1963 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
1964 *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
1965 return NO_ERROR;
1966 } else {
1967 status_t status;
1968 uint32_t frames;
1969 status = mOutput->stream->get_render_position(mOutput->stream, &frames);
1970 *dspFrames = (size_t)frames;
1971 return status;
1972 }
1973 }
1974
hasAudioSession(int sessionId) const1975 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
1976 {
1977 Mutex::Autolock _l(mLock);
1978 uint32_t result = 0;
1979 if (getEffectChain_l(sessionId) != 0) {
1980 result = EFFECT_SESSION;
1981 }
1982
1983 for (size_t i = 0; i < mTracks.size(); ++i) {
1984 sp<Track> track = mTracks[i];
1985 if (sessionId == track->sessionId() && !track->isInvalid()) {
1986 result |= TRACK_SESSION;
1987 break;
1988 }
1989 }
1990
1991 return result;
1992 }
1993
getStrategyForSession_l(int sessionId)1994 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
1995 {
1996 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
1997 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
1998 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1999 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2000 }
2001 for (size_t i = 0; i < mTracks.size(); i++) {
2002 sp<Track> track = mTracks[i];
2003 if (sessionId == track->sessionId() && !track->isInvalid()) {
2004 return AudioSystem::getStrategyForStream(track->streamType());
2005 }
2006 }
2007 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2008 }
2009
2010
getOutput() const2011 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2012 {
2013 Mutex::Autolock _l(mLock);
2014 return mOutput;
2015 }
2016
clearOutput()2017 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2018 {
2019 Mutex::Autolock _l(mLock);
2020 AudioStreamOut *output = mOutput;
2021 mOutput = NULL;
2022 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2023 // must push a NULL and wait for ack
2024 mOutputSink.clear();
2025 mPipeSink.clear();
2026 mNormalSink.clear();
2027 return output;
2028 }
2029
2030 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2031 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2032 {
2033 if (mOutput == NULL) {
2034 return NULL;
2035 }
2036 return &mOutput->stream->common;
2037 }
2038
activeSleepTimeUs() const2039 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2040 {
2041 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2042 }
2043
setSyncEvent(const sp<SyncEvent> & event)2044 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2045 {
2046 if (!isValidSyncEvent(event)) {
2047 return BAD_VALUE;
2048 }
2049
2050 Mutex::Autolock _l(mLock);
2051
2052 for (size_t i = 0; i < mTracks.size(); ++i) {
2053 sp<Track> track = mTracks[i];
2054 if (event->triggerSession() == track->sessionId()) {
2055 (void) track->setSyncEvent(event);
2056 return NO_ERROR;
2057 }
2058 }
2059
2060 return NAME_NOT_FOUND;
2061 }
2062
isValidSyncEvent(const sp<SyncEvent> & event) const2063 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2064 {
2065 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2066 }
2067
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2068 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2069 const Vector< sp<Track> >& tracksToRemove)
2070 {
2071 size_t count = tracksToRemove.size();
2072 if (count > 0) {
2073 for (size_t i = 0 ; i < count ; i++) {
2074 const sp<Track>& track = tracksToRemove.itemAt(i);
2075 if (track->isExternalTrack()) {
2076 AudioSystem::stopOutput(mId, track->streamType(),
2077 (audio_session_t)track->sessionId());
2078 #ifdef ADD_BATTERY_DATA
2079 // to track the speaker usage
2080 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2081 #endif
2082 if (track->isTerminated()) {
2083 AudioSystem::releaseOutput(mId, track->streamType(),
2084 (audio_session_t)track->sessionId());
2085 }
2086 }
2087 }
2088 }
2089 }
2090
checkSilentMode_l()2091 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2092 {
2093 if (!mMasterMute) {
2094 char value[PROPERTY_VALUE_MAX];
2095 if (property_get("ro.audio.silent", value, "0") > 0) {
2096 char *endptr;
2097 unsigned long ul = strtoul(value, &endptr, 0);
2098 if (*endptr == '\0' && ul != 0) {
2099 ALOGD("Silence is golden");
2100 // The setprop command will not allow a property to be changed after
2101 // the first time it is set, so we don't have to worry about un-muting.
2102 setMasterMute_l(true);
2103 }
2104 }
2105 }
2106 }
2107
2108 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2109 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2110 {
2111 // FIXME rewrite to reduce number of system calls
2112 mLastWriteTime = systemTime();
2113 mInWrite = true;
2114 ssize_t bytesWritten;
2115 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2116
2117 // If an NBAIO sink is present, use it to write the normal mixer's submix
2118 if (mNormalSink != 0) {
2119
2120 const size_t count = mBytesRemaining / mFrameSize;
2121
2122 ATRACE_BEGIN("write");
2123 // update the setpoint when AudioFlinger::mScreenState changes
2124 uint32_t screenState = AudioFlinger::mScreenState;
2125 if (screenState != mScreenState) {
2126 mScreenState = screenState;
2127 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2128 if (pipe != NULL) {
2129 pipe->setAvgFrames((mScreenState & 1) ?
2130 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2131 }
2132 }
2133 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2134 ATRACE_END();
2135 if (framesWritten > 0) {
2136 bytesWritten = framesWritten * mFrameSize;
2137 } else {
2138 bytesWritten = framesWritten;
2139 }
2140 status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2141 if (status == NO_ERROR) {
2142 size_t totalFramesWritten = mNormalSink->framesWritten();
2143 if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2144 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2145 // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2146 mLatchDValid = true;
2147 }
2148 }
2149 // otherwise use the HAL / AudioStreamOut directly
2150 } else {
2151 // Direct output and offload threads
2152
2153 if (mUseAsyncWrite) {
2154 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2155 mWriteAckSequence += 2;
2156 mWriteAckSequence |= 1;
2157 ALOG_ASSERT(mCallbackThread != 0);
2158 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2159 }
2160 // FIXME We should have an implementation of timestamps for direct output threads.
2161 // They are used e.g for multichannel PCM playback over HDMI.
2162 bytesWritten = mOutput->stream->write(mOutput->stream,
2163 (char *)mSinkBuffer + offset, mBytesRemaining);
2164 if (mUseAsyncWrite &&
2165 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2166 // do not wait for async callback in case of error of full write
2167 mWriteAckSequence &= ~1;
2168 ALOG_ASSERT(mCallbackThread != 0);
2169 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2170 }
2171 }
2172
2173 mNumWrites++;
2174 mInWrite = false;
2175 mStandby = false;
2176 return bytesWritten;
2177 }
2178
threadLoop_drain()2179 void AudioFlinger::PlaybackThread::threadLoop_drain()
2180 {
2181 if (mOutput->stream->drain) {
2182 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2183 if (mUseAsyncWrite) {
2184 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2185 mDrainSequence |= 1;
2186 ALOG_ASSERT(mCallbackThread != 0);
2187 mCallbackThread->setDraining(mDrainSequence);
2188 }
2189 mOutput->stream->drain(mOutput->stream,
2190 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2191 : AUDIO_DRAIN_ALL);
2192 }
2193 }
2194
threadLoop_exit()2195 void AudioFlinger::PlaybackThread::threadLoop_exit()
2196 {
2197 {
2198 Mutex::Autolock _l(mLock);
2199 for (size_t i = 0; i < mTracks.size(); i++) {
2200 sp<Track> track = mTracks[i];
2201 track->invalidate();
2202 }
2203 }
2204 }
2205
2206 /*
2207 The derived values that are cached:
2208 - mSinkBufferSize from frame count * frame size
2209 - activeSleepTime from activeSleepTimeUs()
2210 - idleSleepTime from idleSleepTimeUs()
2211 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2212 - maxPeriod from frame count and sample rate (MIXER only)
2213
2214 The parameters that affect these derived values are:
2215 - frame count
2216 - frame size
2217 - sample rate
2218 - device type: A2DP or not
2219 - device latency
2220 - format: PCM or not
2221 - active sleep time
2222 - idle sleep time
2223 */
2224
cacheParameters_l()2225 void AudioFlinger::PlaybackThread::cacheParameters_l()
2226 {
2227 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2228 activeSleepTime = activeSleepTimeUs();
2229 idleSleepTime = idleSleepTimeUs();
2230 }
2231
invalidateTracks(audio_stream_type_t streamType)2232 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2233 {
2234 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2235 this, streamType, mTracks.size());
2236 Mutex::Autolock _l(mLock);
2237
2238 size_t size = mTracks.size();
2239 for (size_t i = 0; i < size; i++) {
2240 sp<Track> t = mTracks[i];
2241 if (t->streamType() == streamType) {
2242 t->invalidate();
2243 }
2244 }
2245 }
2246
addEffectChain_l(const sp<EffectChain> & chain)2247 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2248 {
2249 int session = chain->sessionId();
2250 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2251 ? mEffectBuffer : mSinkBuffer);
2252 bool ownsBuffer = false;
2253
2254 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2255 if (session > 0) {
2256 // Only one effect chain can be present in direct output thread and it uses
2257 // the sink buffer as input
2258 if (mType != DIRECT) {
2259 size_t numSamples = mNormalFrameCount * mChannelCount;
2260 buffer = new int16_t[numSamples];
2261 memset(buffer, 0, numSamples * sizeof(int16_t));
2262 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2263 ownsBuffer = true;
2264 }
2265
2266 // Attach all tracks with same session ID to this chain.
2267 for (size_t i = 0; i < mTracks.size(); ++i) {
2268 sp<Track> track = mTracks[i];
2269 if (session == track->sessionId()) {
2270 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2271 buffer);
2272 track->setMainBuffer(buffer);
2273 chain->incTrackCnt();
2274 }
2275 }
2276
2277 // indicate all active tracks in the chain
2278 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2279 sp<Track> track = mActiveTracks[i].promote();
2280 if (track == 0) {
2281 continue;
2282 }
2283 if (session == track->sessionId()) {
2284 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2285 chain->incActiveTrackCnt();
2286 }
2287 }
2288 }
2289 chain->setThread(this);
2290 chain->setInBuffer(buffer, ownsBuffer);
2291 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2292 ? mEffectBuffer : mSinkBuffer));
2293 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2294 // chains list in order to be processed last as it contains output stage effects
2295 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2296 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2297 // after track specific effects and before output stage
2298 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2299 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2300 // Effect chain for other sessions are inserted at beginning of effect
2301 // chains list to be processed before output mix effects. Relative order between other
2302 // sessions is not important
2303 size_t size = mEffectChains.size();
2304 size_t i = 0;
2305 for (i = 0; i < size; i++) {
2306 if (mEffectChains[i]->sessionId() < session) {
2307 break;
2308 }
2309 }
2310 mEffectChains.insertAt(chain, i);
2311 checkSuspendOnAddEffectChain_l(chain);
2312
2313 return NO_ERROR;
2314 }
2315
removeEffectChain_l(const sp<EffectChain> & chain)2316 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2317 {
2318 int session = chain->sessionId();
2319
2320 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2321
2322 for (size_t i = 0; i < mEffectChains.size(); i++) {
2323 if (chain == mEffectChains[i]) {
2324 mEffectChains.removeAt(i);
2325 // detach all active tracks from the chain
2326 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2327 sp<Track> track = mActiveTracks[i].promote();
2328 if (track == 0) {
2329 continue;
2330 }
2331 if (session == track->sessionId()) {
2332 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2333 chain.get(), session);
2334 chain->decActiveTrackCnt();
2335 }
2336 }
2337
2338 // detach all tracks with same session ID from this chain
2339 for (size_t i = 0; i < mTracks.size(); ++i) {
2340 sp<Track> track = mTracks[i];
2341 if (session == track->sessionId()) {
2342 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2343 chain->decTrackCnt();
2344 }
2345 }
2346 break;
2347 }
2348 }
2349 return mEffectChains.size();
2350 }
2351
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2352 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2353 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2354 {
2355 Mutex::Autolock _l(mLock);
2356 return attachAuxEffect_l(track, EffectId);
2357 }
2358
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2359 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2360 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2361 {
2362 status_t status = NO_ERROR;
2363
2364 if (EffectId == 0) {
2365 track->setAuxBuffer(0, NULL);
2366 } else {
2367 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2368 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2369 if (effect != 0) {
2370 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2371 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2372 } else {
2373 status = INVALID_OPERATION;
2374 }
2375 } else {
2376 status = BAD_VALUE;
2377 }
2378 }
2379 return status;
2380 }
2381
detachAuxEffect_l(int effectId)2382 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2383 {
2384 for (size_t i = 0; i < mTracks.size(); ++i) {
2385 sp<Track> track = mTracks[i];
2386 if (track->auxEffectId() == effectId) {
2387 attachAuxEffect_l(track, 0);
2388 }
2389 }
2390 }
2391
threadLoop()2392 bool AudioFlinger::PlaybackThread::threadLoop()
2393 {
2394 Vector< sp<Track> > tracksToRemove;
2395
2396 standbyTime = systemTime();
2397
2398 // MIXER
2399 nsecs_t lastWarning = 0;
2400
2401 // DUPLICATING
2402 // FIXME could this be made local to while loop?
2403 writeFrames = 0;
2404
2405 int lastGeneration = 0;
2406
2407 cacheParameters_l();
2408 sleepTime = idleSleepTime;
2409
2410 if (mType == MIXER) {
2411 sleepTimeShift = 0;
2412 }
2413
2414 CpuStats cpuStats;
2415 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2416
2417 acquireWakeLock();
2418
2419 // mNBLogWriter->log can only be called while thread mutex mLock is held.
2420 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2421 // and then that string will be logged at the next convenient opportunity.
2422 const char *logString = NULL;
2423
2424 checkSilentMode_l();
2425
2426 while (!exitPending())
2427 {
2428 cpuStats.sample(myName);
2429
2430 Vector< sp<EffectChain> > effectChains;
2431
2432 { // scope for mLock
2433
2434 Mutex::Autolock _l(mLock);
2435
2436 processConfigEvents_l();
2437
2438 if (logString != NULL) {
2439 mNBLogWriter->logTimestamp();
2440 mNBLogWriter->log(logString);
2441 logString = NULL;
2442 }
2443
2444 // Gather the framesReleased counters for all active tracks,
2445 // and latch them atomically with the timestamp.
2446 // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2447 mLatchD.mFramesReleased.clear();
2448 size_t size = mActiveTracks.size();
2449 for (size_t i = 0; i < size; i++) {
2450 sp<Track> t = mActiveTracks[i].promote();
2451 if (t != 0) {
2452 mLatchD.mFramesReleased.add(t.get(),
2453 t->mAudioTrackServerProxy->framesReleased());
2454 }
2455 }
2456 if (mLatchDValid) {
2457 mLatchQ = mLatchD;
2458 mLatchDValid = false;
2459 mLatchQValid = true;
2460 }
2461
2462 saveOutputTracks();
2463 if (mSignalPending) {
2464 // A signal was raised while we were unlocked
2465 mSignalPending = false;
2466 } else if (waitingAsyncCallback_l()) {
2467 if (exitPending()) {
2468 break;
2469 }
2470 releaseWakeLock_l();
2471 mWakeLockUids.clear();
2472 mActiveTracksGeneration++;
2473 ALOGV("wait async completion");
2474 mWaitWorkCV.wait(mLock);
2475 ALOGV("async completion/wake");
2476 acquireWakeLock_l();
2477 standbyTime = systemTime() + standbyDelay;
2478 sleepTime = 0;
2479
2480 continue;
2481 }
2482 if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2483 isSuspended()) {
2484 // put audio hardware into standby after short delay
2485 if (shouldStandby_l()) {
2486
2487 threadLoop_standby();
2488
2489 mStandby = true;
2490 }
2491
2492 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2493 // we're about to wait, flush the binder command buffer
2494 IPCThreadState::self()->flushCommands();
2495
2496 clearOutputTracks();
2497
2498 if (exitPending()) {
2499 break;
2500 }
2501
2502 releaseWakeLock_l();
2503 mWakeLockUids.clear();
2504 mActiveTracksGeneration++;
2505 // wait until we have something to do...
2506 ALOGV("%s going to sleep", myName.string());
2507 mWaitWorkCV.wait(mLock);
2508 ALOGV("%s waking up", myName.string());
2509 acquireWakeLock_l();
2510
2511 mMixerStatus = MIXER_IDLE;
2512 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2513 mBytesWritten = 0;
2514 mBytesRemaining = 0;
2515 checkSilentMode_l();
2516
2517 standbyTime = systemTime() + standbyDelay;
2518 sleepTime = idleSleepTime;
2519 if (mType == MIXER) {
2520 sleepTimeShift = 0;
2521 }
2522
2523 continue;
2524 }
2525 }
2526 // mMixerStatusIgnoringFastTracks is also updated internally
2527 mMixerStatus = prepareTracks_l(&tracksToRemove);
2528
2529 // compare with previously applied list
2530 if (lastGeneration != mActiveTracksGeneration) {
2531 // update wakelock
2532 updateWakeLockUids_l(mWakeLockUids);
2533 lastGeneration = mActiveTracksGeneration;
2534 }
2535
2536 // prevent any changes in effect chain list and in each effect chain
2537 // during mixing and effect process as the audio buffers could be deleted
2538 // or modified if an effect is created or deleted
2539 lockEffectChains_l(effectChains);
2540 } // mLock scope ends
2541
2542 if (mBytesRemaining == 0) {
2543 mCurrentWriteLength = 0;
2544 if (mMixerStatus == MIXER_TRACKS_READY) {
2545 // threadLoop_mix() sets mCurrentWriteLength
2546 threadLoop_mix();
2547 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2548 && (mMixerStatus != MIXER_DRAIN_ALL)) {
2549 // threadLoop_sleepTime sets sleepTime to 0 if data
2550 // must be written to HAL
2551 threadLoop_sleepTime();
2552 if (sleepTime == 0) {
2553 mCurrentWriteLength = mSinkBufferSize;
2554 }
2555 }
2556 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2557 // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2558 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2559 // or mSinkBuffer (if there are no effects).
2560 //
2561 // This is done pre-effects computation; if effects change to
2562 // support higher precision, this needs to move.
2563 //
2564 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2565 // TODO use sleepTime == 0 as an additional condition.
