1 /*
2  *  Licensed to the Apache Software Foundation (ASF) under one or more
3  *  contributor license agreements.  See the NOTICE file distributed with
4  *  this work for additional information regarding copyright ownership.
5  *  The ASF licenses this file to You under the Apache License, Version 2.0
6  *  (the "License"); you may not use this file except in compliance with
7  *  the License.  You may obtain a copy of the License at
8  *
9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  */
17 
18 package java.math;
19 
20 import java.io.IOException;
21 import java.io.ObjectInputStream;
22 import java.io.ObjectOutputStream;
23 import java.io.Serializable;
24 import java.util.Random;
25 
26 /**
27  * An immutable arbitrary-precision signed integer.
28  *
29  * <h3>Fast Cryptography</h3>
30  * This implementation is efficient for operations traditionally used in
31  * cryptography, such as the generation of large prime numbers and computation
32  * of the modular inverse.
33  *
34  * <h3>Slow Two's Complement Bitwise Operations</h3>
35  * This API includes operations for bitwise operations in two's complement
36  * representation. Two's complement is not the internal representation used by
37  * this implementation, so such methods may be inefficient. Use {@link
38  * java.util.BitSet} for high-performance bitwise operations on
39  * arbitrarily-large sequences of bits.
40  */
41 public class BigInteger extends Number
42         implements Comparable<BigInteger>, Serializable {
43 
44     /** This is the serialVersionUID used by the sun implementation. */
45     private static final long serialVersionUID = -8287574255936472291L;
46 
47     private transient BigInt bigInt;
48 
49     private transient boolean nativeIsValid = false;
50 
51     private transient boolean javaIsValid = false;
52 
53     /** The magnitude of this in the little-endian representation. */
54     transient int[] digits;
55 
56     /**
57      * The length of this in measured in ints. Can be less than
58      * digits.length().
59      */
60     transient int numberLength;
61 
62     /** The sign of this. */
63     transient int sign;
64 
65     /** The {@code BigInteger} constant 0. */
66     public static final BigInteger ZERO = new BigInteger(0, 0);
67 
68     /** The {@code BigInteger} constant 1. */
69     public static final BigInteger ONE = new BigInteger(1, 1);
70 
71     /** The {@code BigInteger} constant 10. */
72     public static final BigInteger TEN = new BigInteger(1, 10);
73 
74     /** The {@code BigInteger} constant -1. */
75     static final BigInteger MINUS_ONE = new BigInteger(-1, 1);
76 
77     /** All the {@code BigInteger} numbers in the range [0,10] are cached. */
78     static final BigInteger[] SMALL_VALUES = { ZERO, ONE, new BigInteger(1, 2),
79             new BigInteger(1, 3), new BigInteger(1, 4), new BigInteger(1, 5),
80             new BigInteger(1, 6), new BigInteger(1, 7), new BigInteger(1, 8),
81             new BigInteger(1, 9), TEN };
82 
83     private transient int firstNonzeroDigit = -2;
84 
85     /** sign field, used for serialization. */
86     private int signum;
87 
88     /** absolute value field, used for serialization */
89     private byte[] magnitude;
90 
91     /** Cache for the hash code. */
92     private transient int hashCode = 0;
93 
BigInteger(BigInt bigInt)94     BigInteger(BigInt bigInt) {
95         if (bigInt == null || bigInt.getNativeBIGNUM() == 0) {
96             throw new AssertionError();
97         }
98         setBigInt(bigInt);
99     }
100 
BigInteger(int sign, long value)101     BigInteger(int sign, long value) {
102         BigInt bigInt = new BigInt();
103         bigInt.putULongInt(value, (sign < 0));
104         setBigInt(bigInt);
105     }
106 
107     /**
108      * Constructs a number without creating new space. This construct should be
109      * used only if the three fields of representation are known.
110      *
111      * @param sign the sign of the number.
112      * @param numberLength the length of the internal array.
113      * @param digits a reference of some array created before.
114      */
BigInteger(int sign, int numberLength, int[] digits)115     BigInteger(int sign, int numberLength, int[] digits) {
116         setJavaRepresentation(sign, numberLength, digits);
117     }
118 
119     /**
120      * Constructs a random non-negative {@code BigInteger} instance in the range
121      * {@code [0, pow(2, numBits)-1]}.
122      *
123      * @param numBits maximum length of the new {@code BigInteger} in bits.
124      * @param random is the random number generator to be used.
125      * @throws IllegalArgumentException if {@code numBits} < 0.
126      */
BigInteger(int numBits, Random random)127     public BigInteger(int numBits, Random random) {
128         if (numBits < 0) {
129             throw new IllegalArgumentException("numBits < 0: " + numBits);
130         }
131         if (numBits == 0) {
132             setJavaRepresentation(0, 1, new int[] { 0 });
133         } else {
134             int sign = 1;
135             int numberLength = (numBits + 31) >> 5;
136             int[] digits = new int[numberLength];
137             for (int i = 0; i < numberLength; i++) {
138                 digits[i] = random.nextInt();
139             }
140             // Clear any extra bits.
141             digits[numberLength - 1] >>>= (-numBits) & 31;
142             setJavaRepresentation(sign, numberLength, digits);
143         }
144         javaIsValid = true;
145     }
146 
147     /**
148      * Constructs a random {@code BigInteger} instance in the range {@code [0,
149      * pow(2, bitLength)-1]} which is probably prime. The probability that the
150      * returned {@code BigInteger} is prime is greater than
151      * {@code 1 - 1/2<sup>certainty</sup>)}.
152      *
153      * <p><b>Note:</b> the {@code Random} argument is ignored if
154      * {@code bitLength >= 16}, where this implementation will use OpenSSL's
155      * {@code BN_generate_prime_ex} as a source of cryptographically strong pseudo-random numbers.
