1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "OpenGLRenderer"
18
19 #include <math.h>
20 #include <stdlib.h>
21 #include <string.h>
22
23 #include <utils/Log.h>
24
25 #include <SkMatrix.h>
26
27 #include "Matrix.h"
28
29 namespace android {
30 namespace uirenderer {
31
32 ///////////////////////////////////////////////////////////////////////////////
33 // Defines
34 ///////////////////////////////////////////////////////////////////////////////
35
36 static const float EPSILON = 0.0000001f;
37
38 ///////////////////////////////////////////////////////////////////////////////
39 // Matrix
40 ///////////////////////////////////////////////////////////////////////////////
41
identity()42 const Matrix4& Matrix4::identity() {
43 static Matrix4 sIdentity;
44 return sIdentity;
45 }
46
loadIdentity()47 void Matrix4::loadIdentity() {
48 data[kScaleX] = 1.0f;
49 data[kSkewY] = 0.0f;
50 data[2] = 0.0f;
51 data[kPerspective0] = 0.0f;
52
53 data[kSkewX] = 0.0f;
54 data[kScaleY] = 1.0f;
55 data[6] = 0.0f;
56 data[kPerspective1] = 0.0f;
57
58 data[8] = 0.0f;
59 data[9] = 0.0f;
60 data[kScaleZ] = 1.0f;
61 data[11] = 0.0f;
62
63 data[kTranslateX] = 0.0f;
64 data[kTranslateY] = 0.0f;
65 data[kTranslateZ] = 0.0f;
66 data[kPerspective2] = 1.0f;
67
68 mType = kTypeIdentity | kTypeRectToRect;
69 }
70
isZero(float f)71 static bool isZero(float f) {
72 return fabs(f) <= EPSILON;
73 }
74
getType() const75 uint8_t Matrix4::getType() const {
76 if (mType & kTypeUnknown) {
77 mType = kTypeIdentity;
78
79 if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
80 data[kPerspective2] != 1.0f) {
81 mType |= kTypePerspective;
82 }
83
84 if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
85 mType |= kTypeTranslate;
86 }
87
88 float m00 = data[kScaleX];
89 float m01 = data[kSkewX];
90 float m10 = data[kSkewY];
91 float m11 = data[kScaleY];
92 float m32 = data[kTranslateZ];
93
94 if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
95 mType |= kTypeAffine;
96 }
97
98 if (m00 != 1.0f || m11 != 1.0f) {
99 mType |= kTypeScale;
100 }
101
102 // The following section determines whether the matrix will preserve
103 // rectangles. For instance, a rectangle transformed by a pure
104 // translation matrix will result in a rectangle. A rectangle
105 // transformed by a 45 degrees rotation matrix is not a rectangle.
106 // If the matrix has a perspective component then we already know
107 // it doesn't preserve rectangles.
108 if (!(mType & kTypePerspective)) {
109 if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
110 (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
111 mType |= kTypeRectToRect;
112 }
113 }
114 }
115 return mType;
116 }
117
getGeometryType() const118 uint8_t Matrix4::getGeometryType() const {
119 return getType() & sGeometryMask;
120 }
121
rectToRect() const122 bool Matrix4::rectToRect() const {
123 return getType() & kTypeRectToRect;
124 }
125
positiveScale() const126 bool Matrix4::positiveScale() const {
127 return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
128 }
129
changesBounds() const130 bool Matrix4::changesBounds() const {
131 return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
132 }
133
isPureTranslate() const134 bool Matrix4::isPureTranslate() const {
135 // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
136 // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
137 return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
138 }
139
isSimple() const140 bool Matrix4::isSimple() const {
141 return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
142 }
143
isIdentity() const144 bool Matrix4::isIdentity() const {
145 return getGeometryType() == kTypeIdentity;
146 }
147
isPerspective() const148 bool Matrix4::isPerspective() const {
149 return getType() & kTypePerspective;
150 }
151
load(const float * v)152 void Matrix4::load(const float* v) {
153 memcpy(data, v, sizeof(data));
154 mType = kTypeUnknown;
155 }
156
load(const Matrix4 & v)157 void Matrix4::load(const Matrix4& v) {
158 memcpy(data, v.data, sizeof(data));
159 mType = v.getType();
160 }
161
load(const SkMatrix & v)162 void Matrix4::load(const SkMatrix& v) {
163 memset(data, 0, sizeof(data));
164
165 data[kScaleX] = v[SkMatrix::kMScaleX];
166 data[kSkewX] = v[SkMatrix::kMSkewX];
167 data[kTranslateX] = v[SkMatrix::kMTransX];
168
169 data[kSkewY] = v[SkMatrix::kMSkewY];
170 data[kScaleY] = v[SkMatrix::kMScaleY];
171 data[kTranslateY] = v[SkMatrix::kMTransY];
172
173 data[kPerspective0] = v[SkMatrix::kMPersp0];
174 data[kPerspective1] = v[SkMatrix::kMPersp1];
175 data[kPerspective2] = v[SkMatrix::kMPersp2];
176
177 data[kScaleZ] = 1.0f;
178
179 // NOTE: The flags are compatible between SkMatrix and this class.