2566 if (mMixerBufferValid) {
2567 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2568 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2569
2570 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2571 mNormalFrameCount * mChannelCount);
2572 }
2573
2574 mBytesRemaining = mCurrentWriteLength;
2575 if (isSuspended()) {
2576 sleepTime = suspendSleepTimeUs();
2577 // simulate write to HAL when suspended
2578 mBytesWritten += mSinkBufferSize;
2579 mBytesRemaining = 0;
2580 }
2581
2582 // only process effects if we're going to write
2583 if (sleepTime == 0 && mType != OFFLOAD) {
2584 for (size_t i = 0; i < effectChains.size(); i ++) {
2585 effectChains[i]->process_l();
2586 }
2587 }
2588 }
2589 // Process effect chains for offloaded thread even if no audio
2590 // was read from audio track: process only updates effect state
2591 // and thus does have to be synchronized with audio writes but may have
2592 // to be called while waiting for async write callback
2593 if (mType == OFFLOAD) {
2594 for (size_t i = 0; i < effectChains.size(); i ++) {
2595 effectChains[i]->process_l();
2596 }
2597 }
2598
2599 // Only if the Effects buffer is enabled and there is data in the
2600 // Effects buffer (buffer valid), we need to
2601 // copy into the sink buffer.
2602 // TODO use sleepTime == 0 as an additional condition.
2603 if (mEffectBufferValid) {
2604 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2605 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2606 mNormalFrameCount * mChannelCount);
2607 }
2608
2609 // enable changes in effect chain
2610 unlockEffectChains(effectChains);
2611
2612 if (!waitingAsyncCallback()) {
2613 // sleepTime == 0 means we must write to audio hardware
2614 if (sleepTime == 0) {
2615 if (mBytesRemaining) {
2616 ssize_t ret = threadLoop_write();
2617 if (ret < 0) {
2618 mBytesRemaining = 0;
2619 } else {
2620 mBytesWritten += ret;
2621 mBytesRemaining -= ret;
2622 }
2623 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2624 (mMixerStatus == MIXER_DRAIN_ALL)) {
2625 threadLoop_drain();
2626 }
2627 if (mType == MIXER) {
2628 // write blocked detection
2629 nsecs_t now = systemTime();
2630 nsecs_t delta = now - mLastWriteTime;
2631 if (!mStandby && delta > maxPeriod) {
2632 mNumDelayedWrites++;
2633 if ((now - lastWarning) > kWarningThrottleNs) {
2634 ATRACE_NAME("underrun");
2635 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2636 ns2ms(delta), mNumDelayedWrites, this);
2637 lastWarning = now;
2638 }
2639 }
2640 }
2641
2642 } else {
2643 usleep(sleepTime);
2644 }
2645 }
2646
2647 // Finally let go of removed track(s), without the lock held
2648 // since we can't guarantee the destructors won't acquire that
2649 // same lock. This will also mutate and push a new fast mixer state.
2650 threadLoop_removeTracks(tracksToRemove);
2651 tracksToRemove.clear();
2652
2653 // FIXME I don't understand the need for this here;
2654 // it was in the original code but maybe the
2655 // assignment in saveOutputTracks() makes this unnecessary?
2656 clearOutputTracks();
2657
2658 // Effect chains will be actually deleted here if they were removed from
2659 // mEffectChains list during mixing or effects processing
2660 effectChains.clear();
2661
2662 // FIXME Note that the above .clear() is no longer necessary since effectChains
2663 // is now local to this block, but will keep it for now (at least until merge done).
2664 }
2665
2666 threadLoop_exit();
2667
2668 if (!mStandby) {
2669 threadLoop_standby();
2670 mStandby = true;
2671 }
2672
2673 releaseWakeLock();
2674 mWakeLockUids.clear();
2675 mActiveTracksGeneration++;
2676
2677 ALOGV("Thread %p type %d exiting", this, mType);
2678 return false;
2679 }
2680
2681 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)2682 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2683 {
2684 size_t count = tracksToRemove.size();
2685 if (count > 0) {
2686 for (size_t i=0 ; i<count ; i++) {
2687 const sp<Track>& track = tracksToRemove.itemAt(i);
2688 mActiveTracks.remove(track);
2689 mWakeLockUids.remove(track->uid());
2690 mActiveTracksGeneration++;
2691 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2692 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2693 if (chain != 0) {
2694 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2695 track->sessionId());
2696 chain->decActiveTrackCnt();
2697 }
2698 if (track->isTerminated()) {
2699 removeTrack_l(track);
2700 }
2701 }
2702 }
2703
2704 }
2705
getTimestamp_l(AudioTimestamp & timestamp)2706 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2707 {
2708 if (mNormalSink != 0) {
2709 return mNormalSink->getTimestamp(timestamp);
2710 }
2711 if ((mType == OFFLOAD || mType == DIRECT)
2712 && mOutput != NULL && mOutput->stream->get_presentation_position) {
2713 uint64_t position64;
2714 int ret = mOutput->stream->get_presentation_position(
2715 mOutput->stream, &position64, ×tamp.mTime);
2716 if (ret == 0) {
2717 timestamp.mPosition = (uint32_t)position64;
2718 return NO_ERROR;
2719 }
2720 }
2721 return INVALID_OPERATION;
2722 }
2723
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)2724 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2725 audio_patch_handle_t *handle)
2726 {
2727 status_t status = NO_ERROR;
2728 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2729 // store new device and send to effects
2730 audio_devices_t type = AUDIO_DEVICE_NONE;
2731 for (unsigned int i = 0; i < patch->num_sinks; i++) {
2732 type |= patch->sinks[i].ext.device.type;
2733 }
2734 mOutDevice = type;
2735 for (size_t i = 0; i < mEffectChains.size(); i++) {
2736 mEffectChains[i]->setDevice_l(mOutDevice);
2737 }
2738
2739 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2740 status = hwDevice->create_audio_patch(hwDevice,
2741 patch->num_sources,
2742 patch->sources,
2743 patch->num_sinks,
2744 patch->sinks,
2745 handle);
2746 } else {
2747 ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
2748 }
2749 return status;
2750 }
2751
releaseAudioPatch_l(const audio_patch_handle_t handle)2752 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
2753 {
2754 status_t status = NO_ERROR;
2755 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2756 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2757 status = hwDevice->release_audio_patch(hwDevice, handle);
2758 } else {
2759 ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
2760 }
2761 return status;
2762 }
2763
addPatchTrack(const sp<PatchTrack> & track)2764 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
2765 {
2766 Mutex::Autolock _l(mLock);
2767 mTracks.add(track);
2768 }
2769
deletePatchTrack(const sp<PatchTrack> & track)2770 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
2771 {
2772 Mutex::Autolock _l(mLock);
2773 destroyTrack_l(track);
2774 }
2775
getAudioPortConfig(struct audio_port_config * config)2776 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
2777 {
2778 ThreadBase::getAudioPortConfig(config);
2779 config->role = AUDIO_PORT_ROLE_SOURCE;
2780 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
2781 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
2782 }
2783
2784 // ----------------------------------------------------------------------------
2785
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type)2786 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2787 audio_io_handle_t id, audio_devices_t device, type_t type)
2788 : PlaybackThread(audioFlinger, output, id, device, type),
2789 // mAudioMixer below
2790 // mFastMixer below
2791 mFastMixerFutex(0)
2792 // mOutputSink below
2793 // mPipeSink below
2794 // mNormalSink below
2795 {
2796 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
2797 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
2798 "mFrameCount=%d, mNormalFrameCount=%d",
2799 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
2800 mNormalFrameCount);
2801 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
2802
2803 // create an NBAIO sink for the HAL output stream, and negotiate
2804 mOutputSink = new AudioStreamOutSink(output->stream);
2805 size_t numCounterOffers = 0;
2806 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
2807 ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
2808 ALOG_ASSERT(index == 0);
2809
2810 // initialize fast mixer depending on configuration
2811 bool initFastMixer;
2812 switch (kUseFastMixer) {
2813 case FastMixer_Never:
2814 initFastMixer = false;
2815 break;
2816 case FastMixer_Always:
2817 initFastMixer = true;
2818 break;
2819 case FastMixer_Static:
2820 case FastMixer_Dynamic:
2821 initFastMixer = mFrameCount < mNormalFrameCount;
2822 break;
2823 }
2824 if (initFastMixer) {
2825 audio_format_t fastMixerFormat;
2826 if (mMixerBufferEnabled && mEffectBufferEnabled) {
2827 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
2828 } else {
2829 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
2830 }
2831 if (mFormat != fastMixerFormat) {
2832 // change our Sink format to accept our intermediate precision
2833 mFormat = fastMixerFormat;
2834 free(mSinkBuffer);
2835 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2836 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2837 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2838 }
2839
2840 // create a MonoPipe to connect our submix to FastMixer
2841 NBAIO_Format format = mOutputSink->format();
2842 NBAIO_Format origformat = format;
2843 // adjust format to match that of the Fast Mixer
2844 format.mFormat = fastMixerFormat;
2845 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
2846
2847 // This pipe depth compensates for scheduling latency of the normal mixer thread.
2848 // When it wakes up after a maximum latency, it runs a few cycles quickly before
2849 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
2850 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
2851 const NBAIO_Format offers[1] = {format};
2852 size_t numCounterOffers = 0;
2853 ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
2854 ALOG_ASSERT(index == 0);
2855 monoPipe->setAvgFrames((mScreenState & 1) ?
2856 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2857 mPipeSink = monoPipe;
2858
2859 #ifdef TEE_SINK
2860 if (mTeeSinkOutputEnabled) {
2861 // create a Pipe to archive a copy of FastMixer's output for dumpsys
2862 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
2863 const NBAIO_Format offers2[1] = {origformat};
2864 numCounterOffers = 0;
2865 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
2866 ALOG_ASSERT(index == 0);
2867 mTeeSink = teeSink;
2868 PipeReader *teeSource = new PipeReader(*teeSink);
2869 numCounterOffers = 0;
2870 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
2871 ALOG_ASSERT(index == 0);
2872 mTeeSource = teeSource;
2873 }
2874 #endif
2875
2876 // create fast mixer and configure it initially with just one fast track for our submix
2877 mFastMixer = new FastMixer();
2878 FastMixerStateQueue *sq = mFastMixer->sq();
2879 #ifdef STATE_QUEUE_DUMP
2880 sq->setObserverDump(&mStateQueueObserverDump);
2881 sq->setMutatorDump(&mStateQueueMutatorDump);
2882 #endif
2883 FastMixerState *state = sq->begin();
2884 FastTrack *fastTrack = &state->mFastTracks[0];
2885 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
2886 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
2887 fastTrack->mVolumeProvider = NULL;
2888 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
2889 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
2890 fastTrack->mGeneration++;
2891 state->mFastTracksGen++;
2892 state->mTrackMask = 1;
2893 // fast mixer will use the HAL output sink
2894 state->mOutputSink = mOutputSink.get();
2895 state->mOutputSinkGen++;
2896 state->mFrameCount = mFrameCount;
2897 state->mCommand = FastMixerState::COLD_IDLE;
2898 // already done in constructor initialization list
2899 //mFastMixerFutex = 0;
2900 state->mColdFutexAddr = &mFastMixerFutex;
2901 state->mColdGen++;
2902 state->mDumpState = &mFastMixerDumpState;
2903 #ifdef TEE_SINK
2904 state->mTeeSink = mTeeSink.get();
2905 #endif
2906 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
2907 state->mNBLogWriter = mFastMixerNBLogWriter.get();
2908 sq->end();
2909 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2910
2911 // start the fast mixer
2912 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
2913 pid_t tid = mFastMixer->getTid();
2914 int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
2915 if (err != 0) {
2916 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
2917 kPriorityFastMixer, getpid_cached, tid, err);
2918 }
2919
2920 #ifdef AUDIO_WATCHDOG
2921 // create and start the watchdog
2922 mAudioWatchdog = new AudioWatchdog();
2923 mAudioWatchdog->setDump(&mAudioWatchdogDump);
2924 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
2925 tid = mAudioWatchdog->getTid();
2926 err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
2927 if (err != 0) {
2928 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
2929 kPriorityFastMixer, getpid_cached, tid, err);
2930 }
2931 #endif
2932
2933 }
2934
2935 switch (kUseFastMixer) {
2936 case FastMixer_Never:
2937 case FastMixer_Dynamic:
2938 mNormalSink = mOutputSink;
2939 break;
2940 case FastMixer_Always:
2941 mNormalSink = mPipeSink;
2942 break;
2943 case FastMixer_Static:
2944 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
2945 break;
2946 }
2947 }
2948
~MixerThread()2949 AudioFlinger::MixerThread::~MixerThread()
2950 {
2951 if (mFastMixer != 0) {
2952 FastMixerStateQueue *sq = mFastMixer->sq();
2953 FastMixerState *state = sq->begin();
2954 if (state->mCommand == FastMixerState::COLD_IDLE) {
2955 int32_t old = android_atomic_inc(&mFastMixerFutex);
2956 if (old == -1) {
2957 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
2958 }
2959 }
2960 state->mCommand = FastMixerState::EXIT;
2961 sq->end();
2962 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2963 mFastMixer->join();
2964 // Though the fast mixer thread has exited, it's state queue is still valid.
2965 // We'll use that extract the final state which contains one remaining fast track
2966 // corresponding to our sub-mix.
2967 state = sq->begin();
2968 ALOG_ASSERT(state->mTrackMask == 1);
2969 FastTrack *fastTrack = &state->mFastTracks[0];
2970 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
2971 delete fastTrack->mBufferProvider;
2972 sq->end(false /*didModify*/);
2973 mFastMixer.clear();
2974 #ifdef AUDIO_WATCHDOG
2975 if (mAudioWatchdog != 0) {
2976 mAudioWatchdog->requestExit();
2977 mAudioWatchdog->requestExitAndWait();
2978 mAudioWatchdog.clear();
2979 }
2980 #endif
2981 }
2982 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
2983 delete mAudioMixer;
2984 }
2985
2986
correctLatency_l(uint32_t latency) const2987 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
2988 {
2989 if (mFastMixer != 0) {
2990 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2991 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
2992 }
2993 return latency;
2994 }
2995
2996
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2997 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
2998 {
2999 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3000 }
3001
threadLoop_write()3002 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3003 {
3004 // FIXME we should only do one push per cycle; confirm this is true
3005 // Start the fast mixer if it's not already running
3006 if (mFastMixer != 0) {
3007 FastMixerStateQueue *sq = mFastMixer->sq();
3008 FastMixerState *state = sq->begin();
3009 if (state->mCommand != FastMixerState::MIX_WRITE &&
3010 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3011 if (state->mCommand == FastMixerState::COLD_IDLE) {
3012 int32_t old = android_atomic_inc(&mFastMixerFutex);
3013 if (old == -1) {
3014 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3015 }
3016 #ifdef AUDIO_WATCHDOG
3017 if (mAudioWatchdog != 0) {
3018 mAudioWatchdog->resume();
3019 }
3020 #endif
3021 }
3022 state->mCommand = FastMixerState::MIX_WRITE;
3023 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3024 FastMixerDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
3025 sq->end();
3026 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3027 if (kUseFastMixer == FastMixer_Dynamic) {
3028 mNormalSink = mPipeSink;
3029 }
3030 } else {
3031 sq->end(false /*didModify*/);
3032 }
3033 }
3034 return PlaybackThread::threadLoop_write();
3035 }
3036
threadLoop_standby()3037 void AudioFlinger::MixerThread::threadLoop_standby()
3038 {
3039 // Idle the fast mixer if it's currently running
3040 if (mFastMixer != 0) {
3041 FastMixerStateQueue *sq = mFastMixer->sq();
3042 FastMixerState *state = sq->begin();
3043 if (!(state->mCommand & FastMixerState::IDLE)) {
3044 state->mCommand = FastMixerState::COLD_IDLE;
3045 state->mColdFutexAddr = &mFastMixerFutex;
3046 state->mColdGen++;
3047 mFastMixerFutex = 0;
3048 sq->end();
3049 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3050 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3051 if (kUseFastMixer == FastMixer_Dynamic) {
3052 mNormalSink = mOutputSink;
3053 }
3054 #ifdef AUDIO_WATCHDOG
3055 if (mAudioWatchdog != 0) {
3056 mAudioWatchdog->pause();
3057 }
3058 #endif
3059 } else {
3060 sq->end(false /*didModify*/);
3061 }
3062 }
3063 PlaybackThread::threadLoop_standby();
3064 }
3065
waitingAsyncCallback_l()3066 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3067 {
3068 return false;
3069 }
3070
shouldStandby_l()3071 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3072 {
3073 return !mStandby;
3074 }
3075
waitingAsyncCallback()3076 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3077 {
3078 Mutex::Autolock _l(mLock);
3079 return waitingAsyncCallback_l();
3080 }
3081
3082 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3083 void AudioFlinger::PlaybackThread::threadLoop_standby()
3084 {
3085 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3086 mOutput->stream->common.standby(&mOutput->stream->common);
3087 if (mUseAsyncWrite != 0) {
3088 // discard any pending drain or write ack by incrementing sequence
3089 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3090 mDrainSequence = (mDrainSequence + 2) & ~1;
3091 ALOG_ASSERT(mCallbackThread != 0);
3092 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3093 mCallbackThread->setDraining(mDrainSequence);
3094 }
3095 mHwPaused = false;
3096 }
3097
onAddNewTrack_l()3098 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3099 {
3100 ALOGV("signal playback thread");
3101 broadcast_l();
3102 }
3103
threadLoop_mix()3104 void AudioFlinger::MixerThread::threadLoop_mix()
3105 {
3106 // obtain the presentation timestamp of the next output buffer
3107 int64_t pts;
3108 status_t status = INVALID_OPERATION;
3109
3110 if (mNormalSink != 0) {
3111 status = mNormalSink->getNextWriteTimestamp(&pts);
3112 } else {
3113 status = mOutputSink->getNextWriteTimestamp(&pts);
3114 }
3115
3116 if (status != NO_ERROR) {
3117 pts = AudioBufferProvider::kInvalidPTS;
3118 }
3119
3120 // mix buffers...
3121 mAudioMixer->process(pts);
3122 mCurrentWriteLength = mSinkBufferSize;
3123 // increase sleep time progressively when application underrun condition clears.
3124 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3125 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3126 // such that we would underrun the audio HAL.