156      *
157      * @param bitLength length of the new {@code BigInteger} in bits.
158      * @param certainty tolerated primality uncertainty.
159      * @throws ArithmeticException if {@code bitLength < 2}.
160      * @see <a href="http://www.openssl.org/docs/crypto/BN_rand.html">
161      *      Specification of random generator used from OpenSSL library</a>
162      */
BigInteger(int bitLength, int certainty, Random random)163     public BigInteger(int bitLength, int certainty, Random random) {
164         if (bitLength < 2) {
165             throw new ArithmeticException("bitLength < 2: " + bitLength);
166         }
167         if (bitLength < 16) {
168             // We have to generate short primes ourselves, because OpenSSL bottoms out at 16 bits.
169             int candidate;
170             do {
171                 candidate = random.nextInt() & ((1 << bitLength) - 1);
172                 candidate |= (1 << (bitLength - 1)); // Set top bit.
173                 if (bitLength > 2) {
174                     candidate |= 1; // Any prime longer than 2 bits must have the bottom bit set.
175                 }
176             } while (!isSmallPrime(candidate));
177             BigInt prime = new BigInt();
178             prime.putULongInt(candidate, false);
179             setBigInt(prime);
180         } else {
181             // We need a loop here to work around an OpenSSL bug; http://b/8588028.
182             do {
183                 setBigInt(BigInt.generatePrimeDefault(bitLength));
184             } while (bitLength() != bitLength);
185         }
186     }
187 
isSmallPrime(int x)188     private static boolean isSmallPrime(int x) {
189         if (x == 2) {
190             return true;
191         }
192         if ((x % 2) == 0) {
193             return false;
194         }
195         final int max = (int) Math.sqrt(x);
196         for (int i = 3; i <= max; i += 2) {
197             if ((x % i) == 0) {
198                 return false;
199             }
200         }
201         return true;
202     }
203 
204     /**
205      * Constructs a new {@code BigInteger} by parsing {@code value}. The string
206      * representation consists of an optional plus or minus sign followed by a
207      * non-empty sequence of decimal digits. Digits are interpreted as if by
208      * {@code Character.digit(char,10)}.
209      *
210      * @param value string representation of the new {@code BigInteger}.
211      * @throws NullPointerException if {@code value == null}.
212      * @throws NumberFormatException if {@code value} is not a valid
213      *     representation of a {@code BigInteger}.
214      */
BigInteger(String value)215     public BigInteger(String value) {
216         BigInt bigInt = new BigInt();
217         bigInt.putDecString(value);
218         setBigInt(bigInt);
219     }
220 
221     /**
222      * Constructs a new {@code BigInteger} instance by parsing {@code value}.
223      * The string representation consists of an optional plus or minus sign
224      * followed by a non-empty sequence of digits in the specified radix. Digits
225      * are interpreted as if by {@code Character.digit(char, radix)}.
226      *
227      * @param value string representation of the new {@code BigInteger}.
228      * @param radix the base to be used for the conversion.
229      * @throws NullPointerException if {@code value == null}.
230      * @throws NumberFormatException if {@code value} is not a valid
231      *     representation of a {@code BigInteger} or if {@code radix <
232      *     Character.MIN_RADIX} or {@code radix > Character.MAX_RADIX}.
233      */
BigInteger(String value, int radix)234     public BigInteger(String value, int radix) {
235         if (value == null) {
236             throw new NullPointerException("value == null");
237         }
238         if (radix == 10) {
239             BigInt bigInt = new BigInt();
240             bigInt.putDecString(value);
241             setBigInt(bigInt);
242         } else if (radix == 16) {
243             BigInt bigInt = new BigInt();
244             bigInt.putHexString(value);
245             setBigInt(bigInt);
246         } else {
247             if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
248                 throw new NumberFormatException("Invalid radix: " + radix);
249             }
250             if (value.isEmpty()) {
251                 throw new NumberFormatException("value.isEmpty()");
252             }
253             BigInteger.parseFromString(this, value, radix);
254         }
255     }
256 
257     /**
258      * Constructs a new {@code BigInteger} instance with the given sign and
259      * magnitude.
260      *
261      * @param signum sign of the new {@code BigInteger} (-1 for negative, 0 for
262      *     zero, 1 for positive).
263      * @param magnitude magnitude of the new {@code BigInteger} with the most
264      *     significant byte first.
265      * @throws NullPointerException if {@code magnitude == null}.
266      * @throws NumberFormatException if the sign is not one of -1, 0, 1 or if
267      *     the sign is zero and the magnitude contains non-zero entries.
268      */
BigInteger(int signum, byte[] magnitude)269     public BigInteger(int signum, byte[] magnitude) {
270         if (magnitude == null) {
271             throw new NullPointerException("magnitude == null");
272         }
273         if (signum < -1 || signum > 1) {
274             throw new NumberFormatException("Invalid signum: " + signum);
275         }
276         if (signum == 0) {
277             for (byte element : magnitude) {
278                 if (element != 0) {
279                     throw new NumberFormatException("signum-magnitude mismatch");
280                 }
281             }
282         }
283         BigInt bigInt = new BigInt();
284         bigInt.putBigEndian(magnitude, signum < 0);
285         setBigInt(bigInt);
286     }
287 
288     /**
289      * Constructs a new {@code BigInteger} from the given two's complement
290      * representation. The most significant byte is the entry at index 0. The
291      * most significant bit of this entry determines the sign of the new {@code
292      * BigInteger} instance. The array must be nonempty.
293      *
294      * @param value two's complement representation of the new {@code
295      *     BigInteger}.
296      * @throws NullPointerException if {@code value == null}.
297      * @throws NumberFormatException if the length of {@code value} is zero.