180 // However, SkMatrix::getType() does not return the flag
181 // kRectStaysRect. The return value is masked with 0xF
182 // so we need the extra rectStaysRect() check
183 mType = v.getType();
184 if (v.rectStaysRect()) {
185 mType |= kTypeRectToRect;
186 }
187 }
188
copyTo(SkMatrix & v) const189 void Matrix4::copyTo(SkMatrix& v) const {
190 v.reset();
191
192 v.set(SkMatrix::kMScaleX, data[kScaleX]);
193 v.set(SkMatrix::kMSkewX, data[kSkewX]);
194 v.set(SkMatrix::kMTransX, data[kTranslateX]);
195
196 v.set(SkMatrix::kMSkewY, data[kSkewY]);
197 v.set(SkMatrix::kMScaleY, data[kScaleY]);
198 v.set(SkMatrix::kMTransY, data[kTranslateY]);
199
200 v.set(SkMatrix::kMPersp0, data[kPerspective0]);
201 v.set(SkMatrix::kMPersp1, data[kPerspective1]);
202 v.set(SkMatrix::kMPersp2, data[kPerspective2]);
203 }
204
loadInverse(const Matrix4 & v)205 void Matrix4::loadInverse(const Matrix4& v) {
206 double scale = 1.0 /
207 (v.data[kScaleX] * ((double) v.data[kScaleY] * v.data[kPerspective2] -
208 (double) v.data[kTranslateY] * v.data[kPerspective1]) +
209 v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
210 (double) v.data[kSkewY] * v.data[kPerspective2]) +
211 v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
212 (double) v.data[kScaleY] * v.data[kPerspective0]));
213
214 data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
215 v.data[kTranslateY] * v.data[kPerspective1]) * scale;
216 data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
217 v.data[kSkewX] * v.data[kPerspective2]) * scale;
218 data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
219 v.data[kTranslateX] * v.data[kScaleY]) * scale;
220
221 data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
222 v.data[kSkewY] * v.data[kPerspective2]) * scale;
223 data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
224 v.data[kTranslateX] * v.data[kPerspective0]) * scale;
225 data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
226 v.data[kScaleX] * v.data[kTranslateY]) * scale;
227
228 data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
229 v.data[kScaleY] * v.data[kPerspective0]) * scale;
230 data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
231 v.data[kScaleX] * v.data[kPerspective1]) * scale;
232 data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
233 v.data[kSkewX] * v.data[kSkewY]) * scale;
234
235 mType = kTypeUnknown;
236 }
237
copyTo(float * v) const238 void Matrix4::copyTo(float* v) const {
239 memcpy(v, data, sizeof(data));
240 }
241
getTranslateX() const242 float Matrix4::getTranslateX() const {
243 return data[kTranslateX];
244 }
245
getTranslateY() const246 float Matrix4::getTranslateY() const {
247 return data[kTranslateY];
248 }
249
multiply(float v)250 void Matrix4::multiply(float v) {
251 for (int i = 0; i < 16; i++) {
252 data[i] *= v;
253 }
254 mType = kTypeUnknown;
255 }
256
loadTranslate(float x,float y,float z)257 void Matrix4::loadTranslate(float x, float y, float z) {
258 loadIdentity();
259
260 data[kTranslateX] = x;
261 data[kTranslateY] = y;
262 data[kTranslateZ] = z;
263
264 mType = kTypeTranslate | kTypeRectToRect;
265 }
266
loadScale(float sx,float sy,float sz)267 void Matrix4::loadScale(float sx, float sy, float sz) {
268 loadIdentity();
269
270 data[kScaleX] = sx;
271 data[kScaleY] = sy;
272 data[kScaleZ] = sz;
273
274 mType = kTypeScale | kTypeRectToRect;
275 }
276
loadSkew(float sx,float sy)277 void Matrix4::loadSkew(float sx, float sy) {
278 loadIdentity();
279
280 data[kScaleX] = 1.0f;
281 data[kSkewX] = sx;
282 data[kTranslateX] = 0.0f;
283
284 data[kSkewY] = sy;
285 data[kScaleY] = 1.0f;
286 data[kTranslateY] = 0.0f;
287
288 data[kPerspective0] = 0.0f;
289 data[kPerspective1] = 0.0f;
290 data[kPerspective2] = 1.0f;
291
292 mType = kTypeUnknown;
293 }
294
loadRotate(float angle)295 void Matrix4::loadRotate(float angle) {
296 angle *= float(M_PI / 180.0f);
297 float c = cosf(angle);
298 float s = sinf(angle);
299
300 loadIdentity();
301
302 data[kScaleX] = c;
303 data[kSkewX] = -s;
304
305 data[kSkewY] = s;
306 data[kScaleY] = c;
307
308 mType = kTypeUnknown;
309 }
310
loadRotate(float angle,float x,float y,float z)311 void Matrix4::loadRotate(float angle, float x, float y, float z) {
312 data[kPerspective0] = 0.0f;
313 data[kPerspective1] = 0.0f;
314 data[11] = 0.0f;
315 data[kTranslateX] = 0.0f;
316 data[kTranslateY] = 0.0f;
317 data[kTranslateZ] = 0.0f;
318 data[kPerspective2] = 1.0f;
319
320 angle *= float(M_PI / 180.0f);
321 float c = cosf(angle);
322 float s = sinf(angle);
323
324 const float length = sqrtf(x * x + y * y + z * z);
325 float recipLen = 1.0f / length;
326 x *= recipLen;
327 y *= recipLen;
328 z *= recipLen;
329
330 const float nc = 1.0f - c;
331 const float xy = x * y;
332 const float yz = y * z;
333 const float zx = z * x;
334 const float xs = x * s;