3127 if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3128 sleepTimeShift--;
3129 }
3130 sleepTime = 0;
3131 standbyTime = systemTime() + standbyDelay;
3132 //TODO: delay standby when effects have a tail
3133
3134 }
3135
threadLoop_sleepTime()3136 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3137 {
3138 // If no tracks are ready, sleep once for the duration of an output
3139 // buffer size, then write 0s to the output
3140 if (sleepTime == 0) {
3141 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3142 sleepTime = activeSleepTime >> sleepTimeShift;
3143 if (sleepTime < kMinThreadSleepTimeUs) {
3144 sleepTime = kMinThreadSleepTimeUs;
3145 }
3146 // reduce sleep time in case of consecutive application underruns to avoid
3147 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3148 // duration we would end up writing less data than needed by the audio HAL if
3149 // the condition persists.
3150 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3151 sleepTimeShift++;
3152 }
3153 } else {
3154 sleepTime = idleSleepTime;
3155 }
3156 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3157 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3158 // before effects processing or output.
3159 if (mMixerBufferValid) {
3160 memset(mMixerBuffer, 0, mMixerBufferSize);
3161 } else {
3162 memset(mSinkBuffer, 0, mSinkBufferSize);
3163 }
3164 sleepTime = 0;
3165 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3166 "anticipated start");
3167 }
3168 // TODO add standby time extension fct of effect tail
3169 }
3170
3171 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3172 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3173 Vector< sp<Track> > *tracksToRemove)
3174 {
3175
3176 mixer_state mixerStatus = MIXER_IDLE;
3177 // find out which tracks need to be processed
3178 size_t count = mActiveTracks.size();
3179 size_t mixedTracks = 0;
3180 size_t tracksWithEffect = 0;
3181 // counts only _active_ fast tracks
3182 size_t fastTracks = 0;
3183 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3184
3185 float masterVolume = mMasterVolume;
3186 bool masterMute = mMasterMute;
3187
3188 if (masterMute) {
3189 masterVolume = 0;
3190 }
3191 // Delegate master volume control to effect in output mix effect chain if needed
3192 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3193 if (chain != 0) {
3194 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3195 chain->setVolume_l(&v, &v);
3196 masterVolume = (float)((v + (1 << 23)) >> 24);
3197 chain.clear();
3198 }
3199
3200 // prepare a new state to push
3201 FastMixerStateQueue *sq = NULL;
3202 FastMixerState *state = NULL;
3203 bool didModify = false;
3204 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3205 if (mFastMixer != 0) {
3206 sq = mFastMixer->sq();
3207 state = sq->begin();
3208 }
3209
3210 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
3211 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3212
3213 for (size_t i=0 ; i<count ; i++) {
3214 const sp<Track> t = mActiveTracks[i].promote();
3215 if (t == 0) {
3216 continue;
3217 }
3218
3219 // this const just means the local variable doesn't change
3220 Track* const track = t.get();
3221
3222 // process fast tracks
3223 if (track->isFastTrack()) {
3224
3225 // It's theoretically possible (though unlikely) for a fast track to be created
3226 // and then removed within the same normal mix cycle. This is not a problem, as
3227 // the track never becomes active so it's fast mixer slot is never touched.
3228 // The converse, of removing an (active) track and then creating a new track
3229 // at the identical fast mixer slot within the same normal mix cycle,
3230 // is impossible because the slot isn't marked available until the end of each cycle.
3231 int j = track->mFastIndex;
3232 ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3233 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3234 FastTrack *fastTrack = &state->mFastTracks[j];
3235
3236 // Determine whether the track is currently in underrun condition,
3237 // and whether it had a recent underrun.
3238 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3239 FastTrackUnderruns underruns = ftDump->mUnderruns;
3240 uint32_t recentFull = (underruns.mBitFields.mFull -
3241 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3242 uint32_t recentPartial = (underruns.mBitFields.mPartial -
3243 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3244 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3245 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3246 uint32_t recentUnderruns = recentPartial + recentEmpty;
3247 track->mObservedUnderruns = underruns;
3248 // don't count underruns that occur while stopping or pausing
3249 // or stopped which can occur when flush() is called while active
3250 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3251 recentUnderruns > 0) {
3252 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3253 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3254 }
3255
3256 // This is similar to the state machine for normal tracks,
3257 // with a few modifications for fast tracks.
3258 bool isActive = true;
3259 switch (track->mState) {
3260 case TrackBase::STOPPING_1:
3261 // track stays active in STOPPING_1 state until first underrun
3262 if (recentUnderruns > 0 || track->isTerminated()) {
3263 track->mState = TrackBase::STOPPING_2;
3264 }
3265 break;
3266 case TrackBase::PAUSING:
3267 // ramp down is not yet implemented
3268 track->setPaused();
3269 break;
3270 case TrackBase::RESUMING:
3271 // ramp up is not yet implemented
3272 track->mState = TrackBase::ACTIVE;
3273 break;
3274 case TrackBase::ACTIVE:
3275 if (recentFull > 0 || recentPartial > 0) {
3276 // track has provided at least some frames recently: reset retry count
3277 track->mRetryCount = kMaxTrackRetries;
3278 }
3279 if (recentUnderruns == 0) {
3280 // no recent underruns: stay active
3281 break;
3282 }
3283 // there has recently been an underrun of some kind
3284 if (track->sharedBuffer() == 0) {
3285 // were any of the recent underruns "empty" (no frames available)?
3286 if (recentEmpty == 0) {
3287 // no, then ignore the partial underruns as they are allowed indefinitely
3288 break;
3289 }
3290 // there has recently been an "empty" underrun: decrement the retry counter
3291 if (--(track->mRetryCount) > 0) {
3292 break;
3293 }
3294 // indicate to client process that the track was disabled because of underrun;
3295 // it will then automatically call start() when data is available
3296 android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3297 // remove from active list, but state remains ACTIVE [confusing but true]
3298 isActive = false;
3299 break;
3300 }
3301 // fall through
3302 case TrackBase::STOPPING_2:
3303 case TrackBase::PAUSED:
3304 case TrackBase::STOPPED:
3305 case TrackBase::FLUSHED: // flush() while active
3306 // Check for presentation complete if track is inactive
3307 // We have consumed all the buffers of this track.
3308 // This would be incomplete if we auto-paused on underrun
3309 {
3310 size_t audioHALFrames =
3311 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3312 size_t framesWritten = mBytesWritten / mFrameSize;
3313 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3314 // track stays in active list until presentation is complete
3315 break;
3316 }
3317 }
3318 if (track->isStopping_2()) {
3319 track->mState = TrackBase::STOPPED;
3320 }
3321 if (track->isStopped()) {
3322 // Can't reset directly, as fast mixer is still polling this track
3323 // track->reset();
3324 // So instead mark this track as needing to be reset after push with ack
3325 resetMask |= 1 << i;
3326 }
3327 isActive = false;
3328 break;
3329 case TrackBase::IDLE:
3330 default:
3331 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3332 }
3333
3334 if (isActive) {
3335 // was it previously inactive?
3336 if (!(state->mTrackMask & (1 << j))) {
3337 ExtendedAudioBufferProvider *eabp = track;
3338 VolumeProvider *vp = track;
3339 fastTrack->mBufferProvider = eabp;
3340 fastTrack->mVolumeProvider = vp;
3341 fastTrack->mChannelMask = track->mChannelMask;
3342 fastTrack->mFormat = track->mFormat;
3343 fastTrack->mGeneration++;
3344 state->mTrackMask |= 1 << j;
3345 didModify = true;
3346 // no acknowledgement required for newly active tracks
3347 }
3348 // cache the combined master volume and stream type volume for fast mixer; this
3349 // lacks any synchronization or barrier so VolumeProvider may read a stale value
3350 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3351 ++fastTracks;
3352 } else {
3353 // was it previously active?
3354 if (state->mTrackMask & (1 << j)) {
3355 fastTrack->mBufferProvider = NULL;
3356 fastTrack->mGeneration++;
3357 state->mTrackMask &= ~(1 << j);
3358 didModify = true;
3359 // If any fast tracks were removed, we must wait for acknowledgement
3360 // because we're about to decrement the last sp<> on those tracks.
3361 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3362 } else {
3363 LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3364 }
3365 tracksToRemove->add(track);
3366 // Avoids a misleading display in dumpsys
3367 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3368 }
3369 continue;
3370 }
3371
3372 { // local variable scope to avoid goto warning
3373
3374 audio_track_cblk_t* cblk = track->cblk();
3375
3376 // The first time a track is added we wait
3377 // for all its buffers to be filled before processing it
3378 int name = track->name();
3379 // make sure that we have enough frames to mix one full buffer.
3380 // enforce this condition only once to enable draining the buffer in case the client
3381 // app does not call stop() and relies on underrun to stop:
3382 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3383 // during last round
3384 size_t desiredFrames;
3385 uint32_t sr = track->sampleRate();
3386 if (sr == mSampleRate) {
3387 desiredFrames = mNormalFrameCount;
3388 } else {
3389 // +1 for rounding and +1 for additional sample needed for interpolation
3390 desiredFrames = (mNormalFrameCount * sr) / mSampleRate + 1 + 1;
3391 // add frames already consumed but not yet released by the resampler
3392 // because mAudioTrackServerProxy->framesReady() will include these frames
3393 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3394 #if 0
3395 // the minimum track buffer size is normally twice the number of frames necessary
3396 // to fill one buffer and the resampler should not leave more than one buffer worth
3397 // of unreleased frames after each pass, but just in case...
3398 ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
3399 #endif
3400 }
3401 uint32_t minFrames = 1;
3402 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3403 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3404 minFrames = desiredFrames;
3405 }
3406
3407 size_t framesReady = track->framesReady();
3408 if ((framesReady >= minFrames) && track->isReady() &&
3409 !track->isPaused() && !track->isTerminated())
3410 {
3411 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3412
3413 mixedTracks++;
3414
3415 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3416 // there is an effect chain connected to the track
3417 chain.clear();
3418 if (track->mainBuffer() != mSinkBuffer &&
3419 track->mainBuffer() != mMixerBuffer) {
3420 if (mEffectBufferEnabled) {
3421 mEffectBufferValid = true; // Later can set directly.
3422 }
3423 chain = getEffectChain_l(track->sessionId());
3424 // Delegate volume control to effect in track effect chain if needed
3425 if (chain != 0) {
3426 tracksWithEffect++;
3427 } else {
3428 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3429 "session %d",
3430 name, track->sessionId());
3431 }
3432 }
3433
3434
3435 int param = AudioMixer::VOLUME;
3436 if (track->mFillingUpStatus == Track::FS_FILLED) {
3437 // no ramp for the first volume setting
3438 track->mFillingUpStatus = Track::FS_ACTIVE;
3439 if (track->mState == TrackBase::RESUMING) {
3440 track->mState = TrackBase::ACTIVE;
3441 param = AudioMixer::RAMP_VOLUME;
3442 }
3443 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3444 // FIXME should not make a decision based on mServer
3445 } else if (cblk->mServer != 0) {
3446 // If the track is stopped before the first frame was mixed,
3447 // do not apply ramp
3448 param = AudioMixer::RAMP_VOLUME;
3449 }
3450
3451 // compute volume for this track
3452 uint32_t vl, vr; // in U8.24 integer format
3453 float vlf, vrf, vaf; // in [0.0, 1.0] float format
3454 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3455 vl = vr = 0;
3456 vlf = vrf = vaf = 0.;
3457 if (track->isPausing()) {
3458 track->setPaused();
3459 }
3460 } else {
3461
3462 // read original volumes with volume control
3463 float typeVolume = mStreamTypes[track->streamType()].volume;
3464 float v = masterVolume * typeVolume;
3465 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3466 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3467 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3468 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3469 // track volumes come from shared memory, so can't be trusted and must be clamped
3470 if (vlf > GAIN_FLOAT_UNITY) {
3471 ALOGV("Track left volume out of range: %.3g", vlf);
3472 vlf = GAIN_FLOAT_UNITY;
3473 }
3474 if (vrf > GAIN_FLOAT_UNITY) {
3475 ALOGV("Track right volume out of range: %.3g", vrf);
3476 vrf = GAIN_FLOAT_UNITY;
3477 }
3478 // now apply the master volume and stream type volume
3479 vlf *= v;
3480 vrf *= v;
3481 // assuming master volume and stream type volume each go up to 1.0,
3482 // then derive vl and vr as U8.24 versions for the effect chain
3483 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3484 vl = (uint32_t) (scaleto8_24 * vlf);
3485 vr = (uint32_t) (scaleto8_24 * vrf);
3486 // vl and vr are now in U8.24 format
3487 uint16_t sendLevel = proxy->getSendLevel_U4_12();
3488 // send level comes from shared memory and so may be corrupt
3489 if (sendLevel > MAX_GAIN_INT) {
3490 ALOGV("Track send level out of range: %04X", sendLevel);
3491 sendLevel = MAX_GAIN_INT;
3492 }
3493 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3494 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3495 }
3496
3497 // Delegate volume control to effect in track effect chain if needed
3498 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3499 // Do not ramp volume if volume is controlled by effect
3500 param = AudioMixer::VOLUME;
3501 // Update remaining floating point volume levels
3502 vlf = (float)vl / (1 << 24);
3503 vrf = (float)vr / (1 << 24);
3504 track->mHasVolumeController = true;
3505 } else {
3506 // force no volume ramp when volume controller was just disabled or removed
3507 // from effect chain to avoid volume spike
3508 if (track->mHasVolumeController) {
3509 param = AudioMixer::VOLUME;
3510 }
3511 track->mHasVolumeController = false;
3512 }
3513
3514 // XXX: these things DON'T need to be done each time
3515 mAudioMixer->setBufferProvider(name, track);
3516 mAudioMixer->enable(name);
3517
3518 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3519 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3520 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3521 mAudioMixer->setParameter(
3522 name,
3523 AudioMixer::TRACK,
3524 AudioMixer::FORMAT, (void *)track->format());
3525 mAudioMixer->setParameter(
3526 name,
3527 AudioMixer::TRACK,
3528 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3529 mAudioMixer->setParameter(
3530 name,
3531 AudioMixer::TRACK,
3532 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3533 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3534 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3535 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3536 if (reqSampleRate == 0) {
3537 reqSampleRate = mSampleRate;
3538 } else if (reqSampleRate > maxSampleRate) {
3539 reqSampleRate = maxSampleRate;
3540 }
3541 mAudioMixer->setParameter(
3542 name,
3543 AudioMixer::RESAMPLE,
3544 AudioMixer::SAMPLE_RATE,
3545 (void *)(uintptr_t)reqSampleRate);
3546 /*
3547 * Select the appropriate output buffer for the track.
3548 *
3549 * Tracks with effects go into their own effects chain buffer
3550 * and from there into either mEffectBuffer or mSinkBuffer.
3551 *
3552 * Other tracks can use mMixerBuffer for higher precision
3553 * channel accumulation. If this buffer is enabled
3554 * (mMixerBufferEnabled true), then selected tracks will accumulate
3555 * into it.
3556 *
3557 */
3558 if (mMixerBufferEnabled
3559 && (track->mainBuffer() == mSinkBuffer
3560 || track->mainBuffer() == mMixerBuffer)) {
3561 mAudioMixer->setParameter(
3562 name,
3563 AudioMixer::TRACK,
3564 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3565 mAudioMixer->setParameter(
3566 name,
3567 AudioMixer::TRACK,
3568 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3569 // TODO: override track->mainBuffer()?
3570 mMixerBufferValid = true;
3571 } else {
3572 mAudioMixer->setParameter(
3573 name,
3574 AudioMixer::TRACK,
3575 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3576 mAudioMixer->setParameter(
3577 name,
3578 AudioMixer::TRACK,
3579 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3580 }
3581 mAudioMixer->setParameter(
3582 name,
3583 AudioMixer::TRACK,
3584 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3585
3586 // reset retry count
3587 track->mRetryCount = kMaxTrackRetries;
3588
3589 // If one track is ready, set the mixer ready if:
3590 // - the mixer was not ready during previous round OR
3591 // - no other track is not ready
3592 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3593 mixerStatus != MIXER_TRACKS_ENABLED) {
3594 mixerStatus = MIXER_TRACKS_READY;
3595 }
3596 } else {
3597 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3598 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3599 }
3600 // clear effect chain input buffer if an active track underruns to avoid sending
3601 // previous audio buffer again to effects
3602 chain = getEffectChain_l(track->sessionId());
3603 if (chain != 0) {
3604 chain->clearInputBuffer();
3605 }
3606
3607 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3608 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3609 track->isStopped() || track->isPaused()) {
3610 // We have consumed all the buffers of this track.
3611 // Remove it from the list of active tracks.
3612 // TODO: use actual buffer filling status instead of latency when available from
3613 // audio HAL
3614 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3615 size_t framesWritten = mBytesWritten / mFrameSize;
3616 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3617 if (track->isStopped()) {
3618 track->reset();
3619 }
3620 tracksToRemove->add(track);
3621 }
3622 } else {
3623 // No buffers for this track. Give it a few chances to
3624 // fill a buffer, then remove it from active list.
3625 if (--(track->mRetryCount) <= 0) {
3626 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3627 tracksToRemove->add(track);
3628 // indicate to client process that the track was disabled because of underrun;
3629 // it will then automatically call start() when data is available
3630 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3631 // If one track is not ready, mark the mixer also not ready if:
3632 // - the mixer was ready during previous round OR
3633 // - no other track is ready
3634 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3635 mixerStatus != MIXER_TRACKS_READY) {
3636 mixerStatus = MIXER_TRACKS_ENABLED;
3637 }
3638 }
3639 mAudioMixer->disable(name);
3640 }
3641
3642 } // local variable scope to avoid goto warning
3643 track_is_ready: ;
3644
3645 }
3646
3647 // Push the new FastMixer state if necessary
3648 bool pauseAudioWatchdog = false;
3649 if (didModify) {
3650 state->mFastTracksGen++;
3651 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3652 if (kUseFastMixer == FastMixer_Dynamic &&
3653 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3654 state->mCommand = FastMixerState::COLD_IDLE;
3655 state->mColdFutexAddr = &mFastMixerFutex;
3656 state->mColdGen++;
3657 mFastMixerFutex = 0;
3658 if (kUseFastMixer == FastMixer_Dynamic) {
3659 mNormalSink = mOutputSink;
3660 }
3661 // If we go into cold idle, need to wait for acknowledgement
3662 // so that fast mixer stops doing I/O.