298      */
BigInteger(byte[] value)299     public BigInteger(byte[] value) {
300         if (value.length == 0) {
301             throw new NumberFormatException("value.length == 0");
302         }
303         BigInt bigInt = new BigInt();
304         bigInt.putBigEndianTwosComplement(value);
305         setBigInt(bigInt);
306     }
307 
308     /**
309      * Returns the internal native representation of this big integer, computing
310      * it if necessary.
311      */
getBigInt()312     BigInt getBigInt() {
313         if (nativeIsValid) {
314             return bigInt;
315         }
316 
317         synchronized (this) {
318             if (nativeIsValid) {
319                 return bigInt;
320             }
321             BigInt bigInt = new BigInt();
322             bigInt.putLittleEndianInts(digits, (sign < 0));
323             setBigInt(bigInt);
324             return bigInt;
325         }
326     }
327 
setBigInt(BigInt bigInt)328     private void setBigInt(BigInt bigInt) {
329         this.bigInt = bigInt;
330         this.nativeIsValid = true;
331     }
332 
setJavaRepresentation(int sign, int numberLength, int[] digits)333     private void setJavaRepresentation(int sign, int numberLength, int[] digits) {
334         // decrement numberLength to drop leading zeroes...
335         while (numberLength > 0 && digits[--numberLength] == 0) {
336             ;
337         }
338         // ... and then increment it back because we always drop one too many
339         if (digits[numberLength++] == 0) {
340             sign = 0;
341         }
342         this.sign = sign;
343         this.digits = digits;
344         this.numberLength = numberLength;
345         this.javaIsValid = true;
346     }
347 
prepareJavaRepresentation()348     void prepareJavaRepresentation() {
349         if (javaIsValid) {
350             return;
351         }
352 
353         synchronized (this) {
354             if (javaIsValid) {
355                 return;
356             }
357             int sign = bigInt.sign();
358             int[] digits = (sign != 0) ? bigInt.littleEndianIntsMagnitude() : new int[] { 0 };
359             setJavaRepresentation(sign, digits.length, digits);
360         }
361     }
362 
363     /** Returns a {@code BigInteger} whose value is equal to {@code value}. */
valueOf(long value)364     public static BigInteger valueOf(long value) {
365         if (value < 0) {
366             if (value != -1) {
367                 return new BigInteger(-1, -value);
368             }
369             return MINUS_ONE;
370         } else if (value < SMALL_VALUES.length) {
371             return SMALL_VALUES[(int) value];
372         } else {// (value > 10)
373             return new BigInteger(1, value);
374         }
375     }
376 
377     /**
378      * Returns the two's complement representation of this {@code BigInteger} in
379      * a byte array.
380      */
toByteArray()381     public byte[] toByteArray() {
382         return twosComplement();
383     }
384 
385     /**
386      * Returns a {@code BigInteger} whose value is the absolute value of {@code
387      * this}.
388      */
abs()389     public BigInteger abs() {
390         BigInt bigInt = getBigInt();
391         if (bigInt.sign() >= 0) {
392             return this;
393         }
394         BigInt a = bigInt.copy();
395         a.setSign(1);
396         return new BigInteger(a);
397     }
398 
399     /**
400      * Returns a {@code BigInteger} whose value is the {@code -this}.
401      */
negate()402     public BigInteger negate() {
403         BigInt bigInt = getBigInt();
404         int sign = bigInt.sign();
405         if (sign == 0) {
406             return this;
407         }
408         BigInt a = bigInt.copy();
409         a.setSign(-sign);
410         return new BigInteger(a);
411     }
412 
413     /**
414      * Returns a {@code BigInteger} whose value is {@code this + value}.
415      */
add(BigInteger value)416     public BigInteger add(BigInteger value) {
417         BigInt lhs = getBigInt();
418         BigInt rhs = value.getBigInt();
419         if (rhs.sign() == 0) {
420             return this;
421         }
422         if (lhs.sign() == 0) {
423             return value;
424         }
425         return new BigInteger(BigInt.addition(lhs, rhs));
426     }
427 
428     /**
429      * Returns a {@code BigInteger} whose value is {@code this - value}.
430      */
subtract(BigInteger value)431     public BigInteger subtract(BigInteger value) {
432         BigInt lhs = getBigInt();
433         BigInt rhs = value.getBigInt();
434         if (rhs.sign() == 0) {
435             return this;
436         }
437         return new BigInteger(BigInt.subtraction(lhs, rhs));
438     }
439 
440     /**
441      * Returns the sign of this {@code BigInteger}.
442      *
443      * @return {@code -1} if {@code this < 0}, {@code 0} if {@code this == 0},
444      *     {@code 1} if {@code this > 0}.
445      */
signum()446     public int signum() {
447         if (javaIsValid) {
448             return sign;
449         }
450         return getBigInt().sign();
451     }
452 
453     /**
454      * Returns a {@code BigInteger} whose value is {@code this >> n}. For
455      * negative arguments, the result is also negative. The shift distance may
456      * be negative which means that {@code this} is shifted left.
457      *
458      * <p><b>Implementation Note:</b> Usage of this method on negative values is
459      * not recommended as the current implementation is not efficient.
460      *
461      * @param n shift distance
462      * @return {@code this >> n} if {@code n >= 0}; {@code this << (-n)}
463      *     otherwise
464      */
shiftRight(int n)465     public BigInteger shiftRight(int n) {
466         return shiftLeft(-n);
467     }
468 
469     /**
470      * Returns a {@code BigInteger} whose value is {@code this << n}. The
471      * result is equivalent to {@code this * pow(2, n)} if n >= 0. The shift
472      * distance may be negative which means that {@code this} is shifted right.
473      * The result then corresponds to {@code floor(this / pow(2, -n))}.
474      *
475      * <p><b>Implementation Note:</b> Usage of this method on negative values is
476      * not recommended as the current implementation is not efficient.
477      *
478      * @param n shift distance.
479      * @return {@code this << n} if {@code n >= 0}; {@code this >> (-n)}.