335 const float ys = y * s;
336 const float zs = z * s;
337
338 data[kScaleX] = x * x * nc + c;
339 data[kSkewX] = xy * nc - zs;
340 data[8] = zx * nc + ys;
341 data[kSkewY] = xy * nc + zs;
342 data[kScaleY] = y * y * nc + c;
343 data[9] = yz * nc - xs;
344 data[2] = zx * nc - ys;
345 data[6] = yz * nc + xs;
346 data[kScaleZ] = z * z * nc + c;
347
348 mType = kTypeUnknown;
349 }
350
loadMultiply(const Matrix4 & u,const Matrix4 & v)351 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
352 for (int i = 0 ; i < 4 ; i++) {
353 float x = 0;
354 float y = 0;
355 float z = 0;
356 float w = 0;
357
358 for (int j = 0 ; j < 4 ; j++) {
359 const float e = v.get(i, j);
360 x += u.get(j, 0) * e;
361 y += u.get(j, 1) * e;
362 z += u.get(j, 2) * e;
363 w += u.get(j, 3) * e;
364 }
365
366 set(i, 0, x);
367 set(i, 1, y);
368 set(i, 2, z);
369 set(i, 3, w);
370 }
371
372 mType = kTypeUnknown;
373 }
374
loadOrtho(float left,float right,float bottom,float top,float near,float far)375 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
376 loadIdentity();
377
378 data[kScaleX] = 2.0f / (right - left);
379 data[kScaleY] = 2.0f / (top - bottom);
380 data[kScaleZ] = -2.0f / (far - near);
381 data[kTranslateX] = -(right + left) / (right - left);
382 data[kTranslateY] = -(top + bottom) / (top - bottom);
383 data[kTranslateZ] = -(far + near) / (far - near);
384
385 mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
386 }
387
mapZ(const Vector3 & orig) const388 float Matrix4::mapZ(const Vector3& orig) const {
389 // duplicates logic for mapPoint3d's z coordinate
390 return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
391 }
392
mapPoint3d(Vector3 & vec) const393 void Matrix4::mapPoint3d(Vector3& vec) const {
394 //TODO: optimize simple case
395 const Vector3 orig(vec);
396 vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
397 vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
398 vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
399 }
400
401 #define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
402
mapPoint(float & x,float & y) const403 void Matrix4::mapPoint(float& x, float& y) const {
404 if (isSimple()) {
405 MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
406 MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
407 return;
408 }
409
410 float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
411 float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
412 float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
413 if (dz) dz = 1.0f / dz;
414
415 x = dx * dz;
416 y = dy * dz;
417 }
418
mapRect(Rect & r) const419 void Matrix4::mapRect(Rect& r) const {
420 if (isIdentity()) return;
421
422 if (isSimple()) {
423 MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
424 MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
425 MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
426 MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
427
428 if (r.left > r.right) {
429 float x = r.left;
430 r.left = r.right;
431 r.right = x;
432 }
433
434 if (r.top > r.bottom) {
435 float y = r.top;
436 r.top = r.bottom;
437 r.bottom = y;
438 }
439
440 return;
441 }
442
443 float vertices[] = {
444 r.left, r.top,
445 r.right, r.top,
446 r.right, r.bottom,
447 r.left, r.bottom
448 };
449
450 float x, y, z;
451
452 for (int i = 0; i < 8; i+= 2) {
453 float px = vertices[i];
454 float py = vertices[i + 1];
455
456 x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
457 y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
458 z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
459 if (z) z = 1.0f / z;
460
461 vertices[i] = x * z;
462 vertices[i + 1] = y * z;
463 }
464
465 r.left = r.right = vertices[0];
466 r.top = r.bottom = vertices[1];
467
468 for (int i = 2; i < 8; i += 2) {
469 x = vertices[i];
470 y = vertices[i + 1];
471
472 if (x < r.left) r.left = x;
473 else if (x > r.right) r.right = x;
474 if (y < r.top) r.top = y;
475 else if (y > r.bottom) r.bottom = y;
476 }
477 }
478
decomposeScale(float & sx,float & sy) const479 void Matrix4::decomposeScale(float& sx, float& sy) const {
480 float len;
481 len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
482 sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
483 len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
484 sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
485 }
486
dump(const char * label) const487 void Matrix4::dump(const char* label) const {
488 ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
489 ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
490 ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
491 ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
492 ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
493 ALOGD("]");
494 }
495
496 }; // namespace uirenderer
497 }; // namespace android
498