3663 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3664 pauseAudioWatchdog = true;
3665 }
3666 }
3667 if (sq != NULL) {
3668 sq->end(didModify);
3669 sq->push(block);
3670 }
3671 #ifdef AUDIO_WATCHDOG
3672 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3673 mAudioWatchdog->pause();
3674 }
3675 #endif
3676
3677 // Now perform the deferred reset on fast tracks that have stopped
3678 while (resetMask != 0) {
3679 size_t i = __builtin_ctz(resetMask);
3680 ALOG_ASSERT(i < count);
3681 resetMask &= ~(1 << i);
3682 sp<Track> t = mActiveTracks[i].promote();
3683 if (t == 0) {
3684 continue;
3685 }
3686 Track* track = t.get();
3687 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3688 track->reset();
3689 }
3690
3691 // remove all the tracks that need to be...
3692 removeTracks_l(*tracksToRemove);
3693
3694 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
3695 mEffectBufferValid = true;
3696 }
3697
3698 if (mEffectBufferValid) {
3699 // as long as there are effects we should clear the effects buffer, to avoid
3700 // passing a non-clean buffer to the effect chain
3701 memset(mEffectBuffer, 0, mEffectBufferSize);
3702 }
3703 // sink or mix buffer must be cleared if all tracks are connected to an
3704 // effect chain as in this case the mixer will not write to the sink or mix buffer
3705 // and track effects will accumulate into it
3706 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3707 (mixedTracks == 0 && fastTracks > 0))) {
3708 // FIXME as a performance optimization, should remember previous zero status
3709 if (mMixerBufferValid) {
3710 memset(mMixerBuffer, 0, mMixerBufferSize);
3711 // TODO: In testing, mSinkBuffer below need not be cleared because
3712 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
3713 // after mixing.
3714 //
3715 // To enforce this guarantee:
3716 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3717 // (mixedTracks == 0 && fastTracks > 0))
3718 // must imply MIXER_TRACKS_READY.
3719 // Later, we may clear buffers regardless, and skip much of this logic.
3720 }
3721 // FIXME as a performance optimization, should remember previous zero status
3722 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
3723 }
3724
3725 // if any fast tracks, then status is ready
3726 mMixerStatusIgnoringFastTracks = mixerStatus;
3727 if (fastTracks > 0) {
3728 mixerStatus = MIXER_TRACKS_READY;
3729 }
3730 return mixerStatus;
3731 }
3732
3733 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,int sessionId)3734 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
3735 audio_format_t format, int sessionId)
3736 {
3737 return mAudioMixer->getTrackName(channelMask, format, sessionId);
3738 }
3739
3740 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)3741 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3742 {
3743 ALOGV("remove track (%d) and delete from mixer", name);
3744 mAudioMixer->deleteTrackName(name);
3745 }
3746
3747 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)3748 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
3749 status_t& status)
3750 {
3751 bool reconfig = false;
3752
3753 status = NO_ERROR;
3754
3755 // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3756 FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3757 if (mFastMixer != 0) {
3758 FastMixerStateQueue *sq = mFastMixer->sq();
3759 FastMixerState *state = sq->begin();
3760 if (!(state->mCommand & FastMixerState::IDLE)) {
3761 previousCommand = state->mCommand;
3762 state->mCommand = FastMixerState::HOT_IDLE;
3763 sq->end();
3764 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3765 } else {
3766 sq->end(false /*didModify*/);
3767 }
3768 }
3769
3770 AudioParameter param = AudioParameter(keyValuePair);
3771 int value;
3772 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
3773 reconfig = true;
3774 }
3775 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
3776 if (!isValidPcmSinkFormat((audio_format_t) value)) {
3777 status = BAD_VALUE;
3778 } else {
3779 // no need to save value, since it's constant
3780 reconfig = true;
3781 }
3782 }
3783 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
3784 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
3785 status = BAD_VALUE;
3786 } else {
3787 // no need to save value, since it's constant
3788 reconfig = true;
3789 }
3790 }
3791 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
3792 // do not accept frame count changes if tracks are open as the track buffer
3793 // size depends on frame count and correct behavior would not be guaranteed
3794 // if frame count is changed after track creation
3795 if (!mTracks.isEmpty()) {
3796 status = INVALID_OPERATION;
3797 } else {
3798 reconfig = true;
3799 }
3800 }
3801 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
3802 #ifdef ADD_BATTERY_DATA
3803 // when changing the audio output device, call addBatteryData to notify
3804 // the change
3805 if (mOutDevice != value) {
3806 uint32_t params = 0;
3807 // check whether speaker is on
3808 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
3809 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3810 }
3811
3812 audio_devices_t deviceWithoutSpeaker
3813 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3814 // check if any other device (except speaker) is on
3815 if (value & deviceWithoutSpeaker ) {
3816 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3817 }
3818
3819 if (params != 0) {
3820 addBatteryData(params);
3821 }
3822 }
3823 #endif
3824
3825 // forward device change to effects that have requested to be
3826 // aware of attached audio device.
3827 if (value != AUDIO_DEVICE_NONE) {
3828 mOutDevice = value;
3829 for (size_t i = 0; i < mEffectChains.size(); i++) {
3830 mEffectChains[i]->setDevice_l(mOutDevice);
3831 }
3832 }
3833 }
3834
3835 if (status == NO_ERROR) {
3836 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3837 keyValuePair.string());
3838 if (!mStandby && status == INVALID_OPERATION) {
3839 mOutput->stream->common.standby(&mOutput->stream->common);
3840 mStandby = true;
3841 mBytesWritten = 0;
3842 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3843 keyValuePair.string());
3844 }
3845 if (status == NO_ERROR && reconfig) {
3846 readOutputParameters_l();
3847 delete mAudioMixer;
3848 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3849 for (size_t i = 0; i < mTracks.size() ; i++) {
3850 int name = getTrackName_l(mTracks[i]->mChannelMask,
3851 mTracks[i]->mFormat, mTracks[i]->mSessionId);
3852 if (name < 0) {
3853 break;
3854 }
3855 mTracks[i]->mName = name;
3856 }
3857 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
3858 }
3859 }
3860
3861 if (!(previousCommand & FastMixerState::IDLE)) {
3862 ALOG_ASSERT(mFastMixer != 0);
3863 FastMixerStateQueue *sq = mFastMixer->sq();
3864 FastMixerState *state = sq->begin();
3865 ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3866 state->mCommand = previousCommand;
3867 sq->end();
3868 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3869 }
3870
3871 return reconfig;
3872 }
3873
3874
dumpInternals(int fd,const Vector<String16> & args)3875 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
3876 {
3877 const size_t SIZE = 256;
3878 char buffer[SIZE];
3879 String8 result;
3880
3881 PlaybackThread::dumpInternals(fd, args);
3882
3883 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
3884
3885 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
3886 const FastMixerDumpState copy(mFastMixerDumpState);
3887 copy.dump(fd);
3888
3889 #ifdef STATE_QUEUE_DUMP
3890 // Similar for state queue
3891 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
3892 observerCopy.dump(fd);
3893 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
3894 mutatorCopy.dump(fd);
3895 #endif
3896
3897 #ifdef TEE_SINK
3898 // Write the tee output to a .wav file
3899 dumpTee(fd, mTeeSource, mId);
3900 #endif
3901
3902 #ifdef AUDIO_WATCHDOG
3903 if (mAudioWatchdog != 0) {
3904 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
3905 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
3906 wdCopy.dump(fd);
3907 }
3908 #endif
3909 }
3910
idleSleepTimeUs() const3911 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
3912 {
3913 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
3914 }
3915
suspendSleepTimeUs() const3916 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
3917 {
3918 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3919 }
3920
cacheParameters_l()3921 void AudioFlinger::MixerThread::cacheParameters_l()
3922 {
3923 PlaybackThread::cacheParameters_l();
3924
3925 // FIXME: Relaxed timing because of a certain device that can't meet latency
3926 // Should be reduced to 2x after the vendor fixes the driver issue
3927 // increase threshold again due to low power audio mode. The way this warning
3928 // threshold is calculated and its usefulness should be reconsidered anyway.
3929 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
3930 }
3931
3932 // ----------------------------------------------------------------------------
3933
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device)3934 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
3935 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
3936 : PlaybackThread(audioFlinger, output, id, device, DIRECT)
3937 // mLeftVolFloat, mRightVolFloat
3938 {
3939 }
3940
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type)3941 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
3942 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
3943 ThreadBase::type_t type)
3944 : PlaybackThread(audioFlinger, output, id, device, type)
3945 // mLeftVolFloat, mRightVolFloat
3946 {
3947 }
3948
~DirectOutputThread()3949 AudioFlinger::DirectOutputThread::~DirectOutputThread()
3950 {
3951 }
3952
processVolume_l(Track * track,bool lastTrack)3953 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
3954 {
3955 audio_track_cblk_t* cblk = track->cblk();
3956 float left, right;
3957
3958 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
3959 left = right = 0;
3960 } else {
3961 float typeVolume = mStreamTypes[track->streamType()].volume;
3962 float v = mMasterVolume * typeVolume;
3963 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3964 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3965 left = float_from_gain(gain_minifloat_unpack_left(vlr));
3966 if (left > GAIN_FLOAT_UNITY) {
3967 left = GAIN_FLOAT_UNITY;
3968 }
3969 left *= v;
3970 right = float_from_gain(gain_minifloat_unpack_right(vlr));
3971 if (right > GAIN_FLOAT_UNITY) {
3972 right = GAIN_FLOAT_UNITY;
3973 }
3974 right *= v;
3975 }
3976
3977 if (lastTrack) {
3978 if (left != mLeftVolFloat || right != mRightVolFloat) {
3979 mLeftVolFloat = left;
3980 mRightVolFloat = right;
3981
3982 // Convert volumes from float to 8.24
3983 uint32_t vl = (uint32_t)(left * (1 << 24));
3984 uint32_t vr = (uint32_t)(right * (1 << 24));
3985
3986 // Delegate volume control to effect in track effect chain if needed
3987 // only one effect chain can be present on DirectOutputThread, so if
3988 // there is one, the track is connected to it
3989 if (!mEffectChains.isEmpty()) {
3990 mEffectChains[0]->setVolume_l(&vl, &vr);
3991 left = (float)vl / (1 << 24);
3992 right = (float)vr / (1 << 24);
3993 }
3994 if (mOutput->stream->set_volume) {
3995 mOutput->stream->set_volume(mOutput->stream, left, right);
3996 }
3997 }
3998 }
3999 }
4000
4001
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4002 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4003 Vector< sp<Track> > *tracksToRemove
4004 )
4005 {
4006 size_t count = mActiveTracks.size();
4007 mixer_state mixerStatus = MIXER_IDLE;
4008 bool doHwPause = false;
4009 bool doHwResume = false;
4010 bool flushPending = false;
4011
4012 // find out which tracks need to be processed
4013 for (size_t i = 0; i < count; i++) {
4014 sp<Track> t = mActiveTracks[i].promote();
4015 // The track died recently
4016 if (t == 0) {
4017 continue;
4018 }
4019
4020 Track* const track = t.get();
4021 audio_track_cblk_t* cblk = track->cblk();
4022 // Only consider last track started for volume and mixer state control.
4023 // In theory an older track could underrun and restart after the new one starts
4024 // but as we only care about the transition phase between two tracks on a
4025 // direct output, it is not a problem to ignore the underrun case.
4026 sp<Track> l = mLatestActiveTrack.promote();
4027 bool last = l.get() == track;
4028
4029 if (mHwSupportsPause && track->isPausing()) {
4030 track->setPaused();
4031 if (last && !mHwPaused) {
4032 doHwPause = true;
4033 mHwPaused = true;
4034 }
4035 tracksToRemove->add(track);
4036 } else if (track->isFlushPending()) {
4037 track->flushAck();
4038 if (last) {
4039 flushPending = true;
4040 }
4041 } else if (mHwSupportsPause && track->isResumePending()){
4042 track->resumeAck();
4043 if (last) {
4044 if (mHwPaused) {
4045 doHwResume = true;
4046 mHwPaused = false;
4047 }
4048 }
4049 }
4050
4051 // The first time a track is added we wait
4052 // for all its buffers to be filled before processing it.
4053 // Allow draining the buffer in case the client
4054 // app does not call stop() and relies on underrun to stop:
4055 // hence the test on (track->mRetryCount > 1).
4056 // If retryCount<=1 then track is about to underrun and be removed.
4057 uint32_t minFrames;
4058 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4059 && (track->mRetryCount > 1)) {
4060 minFrames = mNormalFrameCount;
4061 } else {
4062 minFrames = 1;
4063 }
4064
4065 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4066 !track->isStopping_2() && !track->isStopped())
4067 {
4068 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4069
4070 if (track->mFillingUpStatus == Track::FS_FILLED) {
4071 track->mFillingUpStatus = Track::FS_ACTIVE;
4072 // make sure processVolume_l() will apply new volume even if 0
4073 mLeftVolFloat = mRightVolFloat = -1.0;
4074 if (!mHwSupportsPause) {
4075 track->resumeAck();
4076 }
4077 }
4078
4079 // compute volume for this track
4080 processVolume_l(track, last);
4081 if (last) {
4082 // reset retry count
4083 track->mRetryCount = kMaxTrackRetriesDirect;
4084 mActiveTrack = t;
4085 mixerStatus = MIXER_TRACKS_READY;
4086 if (usesHwAvSync() && mHwPaused) {
4087 doHwResume = true;
4088 mHwPaused = false;
4089 }
4090 }
4091 } else {
4092 // clear effect chain input buffer if the last active track started underruns
4093 // to avoid sending previous audio buffer again to effects
4094 if (!mEffectChains.isEmpty() && last) {
4095 mEffectChains[0]->clearInputBuffer();
4096 }
4097 if (track->isStopping_1()) {
4098 track->mState = TrackBase::STOPPING_2;
4099 }
4100 if ((track->sharedBuffer() != 0) || track->isStopped() ||
4101 track->isStopping_2() || track->isPaused()) {
4102 // We have consumed all the buffers of this track.
4103 // Remove it from the list of active tracks.
4104 size_t audioHALFrames;
4105 if (audio_is_linear_pcm(mFormat)) {
4106 audioHALFrames = (latency_l() * mSampleRate) / 1000;
4107 } else {
4108 audioHALFrames = 0;
4109 }
4110
4111 size_t framesWritten = mBytesWritten / mFrameSize;
4112 if (mStandby || !last ||
4113 track->presentationComplete(framesWritten, audioHALFrames)) {
4114 if (track->isStopping_2()) {
4115 track->mState = TrackBase::STOPPED;
4116 }
4117 if (track->isStopped()) {
4118 track->reset();
4119 }
4120 tracksToRemove->add(track);
4121 }
4122 } else {
4123 // No buffers for this track. Give it a few chances to
4124 // fill a buffer, then remove it from active list.
4125 // Only consider last track started for mixer state control
4126 if (--(track->mRetryCount) <= 0) {
4127 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4128 tracksToRemove->add(track);
4129 // indicate to client process that the track was disabled because of underrun;
4130 // it will then automatically call start() when data is available
4131 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4132 } else if (last) {
4133 mixerStatus = MIXER_TRACKS_ENABLED;
4134 if (usesHwAvSync() && !mHwPaused && !mStandby) {
4135 doHwPause = true;
4136 mHwPaused = true;
4137 }
4138 }
4139 }
4140 }
4141 }
4142
4143 // if an active track did not command a flush, check for pending flush on stopped tracks
4144 if (!flushPending) {
4145 for (size_t i = 0; i < mTracks.size(); i++) {
4146 if (mTracks[i]->isFlushPending()) {
4147 mTracks[i]->flushAck();
4148 flushPending = true;
4149 }
4150 }
4151 }
4152
4153 // make sure the pause/flush/resume sequence is executed in the right order.
4154 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4155 // before flush and then resume HW. This can happen in case of pause/flush/resume
4156 // if resume is received before pause is executed.
4157 if (mHwSupportsPause && !mStandby &&
4158 (doHwPause || (flushPending && !mHwPaused && (count != 0)))) {
4159 mOutput->stream->pause(mOutput->stream);
4160 }
4161 if (flushPending) {
4162 flushHw_l();
4163 }
4164 if (mHwSupportsPause && !mStandby && doHwResume) {
4165 mOutput->stream->resume(mOutput->stream);
4166 }
4167 // remove all the tracks that need to be...
4168 removeTracks_l(*tracksToRemove);
4169
4170 return mixerStatus;
4171 }
4172
threadLoop_mix()4173 void AudioFlinger::DirectOutputThread::threadLoop_mix()
4174 {
4175 size_t frameCount = mFrameCount;
4176 int8_t *curBuf = (int8_t *)mSinkBuffer;
4177 // output audio to hardware
4178 while (frameCount) {
4179 AudioBufferProvider::Buffer buffer;
4180 buffer.frameCount = frameCount;
4181 mActiveTrack->getNextBuffer(&buffer);
4182 if (buffer.raw == NULL) {
4183 memset(curBuf, 0, frameCount * mFrameSize);
4184 break;
4185 }
4186 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4187 frameCount -= buffer.frameCount;
4188 curBuf += buffer.frameCount * mFrameSize;
4189 mActiveTrack->releaseBuffer(&buffer);
4190 }
4191 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4192 sleepTime = 0;
4193 standbyTime = systemTime() + standbyDelay;
4194 mActiveTrack.clear();
4195 }
4196
threadLoop_sleepTime()4197 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4198 {
4199 // do not write to HAL when paused
4200 if (mHwPaused || (usesHwAvSync() && mStandby)) {
4201 sleepTime = idleSleepTime;
4202 return;
4203 }
4204 if (sleepTime == 0) {
4205 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4206 sleepTime = activeSleepTime;
4207 } else {
4208 sleepTime = idleSleepTime;
4209 }
4210 } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4211 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4212 sleepTime = 0;
4213 }
4214 }
4215
threadLoop_exit()4216 void AudioFlinger::DirectOutputThread::threadLoop_exit()
4217 {
4218 {
4219 Mutex::Autolock _l(mLock);
4220 bool flushPending = false;
4221 for (size_t i = 0; i < mTracks.size(); i++) {
4222 if (mTracks[i]->isFlushPending()) {
4223 mTracks[i]->flushAck();
4224 flushPending = true;
4225 }
4226 }
4227 if (flushPending) {
4228 flushHw_l();
4229 }
4230 }
4231 PlaybackThread::threadLoop_exit();
4232 }
4233
4234 // must be called with thread mutex locked
shouldStandby_l()4235 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4236 {
4237 bool trackPaused = false;
4238
4239 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4240 // after a timeout and we will enter standby then.