480      *     otherwise
481      */
shiftLeft(int n)482     public BigInteger shiftLeft(int n) {
483         if (n == 0) {
484             return this;
485         }
486         int sign = signum();
487         if (sign == 0) {
488             return this;
489         }
490         if ((sign > 0) || (n >= 0)) {
491             return new BigInteger(BigInt.shift(getBigInt(), n));
492         } else {
493             // Negative numbers faking 2's complement:
494             // Not worth optimizing this:
495             // Sticking to Harmony Java implementation.
496             return BitLevel.shiftRight(this, -n);
497         }
498     }
499 
shiftLeftOneBit()500     BigInteger shiftLeftOneBit() {
501         return (signum() == 0) ? this : BitLevel.shiftLeftOneBit(this);
502     }
503 
504     /**
505      * Returns the length of the value's two's complement representation without
506      * leading zeros for positive numbers / without leading ones for negative
507      * values.
508      *
509      * <p>The two's complement representation of {@code this} will be at least
510      * {@code bitLength() + 1} bits long.
511      *
512      * <p>The value will fit into an {@code int} if {@code bitLength() < 32} or
513      * into a {@code long} if {@code bitLength() < 64}.
514      *
515      * @return the length of the minimal two's complement representation for
516      *     {@code this} without the sign bit.
517      */
bitLength()518     public int bitLength() {
519         // Optimization to avoid unnecessary duplicate representation:
520         if (!nativeIsValid && javaIsValid) {
521             return BitLevel.bitLength(this);
522         }
523         return getBigInt().bitLength();
524     }
525 
526     /**
527      * Tests whether the bit at position n in {@code this} is set. The result is
528      * equivalent to {@code this & pow(2, n) != 0}.
529      *
530      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
531      * the current implementation is not efficient.
532      *
533      * @param n position where the bit in {@code this} has to be inspected.
534      * @throws ArithmeticException if {@code n < 0}.
535      */
testBit(int n)536     public boolean testBit(int n) {
537         if (n < 0) {
538             throw new ArithmeticException("n < 0: " + n);
539         }
540         int sign = signum();
541         if (sign > 0 && nativeIsValid && !javaIsValid) {
542             return getBigInt().isBitSet(n);
543         } else {
544             // Negative numbers faking 2's complement:
545             // Not worth optimizing this:
546             // Sticking to Harmony Java implementation.
547             prepareJavaRepresentation();
548             if (n == 0) {
549                 return ((digits[0] & 1) != 0);
550             }
551             int intCount = n >> 5;
552             if (intCount >= numberLength) {
553                 return (sign < 0);
554             }
555             int digit = digits[intCount];
556             n = (1 << (n & 31)); // int with 1 set to the needed position
557             if (sign < 0) {
558                 int firstNonZeroDigit = getFirstNonzeroDigit();
559                 if (intCount < firstNonZeroDigit) {
560                     return false;
561                 } else if (firstNonZeroDigit == intCount) {
562                     digit = -digit;
563                 } else {
564                     digit = ~digit;
565                 }
566             }
567             return ((digit & n) != 0);
568         }
569     }
570 
571     /**
572      * Returns a {@code BigInteger} which has the same binary representation
573      * as {@code this} but with the bit at position n set. The result is
574      * equivalent to {@code this | pow(2, n)}.
575      *
576      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
577      * the current implementation is not efficient.
578      *
579      * @param n position where the bit in {@code this} has to be set.
580      * @throws ArithmeticException if {@code n < 0}.
581      */
setBit(int n)582     public BigInteger setBit(int n) {
583         prepareJavaRepresentation();
584         if (!testBit(n)) {
585             return BitLevel.flipBit(this, n);
586         } else {
587             return this;
588         }
589     }
590 
591     /**
592      * Returns a {@code BigInteger} which has the same binary representation
593      * as {@code this} but with the bit at position n cleared. The result is
594      * equivalent to {@code this & ~pow(2, n)}.
595      *
596      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
597      * the current implementation is not efficient.
598      *
599      * @param n position where the bit in {@code this} has to be cleared.
600      * @throws ArithmeticException if {@code n < 0}.
601      */
clearBit(int n)602     public BigInteger clearBit(int n) {
603         prepareJavaRepresentation();
604         if (testBit(n)) {
605             return BitLevel.flipBit(this, n);
606         } else {
607             return this;
608         }
609     }
610 
611     /**
612      * Returns a {@code BigInteger} which has the same binary representation
613      * as {@code this} but with the bit at position n flipped. The result is
614      * equivalent to {@code this ^ pow(2, n)}.
615      *
616      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
617      * the current implementation is not efficient.
618      *
619      * @param n position where the bit in {@code this} has to be flipped.
620      * @throws ArithmeticException if {@code n < 0}.
621      */
flipBit(int n)622     public BigInteger flipBit(int n) {
623         prepareJavaRepresentation();
624         if (n < 0) {
625             throw new ArithmeticException("n < 0: " + n);
626         }
627         return BitLevel.flipBit(this, n);
628     }
629 
630     /**
631      * Returns the position of the lowest set bit in the two's complement
632      * representation of this {@code BigInteger}. If all bits are zero (this==0)
633      * then -1 is returned as result.
634      *
635      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
636      * the current implementation is not efficient.
637      */
getLowestSetBit()638     public int getLowestSetBit() {
639         prepareJavaRepresentation();
640         if (sign == 0) {
641             return -1;
642         }
643         // (sign != 0) implies that exists some non zero digit
644         int i = getFirstNonzeroDigit();
645         return ((i << 5) + Integer.numberOfTrailingZeros(digits[i]));
646     }
647 
648     /**
649      * Returns the number of bits in the two's complement representation of
650      * {@code this} which differ from the sign bit. If {@code this} is negative,
651      * the result is equivalent to the number of bits set in the two's
652      * complement representation of {@code -this - 1}.