4241 if (mTracks.size() > 0) {
4242 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4243 }
4244
4245 return !mStandby && !(trackPaused || (usesHwAvSync() && mHwPaused));
4246 }
4247
4248 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,int sessionId __unused)4249 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4250 audio_format_t format __unused, int sessionId __unused)
4251 {
4252 return 0;
4253 }
4254
4255 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)4256 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4257 {
4258 }
4259
4260 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4261 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4262 status_t& status)
4263 {
4264 bool reconfig = false;
4265
4266 status = NO_ERROR;
4267
4268 AudioParameter param = AudioParameter(keyValuePair);
4269 int value;
4270 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4271 // forward device change to effects that have requested to be
4272 // aware of attached audio device.
4273 if (value != AUDIO_DEVICE_NONE) {
4274 mOutDevice = value;
4275 for (size_t i = 0; i < mEffectChains.size(); i++) {
4276 mEffectChains[i]->setDevice_l(mOutDevice);
4277 }
4278 }
4279 }
4280 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4281 // do not accept frame count changes if tracks are open as the track buffer
4282 // size depends on frame count and correct behavior would not be garantied
4283 // if frame count is changed after track creation
4284 if (!mTracks.isEmpty()) {
4285 status = INVALID_OPERATION;
4286 } else {
4287 reconfig = true;
4288 }
4289 }
4290 if (status == NO_ERROR) {
4291 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4292 keyValuePair.string());
4293 if (!mStandby && status == INVALID_OPERATION) {
4294 mOutput->stream->common.standby(&mOutput->stream->common);
4295 mStandby = true;
4296 mBytesWritten = 0;
4297 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4298 keyValuePair.string());
4299 }
4300 if (status == NO_ERROR && reconfig) {
4301 readOutputParameters_l();
4302 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4303 }
4304 }
4305
4306 return reconfig;
4307 }
4308
activeSleepTimeUs() const4309 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4310 {
4311 uint32_t time;
4312 if (audio_is_linear_pcm(mFormat)) {
4313 time = PlaybackThread::activeSleepTimeUs();
4314 } else {
4315 time = 10000;
4316 }
4317 return time;
4318 }
4319
idleSleepTimeUs() const4320 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4321 {
4322 uint32_t time;
4323 if (audio_is_linear_pcm(mFormat)) {
4324 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4325 } else {
4326 time = 10000;
4327 }
4328 return time;
4329 }
4330
suspendSleepTimeUs() const4331 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4332 {
4333 uint32_t time;
4334 if (audio_is_linear_pcm(mFormat)) {
4335 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4336 } else {
4337 time = 10000;
4338 }
4339 return time;
4340 }
4341
cacheParameters_l()4342 void AudioFlinger::DirectOutputThread::cacheParameters_l()
4343 {
4344 PlaybackThread::cacheParameters_l();
4345
4346 // use shorter standby delay as on normal output to release
4347 // hardware resources as soon as possible
4348 if (audio_is_linear_pcm(mFormat)) {
4349 standbyDelay = microseconds(activeSleepTime*2);
4350 } else {
4351 standbyDelay = kOffloadStandbyDelayNs;
4352 }
4353 }
4354
flushHw_l()4355 void AudioFlinger::DirectOutputThread::flushHw_l()
4356 {
4357 if (mOutput->stream->flush != NULL) {
4358 mOutput->stream->flush(mOutput->stream);
4359 }
4360 mHwPaused = false;
4361 }
4362
4363 // ----------------------------------------------------------------------------
4364
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)4365 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4366 const wp<AudioFlinger::PlaybackThread>& playbackThread)
4367 : Thread(false /*canCallJava*/),
4368 mPlaybackThread(playbackThread),
4369 mWriteAckSequence(0),
4370 mDrainSequence(0)
4371 {
4372 }
4373
~AsyncCallbackThread()4374 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4375 {
4376 }
4377
onFirstRef()4378 void AudioFlinger::AsyncCallbackThread::onFirstRef()
4379 {
4380 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4381 }
4382
threadLoop()4383 bool AudioFlinger::AsyncCallbackThread::threadLoop()
4384 {
4385 while (!exitPending()) {
4386 uint32_t writeAckSequence;
4387 uint32_t drainSequence;
4388
4389 {
4390 Mutex::Autolock _l(mLock);
4391 while (!((mWriteAckSequence & 1) ||
4392 (mDrainSequence & 1) ||
4393 exitPending())) {
4394 mWaitWorkCV.wait(mLock);
4395 }
4396
4397 if (exitPending()) {
4398 break;
4399 }
4400 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4401 mWriteAckSequence, mDrainSequence);
4402 writeAckSequence = mWriteAckSequence;
4403 mWriteAckSequence &= ~1;
4404 drainSequence = mDrainSequence;
4405 mDrainSequence &= ~1;
4406 }
4407 {
4408 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4409 if (playbackThread != 0) {
4410 if (writeAckSequence & 1) {
4411 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4412 }
4413 if (drainSequence & 1) {
4414 playbackThread->resetDraining(drainSequence >> 1);
4415 }
4416 }
4417 }
4418 }
4419 return false;
4420 }
4421
exit()4422 void AudioFlinger::AsyncCallbackThread::exit()
4423 {
4424 ALOGV("AsyncCallbackThread::exit");
4425 Mutex::Autolock _l(mLock);
4426 requestExit();
4427 mWaitWorkCV.broadcast();
4428 }
4429
setWriteBlocked(uint32_t sequence)4430 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4431 {
4432 Mutex::Autolock _l(mLock);
4433 // bit 0 is cleared
4434 mWriteAckSequence = sequence << 1;
4435 }
4436
resetWriteBlocked()4437 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4438 {
4439 Mutex::Autolock _l(mLock);
4440 // ignore unexpected callbacks
4441 if (mWriteAckSequence & 2) {
4442 mWriteAckSequence |= 1;
4443 mWaitWorkCV.signal();
4444 }
4445 }
4446
setDraining(uint32_t sequence)4447 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4448 {
4449 Mutex::Autolock _l(mLock);
4450 // bit 0 is cleared
4451 mDrainSequence = sequence << 1;
4452 }
4453
resetDraining()4454 void AudioFlinger::AsyncCallbackThread::resetDraining()
4455 {
4456 Mutex::Autolock _l(mLock);
4457 // ignore unexpected callbacks
4458 if (mDrainSequence & 2) {
4459 mDrainSequence |= 1;
4460 mWaitWorkCV.signal();
4461 }
4462 }
4463
4464
4465 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device)4466 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4467 AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4468 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4469 mPausedBytesRemaining(0)
4470 {
4471 //FIXME: mStandby should be set to true by ThreadBase constructor
4472 mStandby = true;
4473 }
4474
threadLoop_exit()4475 void AudioFlinger::OffloadThread::threadLoop_exit()
4476 {
4477 if (mFlushPending || mHwPaused) {
4478 // If a flush is pending or track was paused, just discard buffered data
4479 flushHw_l();
4480 } else {
4481 mMixerStatus = MIXER_DRAIN_ALL;
4482 threadLoop_drain();
4483 }
4484 if (mUseAsyncWrite) {
4485 ALOG_ASSERT(mCallbackThread != 0);
4486 mCallbackThread->exit();
4487 }
4488 PlaybackThread::threadLoop_exit();
4489 }
4490
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4491 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4492 Vector< sp<Track> > *tracksToRemove
4493 )
4494 {
4495 size_t count = mActiveTracks.size();
4496
4497 mixer_state mixerStatus = MIXER_IDLE;
4498 bool doHwPause = false;
4499 bool doHwResume = false;
4500
4501 ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4502
4503 // find out which tracks need to be processed
4504 for (size_t i = 0; i < count; i++) {
4505 sp<Track> t = mActiveTracks[i].promote();
4506 // The track died recently
4507 if (t == 0) {
4508 continue;
4509 }
4510 Track* const track = t.get();
4511 audio_track_cblk_t* cblk = track->cblk();
4512 // Only consider last track started for volume and mixer state control.
4513 // In theory an older track could underrun and restart after the new one starts
4514 // but as we only care about the transition phase between two tracks on a
4515 // direct output, it is not a problem to ignore the underrun case.
4516 sp<Track> l = mLatestActiveTrack.promote();
4517 bool last = l.get() == track;
4518
4519 if (track->isInvalid()) {
4520 ALOGW("An invalidated track shouldn't be in active list");
4521 tracksToRemove->add(track);
4522 continue;
4523 }
4524
4525 if (track->mState == TrackBase::IDLE) {
4526 ALOGW("An idle track shouldn't be in active list");
4527 continue;
4528 }
4529
4530 if (track->isPausing()) {
4531 track->setPaused();
4532 if (last) {
4533 if (!mHwPaused) {
4534 doHwPause = true;
4535 mHwPaused = true;
4536 }
4537 // If we were part way through writing the mixbuffer to
4538 // the HAL we must save this until we resume
4539 // BUG - this will be wrong if a different track is made active,
4540 // in that case we want to discard the pending data in the
4541 // mixbuffer and tell the client to present it again when the
4542 // track is resumed
4543 mPausedWriteLength = mCurrentWriteLength;
4544 mPausedBytesRemaining = mBytesRemaining;
4545 mBytesRemaining = 0; // stop writing
4546 }
4547 tracksToRemove->add(track);
4548 } else if (track->isFlushPending()) {
4549 track->flushAck();
4550 if (last) {
4551 mFlushPending = true;
4552 }
4553 } else if (track->isResumePending()){
4554 track->resumeAck();
4555 if (last) {
4556 if (mPausedBytesRemaining) {
4557 // Need to continue write that was interrupted
4558 mCurrentWriteLength = mPausedWriteLength;
4559 mBytesRemaining = mPausedBytesRemaining;
4560 mPausedBytesRemaining = 0;
4561 }
4562 if (mHwPaused) {
4563 doHwResume = true;
4564 mHwPaused = false;
4565 // threadLoop_mix() will handle the case that we need to
4566 // resume an interrupted write
4567 }
4568 // enable write to audio HAL
4569 sleepTime = 0;
4570
4571 // Do not handle new data in this iteration even if track->framesReady()
4572 mixerStatus = MIXER_TRACKS_ENABLED;
4573 }
4574 } else if (track->framesReady() && track->isReady() &&
4575 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4576 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4577 if (track->mFillingUpStatus == Track::FS_FILLED) {
4578 track->mFillingUpStatus = Track::FS_ACTIVE;
4579 // make sure processVolume_l() will apply new volume even if 0
4580 mLeftVolFloat = mRightVolFloat = -1.0;
4581 }
4582
4583 if (last) {
4584 sp<Track> previousTrack = mPreviousTrack.promote();
4585 if (previousTrack != 0) {
4586 if (track != previousTrack.get()) {
4587 // Flush any data still being written from last track
4588 mBytesRemaining = 0;
4589 if (mPausedBytesRemaining) {
4590 // Last track was paused so we also need to flush saved
4591 // mixbuffer state and invalidate track so that it will
4592 // re-submit that unwritten data when it is next resumed
4593 mPausedBytesRemaining = 0;
4594 // Invalidate is a bit drastic - would be more efficient
4595 // to have a flag to tell client that some of the
4596 // previously written data was lost
4597 previousTrack->invalidate();
4598 }
4599 // flush data already sent to the DSP if changing audio session as audio
4600 // comes from a different source. Also invalidate previous track to force a
4601 // seek when resuming.
4602 if (previousTrack->sessionId() != track->sessionId()) {
4603 previousTrack->invalidate();
4604 }
4605 }
4606 }
4607 mPreviousTrack = track;
4608 // reset retry count
4609 track->mRetryCount = kMaxTrackRetriesOffload;
4610 mActiveTrack = t;
4611 mixerStatus = MIXER_TRACKS_READY;
4612 }
4613 } else {
4614 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4615 if (track->isStopping_1()) {
4616 // Hardware buffer can hold a large amount of audio so we must
4617 // wait for all current track's data to drain before we say
4618 // that the track is stopped.
4619 if (mBytesRemaining == 0) {
4620 // Only start draining when all data in mixbuffer
4621 // has been written
4622 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4623 track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4624 // do not drain if no data was ever sent to HAL (mStandby == true)
4625 if (last && !mStandby) {
4626 // do not modify drain sequence if we are already draining. This happens
4627 // when resuming from pause after drain.
4628 if ((mDrainSequence & 1) == 0) {
4629 sleepTime = 0;
4630 standbyTime = systemTime() + standbyDelay;
4631 mixerStatus = MIXER_DRAIN_TRACK;
4632 mDrainSequence += 2;
4633 }
4634 if (mHwPaused) {
4635 // It is possible to move from PAUSED to STOPPING_1 without
4636 // a resume so we must ensure hardware is running
4637 doHwResume = true;
4638 mHwPaused = false;
4639 }
4640 }
4641 }
4642 } else if (track->isStopping_2()) {
4643 // Drain has completed or we are in standby, signal presentation complete
4644 if (!(mDrainSequence & 1) || !last || mStandby) {
4645 track->mState = TrackBase::STOPPED;
4646 size_t audioHALFrames =
4647 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4648 size_t framesWritten =
4649 mBytesWritten / audio_stream_out_frame_size(mOutput->stream);
4650 track->presentationComplete(framesWritten, audioHALFrames);
4651 track->reset();
4652 tracksToRemove->add(track);
4653 }
4654 } else {
4655 // No buffers for this track. Give it a few chances to
4656 // fill a buffer, then remove it from active list.
4657 if (--(track->mRetryCount) <= 0) {
4658 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4659 track->name());
4660 tracksToRemove->add(track);
4661 // indicate to client process that the track was disabled because of underrun;
4662 // it will then automatically call start() when data is available
4663 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4664 } else if (last){
4665 mixerStatus = MIXER_TRACKS_ENABLED;
4666 }
4667 }
4668 }
4669 // compute volume for this track
4670 processVolume_l(track, last);
4671 }
4672
4673 // make sure the pause/flush/resume sequence is executed in the right order.
4674 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4675 // before flush and then resume HW. This can happen in case of pause/flush/resume
4676 // if resume is received before pause is executed.
4677 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4678 mOutput->stream->pause(mOutput->stream);
4679 }
4680 if (mFlushPending) {
4681 flushHw_l();
4682 mFlushPending = false;
4683 }
4684 if (!mStandby && doHwResume) {
4685 mOutput->stream->resume(mOutput->stream);
4686 }
4687
4688 // remove all the tracks that need to be...
4689 removeTracks_l(*tracksToRemove);
4690
4691 return mixerStatus;
4692 }
4693
4694 // must be called with thread mutex locked
waitingAsyncCallback_l()4695 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4696 {
4697 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4698 mWriteAckSequence, mDrainSequence);
4699 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4700 return true;
4701 }
4702 return false;
4703 }
4704
waitingAsyncCallback()4705 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4706 {
4707 Mutex::Autolock _l(mLock);
4708 return waitingAsyncCallback_l();
4709 }
4710
flushHw_l()4711 void AudioFlinger::OffloadThread::flushHw_l()
4712 {
4713 DirectOutputThread::flushHw_l();
4714 // Flush anything still waiting in the mixbuffer
4715 mCurrentWriteLength = 0;
4716 mBytesRemaining = 0;
4717 mPausedWriteLength = 0;
4718 mPausedBytesRemaining = 0;
4719
4720 if (mUseAsyncWrite) {
4721 // discard any pending drain or write ack by incrementing sequence
4722 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4723 mDrainSequence = (mDrainSequence + 2) & ~1;
4724 ALOG_ASSERT(mCallbackThread != 0);
4725 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4726 mCallbackThread->setDraining(mDrainSequence);
4727 }
4728 }
4729
onAddNewTrack_l()4730 void AudioFlinger::OffloadThread::onAddNewTrack_l()
4731 {
4732 sp<Track> previousTrack = mPreviousTrack.promote();
4733 sp<Track> latestTrack = mLatestActiveTrack.promote();
4734
4735 if (previousTrack != 0 && latestTrack != 0 &&
4736 (previousTrack->sessionId() != latestTrack->sessionId())) {
4737 mFlushPending = true;
4738 }
4739 PlaybackThread::onAddNewTrack_l();
4740 }
4741
4742 // ----------------------------------------------------------------------------
4743
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id)4744 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4745 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4746 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4747 DUPLICATING),
4748 mWaitTimeMs(UINT_MAX)
4749 {
4750 addOutputTrack(mainThread);
4751 }
4752
~DuplicatingThread()4753 AudioFlinger::DuplicatingThread::~DuplicatingThread()
4754 {
4755 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4756 mOutputTracks[i]->destroy();
4757 }
4758 }
4759
threadLoop_mix()4760 void AudioFlinger::DuplicatingThread::threadLoop_mix()
4761 {
4762 // mix buffers...
4763 if (outputsReady(outputTracks)) {
4764 mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
4765 } else {
4766 if (mMixerBufferValid) {
4767 memset(mMixerBuffer, 0, mMixerBufferSize);
4768 } else {
4769 memset(mSinkBuffer, 0, mSinkBufferSize);
4770 }
4771 }
4772 sleepTime = 0;
4773 writeFrames = mNormalFrameCount;
4774 mCurrentWriteLength = mSinkBufferSize;
4775 standbyTime = systemTime() + standbyDelay;
4776 }
4777
threadLoop_sleepTime()4778 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
4779 {
4780 if (sleepTime == 0) {
4781 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4782 sleepTime = activeSleepTime;
4783 } else {
4784 sleepTime = idleSleepTime;
4785 }
4786 } else if (mBytesWritten != 0) {
4787 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4788 writeFrames = mNormalFrameCount;
4789 memset(mSinkBuffer, 0, mSinkBufferSize);
4790 } else {
4791 // flush remaining overflow buffers in output tracks
4792 writeFrames = 0;
4793 }
4794 sleepTime = 0;
4795 }
4796 }
4797
threadLoop_write()4798 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
4799 {
4800 // We convert the duplicating thread format to AUDIO_FORMAT_PCM_16_BIT
4801 // for delivery downstream as needed. This in-place conversion is safe as
4802 // AUDIO_FORMAT_PCM_16_BIT is smaller than any other supported format
4803 // (AUDIO_FORMAT_PCM_8_BIT is not allowed here).