653      *
654      * <p>Use {@code bitLength(0)} to find the length of the binary value in
655      * bits.
656      *
657      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
658      * the current implementation is not efficient.
659      */
bitCount()660     public int bitCount() {
661         prepareJavaRepresentation();
662         return BitLevel.bitCount(this);
663     }
664 
665     /**
666      * Returns a {@code BigInteger} whose value is {@code ~this}. The result
667      * of this operation is {@code -this-1}.
668      *
669      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
670      * the current implementation is not efficient.
671      */
not()672     public BigInteger not() {
673         this.prepareJavaRepresentation();
674         return Logical.not(this);
675     }
676 
677     /**
678      * Returns a {@code BigInteger} whose value is {@code this & value}.
679      *
680      * <p><b>Implementation Note:</b> Usage of this method is not recommended
681      * as the current implementation is not efficient.
682      *
683      * @param value value to be and'ed with {@code this}.
684      * @throws NullPointerException if {@code value == null}.
685      */
and(BigInteger value)686     public BigInteger and(BigInteger value) {
687         this.prepareJavaRepresentation();
688         value.prepareJavaRepresentation();
689         return Logical.and(this, value);
690     }
691 
692     /**
693      * Returns a {@code BigInteger} whose value is {@code this | value}.
694      *
695      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
696      * the current implementation is not efficient.
697      *
698      * @param value value to be or'ed with {@code this}.
699      * @throws NullPointerException if {@code value == null}.
700      */
or(BigInteger value)701     public BigInteger or(BigInteger value) {
702         this.prepareJavaRepresentation();
703         value.prepareJavaRepresentation();
704         return Logical.or(this, value);
705     }
706 
707     /**
708      * Returns a {@code BigInteger} whose value is {@code this ^ value}.
709      *
710      * <p><b>Implementation Note:</b> Usage of this method is not recommended as
711      * the current implementation is not efficient.
712      *
713      * @param value value to be xor'ed with {@code this}
714      * @throws NullPointerException if {@code value == null}
715      */
xor(BigInteger value)716     public BigInteger xor(BigInteger value) {
717         this.prepareJavaRepresentation();
718         value.prepareJavaRepresentation();
719         return Logical.xor(this, value);
720     }
721 
722     /**
723      * Returns a {@code BigInteger} whose value is {@code this & ~value}.
724      * Evaluating {@code x.andNot(value)} returns the same result as {@code
725      * x.and(value.not())}.
726      *
727      * <p><b>Implementation Note:</b> Usage of this method is not recommended
728      * as the current implementation is not efficient.
729      *
730      * @param value value to be not'ed and then and'ed with {@code this}.
731      * @throws NullPointerException if {@code value == null}.
732      */
andNot(BigInteger value)733     public BigInteger andNot(BigInteger value) {
734         this.prepareJavaRepresentation();
735         value.prepareJavaRepresentation();
736         return Logical.andNot(this, value);
737     }
738 
739     /**
740      * Returns this {@code BigInteger} as an int value. If {@code this} is too
741      * big to be represented as an int, then {@code this % (1 << 32)} is
742      * returned.
743      */
744     @Override
intValue()745     public int intValue() {
746         if (nativeIsValid && bigInt.twosCompFitsIntoBytes(4)) {
747             return (int) bigInt.longInt();
748         }
749         this.prepareJavaRepresentation();
750         return (sign * digits[0]);
751     }
752 
753     /**
754      * Returns this {@code BigInteger} as a long value. If {@code this} is too
755      * big to be represented as a long, then {@code this % pow(2, 64)} is
756      * returned.
757      */
758     @Override
longValue()759     public long longValue() {
760         if (nativeIsValid && bigInt.twosCompFitsIntoBytes(8)) {
761             return bigInt.longInt();
762         }
763         prepareJavaRepresentation();
764         long value = numberLength > 1
765                 ? ((long) digits[1]) << 32 | digits[0] & 0xFFFFFFFFL
766                 : digits[0] & 0xFFFFFFFFL;
767         return sign * value;
768     }
769 
770     /**
771      * Returns this {@code BigInteger} as a float. If {@code this} is too big to
772      * be represented as a float, then {@code Float.POSITIVE_INFINITY} or
773      * {@code Float.NEGATIVE_INFINITY} is returned. Note that not all integers
774      * in the range {@code [-Float.MAX_VALUE, Float.MAX_VALUE]} can be exactly
775      * represented as a float.
776      */
777     @Override
floatValue()778     public float floatValue() {
779         return (float) doubleValue();
780     }
781 
782     /**
783      * Returns this {@code BigInteger} as a double. If {@code this} is too big
784      * to be represented as a double, then {@code Double.POSITIVE_INFINITY} or
785      * {@code Double.NEGATIVE_INFINITY} is returned. Note that not all integers
786      * in the range {@code [-Double.MAX_VALUE, Double.MAX_VALUE]} can be exactly
787      * represented as a double.
788      */
789     @Override
doubleValue()790     public double doubleValue() {
791         return Conversion.bigInteger2Double(this);
792     }
793 
794     /**
795      * Compares this {@code BigInteger} with {@code value}. Returns {@code -1}
796      * if {@code this < value}, {@code 0} if {@code this == value} and {@code 1}
797      * if {@code this > value}, .
798      *
799      * @param value value to be compared with {@code this}.
800      * @throws NullPointerException if {@code value == null}.
801      */
compareTo(BigInteger value)802     public int compareTo(BigInteger value) {
803         return BigInt.cmp(getBigInt(), value.getBigInt());
804     }
805 
806     /**
807      * Returns the minimum of this {@code BigInteger} and {@code value}.
808      *
809      * @param value value to be used to compute the minimum with {@code this}.
810      * @throws NullPointerException if {@code value == null}.