4804 if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
4805 memcpy_by_audio_format(mSinkBuffer, AUDIO_FORMAT_PCM_16_BIT,
4806 mSinkBuffer, mFormat, writeFrames * mChannelCount);
4807 }
4808 for (size_t i = 0; i < outputTracks.size(); i++) {
4809 outputTracks[i]->write(reinterpret_cast<int16_t*>(mSinkBuffer), writeFrames);
4810 }
4811 mStandby = false;
4812 return (ssize_t)mSinkBufferSize;
4813 }
4814
threadLoop_standby()4815 void AudioFlinger::DuplicatingThread::threadLoop_standby()
4816 {
4817 // DuplicatingThread implements standby by stopping all tracks
4818 for (size_t i = 0; i < outputTracks.size(); i++) {
4819 outputTracks[i]->stop();
4820 }
4821 }
4822
saveOutputTracks()4823 void AudioFlinger::DuplicatingThread::saveOutputTracks()
4824 {
4825 outputTracks = mOutputTracks;
4826 }
4827
clearOutputTracks()4828 void AudioFlinger::DuplicatingThread::clearOutputTracks()
4829 {
4830 outputTracks.clear();
4831 }
4832
addOutputTrack(MixerThread * thread)4833 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
4834 {
4835 Mutex::Autolock _l(mLock);
4836 // FIXME explain this formula
4837 size_t frameCount = (3 * mNormalFrameCount * mSampleRate) / thread->sampleRate();
4838 // OutputTrack is forced to AUDIO_FORMAT_PCM_16_BIT regardless of mFormat
4839 // due to current usage case and restrictions on the AudioBufferProvider.
4840 // Actual buffer conversion is done in threadLoop_write().
4841 //
4842 // TODO: This may change in the future, depending on multichannel
4843 // (and non int16_t*) support on AF::PlaybackThread::OutputTrack
4844 OutputTrack *outputTrack = new OutputTrack(thread,
4845 this,
4846 mSampleRate,
4847 AUDIO_FORMAT_PCM_16_BIT,
4848 mChannelMask,
4849 frameCount,
4850 IPCThreadState::self()->getCallingUid());
4851 if (outputTrack->cblk() != NULL) {
4852 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
4853 mOutputTracks.add(outputTrack);
4854 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack, thread);
4855 updateWaitTime_l();
4856 }
4857 }
4858
removeOutputTrack(MixerThread * thread)4859 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
4860 {
4861 Mutex::Autolock _l(mLock);
4862 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4863 if (mOutputTracks[i]->thread() == thread) {
4864 mOutputTracks[i]->destroy();
4865 mOutputTracks.removeAt(i);
4866 updateWaitTime_l();
4867 return;
4868 }
4869 }
4870 ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
4871 }
4872
4873 // caller must hold mLock
updateWaitTime_l()4874 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
4875 {
4876 mWaitTimeMs = UINT_MAX;
4877 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4878 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
4879 if (strong != 0) {
4880 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
4881 if (waitTimeMs < mWaitTimeMs) {
4882 mWaitTimeMs = waitTimeMs;
4883 }
4884 }
4885 }
4886 }
4887
4888
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)4889 bool AudioFlinger::DuplicatingThread::outputsReady(
4890 const SortedVector< sp<OutputTrack> > &outputTracks)
4891 {
4892 for (size_t i = 0; i < outputTracks.size(); i++) {
4893 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
4894 if (thread == 0) {
4895 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
4896 outputTracks[i].get());
4897 return false;
4898 }
4899 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
4900 // see note at standby() declaration
4901 if (playbackThread->standby() && !playbackThread->isSuspended()) {
4902 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
4903 thread.get());
4904 return false;
4905 }
4906 }
4907 return true;
4908 }
4909
activeSleepTimeUs() const4910 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
4911 {
4912 return (mWaitTimeMs * 1000) / 2;
4913 }
4914
cacheParameters_l()4915 void AudioFlinger::DuplicatingThread::cacheParameters_l()
4916 {
4917 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
4918 updateWaitTime_l();
4919
4920 MixerThread::cacheParameters_l();
4921 }
4922
4923 // ----------------------------------------------------------------------------
4924 // Record
4925 // ----------------------------------------------------------------------------
4926
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,const sp<NBAIO_Sink> & teeSink)4927 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
4928 AudioStreamIn *input,
4929 audio_io_handle_t id,
4930 audio_devices_t outDevice,
4931 audio_devices_t inDevice
4932 #ifdef TEE_SINK
4933 , const sp<NBAIO_Sink>& teeSink
4934 #endif
4935 ) :
4936 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
4937 mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
4938 // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
4939 mRsmpInRear(0)
4940 #ifdef TEE_SINK
4941 , mTeeSink(teeSink)
4942 #endif
4943 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
4944 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
4945 // mFastCapture below
4946 , mFastCaptureFutex(0)
4947 // mInputSource
4948 // mPipeSink
4949 // mPipeSource
4950 , mPipeFramesP2(0)
4951 // mPipeMemory
4952 // mFastCaptureNBLogWriter
4953 , mFastTrackAvail(false)
4954 {
4955 snprintf(mName, kNameLength, "AudioIn_%X", id);
4956 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
4957
4958 readInputParameters_l();
4959
4960 // create an NBAIO source for the HAL input stream, and negotiate
4961 mInputSource = new AudioStreamInSource(input->stream);
4962 size_t numCounterOffers = 0;
4963 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
4964 ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
4965 ALOG_ASSERT(index == 0);
4966
4967 // initialize fast capture depending on configuration
4968 bool initFastCapture;
4969 switch (kUseFastCapture) {
4970 case FastCapture_Never:
4971 initFastCapture = false;
4972 break;
4973 case FastCapture_Always:
4974 initFastCapture = true;
4975 break;
4976 case FastCapture_Static:
4977 uint32_t primaryOutputSampleRate;
4978 {
4979 AutoMutex _l(audioFlinger->mHardwareLock);
4980 primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
4981 }
4982 initFastCapture =
4983 // either capture sample rate is same as (a reasonable) primary output sample rate
4984 (((primaryOutputSampleRate == 44100 || primaryOutputSampleRate == 48000) &&
4985 (mSampleRate == primaryOutputSampleRate)) ||
4986 // or primary output sample rate is unknown, and capture sample rate is reasonable
4987 ((primaryOutputSampleRate == 0) &&
4988 ((mSampleRate == 44100 || mSampleRate == 48000)))) &&
4989 // and the buffer size is < 12 ms
4990 (mFrameCount * 1000) / mSampleRate < 12;
4991 break;
4992 // case FastCapture_Dynamic:
4993 }
4994
4995 if (initFastCapture) {
4996 // create a Pipe for FastMixer to write to, and for us and fast tracks to read from
4997 NBAIO_Format format = mInputSource->format();
4998 size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each
4999 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5000 void *pipeBuffer;
5001 const sp<MemoryDealer> roHeap(readOnlyHeap());
5002 sp<IMemory> pipeMemory;
5003 if ((roHeap == 0) ||
5004 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5005 (pipeBuffer = pipeMemory->pointer()) == NULL) {
5006 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5007 goto failed;
5008 }
5009 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5010 memset(pipeBuffer, 0, pipeSize);
5011 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5012 const NBAIO_Format offers[1] = {format};
5013 size_t numCounterOffers = 0;
5014 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5015 ALOG_ASSERT(index == 0);
5016 mPipeSink = pipe;
5017 PipeReader *pipeReader = new PipeReader(*pipe);
5018 numCounterOffers = 0;
5019 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5020 ALOG_ASSERT(index == 0);
5021 mPipeSource = pipeReader;
5022 mPipeFramesP2 = pipeFramesP2;
5023 mPipeMemory = pipeMemory;
5024
5025 // create fast capture
5026 mFastCapture = new FastCapture();
5027 FastCaptureStateQueue *sq = mFastCapture->sq();
5028 #ifdef STATE_QUEUE_DUMP
5029 // FIXME
5030 #endif
5031 FastCaptureState *state = sq->begin();
5032 state->mCblk = NULL;
5033 state->mInputSource = mInputSource.get();
5034 state->mInputSourceGen++;
5035 state->mPipeSink = pipe;
5036 state->mPipeSinkGen++;
5037 state->mFrameCount = mFrameCount;
5038 state->mCommand = FastCaptureState::COLD_IDLE;
5039 // already done in constructor initialization list
5040 //mFastCaptureFutex = 0;
5041 state->mColdFutexAddr = &mFastCaptureFutex;
5042 state->mColdGen++;
5043 state->mDumpState = &mFastCaptureDumpState;
5044 #ifdef TEE_SINK
5045 // FIXME
5046 #endif
5047 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5048 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5049 sq->end();
5050 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5051
5052 // start the fast capture
5053 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5054 pid_t tid = mFastCapture->getTid();
5055 int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
5056 if (err != 0) {
5057 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
5058 kPriorityFastCapture, getpid_cached, tid, err);
5059 }
5060
5061 #ifdef AUDIO_WATCHDOG
5062 // FIXME
5063 #endif
5064
5065 mFastTrackAvail = true;
5066 }
5067 failed: ;
5068
5069 // FIXME mNormalSource
5070 }
5071
5072
~RecordThread()5073 AudioFlinger::RecordThread::~RecordThread()
5074 {
5075 if (mFastCapture != 0) {
5076 FastCaptureStateQueue *sq = mFastCapture->sq();
5077 FastCaptureState *state = sq->begin();
5078 if (state->mCommand == FastCaptureState::COLD_IDLE) {
5079 int32_t old = android_atomic_inc(&mFastCaptureFutex);
5080 if (old == -1) {
5081 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5082 }
5083 }
5084 state->mCommand = FastCaptureState::EXIT;
5085 sq->end();
5086 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5087 mFastCapture->join();
5088 mFastCapture.clear();
5089 }
5090 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5091 mAudioFlinger->unregisterWriter(mNBLogWriter);
5092 delete[] mRsmpInBuffer;
5093 }
5094
onFirstRef()5095 void AudioFlinger::RecordThread::onFirstRef()
5096 {
5097 run(mName, PRIORITY_URGENT_AUDIO);
5098 }
5099
threadLoop()5100 bool AudioFlinger::RecordThread::threadLoop()
5101 {
5102 nsecs_t lastWarning = 0;
5103
5104 inputStandBy();
5105
5106 reacquire_wakelock:
5107 sp<RecordTrack> activeTrack;
5108 int activeTracksGen;
5109 {
5110 Mutex::Autolock _l(mLock);
5111 size_t size = mActiveTracks.size();
5112 activeTracksGen = mActiveTracksGen;
5113 if (size > 0) {
5114 // FIXME an arbitrary choice
5115 activeTrack = mActiveTracks[0];
5116 acquireWakeLock_l(activeTrack->uid());
5117 if (size > 1) {
5118 SortedVector<int> tmp;
5119 for (size_t i = 0; i < size; i++) {
5120 tmp.add(mActiveTracks[i]->uid());
5121 }
5122 updateWakeLockUids_l(tmp);
5123 }
5124 } else {
5125 acquireWakeLock_l(-1);
5126 }
5127 }
5128
5129 // used to request a deferred sleep, to be executed later while mutex is unlocked
5130 uint32_t sleepUs = 0;
5131
5132 // loop while there is work to do
5133 for (;;) {
5134 Vector< sp<EffectChain> > effectChains;
5135
5136 // sleep with mutex unlocked
5137 if (sleepUs > 0) {
5138 usleep(sleepUs);
5139 sleepUs = 0;
5140 }
5141
5142 // activeTracks accumulates a copy of a subset of mActiveTracks
5143 Vector< sp<RecordTrack> > activeTracks;
5144
5145 // reference to the (first and only) active fast track
5146 sp<RecordTrack> fastTrack;
5147
5148 // reference to a fast track which is about to be removed
5149 sp<RecordTrack> fastTrackToRemove;
5150
5151 { // scope for mLock
5152 Mutex::Autolock _l(mLock);
5153
5154 processConfigEvents_l();
5155
5156 // check exitPending here because checkForNewParameters_l() and
5157 // checkForNewParameters_l() can temporarily release mLock
5158 if (exitPending()) {
5159 break;
5160 }
5161
5162 // if no active track(s), then standby and release wakelock
5163 size_t size = mActiveTracks.size();
5164 if (size == 0) {
5165 standbyIfNotAlreadyInStandby();
5166 // exitPending() can't become true here
5167 releaseWakeLock_l();
5168 ALOGV("RecordThread: loop stopping");
5169 // go to sleep
5170 mWaitWorkCV.wait(mLock);
5171 ALOGV("RecordThread: loop starting");
5172 goto reacquire_wakelock;
5173 }
5174
5175 if (mActiveTracksGen != activeTracksGen) {
5176 activeTracksGen = mActiveTracksGen;
5177 SortedVector<int> tmp;
5178 for (size_t i = 0; i < size; i++) {
5179 tmp.add(mActiveTracks[i]->uid());
5180 }
5181 updateWakeLockUids_l(tmp);
5182 }
5183
5184 bool doBroadcast = false;
5185 for (size_t i = 0; i < size; ) {
5186
5187 activeTrack = mActiveTracks[i];
5188 if (activeTrack->isTerminated()) {
5189 if (activeTrack->isFastTrack()) {
5190 ALOG_ASSERT(fastTrackToRemove == 0);
5191 fastTrackToRemove = activeTrack;
5192 }
5193 removeTrack_l(activeTrack);
5194 mActiveTracks.remove(activeTrack);
5195 mActiveTracksGen++;
5196 size--;
5197 continue;
5198 }
5199
5200 TrackBase::track_state activeTrackState = activeTrack->mState;
5201 switch (activeTrackState) {
5202
5203 case TrackBase::PAUSING:
5204 mActiveTracks.remove(activeTrack);
5205 mActiveTracksGen++;
5206 doBroadcast = true;
5207 size--;
5208 continue;
5209
5210 case TrackBase::STARTING_1:
5211 sleepUs = 10000;
5212 i++;
5213 continue;
5214
5215 case TrackBase::STARTING_2:
5216 doBroadcast = true;
5217 mStandby = false;
5218 activeTrack->mState = TrackBase::ACTIVE;
5219 break;
5220
5221 case TrackBase::ACTIVE:
5222 break;
5223
5224 case TrackBase::IDLE:
5225 i++;
5226 continue;
5227
5228 default:
5229 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5230 }
5231
5232 activeTracks.add(activeTrack);
5233 i++;
5234
5235 if (activeTrack->isFastTrack()) {
5236 ALOG_ASSERT(!mFastTrackAvail);
5237 ALOG_ASSERT(fastTrack == 0);
5238 fastTrack = activeTrack;
5239 }
5240 }
5241 if (doBroadcast) {
5242 mStartStopCond.broadcast();
5243 }
5244
5245 // sleep if there are no active tracks to process
5246 if (activeTracks.size() == 0) {
5247 if (sleepUs == 0) {
5248 sleepUs = kRecordThreadSleepUs;
5249 }
5250 continue;
5251 }
5252 sleepUs = 0;
5253
5254 lockEffectChains_l(effectChains);
5255 }
5256
5257 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5258
5259 size_t size = effectChains.size();
5260 for (size_t i = 0; i < size; i++) {
5261 // thread mutex is not locked, but effect chain is locked
5262 effectChains[i]->process_l();
5263 }
5264
5265 // Push a new fast capture state if fast capture is not already running, or cblk change
5266 if (mFastCapture != 0) {
5267 FastCaptureStateQueue *sq = mFastCapture->sq();
5268 FastCaptureState *state = sq->begin();
5269 bool didModify = false;
5270 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5271 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5272 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5273 if (state->mCommand == FastCaptureState::COLD_IDLE) {
5274 int32_t old = android_atomic_inc(&mFastCaptureFutex);
5275 if (old == -1) {
5276 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5277 }
5278 }
5279 state->mCommand = FastCaptureState::READ_WRITE;
5280 #if 0 // FIXME
5281 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5282 FastCaptureDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
5283 #endif
5284 didModify = true;
5285 }
5286 audio_track_cblk_t *cblkOld = state->mCblk;
5287 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5288 if (cblkNew != cblkOld) {
5289 state->mCblk = cblkNew;
5290 // block until acked if removing a fast track
5291 if (cblkOld != NULL) {
5292 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5293 }
5294 didModify = true;
5295 }
5296 sq->end(didModify);
5297 if (didModify) {
5298 sq->push(block);
5299 #if 0
5300 if (kUseFastCapture == FastCapture_Dynamic) {
5301 mNormalSource = mPipeSource;
5302 }
5303 #endif
5304 }
5305 }
5306
5307 // now run the fast track destructor with thread mutex unlocked
5308 fastTrackToRemove.clear();
5309
5310 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5311 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5312 // slow, then this RecordThread will overrun by not calling HAL read often enough.
5313 // If destination is non-contiguous, first read past the nominal end of buffer, then
5314 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
5315
5316 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5317 ssize_t framesRead;
5318
5319 // If an NBAIO source is present, use it to read the normal capture's data
5320 if (mPipeSource != 0) {
5321 size_t framesToRead = mBufferSize / mFrameSize;
5322 framesRead = mPipeSource->read(&mRsmpInBuffer[rear * mChannelCount],
5323 framesToRead, AudioBufferProvider::kInvalidPTS);
5324 if (framesRead == 0) {
5325 // since pipe is non-blocking, simulate blocking input
5326 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5327 }
5328 // otherwise use the HAL / AudioStreamIn directly
5329 } else {
5330 ssize_t bytesRead = mInput->stream->read(mInput->stream,
5331 &mRsmpInBuffer[rear * mChannelCount], mBufferSize);
5332 if (bytesRead < 0) {
5333 framesRead = bytesRead;
5334 } else {
5335 framesRead = bytesRead / mFrameSize;
5336 }
5337 }
5338
5339 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5340 ALOGE("read failed: framesRead=%d", framesRead);
5341 // Force input into standby so that it tries to recover at next read attempt
5342 inputStandBy();
5343 sleepUs = kRecordThreadSleepUs;
5344 }
5345 if (framesRead <= 0) {
5346 goto unlock;
5347 }
5348 ALOG_ASSERT(framesRead > 0);
5349
5350 if (mTeeSink != 0) {
5351 (void) mTeeSink->write(&mRsmpInBuffer[rear * mChannelCount], framesRead);
5352 }
5353 // If destination is non-contiguous, we now correct for reading past end of buffer.
5354 {
5355 size_t part1 = mRsmpInFramesP2 - rear;
5356 if ((size_t) framesRead > part1) {
5357 memcpy(mRsmpInBuffer, &mRsmpInBuffer[mRsmpInFramesP2 * mChannelCount],
5358 (framesRead - part1) * mFrameSize);
5359 }
5360 }
5361 rear = mRsmpInRear += framesRead;
5362
5363 size = activeTracks.size();
5364 // loop over each active track
5365 for (size_t i = 0; i < size; i++) {
5366 activeTrack = activeTracks[i];
5367
5368 // skip fast tracks, as those are handled directly by FastCapture
5369 if (activeTrack->isFastTrack()) {
5370 continue;
5371 }
5372
5373 enum {
5374 OVERRUN_UNKNOWN,
5375 OVERRUN_TRUE,
5376 OVERRUN_FALSE
5377 } overrun = OVERRUN_UNKNOWN;
5378
5379 // loop over getNextBuffer to handle circular sink
5380 for (;;) {
5381
5382 activeTrack->mSink.frameCount = ~0;
5383 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5384 size_t framesOut = activeTrack->mSink.frameCount;
5385 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5386
5387 int32_t front = activeTrack->mRsmpInFront;
5388 ssize_t filled = rear - front;
5389 size_t framesIn;
5390
5391 if (filled < 0) {
5392 // should not happen, but treat like a massive overrun and re-sync
5393 framesIn = 0;
5394 activeTrack->mRsmpInFront = rear;
5395 overrun = OVERRUN_TRUE;
5396 } else if ((size_t) filled <= mRsmpInFrames) {
5397 framesIn = (size_t) filled;
5398 } else {
5399 // client is not keeping up with server, but give it latest data
5400 framesIn = mRsmpInFrames;
5401 activeTrack->mRsmpInFront = front = rear - framesIn;
5402 overrun = OVERRUN_TRUE;
5403 }
5404
5405 if (framesOut == 0 || framesIn == 0) {
5406 break;
5407 }
5408
5409 if (activeTrack->mResampler == NULL) {
5410 // no resampling
5411 if (framesIn > framesOut) {
5412 framesIn = framesOut;
5413 } else {
5414 framesOut = framesIn;
5415 }
5416 int8_t *dst = activeTrack->mSink.i8;
5417 while (framesIn > 0) {
5418 front &= mRsmpInFramesP2 - 1;
5419 size_t part1 = mRsmpInFramesP2 - front;
5420 if (part1 > framesIn) {
5421 part1 = framesIn;
5422 }
5423 int8_t *src = (int8_t *)mRsmpInBuffer + (front * mFrameSize);
5424 if (mChannelCount == activeTrack->mChannelCount) {
5425 memcpy(dst, src, part1 * mFrameSize);
5426 } else if (mChannelCount == 1) {
5427 upmix_to_stereo_i16_from_mono_i16((int16_t *)dst, (const int16_t *)src,
5428 part1);
5429 } else {
5430 downmix_to_mono_i16_from_stereo_i16((int16_t *)dst, (const int16_t *)src,
5431 part1);
5432 }
5433 dst += part1 * activeTrack->mFrameSize;
5434 front += part1;
5435 framesIn -= part1;
5436 }
5437 activeTrack->mRsmpInFront += framesOut;
5438
5439 } else {
5440 // resampling
5441 // FIXME framesInNeeded should really be part of resampler API, and should
5442 // depend on the SRC ratio
5443 // to keep mRsmpInBuffer full so resampler always has sufficient input
5444 size_t framesInNeeded;
5445 // FIXME only re-calculate when it changes, and optimize for common ratios
5446 // Do not precompute in/out because floating point is not associative
5447 // e.g. a*b/c != a*(b/c).
5448 const double in(mSampleRate);
5449 const double out(activeTrack->mSampleRate);
5450 framesInNeeded = ceil(framesOut * in / out) + 1;
5451 ALOGV("need %u frames in to produce %u out given in/out ratio of %.4g",
5452 framesInNeeded, framesOut, in / out);
5453 // Although we theoretically have framesIn in circular buffer, some of those are
5454 // unreleased frames, and thus must be discounted for purpose of budgeting.
5455 size_t unreleased = activeTrack->mRsmpInUnrel;
5456 framesIn = framesIn > unreleased ? framesIn - unreleased : 0;
5457 if (framesIn < framesInNeeded) {
5458 ALOGV("not enough to resample: have %u frames in but need %u in to "
5459 "produce %u out given in/out ratio of %.4g",
5460 framesIn, framesInNeeded, framesOut, in / out);
5461 size_t newFramesOut = framesIn > 0 ? floor((framesIn - 1) * out / in) : 0;
5462 LOG_ALWAYS_FATAL_IF(newFramesOut >= framesOut);
5463 if (newFramesOut == 0) {
5464 break;
5465 }
5466 framesInNeeded = ceil(newFramesOut * in / out) + 1;
5467 ALOGV("now need %u frames in to produce %u out given out/in ratio of %.4g",
5468 framesInNeeded, newFramesOut, out / in);
5469 LOG_ALWAYS_FATAL_IF(framesIn < framesInNeeded);
5470 ALOGV("success 2: have %u frames in and need %u in to produce %u out "
5471 "given in/out ratio of %.4g",
5472 framesIn, framesInNeeded, newFramesOut, in / out);
5473 framesOut = newFramesOut;
5474 } else {
5475 ALOGV("success 1: have %u in and need %u in to produce %u out "
5476 "given in/out ratio of %.4g",
5477 framesIn, framesInNeeded, framesOut, in / out);
5478 }
5479
5480 // reallocate mRsmpOutBuffer as needed; we will grow but never shrink
5481 if (activeTrack->mRsmpOutFrameCount < framesOut) {
5482 // FIXME why does each track need it's own mRsmpOutBuffer? can't they share?
5483 delete[] activeTrack->mRsmpOutBuffer;
5484 // resampler always outputs stereo
5485 activeTrack->mRsmpOutBuffer = new int32_t[framesOut * FCC_2];
5486 activeTrack->mRsmpOutFrameCount = framesOut;
5487 }
5488
5489 // resampler accumulates, but we only have one source track
5490 memset(activeTrack->mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
5491 activeTrack->mResampler->resample(activeTrack->mRsmpOutBuffer, framesOut,
5492 // FIXME how about having activeTrack implement this interface itself?
5493 activeTrack->mResamplerBufferProvider
5494 /*this*/ /* AudioBufferProvider* */);
5495 // ditherAndClamp() works as long as all buffers returned by
5496 // activeTrack->getNextBuffer() are 32 bit aligned which should be always true.
5497 if (activeTrack->mChannelCount == 1) {
5498 // temporarily type pun mRsmpOutBuffer from Q4.27 to int16_t
5499 ditherAndClamp(activeTrack->mRsmpOutBuffer, activeTrack->mRsmpOutBuffer,
5500 framesOut);
5501 // the resampler always outputs stereo samples:
5502 // do post stereo to mono conversion
5503 downmix_to_mono_i16_from_stereo_i16(activeTrack->mSink.i16,
5504 (const int16_t *)activeTrack->mRsmpOutBuffer, framesOut);
5505 } else {
5506 ditherAndClamp((int32_t *)activeTrack->mSink.raw,
5507 activeTrack->mRsmpOutBuffer, framesOut);
5508 }
5509 // now done with mRsmpOutBuffer
5510
5511 }
5512
5513 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5514 overrun = OVERRUN_FALSE;
5515 }
5516
5517 if (activeTrack->mFramesToDrop == 0) {
5518 if (framesOut > 0) {
5519 activeTrack->mSink.frameCount = framesOut;
5520 activeTrack->releaseBuffer(&activeTrack->mSink);
5521 }
5522 } else {
5523 // FIXME could do a partial drop of framesOut
5524 if (activeTrack->mFramesToDrop > 0) {
5525 activeTrack->mFramesToDrop -= framesOut;
5526 if (activeTrack->mFramesToDrop <= 0) {
5527 activeTrack->clearSyncStartEvent();
5528 }
5529 } else {
5530 activeTrack->mFramesToDrop += framesOut;
5531 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5532 activeTrack->mSyncStartEvent->isCancelled()) {
5533 ALOGW("Synced record %s, session %d, trigger session %d",
5534 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5535 activeTrack->sessionId(),
5536 (activeTrack->mSyncStartEvent != 0) ?
5537 activeTrack->mSyncStartEvent->triggerSession() : 0);
5538 activeTrack->clearSyncStartEvent();
5539 }
5540 }
5541 }
5542
5543 if (framesOut == 0) {
5544 break;
5545 }
5546 }
5547
5548 switch (overrun) {
5549 case OVERRUN_TRUE:
5550 // client isn't retrieving buffers fast enough
5551 if (!activeTrack->setOverflow()) {
5552 nsecs_t now = systemTime();
5553 // FIXME should lastWarning per track?
5554 if ((now - lastWarning) > kWarningThrottleNs) {
5555 ALOGW("RecordThread: buffer overflow");
5556 lastWarning = now;
5557 }
5558 }
5559 break;
5560 case OVERRUN_FALSE:
5561 activeTrack->clearOverflow();
5562 break;
5563 case OVERRUN_UNKNOWN:
5564 break;
5565 }
5566
5567 }
5568
5569 unlock:
5570 // enable changes in effect chain
5571 unlockEffectChains(effectChains);
5572 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5573 }
5574
5575 standbyIfNotAlreadyInStandby();
5576
5577 {
5578 Mutex::Autolock _l(mLock);
5579 for (size_t i = 0; i < mTracks.size(); i++) {
5580 sp<RecordTrack> track = mTracks[i];
5581 track->invalidate();
5582 }
5583 mActiveTracks.clear();
5584 mActiveTracksGen++;
5585 mStartStopCond.broadcast();
5586 }
5587
5588 releaseWakeLock();
5589
5590 ALOGV("RecordThread %p exiting", this);
5591 return false;
5592 }
5593
standbyIfNotAlreadyInStandby()5594 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5595 {
5596 if (!mStandby) {
5597 inputStandBy();
5598 mStandby = true;
5599 }
5600 }
5601
inputStandBy()5602 void AudioFlinger::RecordThread::inputStandBy()
5603 {
5604 // Idle the fast capture if it's currently running
5605 if (mFastCapture != 0) {
5606 FastCaptureStateQueue *sq = mFastCapture->sq();
5607 FastCaptureState *state = sq->begin();
5608 if (!(state->mCommand & FastCaptureState::IDLE)) {
5609 state->mCommand = FastCaptureState::COLD_IDLE;
5610 state->mColdFutexAddr = &mFastCaptureFutex;
5611 state->mColdGen++;
5612 mFastCaptureFutex = 0;
5613 sq->end();
5614 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5615 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5616 #if 0
5617 if (kUseFastCapture == FastCapture_Dynamic) {
5618 // FIXME
5619 }
5620 #endif
5621 #ifdef AUDIO_WATCHDOG
5622 // FIXME
5623 #endif
5624 } else {
5625 sq->end(false /*didModify*/);
5626 }
5627 }
5628 mInput->stream->common.standby(&mInput->stream->common);
5629 }
5630
5631 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,int sessionId,size_t * notificationFrames,int uid,IAudioFlinger::track_flags_t * flags,pid_t tid,status_t * status)5632 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5633 const sp<AudioFlinger::Client>& client,
5634 uint32_t sampleRate,
5635 audio_format_t format,
5636 audio_channel_mask_t channelMask,
5637 size_t *pFrameCount,
5638 int sessionId,
5639 size_t *notificationFrames,
5640 int uid,
5641 IAudioFlinger::track_flags_t *flags,
5642 pid_t tid,
5643 status_t *status)
5644 {
5645 size_t frameCount = *pFrameCount;
5646 sp<RecordTrack> track;
5647 status_t lStatus;
5648
5649 // client expresses a preference for FAST, but we get the final say
5650 if (*flags & IAudioFlinger::TRACK_FAST) {
5651 if (
5652 // use case: callback handler
5653 (tid != -1) &&
5654 // frame count is not specified, or is exactly the pipe depth
5655 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5656 // PCM data
5657 audio_is_linear_pcm(format) &&
5658 // native format
5659 (format == mFormat) &&
5660 // native channel mask
5661 (channelMask == mChannelMask) &&
5662 // native hardware sample rate
5663 (sampleRate == mSampleRate) &&
5664 // record thread has an associated fast capture
5665 hasFastCapture() &&
5666 // there are sufficient fast track slots available
5667 mFastTrackAvail
5668 ) {
5669 ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5670 frameCount, mFrameCount);
5671 } else {
5672 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5673 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5674 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5675 frameCount, mFrameCount, mPipeFramesP2,
5676 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5677 hasFastCapture(), tid, mFastTrackAvail);
5678 *flags &= ~IAudioFlinger::TRACK_FAST;
5679 }
5680 }
5681
5682 // compute track buffer size in frames, and suggest the notification frame count
5683 if (*flags & IAudioFlinger::TRACK_FAST) {
5684 // fast track: frame count is exactly the pipe depth
5685 frameCount = mPipeFramesP2;
5686 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5687 *notificationFrames = mFrameCount;
5688 } else {
5689 // not fast track: max notification period is resampled equivalent of one HAL buffer time
5690 // or 20 ms if there is a fast capture
5691 // TODO This could be a roundupRatio inline, and const
5692 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5693 * sampleRate + mSampleRate - 1) / mSampleRate;
5694 // minimum number of notification periods is at least kMinNotifications,
5695 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5696 static const size_t kMinNotifications = 3;
5697 static const uint32_t kMinMs = 30;
5698 // TODO This could be a roundupRatio inline
5699 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5700 // TODO This could be a roundupRatio inline
5701 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5702 maxNotificationFrames;
5703 const size_t minFrameCount = maxNotificationFrames *
5704 max(kMinNotifications, minNotificationsByMs);
5705 frameCount = max(frameCount, minFrameCount);
5706 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5707 *notificationFrames = maxNotificationFrames;
5708 }
5709 }
5710 *pFrameCount = frameCount;
5711
5712 lStatus = initCheck();
5713 if (lStatus != NO_ERROR) {
5714 ALOGE("createRecordTrack_l() audio driver not initialized");
5715 goto Exit;
5716 }
5717
5718 { // scope for mLock
5719 Mutex::Autolock _l(mLock);
5720
5721 track = new RecordTrack(this, client, sampleRate,
5722 format, channelMask, frameCount, NULL, sessionId, uid,
5723 *flags, TrackBase::TYPE_DEFAULT);
5724
5725 lStatus = track->initCheck();
5726 if (lStatus != NO_ERROR) {
5727 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
5728 // track must be cleared from the caller as the caller has the AF lock
5729 goto Exit;
5730 }
5731 mTracks.add(track);
5732
5733 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
5734 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5735 mAudioFlinger->btNrecIsOff();
5736 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
5737 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
5738
5739 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
5740 pid_t callingPid = IPCThreadState::self()->getCallingPid();
5741 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
5742 // so ask activity manager to do this on our behalf
5743 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
5744 }
5745 }
5746
5747 lStatus = NO_ERROR;
5748
5749 Exit:
5750 *status = lStatus;
5751 return track;
5752 }
5753
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,int triggerSession)5754 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
5755 AudioSystem::sync_event_t event,
5756 int triggerSession)
5757 {
5758 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
5759 sp<ThreadBase> strongMe = this;
5760 status_t status = NO_ERROR;
5761
5762 if (event == AudioSystem::SYNC_EVENT_NONE) {
5763 recordTrack->clearSyncStartEvent();
5764 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
5765 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
5766 triggerSession,
5767 recordTrack->sessionId(),
5768 syncStartEventCallback,
5769 recordTrack);
5770 // Sync event can be cancelled by the trigger session if the track is not in a
5771 // compatible state in which case we start record immediately
5772 if (recordTrack->mSyncStartEvent->isCancelled()) {
5773 recordTrack->clearSyncStartEvent();
5774 } else {
5775 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
5776 recordTrack->mFramesToDrop = -
5777 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
5778 }
5779 }
5780
5781 {
5782 // This section is a rendezvous between binder thread executing start() and RecordThread
5783 AutoMutex lock(mLock);
5784 if (mActiveTracks.indexOf(recordTrack) >= 0) {
5785 if (recordTrack->mState == TrackBase::PAUSING) {
5786 ALOGV("active record track PAUSING -> ACTIVE");
5787 recordTrack->mState = TrackBase::ACTIVE;
5788 } else {
5789 ALOGV("active record track state %d", recordTrack->mState);
5790 }
5791 return status;
5792 }
5793
5794 // TODO consider other ways of handling this, such as changing the state to :STARTING and
5795 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
5796 // or using a separate command thread
5797 recordTrack->mState = TrackBase::STARTING_1;
5798 mActiveTracks.add(recordTrack);
5799 mActiveTracksGen++;
5800 status_t status = NO_ERROR;
5801 if (recordTrack->isExternalTrack()) {
5802 mLock.unlock();
5803 status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
5804 mLock.lock();
5805 // FIXME should verify that recordTrack is still in mActiveTracks
5806 if (status != NO_ERROR) {
5807 mActiveTracks.remove(recordTrack);
5808 mActiveTracksGen++;
5809 recordTrack->clearSyncStartEvent();
5810 ALOGV("RecordThread::start error %d", status);
5811 return status;
5812 }
5813 }
5814 // Catch up with current buffer indices if thread is already running.
5815 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
5816 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
5817 // see previously buffered data before it called start(), but with greater risk of overrun.
5818
5819 recordTrack->mRsmpInFront = mRsmpInRear;
5820 recordTrack->mRsmpInUnrel = 0;
5821 // FIXME why reset?
5822 if (recordTrack->mResampler != NULL) {
5823 recordTrack->mResampler->reset();
5824 }
5825 recordTrack->mState = TrackBase::STARTING_2;
5826 // signal thread to start
5827 mWaitWorkCV.broadcast();
5828 if (mActiveTracks.indexOf(recordTrack) < 0) {
5829 ALOGV("Record failed to start");
5830 status = BAD_VALUE;
5831 goto startError;
5832 }
5833 return status;
5834 }
5835
5836 startError:
5837 if (recordTrack->isExternalTrack()) {
5838 AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
5839 }
5840 recordTrack->clearSyncStartEvent();
5841 // FIXME I wonder why we do not reset the state here?