811      */
min(BigInteger value)812     public BigInteger min(BigInteger value) {
813         return this.compareTo(value) == -1 ? this : value;
814     }
815 
816     /**
817      * Returns the maximum of this {@code BigInteger} and {@code value}.
818      *
819      * @param value value to be used to compute the maximum with {@code this}
820      * @throws NullPointerException if {@code value == null}
821      */
max(BigInteger value)822     public BigInteger max(BigInteger value) {
823         return this.compareTo(value) == 1 ? this : value;
824     }
825 
826     @Override
hashCode()827     public int hashCode() {
828         if (hashCode != 0) {
829             return hashCode;
830         }
831         prepareJavaRepresentation();
832         for (int i = 0; i < numberLength; ++i) {
833             hashCode = hashCode * 33 + digits[i];
834         }
835         hashCode = hashCode * sign;
836         return hashCode;
837     }
838 
839     @Override
equals(Object x)840     public boolean equals(Object x) {
841         if (this == x) {
842             return true;
843         }
844         if (x instanceof BigInteger) {
845             return this.compareTo((BigInteger) x) == 0;
846         }
847         return false;
848     }
849 
850     /**
851      * Returns a string representation of this {@code BigInteger} in decimal
852      * form.
853      */
854     @Override
toString()855     public String toString() {
856         return getBigInt().decString();
857     }
858 
859     /**
860      * Returns a string containing a string representation of this {@code
861      * BigInteger} with base radix. If {@code radix < Character.MIN_RADIX} or
862      * {@code radix > Character.MAX_RADIX} then a decimal representation is
863      * returned. The characters of the string representation are generated with
864      * method {@code Character.forDigit}.
865      *
866      * @param radix base to be used for the string representation.
867      */
toString(int radix)868     public String toString(int radix) {
869         if (radix == 10) {
870             return getBigInt().decString();
871         } else {
872             prepareJavaRepresentation();
873             return Conversion.bigInteger2String(this, radix);
874         }
875     }
876 
877     /**
878      * Returns a {@code BigInteger} whose value is greatest common divisor
879      * of {@code this} and {@code value}. If {@code this == 0} and {@code
880      * value == 0} then zero is returned, otherwise the result is positive.
881      *
882      * @param value value with which the greatest common divisor is computed.
883      * @throws NullPointerException if {@code value == null}.
884      */
gcd(BigInteger value)885     public BigInteger gcd(BigInteger value) {
886         return new BigInteger(BigInt.gcd(getBigInt(), value.getBigInt()));
887     }
888 
889     /**
890      * Returns a {@code BigInteger} whose value is {@code this * value}.
891      *
892      * @throws NullPointerException if {@code value == null}.
893      */
multiply(BigInteger value)894     public BigInteger multiply(BigInteger value) {
895         return new BigInteger(BigInt.product(getBigInt(), value.getBigInt()));
896     }
897 
898     /**
899      * Returns a {@code BigInteger} whose value is {@code pow(this, exp)}.
900      *
901      * @throws ArithmeticException if {@code exp < 0}.
902      */
pow(int exp)903     public BigInteger pow(int exp) {
904         if (exp < 0) {
905             throw new ArithmeticException("exp < 0: " + exp);
906         }
907         return new BigInteger(BigInt.exp(getBigInt(), exp));
908     }
909 
910     /**
911      * Returns a two element {@code BigInteger} array containing
912      * {@code this / divisor} at index 0 and {@code this % divisor} at index 1.
913      *
914      * @param divisor value by which {@code this} is divided.
915      * @throws NullPointerException if {@code divisor == null}.
916      * @throws ArithmeticException if {@code divisor == 0}.
917      * @see #divide
918      * @see #remainder
919      */
divideAndRemainder(BigInteger divisor)920     public BigInteger[] divideAndRemainder(BigInteger divisor) {
921         BigInt divisorBigInt = divisor.getBigInt();
922         BigInt quotient = new BigInt();
923         BigInt remainder = new BigInt();
924         BigInt.division(getBigInt(), divisorBigInt, quotient, remainder);
925         return new BigInteger[] {new BigInteger(quotient), new BigInteger(remainder) };
926     }
927 
928     /**
929      * Returns a {@code BigInteger} whose value is {@code this / divisor}.
930      *
931      * @param divisor value by which {@code this} is divided.
932      * @return {@code this / divisor}.
933      * @throws NullPointerException if {@code divisor == null}.
934      * @throws ArithmeticException if {@code divisor == 0}.
935      */
divide(BigInteger divisor)936     public BigInteger divide(BigInteger divisor) {
937         BigInt quotient = new BigInt();
938         BigInt.division(getBigInt(), divisor.getBigInt(), quotient, null);
939         return new BigInteger(quotient);
940     }
941 
942     /**
943      * Returns a {@code BigInteger} whose value is {@code this % divisor}.
944      * Regarding signs this methods has the same behavior as the % operator on
945      * ints: the sign of the remainder is the same as the sign of this.
946      *
947      * @param divisor value by which {@code this} is divided.
948      * @throws NullPointerException if {@code divisor == null}.
949      * @throws ArithmeticException if {@code divisor == 0}.
950      */
remainder(BigInteger divisor)951     public BigInteger remainder(BigInteger divisor) {
952         BigInt remainder = new BigInt();
953         BigInt.division(getBigInt(), divisor.getBigInt(), null, remainder);
954         return new BigInteger(remainder);
955     }
956 
957     /**
958      * Returns a {@code BigInteger} whose value is {@code 1/this mod m}. The
959      * modulus {@code m} must be positive. The result is guaranteed to be in the
960      * interval {@code [0, m)} (0 inclusive, m exclusive). If {@code this} is
961      * not relatively prime to m, then an exception is thrown.
962      *
963      * @param m the modulus.