5842 return status;
5843 }
5844
syncStartEventCallback(const wp<SyncEvent> & event)5845 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
5846 {
5847 sp<SyncEvent> strongEvent = event.promote();
5848
5849 if (strongEvent != 0) {
5850 sp<RefBase> ptr = strongEvent->cookie().promote();
5851 if (ptr != 0) {
5852 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
5853 recordTrack->handleSyncStartEvent(strongEvent);
5854 }
5855 }
5856 }
5857
stop(RecordThread::RecordTrack * recordTrack)5858 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
5859 ALOGV("RecordThread::stop");
5860 AutoMutex _l(mLock);
5861 if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
5862 return false;
5863 }
5864 // note that threadLoop may still be processing the track at this point [without lock]
5865 recordTrack->mState = TrackBase::PAUSING;
5866 // do not wait for mStartStopCond if exiting
5867 if (exitPending()) {
5868 return true;
5869 }
5870 // FIXME incorrect usage of wait: no explicit predicate or loop
5871 mStartStopCond.wait(mLock);
5872 // if we have been restarted, recordTrack is in mActiveTracks here
5873 if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
5874 ALOGV("Record stopped OK");
5875 return true;
5876 }
5877 return false;
5878 }
5879
isValidSyncEvent(const sp<SyncEvent> & event __unused) const5880 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
5881 {
5882 return false;
5883 }
5884
setSyncEvent(const sp<SyncEvent> & event __unused)5885 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
5886 {
5887 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
5888 if (!isValidSyncEvent(event)) {
5889 return BAD_VALUE;
5890 }
5891
5892 int eventSession = event->triggerSession();
5893 status_t ret = NAME_NOT_FOUND;
5894
5895 Mutex::Autolock _l(mLock);
5896
5897 for (size_t i = 0; i < mTracks.size(); i++) {
5898 sp<RecordTrack> track = mTracks[i];
5899 if (eventSession == track->sessionId()) {
5900 (void) track->setSyncEvent(event);
5901 ret = NO_ERROR;
5902 }
5903 }
5904 return ret;
5905 #else
5906 return BAD_VALUE;
5907 #endif
5908 }
5909
5910 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)5911 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
5912 {
5913 track->terminate();
5914 track->mState = TrackBase::STOPPED;
5915 // active tracks are removed by threadLoop()
5916 if (mActiveTracks.indexOf(track) < 0) {
5917 removeTrack_l(track);
5918 }
5919 }
5920
removeTrack_l(const sp<RecordTrack> & track)5921 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
5922 {
5923 mTracks.remove(track);
5924 // need anything related to effects here?
5925 if (track->isFastTrack()) {
5926 ALOG_ASSERT(!mFastTrackAvail);
5927 mFastTrackAvail = true;
5928 }
5929 }
5930
dump(int fd,const Vector<String16> & args)5931 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
5932 {
5933 dumpInternals(fd, args);
5934 dumpTracks(fd, args);
5935 dumpEffectChains(fd, args);
5936 }
5937
dumpInternals(int fd,const Vector<String16> & args)5938 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
5939 {
5940 dprintf(fd, "\nInput thread %p:\n", this);
5941
5942 if (mActiveTracks.size() > 0) {
5943 dprintf(fd, " Buffer size: %zu bytes\n", mBufferSize);
5944 } else {
5945 dprintf(fd, " No active record clients\n");
5946 }
5947 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
5948 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
5949
5950 dumpBase(fd, args);
5951 }
5952
dumpTracks(int fd,const Vector<String16> & args __unused)5953 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
5954 {
5955 const size_t SIZE = 256;
5956 char buffer[SIZE];
5957 String8 result;
5958
5959 size_t numtracks = mTracks.size();
5960 size_t numactive = mActiveTracks.size();
5961 size_t numactiveseen = 0;
5962 dprintf(fd, " %d Tracks", numtracks);
5963 if (numtracks) {
5964 dprintf(fd, " of which %d are active\n", numactive);
5965 RecordTrack::appendDumpHeader(result);
5966 for (size_t i = 0; i < numtracks ; ++i) {
5967 sp<RecordTrack> track = mTracks[i];
5968 if (track != 0) {
5969 bool active = mActiveTracks.indexOf(track) >= 0;
5970 if (active) {
5971 numactiveseen++;
5972 }
5973 track->dump(buffer, SIZE, active);
5974 result.append(buffer);
5975 }
5976 }
5977 } else {
5978 dprintf(fd, "\n");
5979 }
5980
5981 if (numactiveseen != numactive) {
5982 snprintf(buffer, SIZE, " The following tracks are in the active list but"
5983 " not in the track list\n");
5984 result.append(buffer);
5985 RecordTrack::appendDumpHeader(result);
5986 for (size_t i = 0; i < numactive; ++i) {
5987 sp<RecordTrack> track = mActiveTracks[i];
5988 if (mTracks.indexOf(track) < 0) {
5989 track->dump(buffer, SIZE, true);
5990 result.append(buffer);
5991 }
5992 }
5993
5994 }
5995 write(fd, result.string(), result.size());
5996 }
5997
5998 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer,int64_t pts __unused)5999 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6000 AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6001 {
6002 RecordTrack *activeTrack = mRecordTrack;
6003 sp<ThreadBase> threadBase = activeTrack->mThread.promote();
6004 if (threadBase == 0) {
6005 buffer->frameCount = 0;
6006 buffer->raw = NULL;
6007 return NOT_ENOUGH_DATA;
6008 }
6009 RecordThread *recordThread = (RecordThread *) threadBase.get();
6010 int32_t rear = recordThread->mRsmpInRear;
6011 int32_t front = activeTrack->mRsmpInFront;
6012 ssize_t filled = rear - front;
6013 // FIXME should not be P2 (don't want to increase latency)
6014 // FIXME if client not keeping up, discard
6015 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6016 // 'filled' may be non-contiguous, so return only the first contiguous chunk
6017 front &= recordThread->mRsmpInFramesP2 - 1;
6018 size_t part1 = recordThread->mRsmpInFramesP2 - front;
6019 if (part1 > (size_t) filled) {
6020 part1 = filled;
6021 }
6022 size_t ask = buffer->frameCount;
6023 ALOG_ASSERT(ask > 0);
6024 if (part1 > ask) {
6025 part1 = ask;
6026 }
6027 if (part1 == 0) {
6028 // Higher-level should keep mRsmpInBuffer full, and not call resampler if empty
6029 LOG_ALWAYS_FATAL("RecordThread::getNextBuffer() starved");
6030 buffer->raw = NULL;
6031 buffer->frameCount = 0;
6032 activeTrack->mRsmpInUnrel = 0;
6033 return NOT_ENOUGH_DATA;
6034 }
6035
6036 buffer->raw = recordThread->mRsmpInBuffer + front * recordThread->mChannelCount;
6037 buffer->frameCount = part1;
6038 activeTrack->mRsmpInUnrel = part1;
6039 return NO_ERROR;
6040 }
6041
6042 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)6043 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6044 AudioBufferProvider::Buffer* buffer)
6045 {
6046 RecordTrack *activeTrack = mRecordTrack;
6047 size_t stepCount = buffer->frameCount;
6048 if (stepCount == 0) {
6049 return;
6050 }
6051 ALOG_ASSERT(stepCount <= activeTrack->mRsmpInUnrel);
6052 activeTrack->mRsmpInUnrel -= stepCount;
6053 activeTrack->mRsmpInFront += stepCount;
6054 buffer->raw = NULL;
6055 buffer->frameCount = 0;
6056 }
6057
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6058 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6059 status_t& status)
6060 {
6061 bool reconfig = false;
6062
6063 status = NO_ERROR;
6064
6065 audio_format_t reqFormat = mFormat;
6066 uint32_t samplingRate = mSampleRate;
6067 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6068
6069 AudioParameter param = AudioParameter(keyValuePair);
6070 int value;
6071 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6072 // channel count change can be requested. Do we mandate the first client defines the
6073 // HAL sampling rate and channel count or do we allow changes on the fly?
6074 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6075 samplingRate = value;
6076 reconfig = true;
6077 }
6078 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6079 if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
6080 status = BAD_VALUE;
6081 } else {
6082 reqFormat = (audio_format_t) value;
6083 reconfig = true;
6084 }
6085 }
6086 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6087 audio_channel_mask_t mask = (audio_channel_mask_t) value;
6088 if (mask != AUDIO_CHANNEL_IN_MONO && mask != AUDIO_CHANNEL_IN_STEREO) {
6089 status = BAD_VALUE;
6090 } else {
6091 channelMask = mask;
6092 reconfig = true;
6093 }
6094 }
6095 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6096 // do not accept frame count changes if tracks are open as the track buffer
6097 // size depends on frame count and correct behavior would not be guaranteed
6098 // if frame count is changed after track creation
6099 if (mActiveTracks.size() > 0) {
6100 status = INVALID_OPERATION;
6101 } else {
6102 reconfig = true;
6103 }
6104 }
6105 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6106 // forward device change to effects that have requested to be
6107 // aware of attached audio device.
6108 for (size_t i = 0; i < mEffectChains.size(); i++) {
6109 mEffectChains[i]->setDevice_l(value);
6110 }
6111
6112 // store input device and output device but do not forward output device to audio HAL.
6113 // Note that status is ignored by the caller for output device
6114 // (see AudioFlinger::setParameters()
6115 if (audio_is_output_devices(value)) {
6116 mOutDevice = value;
6117 status = BAD_VALUE;
6118 } else {
6119 mInDevice = value;
6120 // disable AEC and NS if the device is a BT SCO headset supporting those
6121 // pre processings
6122 if (mTracks.size() > 0) {
6123 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6124 mAudioFlinger->btNrecIsOff();
6125 for (size_t i = 0; i < mTracks.size(); i++) {
6126 sp<RecordTrack> track = mTracks[i];
6127 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6128 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6129 }
6130 }
6131 }
6132 }
6133 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6134 mAudioSource != (audio_source_t)value) {
6135 // forward device change to effects that have requested to be
6136 // aware of attached audio device.
6137 for (size_t i = 0; i < mEffectChains.size(); i++) {
6138 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6139 }
6140 mAudioSource = (audio_source_t)value;
6141 }
6142
6143 if (status == NO_ERROR) {
6144 status = mInput->stream->common.set_parameters(&mInput->stream->common,
6145 keyValuePair.string());
6146 if (status == INVALID_OPERATION) {
6147 inputStandBy();
6148 status = mInput->stream->common.set_parameters(&mInput->stream->common,
6149 keyValuePair.string());
6150 }
6151 if (reconfig) {
6152 if (status == BAD_VALUE &&
6153 reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
6154 reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
6155 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6156 <= (2 * samplingRate)) &&
6157 audio_channel_count_from_in_mask(
6158 mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
6159 (channelMask == AUDIO_CHANNEL_IN_MONO ||
6160 channelMask == AUDIO_CHANNEL_IN_STEREO)) {
6161 status = NO_ERROR;
6162 }
6163 if (status == NO_ERROR) {
6164 readInputParameters_l();
6165 sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
6166 }
6167 }
6168 }
6169
6170 return reconfig;
6171 }
6172
getParameters(const String8 & keys)6173 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6174 {
6175 Mutex::Autolock _l(mLock);
6176 if (initCheck() != NO_ERROR) {
6177 return String8();
6178 }
6179
6180 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6181 const String8 out_s8(s);
6182 free(s);
6183 return out_s8;
6184 }
6185
audioConfigChanged(int event,int param __unused)6186 void AudioFlinger::RecordThread::audioConfigChanged(int event, int param __unused) {
6187 AudioSystem::OutputDescriptor desc;
6188 const void *param2 = NULL;
6189
6190 switch (event) {
6191 case AudioSystem::INPUT_OPENED:
6192 case AudioSystem::INPUT_CONFIG_CHANGED:
6193 desc.channelMask = mChannelMask;
6194 desc.samplingRate = mSampleRate;
6195 desc.format = mFormat;
6196 desc.frameCount = mFrameCount;
6197 desc.latency = 0;
6198 param2 = &desc;
6199 break;
6200
6201 case AudioSystem::INPUT_CLOSED:
6202 default:
6203 break;
6204 }
6205 mAudioFlinger->audioConfigChanged(event, mId, param2);
6206 }
6207
readInputParameters_l()6208 void AudioFlinger::RecordThread::readInputParameters_l()
6209 {
6210 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6211 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6212 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6213 mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6214 mFormat = mHALFormat;
6215 if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
6216 ALOGE("HAL format %#x not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
6217 }
6218 mFrameSize = audio_stream_in_frame_size(mInput->stream);
6219 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6220 mFrameCount = mBufferSize / mFrameSize;
6221 // This is the formula for calculating the temporary buffer size.
6222 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6223 // 1 full output buffer, regardless of the alignment of the available input.
6224 // The value is somewhat arbitrary, and could probably be even larger.
6225 // A larger value should allow more old data to be read after a track calls start(),
6226 // without increasing latency.
6227 mRsmpInFrames = mFrameCount * 7;
6228 mRsmpInFramesP2 = roundup(mRsmpInFrames);
6229 delete[] mRsmpInBuffer;
6230
6231 // TODO optimize audio capture buffer sizes ...
6232 // Here we calculate the size of the sliding buffer used as a source
6233 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6234 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
6235 // be better to have it derived from the pipe depth in the long term.
6236 // The current value is higher than necessary. However it should not add to latency.
6237
6238 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6239 mRsmpInBuffer = new int16_t[(mRsmpInFramesP2 + mFrameCount - 1) * mChannelCount];
6240
6241 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6242 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6243 }
6244
getInputFramesLost()6245 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6246 {
6247 Mutex::Autolock _l(mLock);
6248 if (initCheck() != NO_ERROR) {
6249 return 0;
6250 }
6251
6252 return mInput->stream->get_input_frames_lost(mInput->stream);
6253 }
6254
hasAudioSession(int sessionId) const6255 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6256 {
6257 Mutex::Autolock _l(mLock);
6258 uint32_t result = 0;
6259 if (getEffectChain_l(sessionId) != 0) {
6260 result = EFFECT_SESSION;
6261 }
6262
6263 for (size_t i = 0; i < mTracks.size(); ++i) {
6264 if (sessionId == mTracks[i]->sessionId()) {
6265 result |= TRACK_SESSION;
6266 break;
6267 }
6268 }
6269
6270 return result;
6271 }
6272
sessionIds() const6273 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6274 {
6275 KeyedVector<int, bool> ids;
6276 Mutex::Autolock _l(mLock);
6277 for (size_t j = 0; j < mTracks.size(); ++j) {
6278 sp<RecordThread::RecordTrack> track = mTracks[j];
6279 int sessionId = track->sessionId();
6280 if (ids.indexOfKey(sessionId) < 0) {
6281 ids.add(sessionId, true);
6282 }
6283 }
6284 return ids;
6285 }
6286
clearInput()6287 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6288 {
6289 Mutex::Autolock _l(mLock);
6290 AudioStreamIn *input = mInput;
6291 mInput = NULL;
6292 return input;
6293 }
6294
6295 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const6296 audio_stream_t* AudioFlinger::RecordThread::stream() const
6297 {
6298 if (mInput == NULL) {
6299 return NULL;
6300 }
6301 return &mInput->stream->common;
6302 }
6303
addEffectChain_l(const sp<EffectChain> & chain)6304 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6305 {
6306 // only one chain per input thread
6307 if (mEffectChains.size() != 0) {
6308 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6309 return INVALID_OPERATION;
6310 }
6311 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6312 chain->setThread(this);
6313 chain->setInBuffer(NULL);
6314 chain->setOutBuffer(NULL);
6315
6316 checkSuspendOnAddEffectChain_l(chain);
6317
6318 // make sure enabled pre processing effects state is communicated to the HAL as we
6319 // just moved them to a new input stream.
6320 chain->syncHalEffectsState();
6321
6322 mEffectChains.add(chain);
6323
6324 return NO_ERROR;
6325 }
6326
removeEffectChain_l(const sp<EffectChain> & chain)6327 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6328 {
6329 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6330 ALOGW_IF(mEffectChains.size() != 1,
6331 "removeEffectChain_l() %p invalid chain size %d on thread %p",
6332 chain.get(), mEffectChains.size(), this);
6333 if (mEffectChains.size() == 1) {
6334 mEffectChains.removeAt(0);
6335 }
6336 return 0;
6337 }
6338
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)6339 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6340 audio_patch_handle_t *handle)
6341 {
6342 status_t status = NO_ERROR;
6343 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6344 // store new device and send to effects
6345 mInDevice = patch->sources[0].ext.device.type;
6346 for (size_t i = 0; i < mEffectChains.size(); i++) {
6347 mEffectChains[i]->setDevice_l(mInDevice);
6348 }
6349
6350 // disable AEC and NS if the device is a BT SCO headset supporting those
6351 // pre processings
6352 if (mTracks.size() > 0) {
6353 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6354 mAudioFlinger->btNrecIsOff();
6355 for (size_t i = 0; i < mTracks.size(); i++) {
6356 sp<RecordTrack> track = mTracks[i];
6357 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6358 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6359 }
6360 }
6361
6362 // store new source and send to effects
6363 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6364 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6365 for (size_t i = 0; i < mEffectChains.size(); i++) {
6366 mEffectChains[i]->setAudioSource_l(mAudioSource);
6367 }
6368 }
6369
6370 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6371 status = hwDevice->create_audio_patch(hwDevice,
6372 patch->num_sources,
6373 patch->sources,
6374 patch->num_sinks,
6375 patch->sinks,
6376 handle);
6377 } else {
6378 ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
6379 }
6380 return status;
6381 }
6382
releaseAudioPatch_l(const audio_patch_handle_t handle)6383 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6384 {
6385 status_t status = NO_ERROR;
6386 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6387 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6388 status = hwDevice->release_audio_patch(hwDevice, handle);
6389 } else {
6390 ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
6391 }
6392 return status;
6393 }
6394
addPatchRecord(const sp<PatchRecord> & record)6395 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6396 {
6397 Mutex::Autolock _l(mLock);
6398 mTracks.add(record);
6399 }
6400
deletePatchRecord(const sp<PatchRecord> & record)6401 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
6402 {
6403 Mutex::Autolock _l(mLock);
6404 destroyTrack_l(record);
6405 }
6406
getAudioPortConfig(struct audio_port_config * config)6407 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
6408 {
6409 ThreadBase::getAudioPortConfig(config);
6410 config->role = AUDIO_PORT_ROLE_SINK;
6411 config->ext.mix.hw_module = mInput->audioHwDev->handle();
6412 config->ext.mix.usecase.source = mAudioSource;
6413 }
6414
6415 }; // namespace android
6416