964      * @throws NullPointerException if {@code m == null}
965      * @throws ArithmeticException if {@code m < 0 or} if {@code this} is not
966      *     relatively prime to {@code m}
967      */
modInverse(BigInteger m)968     public BigInteger modInverse(BigInteger m) {
969         if (m.signum() <= 0) {
970             throw new ArithmeticException("modulus not positive");
971         }
972         return new BigInteger(BigInt.modInverse(getBigInt(), m.getBigInt()));
973     }
974 
975     /**
976      * Returns a {@code BigInteger} whose value is {@code
977      * pow(this, exponent) mod modulus}. The modulus must be positive. The
978      * result is guaranteed to be in the interval {@code [0, modulus)}.
979      * If the exponent is negative, then
980      * {@code pow(this.modInverse(modulus), -exponent) mod modulus} is computed.
981      * The inverse of this only exists if {@code this} is relatively prime to the modulus,
982      * otherwise an exception is thrown.
983      *
984      * @throws NullPointerException if {@code modulus == null} or {@code exponent == null}.
985      * @throws ArithmeticException if {@code modulus < 0} or if {@code exponent < 0} and
986      *     not relatively prime to {@code modulus}.
987      */
modPow(BigInteger exponent, BigInteger modulus)988     public BigInteger modPow(BigInteger exponent, BigInteger modulus) {
989         if (modulus.signum() <= 0) {
990             throw new ArithmeticException("modulus.signum() <= 0");
991         }
992         int exponentSignum = exponent.signum();
993         if (exponentSignum == 0) { // OpenSSL gets this case wrong; http://b/8574367.
994             return ONE.mod(modulus);
995         }
996         BigInteger base = exponentSignum < 0 ? modInverse(modulus) : this;
997         return new BigInteger(BigInt.modExp(base.getBigInt(), exponent.getBigInt(), modulus.getBigInt()));
998     }
999 
1000     /**
1001      * Returns a {@code BigInteger} whose value is {@code this mod m}. The
1002      * modulus {@code m} must be positive. The result is guaranteed to be in the
1003      * interval {@code [0, m)} (0 inclusive, m exclusive). The behavior of this
1004      * function is not equivalent to the behavior of the % operator defined for
1005      * the built-in {@code int}'s.
1006      *
1007      * @param m the modulus.
1008      * @return {@code this mod m}.
1009      * @throws NullPointerException if {@code m == null}.
1010      * @throws ArithmeticException if {@code m < 0}.
1011      */
1012     public BigInteger mod(BigInteger m) {
1013         if (m.signum() <= 0) {
1014             throw new ArithmeticException("m.signum() <= 0");
1015         }
1016         return new BigInteger(BigInt.modulus(getBigInt(), m.getBigInt()));
1017     }
1018 
1019     /**
1020      * Tests whether this {@code BigInteger} is probably prime. If {@code true}
1021      * is returned, then this is prime with a probability greater than
1022      * {@code 1 - 1/2<sup>certainty</sup>)}. If {@code false} is returned, then this
1023      * is definitely composite. If the argument {@code certainty} <= 0, then
1024      * this method returns true.
1025      *
1026      * @param certainty tolerated primality uncertainty.
1027      * @return {@code true}, if {@code this} is probably prime, {@code false}
1028      *     otherwise.
1029      */
1030     public boolean isProbablePrime(int certainty) {
1031         if (certainty <= 0) {
1032             return true;
1033         }
1034         return getBigInt().isPrime(certainty);
1035     }
1036 
1037     /**
1038      * Returns the smallest integer x > {@code this} which is probably prime as
1039      * a {@code BigInteger} instance. The probability that the returned {@code
1040      * BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>}.
1041      *
1042      * @return smallest integer > {@code this} which is probably prime.
1043      * @throws ArithmeticException if {@code this < 0}.
1044      */
1045     public BigInteger nextProbablePrime() {
1046         if (sign < 0) {
1047             throw new ArithmeticException("sign < 0");
1048         }
1049         return Primality.nextProbablePrime(this);
1050     }
1051 
1052     /**
1053      * Returns a random positive {@code BigInteger} instance in the range {@code
1054      * [0, pow(2, bitLength)-1]} which is probably prime. The probability that
1055      * the returned {@code BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>)}.
1056      *
1057      * @param bitLength length of the new {@code BigInteger} in bits.
1058      * @return probably prime random {@code BigInteger} instance.
1059      * @throws IllegalArgumentException if {@code bitLength < 2}.
1060      */
1061     public static BigInteger probablePrime(int bitLength, Random random) {
1062         return new BigInteger(bitLength, 100, random);
1063     }
1064 
1065     /* Private Methods */
1066 
1067     /**
1068      * Returns the two's complement representation of this BigInteger in a byte
1069      * array.
1070      */
1071     private byte[] twosComplement() {
1072         prepareJavaRepresentation();
1073         if (this.sign == 0) {
1074             return new byte[] { 0 };
1075         }
1076         BigInteger temp = this;
1077         int bitLen = bitLength();
1078         int iThis = getFirstNonzeroDigit();
1079         int bytesLen = (bitLen >> 3) + 1;
1080         /* Puts the little-endian int array representing the magnitude
1081          * of this BigInteger into the big-endian byte array. */
1082         byte[] bytes = new byte[bytesLen];
1083         int firstByteNumber = 0;
1084         int highBytes;
1085         int bytesInInteger = 4;
1086         int hB;
1087 
1088         if (bytesLen - (numberLength << 2) == 1) {
1089             bytes[0] = (byte) ((sign < 0) ? -1 : 0);
1090             highBytes = 4;
1091             firstByteNumber++;
1092         } else {
1093             hB = bytesLen & 3;
1094             highBytes = (hB == 0) ? 4 : hB;
1095         }
1096 
1097         int digitIndex = iThis;
1098         bytesLen -= iThis << 2;
1099 
1100         if (sign < 0) {
1101             int digit = -temp.digits[digitIndex];
1102             digitIndex++;
1103             if (digitIndex == numberLength) {
1104                 bytesInInteger = highBytes;
1105             }
1106             for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
1107                 bytes[--bytesLen] = (byte) digit;
1108             }
1109             while (bytesLen > firstByteNumber) {
1110                 digit = ~temp.digits[digitIndex];
1111                 digitIndex++;
1112                 if (digitIndex == numberLength) {
1113                     bytesInInteger = highBytes;
1114                 }
1115                 for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
1116                     bytes[--bytesLen] = (byte) digit;
1117                 }
1118             }
1119         } else {
1120             while (bytesLen > firstByteNumber) {
1121                 int digit = temp.digits[digitIndex];
1122                 digitIndex++;
1123                 if (digitIndex == numberLength) {
1124                     bytesInInteger = highBytes;
1125                 }
1126                 for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
1127                     bytes[--bytesLen] = (byte) digit;
1128                 }
1129             }
1130         }
1131         return bytes;
1132     }
1133 
1134 
1135     static int multiplyByInt(int[] res, int[] a, int aSize, int factor) {
1136         long carry = 0;
1137 
1138         for (int i = 0; i < aSize; i++) {
1139             carry += (a[i] & 0xFFFFFFFFL) * (factor & 0xFFFFFFFFL);
1140             res[i] = (int) carry;
1141             carry >>>= 32;
1142         }
1143         return (int) carry;
1144     }
1145 
1146     static int inplaceAdd(int[] a, int aSize, int addend) {
1147         long carry = addend & 0xFFFFFFFFL;
1148 
1149         for (int i = 0; (carry != 0) && (i < aSize); i++) {
1150             carry += a[i] & 0xFFFFFFFFL;
1151             a[i] = (int) carry;
1152             carry >>= 32;
1153         }
1154         return (int) carry;
1155     }
1156 
1157     /** @see BigInteger#BigInteger(String, int) */
parseFromString(BigInteger bi, String value, int radix)1158     private static void parseFromString(BigInteger bi, String value, int radix) {
1159         int stringLength = value.length();
1160         int endChar = stringLength;
1161 
1162         int sign;
1163         int startChar;
1164         if (value.charAt(0) == '-') {
1165             sign = -1;
1166             startChar = 1;
1167             stringLength--;
1168         } else {
1169             sign = 1;
1170             startChar = 0;
1171         }
1172 
1173         /*
1174          * We use the following algorithm: split a string into portions of n
1175          * characters and convert each portion to an integer according to the
1176          * radix. Then convert an pow(radix, n) based number to binary using the
1177          * multiplication method. See D. Knuth, The Art of Computer Programming,
1178          * vol. 2.
1179          */
1180 
1181         int charsPerInt = Conversion.digitFitInInt[radix];
1182         int bigRadixDigitsLength = stringLength / charsPerInt;
1183         int topChars = stringLength % charsPerInt;
1184 
1185         if (topChars != 0) {
1186             bigRadixDigitsLength++;
1187         }
1188         int[] digits = new int[bigRadixDigitsLength];
1189         // Get the maximal power of radix that fits in int
1190         int bigRadix = Conversion.bigRadices[radix - 2];
1191         // Parse an input string and accumulate the BigInteger's magnitude
1192         int digitIndex = 0; // index of digits array
1193         int substrEnd = startChar + ((topChars == 0) ? charsPerInt : topChars);
1194 
1195         for (int substrStart = startChar; substrStart < endChar;
1196                 substrStart = substrEnd, substrEnd = substrStart + charsPerInt) {
1197             int bigRadixDigit = Integer.parseInt(value.substring(substrStart, substrEnd), radix);
1198             int newDigit = multiplyByInt(digits, digits, digitIndex, bigRadix);
1199             newDigit += inplaceAdd(digits, digitIndex, bigRadixDigit);
1200             digits[digitIndex++] = newDigit;
1201         }
1202         int numberLength = digitIndex;
1203         bi.setJavaRepresentation(sign, numberLength, digits);
1204     }
1205 
getFirstNonzeroDigit()1206     int getFirstNonzeroDigit() {
1207         if (firstNonzeroDigit == -2) {
1208             int i;
1209             if (this.sign == 0) {
1210                 i = -1;
1211             } else {
1212                 for (i = 0; digits[i] == 0; i++) {
1213                     ;
1214                 }
1215             }
1216             firstNonzeroDigit = i;
1217         }
1218         return firstNonzeroDigit;
1219     }
1220 
1221     /**
1222      * Returns a copy of the current instance to achieve immutability
1223      */
copy()1224     BigInteger copy() {
1225         prepareJavaRepresentation();
1226         int[] copyDigits = new int[numberLength];
1227         System.arraycopy(digits, 0, copyDigits, 0, numberLength);
1228         return new BigInteger(sign, numberLength, copyDigits);
1229     }
1230 
1231     /**
1232      * Assigns all transient fields upon deserialization of a {@code BigInteger}
1233      * instance.
1234      */
readObject(ObjectInputStream in)1235     private void readObject(ObjectInputStream in)
1236             throws IOException, ClassNotFoundException {
1237         in.defaultReadObject();
1238         BigInt bigInt = new BigInt();
1239         bigInt.putBigEndian(magnitude, signum < 0);
1240         setBigInt(bigInt);
1241     }
1242 
1243     /**
1244      * Prepares this {@code BigInteger} for serialization, i.e. the
1245      * non-transient fields {@code signum} and {@code magnitude} are assigned.
1246      */
writeObject(ObjectOutputStream out)1247     private void writeObject(ObjectOutputStream out) throws IOException {
1248         BigInt bigInt = getBigInt();
1249         signum = bigInt.sign();
1250         magnitude = bigInt.bigEndianMagnitude();
1251         out.defaultWriteObject();
1252     }
1253 }
1254